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Let M = ¥; x Y5 be the product of two compact Riemannian
manifolds of dimension n > 2 and two, respectively. Let X be
the graph of a smooth map f : 3; — Y3; ¥ is an n-dimensional
submanifold of M. Let & be the Grassmannian bundle over M
whose fiber at each point is the set of all n-dimensional subspaces
of the tangent space of M. The Gauss map v : ¥ — & assigns
to each point x € X the tangent space of ¥ at x. This article
considers the mean curvature flow of 3 in M. When ¥ and X5 are
of the same non-negative curvature, we show a sub-bundle & of the
Grassmannian bundle is preserved along the flow, i.e. if the Gauss
map of the initial submanifold ¥ lies in &, then the Gauss map
of ¥; at any later time ¢ remains in &. We also show that under
this initial condition, the mean curvature flow remains a graph,
exists for all time and converges to the graph of a constant map at
infinity. As an application, we show that if f is any map from S™ to
52 and if at each point, the restriction of df to any two dimensional
subspace is area decreasing, then f is homotopic to a constant map.

1. Introduction.

The maximum principle has proved to be a powerful tool in non-linear par-
tial differential equations. In particular, the maximum principle of parabolic
systems for tensors developed by Hamilton [5] plays an important role in the
study of geometric evolution equations. The guiding principle is the follow-
ing: an invariant convex subset in the space of curvature tensors preserved
by the associated ordinary differential equations is preserved by the par-
abolic partial differential equations. This has been applied to the study of
Ricci flow and curvature flow of hypersurfaces. We apply this idea to higher
codimension mean curvature flows.

Let M = 31 x ¥ be the product of two compact Riemannian manifolds
of dimension n and m respectively and 3 be the graph of a smooth map
f X1 — X9 In [14], [15], and [16], we prove long time existence and
convergence theorems for the mean curvature flow of ¥ assuming conditions
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in terms of the restriction of parallel calibrating forms to . These are
essentially conditions on the tangent spaces of . In this paper, we take
on the study of the Gauss map of . Let & be the Grassmannian bundle
over M whose fiber at each point is the set of all n-dimensional subspaces
of the tangent space of M. The Gauss map v : X — & assigns to each point
x € % the tangent space of ¥ at . The tangent space of M at x splits as
Ty ()21 X Try(2) 2. Let ®’ C & be the sub-bundle consisting of the graphs
of linear transformations from 77, ;)31 to T, (;)X2. We show there exists a
sub-bundle & C &' that is preserved along the mean curvature flow.

Theorem A. Let M = Y1 X X9 be the product of two compact flat Rie-
mannian manifolds and suppose o is two-dimensional. If the Gauss map
of a compact oriented submanifold ¥ of M lies in &, then along the mean
curvature flow the Gauss map of Xy remains in &. The flow exists smoothly
for all time and converges to a totally geodesic submanifold.

This condition in particular implies 3; is the graph of a map f;. The
sub-bundle & is best described in terms of f;. In fact, if we denote the
singular values of f; by A1 and Ao, then the Gauss map of ¥; lies in & if and
only if |)\1>\2| < 1.

When 33 is of positive curvature, we prove the following.

Theorem B. Let M = S™(ky) x X be the product of an n-sphere of cur-
vature k1 > 0 and a two-dimensional compact Riemannian manifold Yo of
constant curvature ko and ki > |ko|. If the Gauss map of a compact ori-
ented submanifold ¥ of M lies in &, then along the mean curvature flow,
the Gauss map of Xy remains in &. The flow exists smoothly for all time
and converges to a totally geodesic submanifold.

We noted the assumption on the Gauss map of ¥ implies X is a graph
over S™(ky).

Theorem A and B are proved by calculating the evolution equations of
the Gauss map and applying the maximum principle. The prototype is the
following equation in the hypersurface case

d

—N = AN + |APN

g |A]

where N denotes the unit normal vector and |A|? is the norm of the second
fundamental form. If we take the inner product of N with a constant vector
v, it is not hard to see that miny, (N, v) is non-decreasing in time. This is one
of the key observations in [2] and [3] where the mean curvature flow of entire
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graphs of codimension one was studied. In the case of hypersurfaces, N
contains all the information of the Gauss map while in higher codimension,
a whole parabolic system is needed in order to describe the evolution of the
Gauss map.

The following is an application to higher homotopy groups of S2.

Corollary. If f is any map from S™ to S?, n > 2 and if at each point, the
restriction of df to any two dimensional subspace is area decreasing, then f
is homotopic to a constant map along the mean curvature flow.

When n = 2, this is the same as saying the Jacobian of f is less than 1.
In this case, f is of degree 0 and thus homotopic to a constant map. This
homotopy can be realized through the mean curvature flow as was proved
in [14]. As a contrast, the standard Hopf map from S3 to S? has |\ \a| = 4.

The author is indebted to Professor D. H. Phong and Professor S.-T. Yau
for their constant encouragement and unending support. He has benefitted
greatly from the conversation with Professor R. Hamilton and Professor M-P
Tsui. The author is partially supported by an NSF grant.

2. Analysis of the Grassmannian bundle.

Let us first describe the sub-bundle &. Let V; be an n-dimensional inner
product space and V5 a two-dimensional inner product space. Let G(n,n+2)
be the Grassmannian of all n-dimensional subspaces of V; x V5. Let G’ C
G(n,n +2) be the set of all n-dimensional subspaces that can be written as
graphs over Vj. For any P € G’, P is the graph of a linear transformation
p: Vi — Vo. Then (p)Tp is a self-adjoint map from V; to V; and has n
eigenvalues, n — 2 of them vanish. The eigenvalues are denoted by {\}, A\3}.
A1 and Ay are the singular values of p. We now define S

S = {P € G/| 1-— |)\1>\2‘ > 0}.

This is equivalent to saying p is area decreasing on any two dimensional
subspace of V.

Now let M be the product of two Riemannian manifolds ¥1 x Yo of
dimension n and 2 respectively. Let & be the Grassmannian bundle on M
whose fibers are isomorphic to G(n,n + 2). At each point z, T, M splits
as the product of Ty ()31 and Tr,(;)¥2. The Riemannian structures on
TriX1=W and Tryz)22 =Va defines the subset S of the fiber of & at x.

Definition 2.1. & is the sub-bundle of the Grassmannian bundle & whose
fiber at each point consists of S.
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Let 3 be the graph of a smooth map f : 31 — Yo. T, X is the graph of
the differential of f at x, df : Ty, (;)¥1 — T}, () 22. Notice that we abuse the
notation so that T3, T (;)¥1 and T, ()32 all denote subspaces of T, M.
At any point x, let A1,\s be the singular values of df. They are well-defined
up to a sign. Define

1 — A1\
VM) 1+ M)

n(x) =
7 is a function on X.

Proposition 2.2. n > 0 on X if and only if the Gauss map of ¥ lies in &.

Later we shall give a characterization of n in terms of differential forms
on M. Any differential form €2 on a Riemannian manifold can be considered
as a function on the Grassmannian bundle & of appropriate dimension. The
comass of Q at x is defined to be the supremum of 2 on &, the fiber of &
at x. This is an important concept in calibrated geometry, see Federer [4]
or Harvey—Lawson [6]. Another description of & can be given in terms of
the comass.

Proposition 2.3. If X is the graph of f : ¥1 — 39, then the Gauss map of
3l lies in & if and only if the comass of f*Qq is less than one.

Here €5 is the volume form on Y9 and f*(29 is considered as a 2-form on
¥1. Of course the comass is taken over all two-dimensional subspaces of the
tangent space of .

3. Evolution equations of n-forms.

In this section, we calculate the evolution equation of the restriction of an n-
form to an n-dimensional submanifold moving by the mean curvature flow.
The case for a parallel form was calculated in [16]. Here, we need to keep
track of the terms that involve covariant derivatives of €.

We assume M is an n + m dimensional Riemannian manifold with an
n form Q. Let F' : ¥ — M be an isometric immersion of an n-dimensional
submanifold. We shall compute near a point p € 3. We choose arbitrary
orthonormal frames {e;}i—1..,, for T and {eq}a=n+1,- nt+m for NX. vM
denotes the covariant derivative on M and V> denotes the covariant deriv-
ative on ¥, which is simply the tangent part of VM. VM) is the covariant
derivative of Q on M and V¥ will denote the covariant derivative of the
restriction of € to X.
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We first calculate the covariant derivative of the restriction of 2 on X.

(VEkQ)(ein'” 7€in)
= ek(Q(eilv T 7€in)) - Q(vezkein T 7€in) - Q(eiu te 7v§k€in)
= (vé\fg)(e’iu e 7e’in) + Q(vé\ieil - v§k€i1u T 7e’in)

+ 4 Qe ,Véwein - Vezkein)

k

This equation can be abbreviated using the second fundamental form of
F, haij = (Vﬁfej, eq). We write §;,...;, 1 shorthand for (VeZkQ)(eil, ceeep ).

(3.1) Qi = (Vﬁfﬁ)(eil, i) F Qaigeig Paigk 0+ Qi aPain k

Likewise, in Q(eq, €y, - ,€;,), @ is considered as a section of (NX)* A
(AH(TR)).

(32) Qaigeink = (VI (ea,€ir, i) = Qjigin hajh + Qaigin hisk
+ e + QaiQ"'in—I,@hIBink

Now, we calculate the second covariant derivative of the restriction of
on ..

(vezkvgkg)(eh e en)
= ex (Vo) (e, - en)) — (Vo Q)(Vier, - ,en)
. (VeZkQ)(eb... 7v§k€n)

The term (VeEkQ)(VEkel, -++ ,ep) equals zero because ngel is a tangent

vector perpendicular to e; and thus a linear combination of eg, - - - , e,. Like-
wise, other similar terms vanish.

(33)  (VLVeQ)(er, - en)
= er[(VYQ)(er, + ,en) + Qazenhatr + ++ + Qen—1ahank]
= (VIVYQ)(er, - ,en) + (VYQ)(VYer, - en)
+o 4+ (VY)Y (er, -,V ey)
+ Qo2 Ptk + - + Qecn—ta,khank
+ Qoo nhatk ke + -+ Qn—1ahank,k

Now, Vé\zei = hgik€a + Vezkei and (V%Q)(VeZ €1, - ,en) =0.

k
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Therefore,

(34) Ql---n,kk = (ngé\gg)(eb T 7671)
+ (V%Q)(eom e 7en)ha1k i (V%Q)(eb e 7ea)homk
+ Qa2---n,kha1k + 4+ Ql~~~n—1a,khomk
+ QaQ---nhalk,k +-+ Ql---nflahomk,k

Plug equation (3.2) into (3.4) and apply the Codazzi equation hqp;r =
hai + Raokki where R is the curvature operator of M, h, is the component
of the mean curvature vector H = hyeo, and h,; is the component of the
covariant derivative of H as a section of the normal bundle, i.e. (Vo H)N =
ha,iea.

(3.5)
(A D)1y = — Q2o Z(him ot B
a,k
+2 Z [Qaﬁ&--nhalkh,@Zk + QaQ,@---nhalkhﬂSk
a,B,k

+ -+ Qi n—2)asPan—1 kM onk]

+ ) Qazenban -+ Qeenalan
a,k

+ Z QaQ---nRakkl +---+ Ql---(n—l)aRakkn
o,k
+ (VM) (er, - en)
+2(VYQ)(ear s en)harr + -+ 2(VYQ)(er, -+, ea)hank

We notice that (A¥Q)1.., = A(Q(eq,--- ,e,)), where the A on the right-
hand side is the Laplacian of functions on X.

The terms in the brackets are formed in the following way. Choose two

different indexes from 1 to n, replace the smaller one by « and the larger
one by . There are a total of "("271) such terms.

Now, we consider when 3 = 3; is a time slice of a mean curvature flow
in M by %Ft = H;. Notice that, here we require the velocity vector is in
the normal direction. We can extend ey, --- , e, to a local coordinate system
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{0; = 621-} on X, then

d
dt (817 7871)

= (V%Q)(ah 7071) +Q((v61H)N7027“' 7871)
+-+ 9(817827 e >(v6nH)N)
+Q((Vo, H)', 02, 0n) + -+ Q(01,02, -+, (Vo, H)T)

Since Lg,; = ((Vo,H)T,9;), if we choose an orthonormal frame and evolve
the frame with respect to time so that it remains orthonormal, the terms in
the last line vanish. Denote

Qe — 0@y, 0,

\/ det Gij
then *() satisfies
d
T x Q) = *(V%Q) + Qa2.phag + -+ Ql~~~(n—1)aha,n

Combining this with equation (3.5), we get the parabolic equation satis-
fied by €.

Proposition 3.1. Suppose 3y is a time slice of an n-dimensional mean
curvature flow in M and Q is an n-form on M. For any point p € Y, let
{e1,-+ ,en} be an orthonormal frame of TYy near p and {€n11, - ,€ntm}
be an orthonormal frame of the normal bundle of 3 near p. Then % =
Qey, -+ ,en) satisfies

(3.6)
4 O A+Q+40 > n2,
dt aik

a,ik

-2 Z Q083 nhaikhsor + Qa2s.-nhaikhssk
a7ﬁ7k

+ooet Ql---(an)aﬁha(nf1)kh,3nk]
- Z[QaZ---nRakkl + o+ Q- 1)a Rakknl
ok

+H(VHQ) = (VIVE Q) e, en)
- Q(V%Q)(eom e 7en)ha1k - 2(vé‘£9)(€17 e 7ea)homk

where A denotes the time-dependent Laplacian on ;.
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4. Proof of Theorems.

Let us prove Theorem A now. We recall the statement.

Theorem A. Let M = 1 X Yo be the product of two compact flat Rie-
mannian manifolds of dimension n and 2, respectively. If the Gauss map
of a compact oriented submanifold X of M lies in &, then along the mean
curvature flow the Gauss map of ¥y remains in &. The flow exists smoothly
for all time and converges to a totally geodesic submanifold.

Proof. Let ¥; be the mean curvature flow of ¥ given by a family of immer-
sions F' : ¥ x[0,7T) — M. In the following calculation, it is useful to consider
the total space of the mean curvature flow as ¥ x [0,7). At each instant ¢, &
is equipped with the induced metric by F;. All geometric quantities defined
on the image of F(-,t) are considered as defined on X.

Let €1 and €2 be the volume form of 3; and Yo respectively. They
can be considered as parallel forms on M. Suppose initially the image of
the Gauss map of ¥ is in 6. We may assume 3 is the graph of a map
f X1 — Yo. This implies n; = %3 > 0 and n > 0 on X at t = 0 by
Proposition 2.2.

We shall characterize 1 in terms of differential forms. Consider = the
collection of n forms on M of the following type.

E={Q=Q — U Aw|w is any parallel simple (n — 2) form

of comass one on ¥}

At any point x, by Singular Value Decomposition, we can take an ortho-
normal basis {a;}i=1.., for Ty, ;)1 and {aa }a=n+1,n+2 for Tr, )22 so that
df (a;) = Ni@nyi, ai A+ -~ Aaj, is the volume form of Tr ()31 and ay 1 Aaj, 1o
is the volume form for T, ;)X2 . Therefore,

1 1
(4.1) {61 = ﬁ(al + Many1),e2 = ﬁ(@ + A2any2),

€3 = ag, - 7en:an}

forms an orthonormal basis for T, and

1 1
(42) {6n+1 = ﬁ(an_i_l — )\10/1), ent+2 = T)\%(an+2 — )\20/2)}
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an orthonormal basis for N,>. Thus,

(4.3) (U — W Aw)= (1 — W Aw)(er, - ,en)
1
= NESESY) (1= XMXew(as, - ,a,))

On the other hand 1

A )

Recall
1 — Ao

A )

It is not hard to see
n(z) = min xQ(x)
Qe

Suppose at t = tg, the image of the Gauss map hits the boundary of &
for the first time. Therefore, each X, t < ty can be written as the graph of
ft : 1 — X9 and the singular values of f; satisfy |[AjAa| < 1.

We claim ¥;, remains a graph. Indeed, since {2; is a parallel form, 7;
satisfies the following equation by equation (3.6).
(4.4)

d
ah = Anp +m Z R — 2 Z MA2 (Pt 1k Pn42,28 — hng2, 1k Png1,2k)

a,ik k
where we use
Qi (an+1 — Mat, a2 — Aoag,az, - ,a
Qi (ent1;€nt2,€3, - ,en) = (an n+2 5 »)
VA + )
= AAam.

Notice this equation is valid at any point x. Since |AjAg| < 1 for 0 <
t < tp, applying the maximum principle to equation (4.4) implies miny, 7
is non-decreasing in ¢t and thus n; > 0 at #g.

Now, 7 is well-defined at ty. Take any p so that n(p,tp) = 0, we shall
show that %|t:t077 >0 at p.

It is clear that Ay Ao # 0 at p. Otherwise, 71 = 1 = 0, a contradiction.

By the previous characterization of 7 and Hamilton’s maximum principle
[5] , we only need to show %|t:t0 x (1 > 0 at the point p for any 2 € = such
that *Q(p) = n(p). At p, we apply Singular Value Decomposition to get an
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orthonormal basis {a;}i=1,... for Ty ;)31 as before. Such Q is of the form
Q) — Q9 Aw with w(as, -+ ,an) =1 0orw=ajA---Aa} by equation (4.3).
x() satisfies
d
(4.5) %*Q:A*Q—F*Q(Zkhiik
a,i,

-2 Z [QaﬁS---nhalkhﬂZk + QaQﬁ---nhalkhBSk
a,B,k

+ -+ Ql...(n_Q)aﬂh‘a(n—l)kh‘ﬁnk]'

At this point p,

(1 — Q2 Aw)(ent1,€nt2, €y €ip_s)

1
ST g e T el i)

Thus

d
7 Q=A% Q4 «Q [|A]? + 2(hpt116Pnt2,96 — o1 26hns2,18)] -

This can be completed square and we get

d
Z* Q=AxQ+Q Z hZ,. + Z(thrl,lk + hig2,0k)?

o,2<i<n,k k

+ Z(thrl,Zk - hn+2,1k)2] .
%

Therefore, % x> 0 at (p,tp). Since this is true for any € that achieves

the minimum of %2 in =, we have %77 > 0. Thus, the sub-bundle G is
preserved along the mean curvature flow.

Now, we prove long time existence and convergence. By a similar argu-
ment, we can show if minn = § > 0 at t = 0, then this is preserved along
the flow. This implies in particular,

(4.6) Mol <16,

and

(4.7) Va3 <
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Since |A1A2] <1 —4, we have

d
In particular, *€2; has a uniform lower bound, each ¥; can be written as
the graph of a map f; : 31 — Yo, and f; has uniform gradient bound.
Integrating % * Q1 > AxQp+ 6% Q]| AJ? over space and time from ¢ = 0
to ¢ = oo and noting that fEt x()y is constant in t, we get

5/ /*Ql\AFg/ /*91|H|2.
0 P 0 3¢

For a mean curvature flow, [ [5, |H|* < oo, thus [ [5. [A]* < co. We
can extract a subsequence ¢; — oo such that th- |A|? — 0. Because each f;,

has bounded gradient, this is the same as le |Vdf,,|> — 0. Therefore, f;,
is a bounded sequence in both C® and W22, By passing to a subsequence
if necessary, there exists an fo, € Lip N W22 such that f;, — fs in C* for
any a < 1 and f;, = fo weakly in W22, As df;, — dfs weakly in WhH2,
by lower semicontinuity of the energy functional (see for example Theorem
1.8.1 in [8]), we have

/ IVdfs|? < liminf/ \Vdf,, | = 0.
] 1

By elliptic regularity, it is easy to see that f is smooth and linear. ¥,
the graph of f, is thus a totally geodesic (flat indeed) submanifold. Since
ft; = foo in C¢ for any a < 1, we have the distance d(X¢,,Xo) — 0. The
uniform convergence of f; follows as the proof of Theorem C in [15] where we
use the property that distance function to any totally geodesic submanifold
in a Riemannian manifold of non-positive sectional curvature is convex to
show that max,eyx, d(p, ¥oo) is non-increasing in ¢ along the mean curvature
flow. O

Theorem B. Let M = S™(k1) x X5 be the product of an n-sphere of cur-
vature k1 > 0 and a two-dimensional compact Riemannian manifold 3o of
constant curvature ky and ki > |ko|. If the Gauss map of a compact ori-
ented submanifold 3 of M lies in &, then along the mean curvature flow,
the Gauss map of Xy remains in &. The flow exists smoothly for all time
and converges to a totally geodesic submanifold.
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Proof. The proof follows the same strategy as that of Theorem A. We ac-
tually show the image of the Gauss map never hits the boundary of &.
Suppose the contrary happens at t = t3. Again, we look at the equation of
x(21. Using |[A1A2] <1 for 0 <t <ty and Proposition 3.2 in [16], we see

(4.9)

d
%*leA*Ql

A7 2 4
+*9121+A2 F 21+A2 + ks 1_n+21+A2
7 Wi J

J#i J#i
The last term comes from the curvature of M. Rewrite

k> 2 sk f1-n+t > 2

41 a2 2 L1 4 \2

J#i J J#i J
k1 — ko k1 + ko 2

= -1 1-—
g (DT | 2 gt
JFi J

We claim the curvature term is always non-negative under our assump-
tion. Since k1 — ko > 0, k1 + k9 > 0, we only need to show

n AQ n 4

§ i 1—n+§ > 0.
2 2 —

—~ 14\ k#1+A,€

2

This is indeed

al S I X2 342
n— n— —
14 X2 1+ M 143 14+ X

This can be rewritten as

(n+ DA + (n+ 1)A3 +2(n — 3)AIN3
(14+A)(1+A3)

which is non-negative under the assumption |A;Ag| < 1.

Therefore, at t9, ¥y, remains a graph and miny, 1 = 0. Take any p so
that n(p,tp) = 0. We may assume A\; > 0, A2 > 0 at p.

As before, we choose orthonormal basis at p that corresponds to the
singular value decomposition of df. We can extend the orthonormal basis
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{ai}i=1..n at T ()21 to an orthonormal frame field in a neighborhood Uy C
¥ such that at this point p, VMa; = 0, i = 1---n. This is possible because
the Riemannian structure is a product and each ¥ slice is totally geodesic
in M. Take

Q=0 — B Aw

where w =az A\ -+ Aaj,.
Q is an n—form defined on U = U; x ¥y that satisfies VMQ = 0 at p.
Now, we extend 2 to a global form on M. Take a cut-off function ¢ such
that ¢ =1 in a neighborhood of p and ¢ has compact support. Then

Q=01 — ¢ ANw

is such a global extension. Now, *Q(p,tg) = 0 and (p,tp), *Q > 0 for

0 <t <tyand *Q > 0 at tg. Therefore, %*QSO and Ax Q>0 at (p,to).

We recall the evolution equation from equation (3.6).

(4.10)
d
E*QzA*Qij(Zkhgdk
-2 Z [Qaps-nhaikhsar + Qazs-nhaikhssk

a,B,k
+ooet Ql---(an)aﬁhoz(nf1)kh,3nk]
- Z [Qo&mnRakkl +eee Ql---(nfl)aRakkn]
ok

+#(VHQ) = (VEVEQ) (e, en)
- Q(V%Q)(eom e 7en)hai1k - =2 (Vé‘i@) (617 e 7ea)hon'nk

By the way € is constructed, VMQ = 0 at p. We claim the term
(V%V%Q)(el, .-+, ey) also vanishes at p.
In fact, consider

V%V%(Qg/\w)(el,"' ,En)
= (Qg/\Vé\fVé\fw)(el,"' ,€n)
A Ao

= Mg M e La
- \/(1+)\%)(1+>\%)(vekvekw)(a3a ) n)

For © = 3,---,n, (v%vij\’/la:)(al) = X(v]}\ga’:(al)) - (vij\’/la:)(v%al)
(V{\,/[az‘)(ai) = (V{\//[ai,ai> = (V?)ai,aﬁ is zero, so X(Vyaf(ai)) = 0.
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Therefore, V¥ V¥a¥(a;) = 0 at p. Since w = aj A -+ A a}, we get
(VUVYw)(as, -, an) =0.

Now, the left-hand side of equation (4.10) is non-positive, we shall show
the curvature term

- Z[QaZ---nRakkl + o+ Qe Da Rakkn]
a,k

is strictly positive, thus achieves contradiction because all other terms on
the right-hand side are non-negative.
We calculate the curvature term.

AL+ A2
Q(€a>€2> e 7en) = _5a,n 1
IV S OISy
Likewise,
A1+ A2
Q(elaeaaei’) t 7en) = _5a,n 2
IV S DITESY)
and
Q(ela €2,€q,€4 " 7671) =0

We assume 1 and Y9 are of constant curvature k1 and ko respectively,
and by the calculation in [16], we have:

Z R(€Ot> €k €k, ei)

k

=k [Z(m(ea),7T1(€k)><7fl(€k)>7fl(€i)>

k

—(mi(ea), m1(€s)) Z<7T1(ek)a771(€k)>]

k

+ha| D (ma(ea), ma(er)) (ma(er) m(e:)

k

— (m2(ea), m2(ei)) Z<7T2(ek)7772(€k)>]

k

~ by [Zm(ea),m(ek>><m<ek>m<ez->>

k
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— (mi(ea);mi(e) Y [miler)?

k

+ k[ (n = 1)(mi(ea), mi(e) + Y _(milea), mi(er)){(mier), mi(e:))

k

— (mi(enti) me) Y |771(€k)\2]

k

Because €, = ———(anti — Nai), m1(€pnti) = a;. Likewise
1n+2 W( n+t z z)u ( n+l) m 2 ’

mi(er) = ag.

Therefore,

i 1 1
Roiphi = —— |k — | +k[1- —
n+i,kki 1"‘)\? 1 ;1‘1‘/\% + K2 Tl'i‘;l_’_)\i

Therefore, the curvature term

— > [Qu2-nRakkr + -+ + Q.n1)aRakkn]
o,k

in equation (3.6) becomes

2 n n
()\14-)\2) i 1 1
E k1 E —— | + ks 1—n+E —
2 2 2
VI I +X2) S 1+ A Ry 4N

1 1 ki —k

k(Y — |tk |1-n+> s =——=—(n-1)

— 14+ A2 — 1 4+ A2 2
JF J J#i J

k1 + ko 2

1

T Zl+)\2+ "
JFi J

Since A1 + Ao > 0 and k1 — ko > 0, k1 + ko > 0, we only need to show

n

DI PR o LT
1+ A k#1+/\i -

=1
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This is indeed
M 2 Ao 2
-3 34 =
1+ )2 (n +1+>\§>+1+/\§<n +1+>\§>

This can be rewritten as

M F+2) 1+ A1) (A1 +A2)(1— A1 hg)
(1+22)(1+23) (1+22)(1+A3)

(n—2)

which is strictly positive under the assumption [\ A2 < 1.
Now, we turn to long-time existence and convergence. Asin Theorem A,
we can show

(4.11) Ao <1-06.

Recall the equation satisfied by *{2q,

(4.12)
%*Ql > AxQp 40 % A2
ki — ko A2 ki + ko A2+ 2+ 20202
Q -1 L -2
L 1{ ;=) ;14—)\? 7| )(1+A§)(1+Ag)
A+ 23— 2X203
(T+AD)(1+ M)
A2 N Z4223)2 . . 1
In fact, >, T2 = AoDaa) Since *Q; = Wnsel we have
2 2 242
1— %02 = % It is not hard to see that there exists a constant ¢’
such that A2 + A3 — 2X203 > /(A2 + A3 + APA3) if (M he| <1 —6.
Therefore,
(4.13) %*Ql2A*Ql+5*91\A|2+c*91(1_*9§)

for some constant ¢ > 0.
As in the proof of Theorem A in [16], this equation implies long time
existence by blowing up argument and White’s regularity Theorem [17].
By maximum principle, miny, *{}; — 1 as ¢ — oo, then we can use the
estimate in the proof of Theorem B in [16] to show maxy, |A|*> — 0 and
apply Simon’s general convergence theorem [9]. We get smooth convergence
in this case. In the limit, *€2; = 1 and thus A\ = Ay = 0. O
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Corollary. If f is any smooth map from S™ to S? and if at each point, the
restriction of df to any two dimensional subspace is area decreasing, then f
is homotopic to a constant map along the mean curvature flow.

Again, we remark the condition is equivalent to the comass of f*Q)s is
less than one, where 5 is the area form on S2.

Remark 4.1. This paper was finished in January 2002. In the past few
years, there were several more long-time existence results of higher codi-
mension mean curvature flows. For example, the work of Chen-Li-Tian [1],
Smoczyk [10], [11] and Smoczyk—Wang[12]. In particular, the results of this
paper were generalized to allow the dimension of the target manifold to be
arbitrary in Tsui-Wang [13].
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