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Subsets of Grassmannians Preserved by

Mean Curvature Flows

Mu-Tao Wang

Let M = Σ1 × Σ2 be the product of two compact Riemannian
manifolds of dimension n ≥ 2 and two, respectively. Let Σ be
the graph of a smooth map f : Σ1 → Σ2; Σ is an n-dimensional
submanifold of M . Let G be the Grassmannian bundle over M
whose fiber at each point is the set of all n-dimensional subspaces
of the tangent space of M . The Gauss map γ : Σ → G assigns
to each point x ∈ Σ the tangent space of Σ at x. This article
considers the mean curvature flow of Σ in M . When Σ1 and Σ2 are
of the same non-negative curvature, we show a sub-bundle S of the
Grassmannian bundle is preserved along the flow, i.e. if the Gauss
map of the initial submanifold Σ lies in S, then the Gauss map
of Σt at any later time t remains in S. We also show that under
this initial condition, the mean curvature flow remains a graph,
exists for all time and converges to the graph of a constant map at
infinity. As an application, we show that if f is any map from Sn to
S2 and if at each point, the restriction of df to any two dimensional
subspace is area decreasing, then f is homotopic to a constant map.

1. Introduction.

The maximum principle has proved to be a powerful tool in non-linear par-
tial differential equations. In particular, the maximum principle of parabolic
systems for tensors developed by Hamilton [5] plays an important role in the
study of geometric evolution equations. The guiding principle is the follow-
ing: an invariant convex subset in the space of curvature tensors preserved
by the associated ordinary differential equations is preserved by the par-
abolic partial differential equations. This has been applied to the study of
Ricci flow and curvature flow of hypersurfaces. We apply this idea to higher
codimension mean curvature flows.

Let M = Σ1 ×Σ2 be the product of two compact Riemannian manifolds
of dimension n and m respectively and Σ be the graph of a smooth map
f : Σ1 → Σ2. In [14], [15], and [16], we prove long time existence and
convergence theorems for the mean curvature flow of Σ assuming conditions
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in terms of the restriction of parallel calibrating forms to Σ. These are
essentially conditions on the tangent spaces of Σ. In this paper, we take
on the study of the Gauss map of Σ. Let G be the Grassmannian bundle
over M whose fiber at each point is the set of all n-dimensional subspaces
of the tangent space of M . The Gauss map γ : Σ → G assigns to each point
x ∈ Σ the tangent space of Σ at x. The tangent space of M at x splits as
Tπ1(x)Σ1 × Tπ2(x)Σ2. Let G′ ⊂ G be the sub-bundle consisting of the graphs
of linear transformations from Tπ1(x)Σ1 to Tπ2(x)Σ2. We show there exists a
sub-bundle S ⊂ G′ that is preserved along the mean curvature flow.

Theorem A. Let M = Σ1 × Σ2 be the product of two compact flat Rie-
mannian manifolds and suppose Σ2 is two-dimensional. If the Gauss map
of a compact oriented submanifold Σ of M lies in S, then along the mean
curvature flow the Gauss map of Σt remains in S. The flow exists smoothly
for all time and converges to a totally geodesic submanifold.

This condition in particular implies Σt is the graph of a map ft. The
sub-bundle S is best described in terms of ft. In fact, if we denote the
singular values of ft by λ1 and λ2, then the Gauss map of Σt lies in S if and
only if |λ1λ2| < 1.

When Σ1 is of positive curvature, we prove the following.

Theorem B. Let M = Sn(k1) × Σ2 be the product of an n-sphere of cur-
vature k1 > 0 and a two-dimensional compact Riemannian manifold Σ2 of
constant curvature k2 and k1 ≥ |k2|. If the Gauss map of a compact ori-
ented submanifold Σ of M lies in S, then along the mean curvature flow,
the Gauss map of Σt remains in S. The flow exists smoothly for all time
and converges to a totally geodesic submanifold.

We noted the assumption on the Gauss map of Σ implies Σ is a graph
over Sn(k1).

Theorem A and B are proved by calculating the evolution equations of
the Gauss map and applying the maximum principle. The prototype is the
following equation in the hypersurface case

d

dt
N = ∆N + |A|2N

where N denotes the unit normal vector and |A|2 is the norm of the second
fundamental form. If we take the inner product of N with a constant vector
ν, it is not hard to see that minΣt〈N, ν〉 is non-decreasing in time. This is one
of the key observations in [2] and [3] where the mean curvature flow of entire
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graphs of codimension one was studied. In the case of hypersurfaces, N
contains all the information of the Gauss map while in higher codimension,
a whole parabolic system is needed in order to describe the evolution of the
Gauss map.

The following is an application to higher homotopy groups of S2.

Corollary. If f is any map from Sn to S2, n ≥ 2 and if at each point, the
restriction of df to any two dimensional subspace is area decreasing, then f
is homotopic to a constant map along the mean curvature flow.

When n = 2, this is the same as saying the Jacobian of f is less than 1.
In this case, f is of degree 0 and thus homotopic to a constant map. This
homotopy can be realized through the mean curvature flow as was proved
in [14]. As a contrast, the standard Hopf map from S3 to S2 has |λ1λ2| = 4.

The author is indebted to Professor D. H. Phong and Professor S.-T. Yau
for their constant encouragement and unending support. He has benefitted
greatly from the conversation with Professor R. Hamilton and Professor M-P
Tsui. The author is partially supported by an NSF grant.

2. Analysis of the Grassmannian bundle.

Let us first describe the sub-bundle S. Let V1 be an n-dimensional inner
product space and V2 a two-dimensional inner product space. Let G(n, n+2)
be the Grassmannian of all n-dimensional subspaces of V1 × V2. Let G′ ⊂
G(n, n + 2) be the set of all n-dimensional subspaces that can be written as
graphs over V1. For any P ∈ G′, P is the graph of a linear transformation
p : V1 → V2. Then (p)T p is a self-adjoint map from V1 to V1 and has n
eigenvalues, n− 2 of them vanish. The eigenvalues are denoted by {λ2

1, λ
2
2}.

λ1 and λ2 are the singular values of p. We now define S:

S = {P ∈ G′| 1 − |λ1λ2| > 0}.
This is equivalent to saying p is area decreasing on any two dimensional

subspace of V1.
Now let M be the product of two Riemannian manifolds Σ1 × Σ2 of

dimension n and 2 respectively. Let G be the Grassmannian bundle on M
whose fibers are isomorphic to G(n, n + 2). At each point x, TxM splits
as the product of Tπ1(x)Σ1 and Tπ2(x)Σ2. The Riemannian structures on
Tπ1(x)Σ1 = V1 and Tπ2(x)Σ2 = V2 defines the subset S of the fiber of G at x.

Definition 2.1. S is the sub-bundle of the Grassmannian bundle G whose
fiber at each point consists of S.
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Let Σ be the graph of a smooth map f : Σ1 → Σ2. TxΣ is the graph of
the differential of f at x, df : Tπ1(x)Σ1 → Tπ2(x)Σ2. Notice that we abuse the
notation so that TxΣ, Tπ1(x)Σ1 and Tπ2(x)Σ2 all denote subspaces of TxM .
At any point x, let λ1,λ2 be the singular values of df . They are well-defined
up to a sign. Define

η(x) =
1 − |λ1λ2|√

(1 + λ2
1)(1 + λ2

2)

η is a function on Σ.

Proposition 2.2. η > 0 on Σ if and only if the Gauss map of Σ lies in S.

Later we shall give a characterization of η in terms of differential forms
on M . Any differential form Ω on a Riemannian manifold can be considered
as a function on the Grassmannian bundle G of appropriate dimension. The
comass of Ω at x is defined to be the supremum of Ω on Gx, the fiber of G

at x. This is an important concept in calibrated geometry, see Federer [4]
or Harvey–Lawson [6]. Another description of S can be given in terms of
the comass.

Proposition 2.3. If Σ is the graph of f : Σ1 → Σ2, then the Gauss map of
Σ lies in S if and only if the comass of f∗Ω2 is less than one.

Here Ω2 is the volume form on Σ2 and f∗Ω2 is considered as a 2-form on
Σ1. Of course the comass is taken over all two-dimensional subspaces of the
tangent space of Σ1.

3. Evolution equations of n-forms.

In this section, we calculate the evolution equation of the restriction of an n-
form to an n-dimensional submanifold moving by the mean curvature flow.
The case for a parallel form was calculated in [16]. Here, we need to keep
track of the terms that involve covariant derivatives of Ω.

We assume M is an n + m dimensional Riemannian manifold with an
n form Ω. Let F : Σ → M be an isometric immersion of an n-dimensional
submanifold. We shall compute near a point p ∈ Σ. We choose arbitrary
orthonormal frames {ei}i=1···n for TΣ and {eα}α=n+1,··· ,n+m for NΣ. ∇M

denotes the covariant derivative on M and ∇Σ denotes the covariant deriv-
ative on Σ, which is simply the tangent part of ∇M . ∇MΩ is the covariant
derivative of Ω on M and ∇ΣΩ will denote the covariant derivative of the
restriction of Ω to Σ.
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We first calculate the covariant derivative of the restriction of Ω on Σ.

(∇Σ
ek

Ω)(ei1 , · · · , ein)

= ek(Ω(ei1 , · · · , ein)) − Ω(∇Σ
ek

ei1 , · · · , ein) − · · · − Ω(ei1 , · · · ,∇Σ
ek

ein)

= (∇M
ek

Ω)(ei1 , · · · , ein) + Ω(∇M
ek

ei1 −∇Σ
ek

ei1 , · · · , ein)

+ · · · + Ω(ei1 , · · · ,∇M
ek

ein −∇Σ
ek

ein)

This equation can be abbreviated using the second fundamental form of
F , hαij = 〈∇M

ei
ej , eα〉. We write Ωi1···in,k shorthand for (∇Σ

ek
Ω)(ei1 , · · · , ein).

(3.1) Ωi1···in,k = (∇M
ek

Ω)(ei1 , · · · , ein)+Ωαi2···inhαi1k + · · ·+Ωi1···in−1αhαink

Likewise, in Ω(eα, ei2 , · · · , ein), Ω is considered as a section of (NΣ)∗ ∧
(∧n−1(TΣ)∗).

Ωαi2···in,k = (∇M
ek

Ω)(eα, ei1 , · · · , ein) − Ωji2···inhαjk + Ωαβi3···inhβi2k(3.2)

+ · · · + Ωαi2···in−1βhβink

Now, we calculate the second covariant derivative of the restriction of Ω
on Σ.

(∇Σ
ek
∇Σ

ek
Ω)(e1, · · · en)

= ek((∇Σ
ek

Ω)(e1, · · · en)) − (∇Σ
ek

Ω)(∇Σ
ek

e1, · · · , en)

− · · · − (∇Σ
ek

Ω)(e1, · · · ,∇Σ
ek

en)

The term (∇Σ
ek

Ω)(∇Σ
ek

e1, · · · , en) equals zero because ∇Σ
ek

e1 is a tangent
vector perpendicular to e1 and thus a linear combination of e2, · · · , en. Like-
wise, other similar terms vanish.

(∇Σ
ek
∇Σ

ek
Ω)(e1, · · · en)(3.3)

= ek[(∇M
ek

Ω)(e1, · · · , en) + Ωα2···nhα1k + · · · + Ω1···n−1αhαnk]

= (∇M
ek
∇M

ek
Ω)(e1, · · · , en) + (∇M

ek
Ω)(∇M

ek
e1, · · · , en)

+ · · · + (∇M
ek

Ω)(e1, · · · ,∇M
ek

en)

+ Ωα2···n,khα1k + · · · + Ω1···n−1α,khαnk

+ Ωα2···nhα1k,k + · · · + Ω1···n−1αhαnk,k

Now, ∇M
ek

ei = hαikeα + ∇Σ
ek

ei and (∇M
ek

Ω)(∇Σ
ek

e1, · · · , en) = 0.
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Therefore,

Ω1···n,kk = (∇M
ek
∇M

ek
Ω)(e1, · · · , en)(3.4)

+ (∇M
ek

Ω)(eα, · · · , en)hα1k + · · · + (∇M
ek

Ω)(e1, · · · , eα)hαnk

+ Ωα2···n,khα1k + · · · + Ω1···n−1α,khαnk

+ Ωα2···nhα1k,k + · · · + Ω1···n−1αhαnk,k

Plug equation (3.2) into (3.4) and apply the Codazzi equation hαki,k =
hα,i + Rαkki where R is the curvature operator of M , hα is the component
of the mean curvature vector H = hαeα, and hα,i is the component of the
covariant derivative of H as a section of the normal bundle, i.e. (∇eiH)N =
hα,ieα.

(∆ΣΩ)1···n = −Ω12···n
∑
α,k

(h2
α1k + · · · + h2

αnk)
(3.5)

+ 2
∑
α,β,k

[Ωαβ3···nhα1khβ2k + Ωα2β···nhα1khβ3k

+ · · · + Ω1···(n−2)αβhα(n−1)khβnk]

+
∑
α,k

Ωα2···nhα,1 + · · · + Ω1···(n−1)αhα,n

+
∑
α,k

Ωα2···nRαkk1 + · · · + Ω1···(n−1)αRαkkn

+ (∇M
ek
∇M

ek
Ω)(e1, · · · , en)

+ 2(∇M
ek

Ω)(eα, · · · , en)hα1k + · · · + 2(∇M
ek

Ω)(e1, · · · , eα)hαnk

We notice that (∆ΣΩ)1···n = ∆(Ω(e1, · · · , en)), where the ∆ on the right-
hand side is the Laplacian of functions on Σ.

The terms in the brackets are formed in the following way. Choose two
different indexes from 1 to n, replace the smaller one by α and the larger
one by β. There are a total of n(n−1)

2 such terms.

Now, we consider when Σ = Σt is a time slice of a mean curvature flow
in M by d

dtFt = Ht. Notice that, here we require the velocity vector is in
the normal direction. We can extend e1, · · · , en to a local coordinate system
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{∂i = ∂
∂xi } on Σ, then

d

dt
Ω(∂1, · · · , ∂n)

= (∇M
H Ω)(∂1, · · · , ∂n) + Ω((∇∂1H)N , ∂2, · · · , ∂n)

+ · · · + Ω(∂1, ∂2, · · · , (∇∂nH)N )

+ Ω((∇∂1H)T , ∂2, · · · , ∂n) + · · · + Ω(∂1, ∂2, · · · , (∇∂nH)T )

Since d
dtgij = 〈(∇∂i

H)T , ∂j〉, if we choose an orthonormal frame and evolve
the frame with respect to time so that it remains orthonormal, the terms in
the last line vanish. Denote

∗Ω =
1√

det gij

Ω(∂1, · · · , ∂n)

then ∗Ω satisfies
d

dt
∗ Ω = ∗(∇M

H Ω) + Ωα2···nhα,1 + · · · + Ω1···(n−1)αhα,n

Combining this with equation (3.5), we get the parabolic equation satis-
fied by ∗Ω.

Proposition 3.1. Suppose Σt is a time slice of an n-dimensional mean
curvature flow in M and Ω is an n-form on M . For any point p ∈ Σt, let
{e1, · · · , en} be an orthonormal frame of TΣt near p and {en+1, · · · , en+m}
be an orthonormal frame of the normal bundle of Σt near p. Then ∗Ω =
Ω(e1, · · · , en) satisfies

d

dt
∗ Ω = ∆ ∗ Ω + ∗Ω


∑

α,i,k

h2
αik




− 2
∑
α,β,k

[Ωαβ3···nhα1khβ2k + Ωα2β···nhα1khβ3k

+ · · · + Ω1···(n−2)αβhα(n−1)khβnk]

−
∑
α,k

[Ωα2···nRαkk1 + · · · + Ω1···(n−1)αRαkkn]

+ ∗(∇M
H Ω) − (∇M

ek
∇M

ek
Ω)(e1, · · · , en)

− 2(∇M
ek

Ω)(eα, · · · , en)hα1k − · · · − 2(∇M
ek

Ω)(e1, · · · , eα)hαnk

(3.6)

where ∆ denotes the time-dependent Laplacian on Σt.
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4. Proof of Theorems.

Let us prove Theorem A now. We recall the statement.

Theorem A. Let M = Σ1 × Σ2 be the product of two compact flat Rie-
mannian manifolds of dimension n and 2, respectively. If the Gauss map
of a compact oriented submanifold Σ of M lies in S, then along the mean
curvature flow the Gauss map of Σt remains in S. The flow exists smoothly
for all time and converges to a totally geodesic submanifold.

Proof. Let Σt be the mean curvature flow of Σ given by a family of immer-
sions F : Σ×[0, T ) → M . In the following calculation, it is useful to consider
the total space of the mean curvature flow as Σ× [0, T ). At each instant t, Σ
is equipped with the induced metric by Ft. All geometric quantities defined
on the image of F (·, t) are considered as defined on Σ.

Let Ω1 and Ω2 be the volume form of Σ1 and Σ2 respectively. They
can be considered as parallel forms on M . Suppose initially the image of
the Gauss map of Σ is in S. We may assume Σ is the graph of a map
f : Σ1 → Σ2. This implies η1 = ∗Ω1 > 0 and η > 0 on Σ at t = 0 by
Proposition 2.2.

We shall characterize η in terms of differential forms. Consider Ξ the
collection of n forms on M of the following type.

Ξ = {Ω = Ω1 − Ω2 ∧ ω |ω is any parallel simple (n − 2) form
of comass one on Σ1}

At any point x, by Singular Value Decomposition, we can take an ortho-
normal basis {ai}i=1···n for Tπ1(x)Σ1 and {aα}α=n+1,n+2 for Tπ2(x)Σ2 so that
df(ai) = λian+i, a∗1∧· · ·∧a∗n is the volume form of Tπ1(x)Σ1 and a∗n+1∧a∗n+2

is the volume form for Tπ2(x)Σ2 . Therefore,{
e1 =

1√
1 + λ2

1

(a1 + λ1an+1), e2 =
1√

1 + λ2
2

(a2 + λ2an+2),(4.1)

e3 = a3, · · · , en = an

}

forms an orthonormal basis for TxΣ and

(4.2)

{
en+1 =

1√
1 + λ2

1

(an+1 − λ1a1), en+2 =
1√

1 + λ2
2

(an+2 − λ2a2)

}
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an orthonormal basis for NxΣ. Thus,

∗(Ω1 − Ω2 ∧ ω) = (Ω1 − Ω2 ∧ ω)(e1, · · · , en)(4.3)

=
1√

(1 + λ2
1)(1 + λ2

2)
(1 − λ1λ2ω(a3, · · · , an))

On the other hand
η1 =

1√
(1 + λ2

1)(1 + λ2
2)

Recall

η =
1 − |λ1λ2|√

(1 + λ2
1)(1 + λ2

2)

It is not hard to see
η(x) = min

Ω∈Ξ
∗Ω(x)

Suppose at t = t0, the image of the Gauss map hits the boundary of S

for the first time. Therefore, each Σt, t < t0 can be written as the graph of
ft : Σ1 → Σ2 and the singular values of ft satisfy |λ1λ2| < 1.

We claim Σt0 remains a graph. Indeed, since Ω1 is a parallel form, η1

satisfies the following equation by equation (3.6).
(4.4)

d

dt
η1 = ∆η1 + η1


∑

α,i,k

h2
αik − 2

∑
k

λ1λ2(hn+1,1khn+2,2k − hn+2,1khn+1,2k)




where we use

Ω1(en+1, en+2, e3, · · · , en) =
Ω1(an+1 − λ1a1, an+2 − λ2a2, a3, · · · , an)√

(1 + λ2
1)(1 + λ2

2)

= λ1λ2η1.

Notice this equation is valid at any point x. Since |λ1λ2| < 1 for 0 ≤
t < t0, applying the maximum principle to equation (4.4) implies minΣt η1

is non-decreasing in t and thus η1 > 0 at t0.
Now, η is well-defined at t0. Take any p so that η(p, t0) = 0, we shall

show that d
dt |t=t0η ≥ 0 at p.

It is clear that λ1λ2 �= 0 at p. Otherwise, η1 = η = 0, a contradiction.
By the previous characterization of η and Hamilton’s maximum principle

[5] , we only need to show d
dt |t=t0 ∗ Ω ≥ 0 at the point p for any Ω ∈ Ξ such

that ∗Ω(p) = η(p). At p, we apply Singular Value Decomposition to get an
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orthonormal basis {ai}i=1,···n for Tπ1(p)Σ1 as before. Such Ω is of the form
Ω1 − Ω2 ∧ ω with ω(a3, · · · , an) = 1 or ω = a∗3 ∧ · · · ∧ a∗n by equation (4.3).

∗Ω satisfies

d

dt
∗ Ω = ∆ ∗ Ω + ∗Ω(

∑
α,i,k

h2
αik)(4.5)

− 2
∑
α,β,k

[Ωαβ3···nhα1khβ2k + Ωα2β···nhα1khβ3k

+ · · · + Ω1···(n−2)αβhα(n−1)khβnk].

At this point p,

(Ω1 − Ω2 ∧ ω)(en+1, en+2, ei1 , · · · ein−2)

=
1√

(1 + λ2
1)(1 + λ2

2)
(λ1λ2 − 1)ω(ei1 , · · · , ein−2).

Thus

d

dt
∗ Ω = ∆ ∗ Ω + ∗Ω [|A|2 + 2(hn+1,1khn+2,2k − hn+1,2khn+2,1k)

]
.

This can be completed square and we get

d

dt
∗ Ω = ∆ ∗ Ω + ∗Ω

[ ∑
α,2<i≤n,k

h2
αik +

∑
k

(hn+1,1k + hn+2,2k)2

+
∑

k

(hn+1,2k − hn+2,1k)2
]
.

Therefore, d
dt ∗Ω ≥ 0 at (p, t0). Since this is true for any Ω that achieves

the minimum of ∗Ω in Ξ, we have d
dtη ≥ 0. Thus, the sub-bundle S is

preserved along the mean curvature flow.
Now, we prove long time existence and convergence. By a similar argu-

ment, we can show if min η = δ > 0 at t = 0, then this is preserved along
the flow. This implies in particular,

(4.6) |λ1λ2| ≤ 1 − δ,

and

(4.7)
√

(1 + λ2
1)(1 + λ2

2) ≤
1
δ
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Since |λ1λ2| ≤ 1 − δ, we have

d

dt
∗ Ω1 ≥ ∆ ∗ Ω1 + δ ∗ Ω1|A|2(4.8)

In particular, ∗Ω1 has a uniform lower bound, each Σt can be written as
the graph of a map ft : Σ1 → Σ2, and ft has uniform gradient bound.

Integrating d
dt ∗Ω1 ≥ ∆ ∗Ω1 + δ ∗Ω1|A|2 over space and time from t = 0

to t = ∞ and noting that
∫
Σt

∗Ω1 is constant in t, we get

δ

∫ ∞

0

∫
Σt

∗Ω1|A|2 ≤
∫ ∞

0

∫
Σt

∗Ω1|H|2.

For a mean curvature flow,
∫ ∞
0

∫
Σt

|H|2 < ∞, thus
∫ ∞
0

∫
Σt

|A|2 < ∞. We
can extract a subsequence ti → ∞ such that

∫
Σti

|A|2 → 0. Because each fti

has bounded gradient, this is the same as
∫
Σ1

|∇dfti |2 → 0. Therefore, fti

is a bounded sequence in both Cα and W 2,2. By passing to a subsequence
if necessary, there exists an f∞ ∈ Lip ∩ W 2,2 such that fti → f∞ in Cα for
any α < 1 and fti ⇀ f∞ weakly in W 2,2. As dfti → df∞ weakly in W 1,2,
by lower semicontinuity of the energy functional (see for example Theorem
1.8.1 in [8]), we have∫

Σ1

|∇df∞|2 ≤ lim inf
∫

Σ1

|∇dfti |2 = 0.

By elliptic regularity, it is easy to see that f∞ is smooth and linear. Σ∞,
the graph of f∞, is thus a totally geodesic (flat indeed) submanifold. Since
fti → f∞ in Cα for any α < 1, we have the distance d(Σti ,Σ∞) → 0. The
uniform convergence of ft follows as the proof of Theorem C in [15] where we
use the property that distance function to any totally geodesic submanifold
in a Riemannian manifold of non-positive sectional curvature is convex to
show that maxp∈Σtd(p,Σ∞) is non-increasing in t along the mean curvature
flow. �

Theorem B. Let M = Sn(k1) × Σm
2 be the product of an n-sphere of cur-

vature k1 > 0 and a two-dimensional compact Riemannian manifold Σ2 of
constant curvature k2 and k1 ≥ |k2|. If the Gauss map of a compact ori-
ented submanifold Σ of M lies in S, then along the mean curvature flow,
the Gauss map of Σt remains in S. The flow exists smoothly for all time
and converges to a totally geodesic submanifold.
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Proof. The proof follows the same strategy as that of Theorem A. We ac-
tually show the image of the Gauss map never hits the boundary of S.
Suppose the contrary happens at t = t0. Again, we look at the equation of
∗Ω1. Using |λ1λ2| ≤ 1 for 0 ≤ t < t0 and Proposition 3.2 in [16], we see

d

dt
∗ Ω1 ≥ ∆ ∗ Ω1

(4.9)

+ ∗Ω1

∑
i

λ2
i

1 + λ2
i


k1


∑

j �=i

2
1 + λ2

j


 + k2


1 − n +

∑
j �=i

4
1 + λ2

j


 .




The last term comes from the curvature of M . Rewrite

k1


∑

j �=i

2
1 + λ2

j


 + k2


1 − n +

∑
j �=i

2
1 + λ2

j




=
k1 − k2

2
(n − 1) +

k1 + k2

2


∑

j �=i

2
1 + λ2

j

+ 1 − n


 .

We claim the curvature term is always non-negative under our assump-
tion. Since k1 − k2 ≥ 0, k1 + k2 ≥ 0, we only need to show

n∑
i=1

λ2
i

1 + λ2
i


1 − n +

n∑
k �=i

4
1 + λ2

k


 ≥ 0.

This is indeed

λ2
1

1 + λ2
1

(
n − 3 +

4
1 + λ2

2

)
+

λ2
2

1 + λ2
2

(
n − 3 +

4
1 + λ2

1

)

This can be rewritten as

(n + 1)λ2
1 + (n + 1)λ2

2 + 2(n − 3)λ2
1λ

2
2

(1 + λ2
1)(1 + λ2

2)

which is non-negative under the assumption |λ1λ2| ≤ 1.
Therefore, at t0, Σt0 remains a graph and minΣt0

η = 0. Take any p so
that η(p, t0) = 0. We may assume λ1 > 0, λ2 > 0 at p.

As before, we choose orthonormal basis at p that corresponds to the
singular value decomposition of df . We can extend the orthonormal basis
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{ai}i=1···n at Tπ1(p)Σ1 to an orthonormal frame field in a neighborhood U1 ⊂
Σ1 such that at this point p, ∇Mai = 0, i = 1 · · ·n. This is possible because
the Riemannian structure is a product and each Σ1 slice is totally geodesic
in M . Take

Ω = Ω1 − Ω2 ∧ ω

where ω = a∗3 ∧ · · · ∧ a∗n.
Ω is an n−form defined on U = U1 × Σ2 that satisfies ∇MΩ = 0 at p.
Now, we extend Ω to a global form on M . Take a cut-off function φ such

that φ ≡ 1 in a neighborhood of p and φ has compact support. Then

Ω = Ω1 − φΩ2 ∧ ω

is such a global extension. Now, ∗Ω(p, t0) = 0 and (p, t0), ∗Ω > 0 for
0 ≤ t < t0 and ∗Ω ≥ 0 at t0. Therefore, d

dt ∗ Ω ≤ 0 and ∆ ∗ Ω ≥ 0 at (p, t0).
We recall the evolution equation from equation (3.6).

d

dt
∗ Ω = ∆ ∗ Ω + ∗Ω(

∑
α,i,k

h2
αik)

− 2
∑
α,β,k

[
Ωαβ3···nhα1khβ2k + Ωα2β···nhα1khβ3k

+ · · · + Ω1···(n−2)αβhα(n−1)khβnk

]
−

∑
α,k

[
Ωα2···nRαkk1 + · · · + Ω1···(n−1)αRαkkn

]
+ ∗(∇M

H Ω) − (∇M
ek
∇M

ek
Ω)(e1, · · · , en)

− 2(∇M
ek

Ω)(eα, · · · , en)hαi1k − · · · − 2
(∇M

ek
Ω

)
(e1, · · · , eα)hαink

(4.10)

By the way Ω is constructed, ∇MΩ = 0 at p. We claim the term
(∇M

ek
∇M

ek
Ω)(e1, · · · , en) also vanishes at p.

In fact, consider

∇M
ek
∇M

ek
(Ω2 ∧ ω)(e1, · · · , en)

= (Ω2 ∧∇M
ek
∇M

ek
ω)(e1, · · · , en)

=
λ1λ2√

(1 + λ2
1)(1 + λ2

2)
(∇M

ek
∇M

ek
ω)(a3, · · · , an)

For i = 3, · · · , n, (∇M
X ∇M

Y a∗i )(ai) = X(∇M
Y a∗i (ai)) − (∇M

Y a∗i )(∇M
X ai).

(∇M
Y a∗i )(ai) = 〈∇M

Y ai, ai〉 = 〈∇Σ1
Y ai, ai〉 is zero, so X(∇M

Y a∗i (ai)) = 0.
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Therefore, ∇M
X ∇M

Y a∗i (ai) = 0 at p. Since ω = a∗3 ∧ · · · ∧ a∗n, we get
(∇M

ek
∇M

ek
ω)(a3, · · · , an) = 0.

Now, the left-hand side of equation (4.10) is non-positive, we shall show
the curvature term

−
∑
α,k

[Ωα2···nRαkk1 + · · · + Ω1···(n−1)αRαkkn]

is strictly positive, thus achieves contradiction because all other terms on
the right-hand side are non-negative.

We calculate the curvature term.

Ω(eα, e2, · · · , en) = −δα,n+1
λ1 + λ2√

(1 + λ2)(1 + λ2
2)

Likewise,

Ω(e1, eα, e3 · · · , en) = −δα,n+2
λ1 + λ2√

(1 + λ2)(1 + λ2
2)

and
Ω(e1, e2, eα, e4 · · · , en) = 0

We assume Σ1 and Σ2 are of constant curvature k1 and k2 respectively,
and by the calculation in [16], we have:

∑
k

R(eα, ek, ek, ei)

= k1

[∑
k

〈π1(eα), π1(ek)〉〈π1(ek), π1(ei)〉

− 〈π1(eα), π1(ei)〉
∑

k

〈π1(ek), π1(ek)〉
]

+ k2

[ ∑
k

〈π2(eα), π2(ek)〉〈π2(ek), π2(ei)〉

− 〈π2(eα), π2(ei)〉
∑

k

〈π2(ek), π2(ek)〉
]

= k1

[∑
k

〈π1(eα), π1(ek)〉〈π1(ek), π1(ei)〉
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− 〈π1(eα), π1(ei)〉
∑

k

|π1(ek)|2
]

+ k2

[
(n − 1)〈π1(eα), π1(ei)〉 +

∑
k

〈π1(eα), π1(ek)〉〈π1(ek), π1(ei)〉

− 〈π1(en+i), π1(ei)〉
∑

k

|π1(ek)|2
]

Because en+i = 1√
1+λ2

i

(an+i − λiai), π1(en+i) = −λ1√
1+λ2

i

ai. Likewise,

π1(ek) = 1√
1+λ2

k

ak.

Therefore,

Rn+i,kki =
λi

1 + λ2
i


k1


∑

k �=i

1
1 + λ2

k


 + k2


1 − n +

∑
k �=i

1
1 + λ2

k







Therefore, the curvature term

−
∑
α,k

[Ωα2···nRαkk1 + · · · + Ω1···(n−1)αRαkkn]

in equation (3.6) becomes

(λ1 + λ2)√
(1 + λ2

1)(1 + λ2
2)

2∑
i=1

λi

1 + λ2
i


k1


 n∑

j �=i

1
1 + λ2

j


 + k2


1 − n +

n∑
j �=i

1
1 + λ2

j







k1


∑

j �=i

1
1 + λ2

j


 + k2


1 − n +

∑
j �=i

1
1 + λ2

j


 =

k1 − k2

2
(n − 1)

+
k1 + k2

2


∑

j �=i

2
1 + λ2

j

+ 1 − n




Since λ1 + λ2 > 0 and k1 − k2 ≥ 0, k1 + k2 ≥ 0, we only need to show

n∑
i=1

λi

1 + λ2
i


1 − n +

n∑
k �=i

2
1 + λ2

k


 ≥ 0
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This is indeed

λ1

1 + λ2
1

(
n − 3 +

2
1 + λ2

2

)
+

λ2

1 + λ2
2

(
n − 3 +

2
1 + λ2

1

)

This can be rewritten as

(n − 2)
(λ1 + λ2)(1 + λ1λ2)

(1 + λ2
1)(1 + λ2

2)
+

(λ1 + λ2)(1 − λ1λ2)
(1 + λ2

1)(1 + λ2
2)

which is strictly positive under the assumption |λ1λ2| < 1.
Now, we turn to long-time existence and convergence. As in Theorem A,

we can show

(4.11) |λ1λ2| ≤ 1 − δ.

Recall the equation satisfied by ∗Ω1,

d

dt
∗ Ω1 ≥ ∆ ∗ Ω1 + δ ∗ Ω1|A|2

+ ∗Ω1

{
k1 − k2

2
(n − 1)

[∑
i

λ2
i

1 + λ2
i

]
+

k1 + k2

2

[
(n − 2)

λ2
1 + λ2

2 + 2λ2
1λ

2
2

(1 + λ2
1)(1 + λ2

2)

+
λ2

1 + λ2
2 − 2λ2

1λ
2
2

(1 + λ2
1)(1 + λ2

2)

]}

(4.12)

In fact,
∑

i
λ2

i

1+λ2
i

= λ2
1+λ2

2+2λ2
1λ2

2

(1+λ2
1)(1+λ2

2)
. Since ∗Ω1 = 1√

(1+λ2
1)(1+λ2

2)
, we have

1 − ∗Ω2
1 = λ2

1+λ2
2+λ2

1λ2
2

(1+λ2
1)(1+λ2

2)
. It is not hard to see that there exists a constant c′

such that λ2
1 + λ2

2 − 2λ2
1λ

2
2 ≥ c′(λ2

1 + λ2
2 + λ2

1λ
2
2) if |λ1λ2| ≤ 1 − δ.

Therefore,

d

dt
∗ Ω1 ≥ ∆ ∗ Ω1 + δ ∗ Ω1|A|2 + c ∗ Ω1(1 − ∗Ω2

1)(4.13)

for some constant c > 0.
As in the proof of Theorem A in [16], this equation implies long time

existence by blowing up argument and White’s regularity Theorem [17].
By maximum principle, minΣt ∗Ω1 → 1 as t → ∞, then we can use the

estimate in the proof of Theorem B in [16] to show maxΣt |A|2 → 0 and
apply Simon’s general convergence theorem [9]. We get smooth convergence
in this case. In the limit, ∗Ω1 = 1 and thus λ1 = λ2 = 0. �
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Corollary. If f is any smooth map from Sn to S2 and if at each point, the
restriction of df to any two dimensional subspace is area decreasing, then f
is homotopic to a constant map along the mean curvature flow.

Again, we remark the condition is equivalent to the comass of f∗Ω2 is
less than one, where Ω2 is the area form on S2.

Remark 4.1. This paper was finished in January 2002. In the past few
years, there were several more long-time existence results of higher codi-
mension mean curvature flows. For example, the work of Chen–Li–Tian [1],
Smoczyk [10], [11] and Smoczyk–Wang[12]. In particular, the results of this
paper were generalized to allow the dimension of the target manifold to be
arbitrary in Tsui–Wang [13].
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