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1. Introduction.

This paper gives two methods for constructing associative 3-folds in R,
based around the fundamental idea of evolution equations, and uses them
to produce examples. It is a generalisation of the work by Joyce in [6, 7, 8, 9]
on special Lagrangian (SL) 3-folds in C®. The methods described involve
the use of an affine evolution equation with affine evolution data and the
area of ruled submanifolds.

We begin in Section 2 by introducing the exceptional Lie group Go and
its relationship with the geometry of associative 3-folds in R”. In Section 3,
we review the work by Joyce in [6, 7, 8] on evolution equation constructions
for SL m-folds in C™. We follow this in Section 4 with a derivation of an
evolution equation for associative 3-folds.

In Section 5, we derive an affine evolution equation using affine evolution
data. This is used on an example of such data to construct a 14-dimensional
family of associative 3-folds. One of the main results of the paper is an
explicit solution of the system of differential equations generated in a par-
ticular case to give a 12-dimensional family of associative 3-folds. Moreover,
we find a straightforward condition which ensures that the associative 3-folds
constructed are closed and diffeomorphic to S' x R?, rather than R3.

In the final section, Section 6, we define ruled associative 3-folds and
derive an evolution equation for them. This allows us to characterise a family
of ruled associative 3-folds using a pair of real analytic maps satisfying two
partial differential equations. We finish by giving a means of constructing
ruled associative 3-folds M from r-oriented two-sided associative cones M
such that M is asymptotically conical to My with order O(r~1).
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2. Introduction to Gy and Associative 3-folds.

We give two equivalent definitions of Gy, which relate to the geometry of R”
and the octonions respectively. The first follows [5, page 242].

Definition 2.1. Let (z1,...,27) be coordinates on R7. We shall write
dx;; 1 for the form dz; A dx; A ... Adxy on R”. Define a 3-form ¢ on
R” by

(2.1) Y = dX123 + dX145 + dX167 + dX246 — dX257 — dX347 — dX356.

Then, G2 = {7 € GL(7,R) : v*¢ = ¢}.

We note that G is a compact, connected, simply connected, simple,
14-dimensional Lie group, which preserves the Euclidean metric and the
orientation on R. It also preserves the 4-form %y given by

(2.2) *p = dxuse7 + dxa3er + dxa345 + dX1357 — dxX1346 — dX1256 — dX1247,

where ¢ and *p are related by the Hodge star.
The second definition, taken from [3], comes from considering the algebra
of the octonions, or Cayley numbers, Q.

Definition 2.2. The group of automorphisms of O is Gs.

Suppose we take the latter definition of Gy and note that x € Im Q if and
only if 22 is real, but z is not. Therefore, for all v € Go and for z € O, y(x) €
ImO < y(x)?=v(z?) eR,v(z) ¢ R 22 €R, 2 ¢ R < 2 € ImO. Hence,
G is the subgroup of the group of automorphisms of Im Q = R” preserving
the octonionic multiplication on Im @. This multiplication defines a cross
product x : R” x R” — R” by

1
(2.3) TXYy =3 (ry — yx),

where the right-hand side is defined by considering x and y as imaginary

octonions. Note that we can recover the octonionic multiplication from the
cross product and also that the cross product can be written as follows:

(2.4) (z x 9)? = Qaper®y’g*



Constructing Associative 3-folds by Evolution Equations 1001

using index notation for tensors on R7, where g°¢ is the inverse of the
Euclidean metric on R”. This can be verified using (2.1), (2.3) and a Cayley
multiplication table for the octonions. We deduce from (2.4) that

(2.5) o(z,y,2) = g(z x y, 2)

for z,y, 2 € R”, where ¢ is the Euclidean metric on R”.

For this article, we take manifolds to be smooth and non-singular almost
everywhere and submanifolds to be immersed, unless otherwise stated. We
define calibrations and calibrated submanifolds following the approach in [3].

Definition 2.3. Let (M, g) be a Riemannian manifold. An oriented tan-
gent k-plane V on M is an oriented k-dimensional vector subspace V of
T, M, for some x in M. Given an oriented tangent k-plane V on M, g|y is a
Euclidean metric on V' and hence, using g|y and the orientation on V', we
have a natural volume form, voly, which is a k-form on V.

Let 1 be a closed k-form on M. Then 7 is a calibration on M if n|y, < voly
for all oriented tangent k-planes V on M, where n|y = a - voly for some
a € R, and so n]y < voly if a < 1.

Let N be an oriented k-dimensional submanifold of M. Then N is a
calibrated submanifold or n—submanifold if |7,y = volr, ny for all x € N.

Calibrated submanifolds are minimal submanifolds [3, Theorem I1.4.2].
We now define associative 3-folds.

Definition 2.4. Let N be a 3-dimensional submanifold of R”. Note that,
by [3, Theorem IV.1.4], ¢ as given by (2.1) is a calibration on R”. An
oriented 3-plane V' in R7 is associative if ¢|yy = voly,. N is an associative
3-fold if T, N is associative for all x € N, i.e. if NV is a p—submanifold.

An alternative description of associative 3-planes is given in [3] which
requires the definition of the associator of three octonions.

Definition 2.5. The associator [x,y, z] of z,y,z € O is given by
(2.6) [z,y,2] = (zy)z — x(y2).
Whereas the commutator measures the extent to which commutativity fails,

the associator gives the degree to which associativity fails in . Note that
we can write an alternative formula, in index notation, for the associator of
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three vectors z,y, z € R” using *¢ and the inverse of the Euclidean metric
g on R7 as follows:

1
(2.7) Sy, 2" = (@) apear ™y’ 2 g™,

This can be verified using (2.2), (2.6) and a Cayley multiplication table for
O. We then have the following result [3, Corollary IV.1.7].

Proposition 2.6. Let V be a 3-plane in Im Q = R7 with basis (x,v,2).
Then V, with an appropriate orientation, is associative if and only if
[z,y,2] =0.

In Section 5, we require some properties of the associator which we state
as a proposition taken from [3, Proposition IV.B.16].

Proposition 2.7. The associator [z,y,z] of x,y,z € O is:

(i) alternating,
(ii) imaginary valued,
(iii) orthogonal to x,y,z and to [a,b] = ab — ba for any subset {a,b}
of {z,y, 2}

3. Special Lagrangian m-folds in C™ [6, 7, 8].

We review the work in Joyce’s papers [6, 7, 8] on the construction of special
Lagrangian (SL) m-folds in C™ using evolution equations, upon which this
paper is based. We begin by defining the SL calibration form on C™ and
hence SL m-folds.

Definition 3.1. Let (z1,...,2,) be complex coordinates on C™ with
complex structure I. Define a metric g, a real 2-form w and a complex
m-form 2 on C™ by

w = %(dzl/\d21+...+dzm/\d2m)7
Q=dxu N...Ndzp.

Let L be a real oriented m-dimensional submanifold of C™. Then L is
a special Lagrangian (SL) m-fold in C™ with phase € if L is calibrated
with respect to the real m-form cosf Re) 4 sin 6 Im 2. If the phase of L
is unspecified, it is taken to be one so that L is calibrated with respect to
Re Q2.
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Harvey and Lawson [3, Corollary III.1.11] give the following alternative
characterisation of SL m-folds.

Proposition 3.2. Let L be a real m-dimensional submanifold of C™. Then
L admits an orientation making it into an SL m-fold in C™ with phase €'

if and only if w|p, =0 and (sinf ReQ — cos§Im Q)| = 0.

Joyce, in [6], derives an evolution equation for SL m-folds, the proof of
which requires the following result [3, Theorem III.5.5].

Theorem 3.3. Let P be a real analytic (m —1)-dimensional submanifold of
C™ with w|p= 0. Then there exists a unique SL m-fold in C™ containing P.

The requirement that P be real analytic is due to the fact that the proof uses
the Cartan—Kdhler Theorem, which is only applicable in the real analytic
category. We now give the main result [6, Theorem 3.3].

Theorem 3.4. Let P be a compact, orientable, (m — 1)-dimensional, real
analytic manifold, let x be a real analytic nowhere vanishing section of
A™ITP and let p : P — C™ be a real analytic embedding (immersion)
such that ¥*(w) = 0 on P. Then there exist ¢ > 0 and a unique family
{1 t € (—€,€)} of real analytic maps 1y : P — C™ with vy = 1 satisfying

d b
<i> — ()= (0™ "™ (Re Qa1 g™

dt
using index notation for tensors on C™. Define ¥ : (—e,e) x P — C™ by
U(t,p) = Y(p). Then M = Image ¥ is a non-singular embedded (immersed)
SL m-fold in C™.

In [7, Section 3], Joyce introduces the idea of affine evolution data with
which he is able to derive an affine evolution equation, and therefore reduces
the infinite-dimensional problem of Theorem 3.4 to a finite-dimensional one.

Definition 3.5. Let 2 < m < n be integers. A set of affine evolution data
is a pair (P, x), where P is an (m — 1)-dimensional submanifold of R™ and
X : R®™ — A™~IR" is an affine map, such that x(p) is a non-zero element of
A™"ITP in A™~1R" for each non-singular p € P. We suppose also that P
is not contained in any proper affine subspace R* of R™.

Let Aff(R™,C™) be the affine space of affine maps ¢ : R™ — C" and define
Cp to be the set of ¢ € Aff(R™, C™) satisfying:

(i) ¥*(w)lp =0,
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(ii) ¢|7,p : TP — C™ is injective for all p in a dense open subset of P.

Then (i) is a quadratic condition on ¢ and (ii) is an open condition on v, so

Cp is a non-empty open set in the intersection of a finite number of quadrics
in Aff(R™, C™).

The conditions upon yx in Definition 3.5 are strong. The result is that
there are few known examples of affine evolution data. The evolution equa-
tion derived in [7] is given below [7, Theorem 3.5].

Theorem 3.6. Let (P, x) be a set of affine evolution data and let ¢ € Cp,
where Cp is defined in Definition 3.5. Then there exist € > 0 and a unique
real analytic family {y, : t € (—¢,€)} in Cp with 1Yy = 1, satisfying

b
<%<x>) = () (X(@) ™ (Re Dy gy 106"

for all x € R™, using index notation for tensors in C™. Furthermore, M =
{e(p) : t € (—€,€), p € P} is an SL m-fold in C™ wherever it is non-
singular.

We conclude this section by discussing the material in [8], which is
particularly pertinent to Section 5, where Joyce, for the majority of the
paper, focuses on constructing SL 3-folds in C3 using the set of affine evo-
lution data given below [8, p. 352].

Example 3.7. Let ¢ : R? — RS be the embedding of R? in R® given by

1 1
(3.1) P(y1,y2) = (5(213 +93), 5(1/% —43), Y192, Y1, y2> :

Then P = Image ¢ can be written as

1 1
P= {(xl,...,xg,) ER’:zy = E(xi +x§), To = 5(1:421 —x%), T3 = 1‘43:5},

which is diffeomorphic to R?. From (3.1), we calculate, writing e; = % :
0
Pu 90, ) T V1e + Y12 + Yyoe3 + €4,
a1

0
b T Y2€1 — Y2€2 + y1€3 + es,
Y2
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and thus

s <8iyl A %2) = (i +u3)e2 Nes+ (yi —y3)er Aes —2yiyzer A e
+yi(eg Nes+eaNes —e3Ney)+eq Nes
+yos(—eg ANeg+eaNeg+esAes).
Hence, if we define an affine map x : R> — A?R® by
(3.2) X(21,...,T5) = 2w1e9 A ez + 2x9eq N ez — 2xze; A es +eq A es
+x4(e1 Nes+ea Nes —es Aey)
+x5(—e1 Neg+ex Neg+esNes),
then y = ¢. (6%1 A 8%2) on P. Therefore, (P, ) is a set of affine evolution
data with m = 3 and n = 5.

The main result [8, Theorem 5.1] requires the definition of a cross product
x : C3 x C3 — C3, given in index notation by

(3.3) (u x v)? = (Re Q) gpeuv’g?
for u,v € C3, regarding C? as a real vector space.

Theorem 3.8. Suppose that zi,...,2z¢ : R — C> are differentiable func-
tions satisfying:

(3.4) w(z2,23) = w(z1,23) = w(z1,22) = 0,
(35> W(Zl,Z5) +W(Z2,Z5) —W(Z37Z4) = 07
(3.6) —w(z1,24) + w(z2,24) + w(z3,25) = 0,
(3.7) w(z4,25) =0,
at t =0, and the equations:
d
(38) % = 279 X Z3,
dz
(39) d—tQ = 2Z1 X Z3,
d
(3.10) % N
d
(3.11) %221XZ5—|—22XZ5—23XZ4,
d
(3.12) % = —7Z1 X Z4 + 29 X Zy + 23 X Zs,
dZ@

(313) = Z4 X Z5,

dt
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for all t € R, where x is defined by (3.3). Let M C C? be defined by:

1
S — )22 (0) + yrypzs()

M= {508+ Bm(e) +

+y124(t) + y2z5(t) + 26(t) 1 y1,y2 € R, t € (e, 6)}-

Then M is a special Lagrangian 3-fold in C3 wherever it is non-singular.

Joyce [8] solves (3.8)—(3.13) subject to the conditions (3.4)—(3.7), divid-
ing the solutions into cases based on the dimension of (z; (t), z2(t), z3(t))r for
generic t € R. We shall be concerned with the case where dim(z;(t), z2(t),
z3(t))r = 3, which forms the bulk of the results of [8]. The solutions in
this case involve the Jacobi elliptic functions, which we now give a brief
description of, following the material in [2, Chapter VII].

For k € [0,1], the Jacobi elliptic functions, sn(u, k), cn(u, k), dn(u, k),
with modulus k£ are the unique solutions to the equations:

2
<% sn(u, k)) = (1 —sn?(u, k))(1 — E*sn?(u, k),

2
<% cn(u, k)) = (1 —cn®(u, k))(1 — k> + k% en?®(u, k),

2
<% dn(u, k)) = —(1 —dn®(u, k))(1 — k* — dn?(u, k)),

with the initial conditions

sn(0,k) = 0, en(0,k) =1, dn(0,k) =1,
L sn(0,k) = 1, L en(0,k) =0, <L dn(0,k) = 0.

They also satisfy the following identities and differential equations:

sn?(u, k) 4+ cn®(u, k) = 1,
E*sn?(u, k) + dn®(u, k) = 1,
d

o sn(u, k) = en(u, k) dn(u, k),

% en(u, k) = —sn(u, k) dn(u, k),

di dn(u, k) = —k?sn(u, k) cn(u, k).
u
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For k = 0,1, they reduce to familiar functions:

sn(u,0) = sin u, cn(u,0) = cosu, dn(u,0) =1,
sn(u, 1) = tanh u, cn(u, 1) = sech u, dn(u, 1) = sech u.

For each k € [0,1), they are periodic functions.

The embedding given in Example 3.7 was constructed by considering
the action of SL(2,R) x R? on R2. Hence, Joyce [8, Proposition 9.1] shows
that solutions of (3.8)—(3.10), satisfying the condition (3.4), are equivalent
under the natural actions of SL(2,R) and SU(3) to a solution of the form
z1 = (21,0,0), zo = (0,29,0), z3 = (0,0, 23), for differentiable functions
z1,29,23 : R — C. Therefore, we assume that the solution is of this form.
Equations (3.8)—(3.10) become:

dz dz dz
—1 = 22’22’3, d—t2 =-2 2321, —3 =-2 Z1%29.

3.14
( ) dt dt

The next result is taken from [8, Proposition 9.2].

Proposition 3.9. Given any initial data z1(0), 22(0), 23(0), solutions to
(3.14) exist for all t € R. Wherever the z;(t) are non-zero, they may be
written as:

221 :ewl\/a%—i—v, 229 :ew?\/a%—v, 223262'93«/05%—1),

where aj € R for all j and v,01,02,03 : R — R are differentiable functions.
Let = 61 + 03 + 05 and let Q(v) = (o +v)(a3 — v)(a3 —v). Then there
exists A € R such that Q(v)% sinf = A.

We state the main theorem that we shall require in Section 5, [8, Theorem
9.3].

Theorem 3.10. Using the notation of Proposition 3.9, let a; > 0 for all

J and af2 = a;Z + ong. Suppose that v has a minimum at t = 0, that

02(0) = 63(0) = 0, A > 0 and that s < 3. Then exactly one of the
following four cases holds:

(i) A=0 and ag = as, and z1, 22, 23 are given by:

221(t) = V3 tanh (\/§a1t> ,
225(t) = 223(t) = V3 sech <\/§a1t> :
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(i) A=0 and ay < as, and z1, 29, 23 are given by:

221(t) = /a2 + a2 sn(ot, T),
229(t) = 1/ a2 + a3 en(ot, 7),
223(t) = (/o3 + o dn(ot, 7),

2+ 2
where o = \/a4 + a3 and T = 1/2%52;
(iii) 0 < A < ajagas. Let the roots of Q(v) — A? be v1,72,73, ordered
such that v1 <0 < v <~3. Then v,01,02,03 are given by:

v(t) =1 + (72 — 1) sn?(at, 7),

01(t):91(0)—A/0t ds

3+ + (y2 — 1) sn2(os, 7)

Q(t)—A/t ds

? 0 04%—’71—(72—71)8112(03’7)7
t ds

9 t :A/ 9

3() 0 a%"Yl—(W—Vl)SDQ(US’T)

where 0 = \/vy3 —~1 and T \ Fa

(iv) A= ajasas. Define aq,az,a3 € R by:

_ anag a3 Jeste’)
ay = — ) ag = ’ az = 3
aq Qg ag

then ai + as + a3 = 0 since al_Q = a2_2 + a;Q and z1, 29,23 are
given by:

221(t) = ialeia1t7 222(75) — a2€ia2t’ 22’3(t) _ agew:”t.

4. The First Evolution Equation.

To derive our evolution equation, we shall require two results related to real
analyticity. The first follows from the minimality of associative 3-folds, as
discussed in [3].

Theorem 4.1. Let N be an associative 3-fold in R”. Then N is real ana-
lytic wherever it is non-singular.



Constructing Associative 3-folds by Evolution Equations 1009

The proof of the next result [3, Theorem IV.4.1] relies on the Cartan—
Kahler Theorem, which is only applicable in the real analytic category.

Theorem 4.2. Let P be a 2-dimensional real analytic submanifold of
Im O = R”. Then there exists a unique real analytic associative 3-fold N in
R” which contains P.

We now formulate an evolution equation for associative 3-folds, given a
2-dimensional real analytic submanifold of R”, following Theorem 3.4.

Theorem 4.3. Let P be a compact, orientable, 2-dimensional, real analytic
manifold, let x be a real analytic nowhere vanishing section of A>*TP, and
let ¢ : P — R7 be a real analytic embedding (immersion). Then there
exist € > 0 and a unique family {1y : t € (—€,€)} of real analytic maps
Wy : P — RT with v = 1 satisfying

d
(4.0 (%) = @000

where g°¢ is the inverse of the Euclidean metric on R”, using index notation
for tensors on R7. Define W : (—e,e) x P — R by U(t,p) = ¥y(p). Then
M = Image V¥ is a non-singular embedded (immersed) associative 3-fold in
RT.

Note that we are realising M as the total space of a one parameter
family of two-dimensional manifolds {P; : ¢t € (—¢,€)}, where each P; is
diffeomorphic to P, satisfying a first-order ordinary differential equation in
t with initial condition Py = P.

Proof. Equation (4.1) is an evolution equation for maps ¢; : P — R” with
the initial condition ¥y = . Since P is compact and P, x, @ are real
analytic, the Cauchy—Kowalevsky Theorem [12, p. 234] from the theory of
partial differential equations gives € > 0 such that a unique solution to the
evolution equation exists for t € (—e, €).

By Theorem 4.2, there exists a unique real analytic associative 3-fold
N C R such that ¢)(P) C N. Consider a family {¢; : t € (—¢,¢)}, for some
€ > 0, of real analytic maps 1/;t : P — N, with @50 = 1, satisfying

~\ d
(42) (%) = (@) 00" (Pl ane(91)
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using index notation for tensors on N. By the same argument as above, a
unique solution exists to (4.2) for some € > 0.

Let p € P, t € (—¢,¢) and set = ¢4(p) € N. Let V = (T,N)* in R7,
so R"=T,N @V and (R7)* = TN @ V*. This induces a splitting:

3
ART)" =) A'TEN @ AP RV,
k=0

Note that ¢ € A3(R7)* and that N is calibrated with respect to ¢ as N is
an associative 3-fold. Therefore, the component of ¢ in A>T} N ® V* is zero
since this measures the change in |7, y under small variations of 7, /N, but
¢|r, v is maximum and therefore stationary. Since (¢¢)«(x)lp lies in A2T; N,
(1) (X)®|pPabe lies in TN, because the component in V* comes from the
component of ¢ in AT} N ® V*, which is zero by above. Therefore,

(W) )™ lppabe = () 00 p(l7, 3 abe-

As (RT)* = TYN @ V* is an orthogonal decomposition, ¢ = (gl n) +
hcfl for some h € S?V. Then, (¥t)s(x)®|p(¢|1.N)abch® is zero because
()« ()P (@lTuN)abe € TEN and h € S?V, so their contraction is zero.
Hence,

()« (00 abeg™ = ()= ()™ (PN )abe(g]3)

for all p € P and t € (—¢,¢). Thus the family {¢; : t € (—¢,¢)} satisfies
(4.1) and o = 1, which implies that ¢y = ¢; by uniqueness.

Hence, ¢, maps P to N and ¥ maps (—e¢,€) x P to N for e sufficiently
small. Suppose ¥ is an embedding. Then ¢, : P — N is an embedding for
small t. Moreover, % is a normal vector field to ¥;(P) in N with length
|(¥1)«(x)], so, since x is nowhere vanishing, this vector field is non-zero. We
deduce that ¥ is an embedding for small €, with Image ¥ = M an open
subset of IV, and conclude that M is an associative 3-fold. Similarly if v is
an immersion. (]

5. The Second Evolution Equation.

In general, it is difficult to use Theorem 4.3 as stated to construct associative
3-folds, since it is an infinite-dimensional evolution problem. We follow
the material in [7, Section 3| to reduce the theorem to a finite-dimensional
problem.
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Definition 5.1. Let n > 3 be an integer. A set of affine evolution data is
a pair (P, x), where P is a 2-dimensional submanifold of R™ and y : R” —
A?R™ is an affine map, such that x(p) is a non-zero element of A2T'P in
A2R" for each non-singular point p € P. Further, suppose that P is not
contained in any proper affine subspace R* of R”.

Let Aff(R",R7) be the affine space of affine maps 1 : R* — R”. Define
Cp as the set of ¢ € Aff(R",R7), such that ¢|r,p : T,P — R7 is injective
for all p in a dense open subset of P. Let M be an associative 3-plane in
R”. Then, generic linear maps ¢ : R* — M will satisfy the condition to be
members of Cp. Hence Cp is non-empty.

We formulate our second evolution equation following Theorem 3.6.

Theorem 5.2. Let (P,x) be a set of affine evolution data and n,
Aff(R™,R7) and Cp be as in Definition 5.1. Suppose p € Cp. Then there
exist € > 0 and a unique one parameter family {¢; : t € (—¢,€)} C Cp of
real analytic maps with Wy = ¥ satisfying

dipy a ab cd
(1) (S2@) = @)
for all € R", using index notation for tensors on R”, where g is the
inverse of the Euclidean metric on R7. Define ¥ : (—¢,¢) x P — R” by
U(t,p) = Y¢(p). Then M = Image ¥ is an associative 3-fold wherever it is
non-singular.

Proof. Tt is sufficient to restrict to the case of linear maps 1 : R” — R7 since
R™ can be regarded as R" x {1} C R""! = R" x R, and therefore any affine
map 1 : R” — R” can be uniquely extended to a linear map @Z (R L RT.
We denote the space of linear maps from R” to R” by Hom(R", R"). There-
fore, (5.1) is a well-defined first-order ordinary differential equation upon the
maps ¢y € Hom(R",R7) of the form % = Q(¢y), where @ is a quadratic.
Hence, by the theory of ordinary differential equations, there exist ¢ > 0
and a unique real analytic family {¢; : t € (—¢,¢)} € Hom(R",R7), with
1o = 1, satisfying equation (5.1).

Having established existence and uniqueness, we can then follow the
proof of Theorem 4.3, noticing that we may drop the assumption made there
of the compactness of P, since it was only used to establish the existence of
the required family of maps. Note that (4.1) is precisely the restriction of
(5.1) to x € P, so we deduce that M is an associative 3-fold wherever it is
non-singular.
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We need only show now that the family constructed lies in Cp. Note
that the requirement that |7, p : TP — R is injective for all p in an open
dense subset of P is clearly an open condition, and that it holds at ¥y =
since ¢ € Cp. Thus, by selecting a sufficiently small value of ¢, we see that
Yy € Cp for all t € (—¢,€) and the proof is complete. O

Before we construct associative 3-folds using this result, it is worth noting
that using quadrics to provide affine evolution data as in [7] would not be a
worthwhile enterprise. Suppose @ C R? is a quadric and that L : R? — R7 is
a linear map. Then we can transform R” using Go such that, if we write R” =
R@C3, then L(R?) C C? is a Lagrangian plane. Therefore, evolving Q using
(5.1) will only produce SL 3-folds, which have already been studied in [7].

Let us now return to the affine evolution data given in Example 3.7
and use Theorem 5.2 to construct associative 3-folds. Let (P, x) be as in
Example 3.7 and define affine maps v, : RS — R” by:

(52) 1/}t($1, N ,$5) = Wl(t)xl +...+ W5(t)$5 + W6(t),

where w; : R — R” are smooth functions for all j. Using the notation
of Example 3.7, we see that (¢y)«(e;) = w; for j = 1,...,5. Hence, by
equation (3.2) for x, equation (2.4) for the cross product on R” and (5.1)
we have that

(5.3)
dip _
E(.Tl, R ,335) = 201Wo X W3 + 209W1 X W3 — 2T3W] X Wo
—|—.1‘4(W1 X Wg5 + Wg X W5 — W3 X W4)

—|—.1'5(—W1XW4+W2XW4+W3XW5)+W4XW5

for all (z1,...,x5) € R5. Therefore, from (5.2) and (5.3), we get the following
result.

Theorem 5.3. Let wq,...,wg: R — R” be differentiable functions satisfy-

ng
(54) % = 2wy X W3,
d
(5.5) % — 2wy X W,
d
(5.6) % — 2w X W,
d
(5.7) W4 = Wi X W5+ Wg X W5 — W3 X Wy,

dt
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d

(58) %:—W1XW4—|—W2XW4—|—W3XW5,
d

(59) % = Wy X W5.

Then M, given by:

(47 — y3)wWalt) + y1yaws(t)

N —

M = {307+ w0 +

+ y1wa(t) + yows(t) + we(t) : y1,y2,t €R }7

is an associative 3-fold in R” wherever it is non-singular.

Theorem 5.2 only gives us that the associative 3-fold M is defined for
t in some small open neighbourhood of zero, but work later in this section
shows that M is indeed defined for all ¢ as stated in the above theorem.

The equations we have just obtained fall naturally into three parts:
(5.4)—(5.6) show that w1, wa, w3 evolve amongst themselves; (5.7)—(5.8) are
linear equations for w4 and ws, once wq, wa, wg are known; and (5.9) defines
wg¢ once the functions w4 and ws are known. Moreover, these equations are
very similar to (3.8)—(3.13), given in Theorem 3.8, the only difference being
that here our functions and cross products are defined on R rather than C3.
If we could show that any solutions wi, wo, wg are equivalent to functions
71,22, 23, lying in C3, satisfying (3.8)—(3.10) and (3.4), then we would be
able to use results from [8] to hopefully construct associative 3-folds which
are not SL 3-folds. It is to this end that we now proceed.

Suppose that wy(t), wa(t), ws(t) are solutions to (5.4)—(5.6). Let w; =
w;(0) for all j and let v = [wq, w2, ws3], as defined by (2.7).

If v = 0, then, by Proposition 2.6, (w1, ws,ws)r lies in an associative
3-plane which we can map to R? C C? C RT = R® C3, since Gq acts
transitively on associative 3-planes [3, Theorem IV.1.8]. Let 21, 22, 23 be the
images of wi,ws,ws under this transformation and let w be the standard
symplectic form on C3, which in terms of coordinates (z1,...,z7) on R” is
given by:

w = dxo Ndxg + dry N\ drs + dzg N dzxy.

Then, 21, 29, 23 lie in R3 C C? and so w(z;,2;) = 0 for j # k.
If v # 0, then v is orthogonal to w; for all j by Proposition 2.7, so we
can split R” = R @ C3 where R = (v) and C3 = (v)". Hence, w; lies in C?
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for all j with respect to this splitting. By Proposition 2.7, v is orthogonal
to [wj, wy| = wjw, — wrw; = 2w; X wy, and therefore, from (2.5),

@abcvawjbwkc =0
using index notation for tensors on R”. Note that we can write:
(5.10) ¢ =dr1 Nw+ Ref,

where Q is the holomorphic volume form on C3. Therefore, Yup.0% = |v|wpe
and hence, since |v| # 0, w(w;, wy) = 0.

From equations (2.4) and (3.3) defining the cross products on R” and C?
respectively and (5.10) above, we see that, for vectors x,y € C> C R7,

(5.11) xxy=xx"y+wxy)ei,

where x’ is the cross product on C* and e; = (1,0) € R @ C? = R".
We have shown that, using a Go transformation, we can map the solutions
w1 (t), wa(t), ws(t) to solutions z(t),z2(t), z3(t) such that z;(0) € C* C R”
and w(z;(0),2,(0)) = 0. Our remarks above about (5.4)—(5.6), and the
relationship (5.11) between the cross products on C* and R, show that
z1(t), z2(t), z3(t) must remain in C? and satisfy (3.8)—(3.10) along with con-
dition (3.4). Hence, any solution of (5.4)-(5.6) is equivalent up to a Go
transformation to a solution to the corresponding equations in Theorem 3.8.

We now perform a parameter count in order to calculate the dimension of
the family of associative 3-folds constructed by Theorem 5.3. The initial data
w1(0),...,wg(0) has 42 real parameters, which implies that dim Cp = 42
(using the notation of Definition 5.1), and so the family of curves in Cp
has dimension 41, which corresponds to factoring out translation in ¢. It is
shown in [8] that GL(2,R) x R? acts on this family of curves and, because
of the internal symmetry of the evolution data, any two curves related by
this group action give the same 3-fold. Therefore, we have to reduce the
dimension of distinct associative 3-folds up to this group action by 6 to 35.
We can also identify any two associative 3-folds which are isomorphic under
automorphisms of R7, i.e. up to the action of Go x R”, and so we reduce the
dimension by 21 to 14.

In conclusion, the family of associative 3-folds constructed in this section
has dimension 14, whereas the dimension of the family of SL 3-folds con-
structed in Theorem 3.8 has dimension 9, so not only do we know that we
have constructed new geometric objects, but also how many more interesting
parameters we expect to find.
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5.1. Singularities of these associative 3-folds.

We study the singularities of the 3-folds constructed by Theorem 5.3, by
introducing the function F : R® — R defined by:

F(yi,y2,t) = %(?/% +y3)wi(t) + %(y% — y3)Wa(t) + y1yaws(t)
(5.12) + y1wa(t) + yaws(t) + we(t).

Clearly, F' is smooth and, if dF|y, y,¢) : R? — R7 is injective for all
(y1,y2,t) € R, then F is an immersion and M = Image F' is non-singular.
Therefore, the possible singularities of M correspond to points where dF is
not injective. Since we have from (5.4)—(5.9) that

OF OF _OF
oy~ Oya Ot

%—f is perpendicular to the other two partial derivatives, and it is zero if and

only if the y; and ys partial derivatives are linearly dependent. We deduce
that F' is an immersion if and only if g—i and g—;; are linearly independent,
since dF is injective if and only if the three partial derivatives of F' are
linearly independent. The condition for F' to be an immersion at (0,0, 0) is
that w4(0) and w5(0) are linearly independent.

We perform a parameter count for the family of singular associative 3-
folds constructed by Theorem 5.3. The set of initial data w1(0),...,wg(0),
with wy(0) and ws(0) linearly dependent, has dimension 28 4+ 8 = 36, since
the set of linearly dependent pairs in R” has dimension 8. We saw in the
earlier parameter count above that the set of initial data without any restric-
tions had dimension 42. Hence, the condition that F' is not an immersion
at (0,0,0) is of real codimension 6, but this is clearly true for any point
in R3 and therefore, it is expected that the family of singular associative
3-folds will be of codimension 6 — 3 = 3 in the family of all associative
3-folds constructed by Theorem 5.3. Therefore, the family of distinct sin-
gular associative 3-folds up to automorphisms of R” should have dimension
14 — 3 = 11. Thus, generic associative 3-folds constructed by Theorem 5.3
will be non-singular. Moreover, the dimension of the family of singular as-
sociative 3-folds is greater than the dimension of the family of singular SL
3-folds constructed from the same evolution data (which has dimension 8).

We now model M = Image F' near a singular point, which we take to be
the origin without loss of generality. Therefore, we expand wq(t), ..., wg(t)
about ¢ = 0 to study the singularity. Since dF' is not injective at the origin,
wy(0) and w5(0) are linearly dependent. As mentioned above, Joyce [8,
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Section 5.1] describes how internal symmetry of the evolution data gives
rise to an action of GL(2,R) x R? upon wi(t),...,wg(t), under which the
associative 3-fold constructed is invariant. A rotation of R? by an angle 6
transforms wy4(0) and w5(0) to

w4(0) = cos Bw4(0) — sin w5 (0),
w5(0) = sin Ows(0) + cos fws(0).
Since w4(0) and ws(0) are linearly dependent, # may be chosen so that

w5(0) = 0. We may therefore suppose that w5(0) = 0 and take our initial
data to be:

for vectors u,v,w,x € R7. Expanding our solutions to (5.4)—(5.9) to low
order in ¢:

wi(t) = v +w+2t(v —w) x x + O(t?),
wo(t) = v — w + 2t(v + w) x x 4+ O(t?),
ws3(t) = x + 4tv x w + O(t?),

wy(t) = u+tu x x + O(t?),

ws(t) = 2tu x w + 8t>x x (u x w) + O(3),
we(0) = 103U x (x x (u x w)) 4+ O(th).

Calculating F'(y1,y2,t) near the origin, we see that the dominant terms in
the expansion are dependent upon wi, wag, w3, which we have shown to be
equivalent under Gs to solutions as given in Theorem 3.8. Following Joyce
[8, p. 363-364], we consider F(€y;, ey, et) for small €, which is given by:

1 1
F(%y1, ey, et) = 62[(3/1 + Zg(u,w)tQ)u + (y% — Z|u\2t2)w + 2yotu X W]

+ E3[Aydtx X W + y1yoX + yitu X X + Syot?x x (U X W)
(5.13) + 108%u x (x x (u x w))] + O(e*).
Here, we have assumed that w(u,w) = 0 in order to simplify the coefficient

of u. The € terms in (5.13) give us the lowest order description of the
singularity. If we suppose that u and w are linearly independent, which will
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be true in the generic case, then u, w and u X w are linearly independent
and therefore generate an SL R®. Hence, near the origin to lowest order, M
is the image of the map from R3 to R? given by

1 1
(5.14) (y1,y2,t) — (y1 + Zg(u,w)tZ,yg — Z|u\2t2, 2uot).

Note that the first coordinate axis is fixed under (5.14) and, moreover, y2
and t are allowed to take either sign. Therefore, (5.14) is a double cover of
an SL R? which is branched over the first coordinate axis. This is the same
behaviour as occurs in the SL case [8, p. 364].

In order to study the singularity further, we consider the € terms in
(5.13). It is generally not possible to simplify the final cross product in the
€3 terms to give a neat expression using only four vectors. However, if we
choose {v,w,x} to be the usual basis for the standard R? in C* C R7, we
have that v .= w x x and the 3 term vanishes. Thus, using (5.13) and
(5.14), the next order of the singularity is the image of the following map
from R? to R:

1 1

(y1,92,t) — <y1 + 900wt gy = Z[ul*t, 2y0t, —deyst, ey, 6y1t786y2t2> :
Note that the singularity does not lie within C3 C R” and so we have a
model for a singularity which is different from the SL case.

5.2. Solving the equations.

From the work above, any solution w1 (t), wa(t), ws(t) in R” to (5.4)—(5.6)
is equivalent under a Gy transformation to a solution z(t), z2(t), z3(t) in C3
to (3.8)—(3.10) satisfying (3.4). We can thus use results from [8] to produce
some associative 3-folds. However, we must exercise some caution: we re-
quire that (z1(t),2z2(t),z3(t) : t € R)g = C3. If this does not occur, there
may be a further Go transformation that preserves the subspace spanned by
the z;(t), but transforms C3 so that ws and ws are mapped into C3, and
thus the submanifold constructed will be an SL 3-fold embedded in R”.
When dim (z;(t),z2(t), z3(t))r < 3, for generic t € R, the z;(t) define
a subspace of an SL R? in C3, which corresponds to an associative R? in
R7. The subgroup of Gy preserving an associative R? is SO(4) [3, Theorem
IV.1.8], and the subgroup of SU(3), which is the automorphism group of C3,
preserving the standard R? is SO(3). Hence, the family of different ways of
identifying R” = R @ C? such that (z(t),z2(t),2z3(t))r is mapped into the
standard R? in C3 contains SO(4)/SO(3) = S3. We therefore have sufficient
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freedom left in using the Gy symmetry, after mapping w1, wo, w3 into C3,
to map wy and ws into C3 as well. This means that these cases will only
produce SL 3-folds.

It is also true in (i) and (ii) of Theorem 3.10 that the solutions z;(t)
define a subspace of an SL R? in C? and so these cases will not provide any
new associative 3-folds either. Therefore, we need only consider (iii) and
(iv) in Theorem 3.10.

Suppose we are in the situation of Theorem 3.10 so that, if we write
R7 =R® Cg, Wi = (O,wl,0,0), Wo = (0,0,wz,O), W3 = (0,0,0,wg) for
differentiable functions wi,wy,ws : R — C. Let wy = (y,p1,p2,q3) and
ws = (—z,q1, —q2,p3), where all the various functions defined here are dif-
ferentiable. Equations (5.7)—(5.8) become

(5.15) % = Im(w1p1 — Wap2 — Wsp3),
(5.16) % = 1wy + W2p3 + W3P32,
(5.17) % = 1ZW2 — W3p1 — WiP3,
(5.18) % = izws — W1pz — WaP1;
(5.19) % = Im(w1q1 — Wag2 — W3q3),
(5.20) % — tyw, + Va3 + TG,
(5.21) % = iyws — W3qT — WiGs,
(5.22) % = {Yyws — W1q2 — Wa(q]-

Note that the equations on (z,p1,pe2,ps) are the same as on (y,q1,q2,q3)-
Moreover, (z,p1,p2,p3) = (0,w;,ws,ws) gives an automatic solution to
(5.15)—(5.18) and (y, q1,42,q3) = (0, w1, ws,ws) solves (5.19)—(5.22).

If we write wg = (z,71,72,73), where z : R — R and r1,7,73 : R — C
are differentiable functions, (5.9) becomes

dz _ _ _
(5.23) - Im(p1q1 — P2g2 — P3q3),
dr . . .
(5.24) d—tl =1Tp1 +1Yq1 + P2p3 + G243,
dr . . .
(5.25) 2 — izpy — iyge — D3PI + GBI

dt
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drg . , .
(5.26) d—tg = ixq3 + iyps — P1q2 — D2qi-
Note that the conditions that x,y, z are constant correspond to (3.6), (3.5)
and (3.7) in Theorem 3.8 respectively. Calculation using (5.15)—(5.18) gives
d*x
dt?
Suppose that z is a non-zero constant. Then |w1|? — |wa|? — |w3|? = 0. Using
(2.5), (5.4)—(5.6) and the alternating properties of ¢:

d
— (w1 |* = Jwa|* = Jws?)

dt
_ dW1 dW2 dW3

g(Wa X w3, wi) — g(W1 X W3, W2) + g(W1 X Wa, W3))

= a(jwif* — |waf* — ws/*).

Therefore, (w1, wa,ws) = Re (wjwows) = 0, which occurs if and only if
(iv) of Theorem 3.10 holds. However, in case (iv), |w1]? — |we|? — |ws|? =
a% — a% — a%, which, together with the condition afZ = a;Z + a§2, forces
a;j = 0 for all j which is a contradiction. Hence, if = is constant, then = has to
be zero, and we have a similar result for y. Therefore (3.5)—(3.7) correspond
to z = y = 0 and z constant. This is unsurprising since having r =y =0
and z constant corresponds to w4, Ws, Wg remaining in C3 and thus the
associative 3-fold M constructed will be SL and hence satisfy w|y = 0.

Following the discussion earlier in this subsection, we consider (iii) and
(iv) of Theorem 3.10. However, no solutions are known in case (iii), so
we focus on case (iv). We therefore let ay, ag, a3 be positive real numbers
satisfying af2 = a;Q + a;Q and define a1, a9, az by:

Q03 a3y Q1o

(5.27) al = — ,  ag = , a3 = .
aq a2 a3

By Theorem 3.10, we have that

2wy (t) = ialeiaﬂ’ 2w2(t) = Oégeia2t7 ng(t) _ Oégeia?’t.

Hence, if we let 51, (1, 03 : R — C be differentiable functions such that
pi(t) =i Bi(t), pa(t) = €' Ba(t), ps(t) = €' Bs(t),

we have the following result.
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Proposition 5.4. Using the notation above, (5.15)—(5.18) can be written as
the following matrix equation for the functions x, (1, B2, B3:

6] « 8] 8] 8] 8]
T 0 -« 2 9 1 3

2 2 2 2 T2 x
B oy —2a; 0 0 0 —az —as B
d B2 ; o) 0 —2ao 0 o3 0 o B2
% @3 = 5 a3 O O —2a3 (65)] a7 O @3
@1 —Q1 0 a3 a9 2&1 0 0 ﬂl
@2 —Q —Qs3 O —Q] 0 2(12 O /82
B3 —az  —ay  —Qaj 0 0 0 2a3 B3
Proof. Using (5.15),
dx 1
B _ _
pri m(a1 81 — agfa — azf33)
)

= 1 (041(61 — ﬂl) + ag(ﬂz — 62) + 043(@3 - 63)) )

which gives the first row in the matrix equation above. Since a;+as+a3z = 0,
equation (5.16) for p; shows that

d 1 3 G
z% - 5(—041:1: + a2f3 + azfh),

which, upon rearrangement, gives the second row in the matrix equation
above. The calculation of the rest of the rows follows in a similar fashion. [J

In order to solve the matrix equation given in Proposition 5.4, we find
the eigenvalues and corresponding eigenvectors of the matrix.

Proposition 5.5. Let T denote the 7 x 7 real matriz given in Proposition
5.4 and let a = (0,1, a2, a3, a1, a2,a3) T, where T denotes transpose. Then
there exist non-zero vectors by, ¢4, di € R such that

Ta= 07 Tbi == :i:)\bi, Tci == :I:/\ci, Tdi = :i:3/\di,
where A > 0 is such that \*> = a3 — ajaz and
b, = (b1,b2,0,b3,b4,0,b5)T, b = (by,by,0,b5,b9,0,b3)T,

(5.28) ¢y = (61,0,62,63,0,04,05)T, c_ = (01,0,04,05,0,62,63)T,
dy = (0,dy,da,ds, ds, ds,dg)",  d_ = (0,dy,ds,dg, dy,do,ds)",

for constants by,...,bs,c1,...,¢5,d1,...,dg € R. In particular, the pairs
{by,c4} are linearly independent.
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Proof. Most of the results in this proposition are found by direct calculation
using Maple. The only point to note is that if w is a u-eigenvector of T', for
some 1 € R, and we write w = (2 y 2z )T, where z € R and y,z € R3,
thenw = (2 z y )T isa —p-eigenvector of T, and hence we can cast the
eigenvectors of T" into the form as given in (5.28). O

From this result, we can write down the general solution to the matrix
equation given in Proposition 5.4:

(5.29)

x 0 b1 bl C1
B1 a b2 ba 0
ﬁg a9 ) 0 ) 0 ) (6]
O3 | =Aas | + BJFG%)\t by | + Be 3™ | by | + C+€%)\t c3
B ai bs bo 0
B2 Qg 0 0 cq
B3 as bs b3 cs

C1 0 0

0 dq dy

i €4 3i da 3i ds

+C_e 2N | ¢5 +D+e?)‘t ds | +D_e 27 | dg

0 dy dq

Co ds da

c3 dg ds

for constants A, B+,Cy,Dy+ € C. However, the last three rows in this
equation are equal to the complex conjugate of the three rows above them,
which implies that B_ = By, C_ = C,, and D_ = D,. Moreover, if we
translate R?, as given in the evolution data, from (y1,42) to (y1 — A4, y2), then
w; is unaltered for j = 1,2,3, but wy is mapped to wy — Aw;. Therefore,
we can set A = 0.

From the discussion above, we may now write down the general solu-
tion to (5.15)—(5.18) and (5.19)—(5.22) and then simply integrate equations
(5.23)—(5.26) to give an explicit description of some associative 3-folds con-
structed using our second evolution equation. This result is given below.

Theorem 5.6. Define functions x,y,z : R — R and wj,p;,q;,7; : R — C
for j =1,2,3 by:

2w (t) = ialeialt, 2w2(t) — aQeiagt’ ng(t) _ Oégew?’t,
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where «aq, s, a3 are positive constants such that al_Q = a2_2 + a§2 and
ay,az,as are given in (5.27);

pi(t) = ie'nt (Bbgeé)‘t + Bb4€7%)\t + Ddle%)‘t + Dd467%)\t) ,
= ¢lazt (CCQC%)\t + 0646_%>\t + Ddge%’\t + Dd5e_%’\t) ,
ps3(t) = w3t<(Bb3 + Ccs)ez t+(Bb5 + 605)67%)\t+Dd3€%)\t+Dd6€7%)\t>,
) =2Re (B brez™ 4+ C'c 62)\t>
) = jelart (B boe3 X+ Bibe—3M 4 D'dye 3 M+ D'dm%M) ,
go(t) = 2! (0’0262)‘t+C’C46 2 4 D'dye 2 M + D'dse” At) ,
3(t)

— ¢ ((B'by+ C'eg)e3 Mot (Bl +Cleg)e™ 344 Dldye 334 Didge™ 32,

dz _ _ _

i Im(p1g1 — P2ge — P3q3),
d’l“l . . N EE—
p 1Tp1 + 1Yq1 + P23 + 4243,
drg ) . o
T =1TPp2 — 1Yq2 — P3P1 + G341,
drs . . _
T =12q3 + 1Yp3 — P1q2 — D241,

where the real constants A and bj, c;,d; are as defined in Proposition 5.5 and
B,B',C,C",D,D’" € C are arbitrary constants.
Define a subset M of RT =R @ C3 by:

M = { (190) = s0) + 200, 508 + Bn(0) + 01 (0)+ m (6) 4 ),

1

§(yf — y5)wa(t) + y1pa(t) — y2qa(t) + ra(t),

(5.30)  yryows(t) + y1gs(t) + yops(t) + 7“3(t)> Sy, Y2, t € R}-

Then, M is an associative 3-fold in R”.

We now count parameters for the associative 3-folds constructed by The-
orem 5.6. There are four real parameters (a1, a9, a3 and the constant of
integration for z(t)) and nine complex parameters (B, B',C,C’, D, D" and
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the three constants of integration for r1(t),r2(t), r3(t)), which makes a total
of 22 real parameters. The relationship afZ = ay 24 agZ then reduces the
number of parameters by one to 21. Recall that we have the symmetry
groups GL(2,R) x R? and Gy x R” for these associative 3-folds. By the
arguments proceeding Theorem 5.3 and the proof of [8, Proposition 9.1],
we have used the freedom in Gg transformations and rotations in GL(2,R)
to transform our solutions wi, wo, ws of (5.4)—(5.6) to solutions of (3.8)—
(3.10), satisfying (3.4), of the form w; = (0,w7,0,0), wo = (0,0, ws,0),
w3 = (0,0,0,w3). We have also used translations in R? to set the constant
A in (5.29) and the corresponding constant A’ in the general solution to
(5.19)—(5.22) both to zero. Therefore, the remaining symmetries available
are dilations in GL(2,R) and translations in R”, which reduce the number of
parameters by eight to 13. Translation in time, say ¢ +— ¢ + g, corresponds
to multiplying B, B',C,C" by e2* and D, D’ by e%)‘to, which thus lowers
the parameter count by one. We conclude that the dimension of the family
of associative 3-folds generated by Theorem 5.6 is 12, whereas the dimension
of the whole family generated by Theorem 5.3 is 14.

5.3. Periodicity.

Note that the solutions to Theorem 5.6 are all linear combinations of terms
of the form €% ™V for j = 1,2,3 and m = 0,43, +1,£3,+2, £3, since
aj £nX # 0 for n = 0,1,2,3, which ensures that 71,72,73 do not have any
linear terms in t¢. It is therefore reasonable to search for associative 3-folds
M as in (5.30) that are periodic in t. Define a map F : R?* — R” by (5.12),
so that M = Image F'. Then M is periodic if and only if there exists some
constant 7' > 0 such that F(yi,y2,t + 1) = F(y1,y2,t) for all y1,ys,t € R.

From above, the periods of the exponentials in the functions defined
in Theorem 5.6 are proportional to (a; + mA)~! for j = 1,2,3 and the
values of m given above. In general, F' will be periodic if and only if these
periods have a common multiple. By the definition of the constants a;,
we can write ag = —za; and a3 = (z — 1)a; for some = € (0,1). Then
N =a} — ajaz = a3(2? — 2 + 1) and, if we let y = Va2 — x + 1, we deduce
that A = —ya; since a; < 0 and A,y > 0. The periods thus have a common
multiple if and only if z and y are rational. We have therefore reduced the
problem to finding rational points on the conic y?> = x? — x + 1. This is
a standard problem in number theory and is identical to the one solved by
Joyce [8, Section 11.2], so we are able to prove the following result.
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Theorem 5.7. Given s € (0, %) N Q, Theorem 5.6 gives a family of closed
associative 3-folds in R™ whose generic members are non-singular immersed
3-folds diffeomorphic to S* x R?.

Proof. Let s € (0, %) N Q and write s = £ where p,q are coprime positive
integers. Then, by the work in [8, p. 390], we define aj, as, as, A either by

a1 =p°—¢* ax=q¢"—2pq, az=2pq—p°, A=p’—pg+q*
or, if p + ¢ is divisible by 3, by
3a1 =p* —¢*, 3az =q* —2pq, 3az=2pq—p*, 3\=p’—pq+q*

In both cases, hef (a1, a2,a3) = hef (ag, az, az, A) = 1. We also note that A is
odd since at least one of p, ¢ is odd. Thus, a; +mA is an integer for integer
values of m and half an integer, but not an integer, for non-integer values of
m. Hence, by the form of the functions given in Theorem 5.6 and equation
(5.12) for F, F(y1,y2,t + 2m) = F(—y1,—y2,t) for all y1,ys,t. We deduce
that F' has period 4, using the condition that hcf(aq,ag,as) = 1.

If we define an action of Z on R? by requiring, for n € Z, that (y1,ys,t)
maps to ((—1)"y1, (—1)"y2,t + 2nm), then we can consider F' as a map from
the quotient of R?® by Z under this action. Since this quotient is diffeo-
morphic to S x R? and generically F is an immersion, M = Image F' is
generically an immersed 3-fold diffeomorphic to S! x R2. U

Joyce [8] has considered the asymptotic behaviour of the SL 3-folds con-
structed by Theorem 3.10(iv) at infinity, which is dependent on the quadratic
terms in F'. However, since solutions wi, wo, wg in Theorem 5.3 are essen-
tially equivalent to solutions zi,z2,z3 in Theorem 3.10, the asymptotic be-
haviour of the 3-folds given by Theorem 5.7 must be identical to that found
by Joyce [8, p. 391]. We first make a definition and then state our result.

Definition 5.8. Let M, My be closed m-dimensional submanifolds of R™
and let k < 1. We say that M is asymptotic with order O(r*) at infinity
in R™ to My if there exist R > 0, some compact subset K of M and a
diffeomorphism ® : My \ Bg — M \ K such that

|B(x) —x| = O(r*) asr — oo,

where r is the radius function on R” and Bp, is the closed ball of radius R.



Constructing Associative 3-folds by Evolution Equations 1025

Theorem 5.9. Every closed associative 3-fold defined by s € (0, %) NQ, as

given in Theorem 5.7, is asymptotic with order O(T‘%) at infinity in R” to a
double cover of the SL T? cone defined by:

3
{(O,iewl%l,ewﬁxg,ewi”tfv?,) 1 xy, X, x3,t €ER, 21 >0, E a;x; = 0}
=1

where the constants ai,as,as are defined by s as in the proof of Theorem
5.7.

The associative 3-folds in Theorem 5.7 actually diverge away from the SL
cone given above, but Theorem 5.9 gives a measure of the rate of divergence.

We now show that if an associative 3-fold M were to converge to an SL
3-fold at infinity, then M would in fact be SL, which we know is not the
case for generic members of the family given by Theorem 5.7.

Theorem 5.10. Suppose M is an associative 3-fold in RT = R @ C3 and
that L is an SL 3-fold in C3. Suppose further that M is asymptotic with
order O(r*) at infinity in R to L, where k < 0. Then M is an SL 3-fold in
C3 embedded in R”.

To prove Theorem 5.10, we need two results. The first is a mazimum prin-
ciple for harmonic functions due to Hopf [10, p. 12].

Theorem 5.11. Let f be a smooth function on a Riemannian manifold M .
Suppose f is harmonic, i.e. d*df = 0, where d* is the formal adjoint of d.
If f assumes a local mazimum (or minimum) at a point in M \ OM, then f
18 constant.

The second is an elementary result from the theory of minimal submanifolds
[10, Corollary 9].

Theorem 5.12. Let M be a submanifold of R™, for some n, with immersion
t. Then M is a minimal submanifold if and only if v is harmonic.

Here, the function ¢ : M — R”™ is harmonic if and only if each of the
components of ¢ mapping to R is harmonic. We now prove Theorem 5.10.

Proof of Theorem 5.10. Since M is an associative 3-fold in R7, M is a
minimal submanifold of R” [3, Theorem I1.4.2]. Therefore, the embedding of
M in R7 is harmonic by Theorem 5.12. In particular, if we write coordinates
on M as (x1,...,x7), x1 is harmonic. We may assume, without loss of



1026 J. Lotay

generality, that the SL 3-fold L to which M converges lies in {0} x C* C R”.
Since M is asymptotic to L at infinity with order O(r*), where k < 0, ;1 — 0
as r — 00. Suppose x1 is not identically zero. Then xz; assumes a strict
maximum or minimum at some point in the interior of M. By Theorem
5.11, x1 is therefore constant, which contradicts the assumption that x; was
not identically zero. Hence, 1 = 0 and M is an SL 3-fold in C3. (]

6. Ruled Associative 3-folds.

In this final section we focus on ruled 3-folds and apply our ideas of evolution
equations to give methods for constructing associative examples. This is a
generalisation of the work in Joyce’s paper [9] on ruled SL 3-folds in C? and
it is from this source that we take the definitions below. By a cone in R7,
we shall mean a submanifold of R” which is invariant under dilations and
is non-singular except possibly at 0. A cone C is said to be two-sided if
C=-C.

Definition 6.1. Let M be a 3-dimensional submanifold of R”. A ruling of
M is a pair (X, ), where 3 is a 2-dimensional manifold and 7 : M — X is
a smooth map, such that for all o € ¥, there exist v, € S®, w, € R” such
that 7=1(0) = {rvy, + w, : 7 € R}. Then the triple (M, %, 7) is a ruled
submanifold of R”.

An r-orientation for a ruling (X, 7) of M is a choice of orientation for
the affine straight line 771(¢) in R”, for each o € ¥, which varies smoothly
with 0. A ruled submanifold with an r-orientation for the ruling is called
an r-oriented ruled submanifold.

Let (M,3>,m) be an r-oriented ruled submanifold. For each o € X, let
#(0) be the unique unit vector in R” parallel to 7—! (o) and in the positive di-
rection with respect to the orientation on 7=1(c), given by the r-orientation.
Then ¢ : ¥ — S% is a smooth map. Define ¢ : ¥ — R” such that, for all
o € 3, ¥(0) is the unique vector in 7—!(o) orthogonal to ¢(c). Then 1 is a
smooth map and we may write:

(6.1) M = {r¢(o) + (o) : 0 € 3, r € R}.
Define the asymptotic cone My of a ruled submanifold M by:

My = {v € R" : v is parallel to 7~ !(c) for some ¢ € X}.
If M is also r-oriented then

(6.2) My ={r¢(c) :0 € X, r € R}



Constructing Associative 3-folds by Evolution Equations 1027

and is usually a 3-dimensional two-sided cone; that is, whenever ¢ is an
immersion.

Note that we can consider any r-oriented ruled submanifold as being
defined by two maps ¢, as given in Definition 6.1. Hence, r-oriented ruled
associative 3-folds may be constructed by evolution equations for ¢, .

Suppose we have a 3-dimensional two-sided cone My in R7. The link
of My, My N SP, is a non-singular 2-dimensional submanifold of S® closed
under the action of —1: 8% — S®. Let ¥ be the quotient of the link by the
+1 maps on S%. Clearly, ¥ is a non-singular 2-dimensional manifold. Define
My C ¥ x R7 by:

My = {({£o},r0) : 0 € MyNS®, r € R}.

Then My is a non-singular 3-fold. Define 7 : My — X by n({xo},ro) =
{+0} and ¢+ : My — R7 by v({£o},r0) = ro. Note that t(My) = My
and that ¢ is an immersion except on ¢~1(0) = X, so we may consider My
as a singular immersed submanifold of R”. Hence (M(),Z,W) is a ruled
submanifold of R”. Therefore, we can regard My as a ruled submanifold
and dispense with M. Suppose further that M is an r-oriented two-sided
cone. We can thus write My in the form (6.1) for maps ¢,, as given in
Definition 6.1, and see that 1) must be identically zero. It is also clear that
any ruled submanifold defined by ¢, with ¥ = 0 is an r-oriented two-sided
cone.

We now justify the terminology of asymptotic cone as given in Definition
6.1. For this, we need to define the term asymptotically conical with order
O(r?®), where r is the radius function on R”.

Definition 6.2. Let Mj be a closed cone in R” and let M be a closed non-
singular submanifold in R”. We say that M is asymptotically conical to My
with order O(r®), for some a < 1, if there exist some constant R > 0, a
compact subset K of M and a diffeomorphism ® : My \ Br — M \ K such
that

(6.3) V(@ (x) — I(x))] = O(r* %) for k=0,1,2,... as 7 — o0,

where Bp is the closed ball of radius R in R” and I : My — R7 is the
inclusion map. Here |.| is calculated using the cone metric on My \ Bg,
and V is a combination of the Levi-Civita connection derived from the cone
metric and the flat connection on R™, which acts as partial differentiation.
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Suppose that M is an r-oriented ruled submanifold and let My be its
asymptotic cone. Writing M in the form (6.1) and My in the form (6.2)
for maps ¢, 1, define a diffeomorphism ® : My \ B; — M \ K, where K is
some compact subset of M, by ®(r¢(o)) = r¢(o) + (o) for all o € ¥ and
|r] > 1. If ¥ is compact, so that 1 is bounded, then ® satisfies (6.3) as given
in Definition 6.2 for « = 0, which shows that M is asymptotically conical
to My with order O(1).

6.1. The associative condition.

Let ¥ be a 2-dimensional, connected, real analytic manifold, let ¢ : ¥ — S6
be a real analytic immersion and let 1) : ¥ — R” be a real analytic map.
Define M by (6.1), so that M is the image of the map ¢+ : R x ¥ — R” given
by i(r,0) = r¢(o) + (o). Clearly, R x ¥ is an r-oriented ruled submanifold
with ruling (3, 7), where 7 is given by 7 (r,0) = . Since ¢ is an immersion,
¢ is an immersion almost everywhere in R x ¥ and thus M is an r-oriented
ruled submanifold.

We now suppose that M is associative in order to discover the conditions
that this imposes upon ¢, . Note that the asymptotic cone My of M, given
by (6.2), is the image of R x ¥ under the map ¢¢, defined by vo(r,0) = r¢(o).
Since ¢ is an immersion, ¢ is an immersion except at r = 0, so My is a 3-
dimensional cone which is non-singular except at 0.

Let p € M. There exist r € R, o € ¥ such that p = r¢(o)+1 (o). Choose
local coordinates (s,t) near o in ¥. Then T,M = (x,y, z)r, where z = ¢(0),
Yy = r%(c) + %—f(c) and z = r%—f(a) + %—qf(a). Since M is associative, T, M
is an associative 3-plane, which by Proposition 2.6 occurs if and only if
[x,y, 2] = 0. This condition forces a quadratic in 7 to vanish, and thus the
coefficient of each power of » must be zero as this condition should hold for
all » € R. The following set of equations must therefore hold in X:

09 0p|

(64) |:¢7 Eu E_ - 07
0p O oy 0p|

(6.5) [Cb» D5’ a} + |:¢7 D5’ a =0,
oy ol

(66) |:¢7 ga E- — O

Note firstly that, if we do not suppose M to be associative, but that (6.4)—
(6.6) hold locally in X, then following the argument above, we see that each
tangent space to M must be associative and hence that M is associative.
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Moreover, (6.4) is equivalent to having that tangent spaces to points of the
form r¢(o), for r € R, 0 € X, are associative, which is precisely the condition
for the asymptotic cone My to be associative. We may therefore deduce the
following result.

Proposition 6.3. Let M be an r-oriented ruled associative 3-fold in R7 and
let My be the asymptotic cone of M. Then My is an associative cone in R”
provided it is 3-dimensional.

Since My is associative, ¢ is a non-vanishing 3-form on Mj that defines
the orientation on Mj. This forces ¥ to be oriented, for if (s,t) are some
local coordinates on X, then we can define them to be oriented by imposing

the condition that
0o 0¢
@ <¢7 %7 E) > 0

In addition, if g is the natural metric on S% then the pullback ¢*(g) is
a metric on ¥ making it a Riemannian 2-fold, since ¢ : ¥ — SO is an
immersion. Therefore we can consider 3 as an oriented Riemannian 2-
fold and hence it has a natural complezx structure, which we denote as J.
Locally, in ¥, we can choose a holomorphic coordinate u = s + it, and so
the corresponding real coordinates (s,t) satisfy the condition J (%) = %.
Following Joyce [9, p. 241], we say that local real coordinates (s,t) on X
that have this property are oriented conformal coordinates.

We now use oriented conformal coordinates in the proof of the next
result, which gives neater equations for maps ¢, defining an r-oriented

ruled associative 3-fold.

Theorem 6.4. Let ¥ be a connected real analytic 2-fold, let ¢ : ¥ — S° be
a real analytic immersion and let 1 : ¥ — R be a real analytic map. Let
M be defined by (6.1). Then M is associative if and only if

d9 0¢
(6.7) Fri ¢ X Bs
and Y satisfies

(i) %—f =¢ X %—f + f¢ for some real analytic function f:3 — R,
or

(i) 22(0). 2(0) € (6(0). 22(0). %2(0)g for all o € %,

where X is defined by (2.4) and (s,t) are oriented conformal coordinates on

3.
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Proof. Above, we noted that (6.4)—(6.6) were equivalent to the condition
that M is associative, so we show that (6.7) is equivalent to (6.4) and that
(i) and (ii) are equivalent to (6.5) and (6.6).

Let 0 € X, C = \%(0)\ > 0. Since ¢ maps to the unit sphere in
R7, ¢(o) is orthogonal to %(O’) and %(O’). As (s,t) are oriented confor-
mal coordinates, we also see that %(0) and %—f(o) are orthogonal and that
%(O’” = C. We conclude that the triple ((15(0),04%(0),0*1%—?(0)) is
an oriented orthonormal triad in R”, and it is the basis for an associative
3-plane in R” if and only if (6.4) holds at o. Since Ga acts transitively on
the set of associative 3-planes [3, Theorem IV.1.8], if (6.4) holds at o, then
we can transform coordinates on R” using Gy so that
0p Lo
4 Tir)=C
s 5 (0) = Ces,
where {e1,...,e7} is a basis for Im @ = R”. We note here that (6.7) holds
at o, since the cross product is invariant under Go. It is clear that, if (6.7)
holds at o, then the 3-plane generated by {¢(o), %(U), g—f(a)} is associative,
simply by the definition of the cross product.

Under the change of coordinates of R” above, we can write %—f(a) =

¢(0) = e1, (o) = Ce,

aie1 + ...+ arer and %—qf(a) = bie; + ... + byey for real constants a;, b; for
j=1,...,7. Calculations show that (6.5) holds at o if and only if

(68) b4 = —as, b5 = a4, b6 = —ar, b7 = ae,
and (6.6) holds at o if and only if

6.9) —agby — asbg + agbs + bga7r = 0,
) —aybg + asby + agby — azbs = 0,
) azb7 + agbg — agbz — azba = 0,
6.12) aobg — azby — agbo + a7bs = 0,
) —agbs — azby + aq4bs + asbs = 0,
) —aoby + aszbs + agbs — asbz = 0.

Substituting condition (6.8) into the above equations, (6.9) and (6.10) are
satisfied immediately and (6.11)-(6.14) become:

ag(az — bz) — a7(az + ba) =0,
—ag(az + bz) — ar(az — b3) =0,
—ay(az — b3) + as(az + by) =0,
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as(as + by) + as(az — bg) = 0.

These equations can then be written in matrix form:
—ag ar az — b
(6.15) =0,
ay Qag as + bg
—ay4 as az — b
6.16 =0.
( ) < as Qa4 > < as + bg )
We see that equations (6.15) and (6.16) hold if and only if the vector ap-

pearing in both equations is zero or the determinants of the matrices are

zero. We thus have two conditions which we shall show correspond to (i)
and (ii):

(6.17) ag =bs,  —az=by;
(6.18) a4 = as :O:a6 = ary.

Using the fact that ¢(c) = e, (6.17) holds if and only if

0
8—15(0) = bie; — azes + ases — aseq + ases — areg + ager
0
= 6(0) x 32(0) + F(0)8(0),

where f(o) = by. Therefore, (6.17) corresponds to condition (i) holding at
o by virtue of the invariance of the cross product under Go. The fact that f
is real analytic is immediate from the hypotheses that ¢, are real analytic
and that ¢ is non-zero, since ¢ maps to S°.

Similarly, (6.18) holds if and only if

0
8_2}(0) = aje1 + ases + ages and E(U) = bie1 + byes + bses,

which is equivalent to condition (ii) holding at o, since we may note here
that (e1, ez, e3)r = (¢(0), 22(0), 22(0))r.

In conclusion, at each point o € X, condition (i) or (ii) holds. Let
¥y ={oc € X : (i holds at o} and let X9 = {o € ¥ : (ii) holds at o}.
Note that (i) and (ii) are closed conditions on the real analytic maps ¢, .
Therefore, 31 and Yo are closed real analytic subsets of 3. Since ¥ is
real analytic and connected, ¥; must either coincide with X or else be of
zero measure in X for j = 1,2. However, not both ¥; and X5 can be of
zero measure in X since X1 U X9 = X. Hence, X1 = X or ¥y = X, which
completes the proof. O

9
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It is worth making some remarks about Theorem 6.4. Note that (i) and
(ii) are linear conditions on 3 and, by the remarks made above, (6.7) is
the condition which makes the asymptotic cone M associative. So, if we
start with an associative two-sided cone Mj defined by a map ¢, then ¢ and
a function 1 satisfying (i) or (ii) will define an r-oriented ruled associative
3-fold M with asymptotic cone My. We also note that conditions (i) and (ii)
are unchanged if ¢ is fixed and satisfies (6.7), but v is replaced by ¥ + f 10}
where f is a real analytic function. We can thus always locally transform
such that f in condition (i) is zero.

6.2. Evolution equations for ruled associative 3-folds.

Our first result follows [9, Proposition 5.2]. Here we make the definition
that a function is real analytic on a compact interval I in R if it extends to
a real analytic function on an open set containing I.

Theorem 6.5. Let I be a compact interval in R, let s be a coordinate on
I, and let ¢g : I — 8% and o : I — R” be real analytic maps. Then
there exist € > 0 and unique real analytic maps ¢ : I x (—¢,€) — S® and
I x (—e,€) — R satisfying ¢(s,0) = ¢o(s), ¥(s,0) = o(s) for all s € I

and

op 0 Oy O
(6.19) E—gbx%, E—gbxg,
where t is a coordinate on (—e,€). Let M be defined by:

M = {r¢(s,t) +¢¥(s,t):r eR, sel, te(—ee)}.

Then M is an r-oriented ruled associative 3-fold in R”.

Proof. Since I is compact and ¢q, %y are real analytic, we may use the
Cauchy-Kowalevsky Theorem [12, p. 234] to give us functions ¢ : I x
(—e,e) — R7T and ¥ : I x (—e,¢) — R7 satisfying the initial conditions
and (6.19). It is clear that %g(gf), ®) = 29(o, %) = 0, since %—f is defined
by a cross product involving ¢ and hence is orthogonal to ¢. We may de-
duce that |¢| is independent of ¢ and is therefore one, so that ¢ maps to
S%. We conclude that M is an r-oriented ruled associative 3-fold using (i)
of Theorem 6.4. (]

Theorem 6.5 shows that (6.19) can be considered as evolution equations
for maps ¢, ¢ satisfying (i) of Theorem 6.4. We now show that condition (ii)
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of Theorem 6.4 does not produce any interesting ruled associative 3-folds.
We make the definition that two rulings (3, 7) and (X, %) are distinct if the
families of affine straight lines Fy, = {7 !(¢) : 0 € £} and Fyz, = {77 1(5) :
& € ¥} are different.

Proposition 6.6. Any r-oriented ruled associative 3-fold (M, ) satis-
fying condition (ii) but not (i) of Theorem 6.4 is locally isomorphic to an
affine associative 3-plane in RT.

Proof. By Theorem 4.1, M is real analytic wherever it is non-singular and so
we can take (X, 7) to be locally real analytic. Let I =[0,1], let v: I — X be
a real analytic curve in ¥ and let ¢, be the functions defining M. Then we
can use Theorem 6.5 with initial conditions ¢g = ¢(7y(s)) and g = 1 (y(s))
to give us functions 95, 1[1, which define an r-oriented ruled associative 3-fold
M satisfying (i) of Theorem 6.4. However, M and M coincide in the real
analytic 2-fold 771 (y(I)), and hence, by Theorem 4.2, they must be locally
equal. We conclude that M locally admits a ruling (X, 7) satisfying (i) of
Theorem 6.4, which must therefore be distinct from the ruling (X, ).

The families of affine straight lines Fs;, and F5,, using the notation above,
coincide in the family of affine straight lines defined by points on ~y, denoted
F,. Using local real analyticity of the families, either Fy is equal to Fs
locally or they only meet in F, locally. The former possibility is excluded
because the rulings (X, 7) and (X, %) are distinct and thus the latter is true.

Let 1 and 72 be distinct real analytic curves near v in ¥ defining rulings
(¥1,m1) and (X2, ma), respectively, as above. Then Fx N Fy; is locally equal
to F,, for j = 1,2. Hence, (X1,71) and (32, m2) are not distinct (that is,
Fs, = Fx,) if and only if F,, = F,,, which implies that v; = y2. Therefore,
distinct curves near v in ¥ produce different rulings of M and thus M has
infinitely many rulings.

Suppose that {7 : t € R} is a one parameter family of distinct curves
near -y in %, with 79 = . Each curve in the family defines a distinct ruling
(3¢, m), and hence there exists p € M with M non-singular at p such that
Li = m; (7 (p)) is not constant as a line in R”. We therefore get a one
parameter family of lines L; in M through p with % # 0 at some point,
i.e. such that L; changes non-trivially. We have thus constructed a real
analytic one-dimensional family of lines {L; : ¢ € R} whose total space is a
real analytic 2-fold IV contained in M. Moreover, every line in M through p
is a line in the affine associative 3-plane p + 7T, M, and so N is contained in
p+1T,M. Then, since N has non-singular points in the intersection between
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M and p + T,M, Theorem 4.2 shows that M and p + T,,M coincide on a
connected component of M. Hence, M is planar, i.e. M is locally isomorphic
to an affine associative 3-plane in R”. U

We now state our main result on ruled associative 3-folds, which follows
from the results in this section.

Theorem 6.7. Let (M, ) be a non-planar, r-oriented, ruled associative
3-fold in R". Then there exist real analytic maps ¢ : ¥ — S and ¢ : ¥ — R7
such that:

M ={r¢(o) + (o) : 7 € R, 0 € ¥},

o ¢
o oY
(6.21) Bt = ¢ x g+f¢,

where (s,t) are oriented conformal coordinates on 3 and f : X — R is some
real analytic function.

Conwersely, suppose ¢ : ¥ — S® and ¢ : ¥ — R7 are real analytic maps
satisfying (6.20) and (6.21) on a connected real analytic 2-fold ¥. If M is
defined as above, then M is an r-oriented ruled associative 3-fold wherever
it 1is non-singular.

6.3. Holomorphic vector fields.

We now follow [9, Section 6] and use a holomorphic vector field on a Riemann
surface X to construct ruled associative 3-folds.

Proposition 6.8. Let My be an r-oriented two-sided associative cone in R”.
We can then write My in the form (6.2) for a real analytic map ¢ : ¥ — S,
where ¥ is a Riemann surface. Let w be a holomorphic vector field on X
and define a map ¥ : ¥ — RT by 1) = L¢, where Ly, is the Lie derivative
with respect to w. If we define M by equation (6.1), then M is an r-oriented
ruled associative 3-fold in R” with asymptotic cone M.

Proof. We need only consider the case where w is not identically zero since
this is trivial. Then w has only isolated zeros and, since the fact that M is
associative is a closed condition on the non-singular part of M, it is sufficient
to prove that (6.21) holds at any point o € 3 such that w(o) # 0. Suppose
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o is such a point. Then, since w is a holomorphic vector field, there exists
an open set in ¥ containing o on which oriented conformal coordinates (s, t)
may be chosen such that w = %. Hence, 9 = g—f in a neighbourhood of o,

and differentiating (6.20) gives:
¢ _9¢ 0 ¢
950l 05 <05 7 o5

Interchanging the order of the partial derivatives on the left-hand side and
noting that the cross product is alternating, we have that

o 0% oY
ot " osot 0% s
The result follows from Theorem 6.7. O

Having proved a result which enables us to construct ruled associative
3-folds given an associative cone on a Riemann surface 3, we consider which
choices for ¥ will produce interesting examples. The only non-trivial vec-
tor spaces for holomorphic vector fields on a compact connected Riemann
surface occur for genus zero or one. We therefore focus our attention upon
the cases where we take ¥ to be S? or T?. The space of holomorphic vector
fields on S? is 6-dimensional, and on T? it is 2-dimensional. In the SL case,
any SL cone on S? has to be an SL 3-plane [4, Theorem BJ; Bryant [1, Sec-
tion 4] shows that this is not true in the associative case and that, in fact,
there are many non-trivial associative cones on S2.

Theorem 6.9. Let My be an r-oriented, two-sided, associative cone on a
Riemann surface ¥ = 8% (or T?) with associated real analytic map ¢ :
Y — 8% as in (6.2). Then there exists a 6-dimensional (or 2-dimensional)
family of distinct r-oriented ruled associative 3-folds with asymptotic cone
My, which are asymptotically conical to My with order O(r—1).

Proof. If (s,t) are oriented conformal coordinates on X, we may write holo-
morphic vector fields on ¥ in the form:

0 0
6.22 = — —
( ) w u(:s,t)85 + v(s,t)at ,

where u,v : R? — R satisfy the Cauchy Riemann equations. For each
holomorphic vector field w, as written in (6.22), define a 3-fold M,, by:
¢ 0¢

M, = {rgb(s,t) +u(s,t)£(s,t) —i—v(s,t)a(s,t) reR,(s,t) € Z}.
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By Proposition 6.8, M,, is an r-oriented ruled associative 3-fold with asymp-
totic cone My, and it is clear that each holomorphic vector field w will give
a distinct 3-fold.

We now construct a diffeomorphism ® as in Definition 6.2 satisfying (6.3)
for « = —1. Let R > 0, w be a holomorphic vector field as in (6.22), and let
Bpg denote the closed ball of radius R in R7. Define ® : My \ Bg — M, by:

B(rg(s,1)) =6 (5= L= D ud2 (5= Lo - U) 42 (s 2022,

where |r| > R. Clearly, ® is a well-defined map with image in M, \ K for

some compact subset K of M,,. Note that, by choosing R sufficiently large,
we can expand the various terms defining ® in powers of ! as follows:

¢)< B u(57t)’t_ v(i,t)> — B(s,t)— @@(s,t)— @% + O(T*Q)y

r 0s ot
(20 )20,
% <s— “(fjt),t— U(‘:t)> ?;f(s B +00 .

We deduce that

|D(re(s,t)) —ro(s,t)| = O(r™1),

and the other conditions in (6.3) can be derived similarly. We conclude that
M, is asymptotically conical to My with order O(r—1). (]

There are many examples of associative cones over T? given by the SL
tori constructed by Haskins [4], Joyce [6] and McIntosh [11] and others.
However, by Theorem 5.10, applying Theorem 6.9 to them will only produce
ruled SL 3-folds and the result reduces to [9, Theorem 6.3].
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