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Constant mean curvature foliations of simplicial flat

spacetimes

Lars Andersson1

Benedetti and Guadagnini [5] have conjectured that the con-
stant mean curvature foliation Mτ in a 2 + 1 dimensional flat
spacetime V with compact hyperbolic Cauchy surfaces satisfies
limτ→−∞ �Mτ = sT , where �Mτ and sT denote the marked length
spectrum of Mτ and the marked measure spectrum of the R-tree
T , dual to the measured foliation corresponding to the transla-
tional part of the holonomy of V , respectively. We prove that this
is the case for n + 1 dimensional, n ≥ 2, simplicial flat spacetimes
with compact hyperbolic Cauchy surface. A simplicial spacetime
is obtained from the Lorentz cone over a hyperbolic manifold by
deformations corresponding to a simple measured foliation.

1. Introduction.

In this paper, we will consider maximal, globally hyperbolic, flat (MGHF)
spacetimes V of dimension n + 1, n ≥ 2, with compact Cauchy surface
M of hyperbolic type, i.e. which admits a metric g of constant sectional
curvature −1. The main result of the present paper implies, in the 2 + 1
dimensional case, the proof of a conjecture of Benedetti and Guadagnini
[5, Conj. 5.1], see conjecture 1.1 below, in the special case of simplicial
flat spacetimes. A simplicial spacetime is a flat spacetime which can be
obtained from the Lorentz cone over M , with metric −dρ2 + ρ2g0 over M ,
by performing certain deformations relating to a weighted, finite collection
of non-intersecting, compact, simple (i.e. without self-intersections), totally
geodesic hypersurfaces L = {(Σk, �k), k = 1, . . . ,m}, with weights �k ∈ R, in
(M,g0). In particular, a simplicial spacetime has a compact Cauchy surface
of hyperbolic type. Let I� = [0, �]. The deformation corresponding to a
single such hypersurface (Σ, �) corresponds to gluing in a “wedge” spacetime
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W� = W × I�, in place of the Lorentz cone W over Σ. In case n = 2, L is a
“weighted multicurve”, or simple measured foliation with compact, simple
geodesic leaves (by [21], every totally geodesic hypersurface of a compact
hyperbolic manifold of dimension n ≥ 3 is compact). Further, if n = 2,
simple measured foliations with compact leaves are dense in the space of all
measured foliations.

A MGHF spacetime V with compact Cauchy surface M of hyperbolic
type is globally foliated by CMC hypersurfaces Mτ with τ taking all values in
(−∞, 0), see [1]. Further, the scale free version τ2

n2 gτ of the induced metric gτ

on Mτ converges in the expanding direction, as τ ↗ 0, to a metric of constant
sectional curvature −1. In case n ≥ 3, this metric is the unique hyperbolic
metric on M , while in case n = 2, this metric corresponds to a point in the
Teichmuller space Teich(M) of M . This is a partial generalization of the
results for the case n = 2 proved in [4]. In that paper, it was also proved
that in the direction τ ↘ −∞, towards the singularity, the Teichmuller
class of the induced metric on Mτ diverges, in the sense that it leaves every
compact subset of Teich(M), as τ ↘ −∞. This is proved by showing that
the Dirichlet energy E , which is a proper function on Teich(M) [18, Section
3], see also [20], diverges as τ ↘ −∞. However, the work in [4] does not
give a detailed picture of the geometry of the CMC hypersurfaces Mτ for
τ ↘ −∞. It is the purpose of this paper to study the detailed asymptotic
behavior of the geometry of Mτ in the case when V is simplicial.

1.1. Flat spacetimes, earthquakes and R-trees.

A time oriented MGHF spacetime V with oriented Cauchy surface M may be
viewed as an ISO+(n, 1) geometric structure, and as such is described by the
holonomy representation α of the fundamental group π1(M) in ISO+(n, 1).
The decomposition ISO(n, 1) = SO(n, 1) � Rn+1 leads to a decomposition
α(γ) = Q(γ) + tγ where Q is the linear part of the holonomy and the
translational part tγ is a cocycle with values in Rn+1. The linear part Q
of α corresponds to a hyperbolic structure on M . Let Γ = α(π1(M)) ⊂
ISO+(n, 1). The moduli space of MGHF spacetimes with Cauchy surface M
is homeomorphic to the Zariski tangent space H1(Γ, iso+(n, 1)Ad), see [13, 1].
We denote by iso and so, the Lie algebras of ISO and SO, respectively, and
Ad indicates that Γ acts by the adjoint representation.

In case n = 2, the dimension of this space is 12genus(M) − 12, twice
the dimension of Teichmuller space, while for n ≥ 3, by Mostow rigidity,
we have H1(Γ, iso+(n, 1)Ad) = H1(Γ, Rn+1

vec ). For n = 3, the dimension of
the moduli space of flat spacetimes is the same as that of the tangent space
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of the space of flat conformal structures, H1(Γ, R3+1
vec ) = H1(Γ, so(4, 1)Ad)

[12, Section 11]. In case n = 2, the translational part t corresponds to a
measured foliation F of M . Given a measured foliation F of a hyperbolic
surface M , there is a unique geometric real tree (R-tree) (T , d) dual to it.
The fundamental group π1(M) acts in a natural way on T .

Returning to the case of general dimension n, the development D(U(V ))
of the universal cover U(V ) in Mn+1, the n+1 dimensional Minkowski space,
is a convex open subset, the boundary H of which is the Cauchy horizon
of U(V ). From general results in causality theory, H is a weakly spacelike
C0 hypersurface. The fundamental group π1(M) acts on D(U(V )) and the
action extends to H. The Lorentz structure of Mn+1 induces a degenerate
distance function d on H. In the simplicial case, if we identify points of H
under the equivalence relation ∼ defined by p ∼ q if d(p, q) = 0, the action of
π1(M) drops to the quotient H/∼. The metric space H/∼ can be identified
with (T , d), which in this case is simplicial.

The cosmological time function ρ(p), see [2], on D(U(V )) ⊂ Mn+1, de-
fined as the maximal Lorentz length of any past directed causal curve start-
ing at p in D(U(V )) is regular, i.e. it is everywhere finite and ρ → 0 along
every past directed inextendible causal curve. This construction drops to the
quotient V . Starting from the work of Mess [13], Benedetti and Guadagnini
[5] showed that in case n = 2, the induced geometry of the level sets of the
cosmological time function ρ introduced in [2] realize the Thurston earth-
quake deformation, in the sense that the curve in Teichmuller space defined
by the Teichmuller class of the induced geometry of the level sets Mρ of the
cosmological time function corresponds to the Thurston earthquake flow,
defined with respect to the hyperbolic structure given by Q and the mea-
sured foliation F , see [5, Prop. 4.27 and Section 4.6]. In particular, as
ρ → ∞, the Teichmuller class of Mρ converges to the hyperbolic surface
M with holonomy Q, while as ρ → 0, the geometry of the universal cover
U(Mρ) converges in the Gromov sense to an R-tree T , determined by the
translational part t of the holonomy α of V .

The R-tree T can be identified with a point on the Thurston boundary
of Teichmuller space. To explain this fact, we need the notions of marked
length spectrum and marked measure spectrum, which we introduce
following [5, Section 4.5]. Let (X̃, d) be a metric space with an action α
of π1(M) and X = X̃/π1(M). Let C be the space of conjugation classes of
π1(M) \ {1}. Then, C can be identified with the space of non-trivial homo-
topy classes of closed curves on M . For c ∈ C, the marked length spectrum
sX(c) is defined as sX(c) = infp∈X̃ d(p, α(p)). In case X is homeomorphic
to M , this corresponds to the shortest length of closed curves in c, and
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is denoted by �X . In particular, by letting X vary among the hyperbolic
structures on M , sX gives a map sX : Teich(M) → RC

≥0, which is strictly
positive.

On the other hand, in case X̃ = T , sT (c) can be expressed in terms of
the measured foliation F of M dual to T as the minimal transverse measure
realized by the curves in c. This gives the marked measure spectrum IF . If
F is a simple measured foliation L with compact leaves, then IL(c) is defined
in terms of the geometric intersection number of the curves in c with L.

This extends the notion of length spectrum to the degenerate case. In
the 2 dimensional case, the image of Teich(M) under �X is homeomorphic to
the open ball in R6genus(M)−6. The boundary consists of degenerate geome-
tries corresponding to projective rays in the image of the space of measured
foliations under I. This is the Thurston boundary of Teichmuller space. The
convergence of marked spectra can be understood as convergence of metric
spaces in the Gromov sense, see [5, Remark 4.24, point 3)].

By [5], the foliation Mρ gives an analytic curve in Teichmuller space
connecting the interior point (M,Q) to the point on the Thurston boundary
corresponding to T . Thus, the spacetime geometry allows us to recover all
the information about the holonomy in a concrete way. In the particular
case of a 2+1 dimensional flat simplicial spacetime, defined by a hyperbolic
surface M and a simple measured lamination with compact leaves L on M ,
the Teichmuller class of the level sets Mρ of the cosmological time function
sweep out a curve corresponding to the Fenchel–Nielsen deformation of M
obtained by twisting M along the closed geodesics Σk of L, and the geometry
on U(Mρ) converges in the Gromov sense to the simplicial tree T dual to L.
We refer to [13, 5, 14] for background on the concepts discussed above.

The conjecture of Benedetti and Guadagnini can now be stated as fol-
lows:

Conjecture 1.1 ([5, Conj. 5.1]). Let V be a 2 + 1 dimensional MGHF
spacetime with compact Cauchy surface of genus ≥ 2, and let Mτ be the
foliation of V by constant mean curvature hypersurfaces with mean curvature
τ . Then

1. limτ→−∞ �Mτ = sT ,

2. limτ→0 �Mτ /τ = �M .

Point (2), which states that the scale-free geometry on Mτ converges to
the hyperbolic geometry (M,g) corresponding to the holonomy Q in the
expanding direction τ → 0, follows for n ≥ 2 from the work in [1]. In this
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paper, we will prove that the statement corresponding to point (1) is true
for simplicial MGHF spacetimes with compact Cauchy surface of hyperbolic
type, of general dimension n ≥ 2. We can state the main result of this paper
as follows, see Theorem 3.1.

Theorem 1.2. Let V be an n + 1 dimensional simplicial spacetime and
let Mτ be the foliation of V by constant mean curvature hypersurfaces with
mean curvature τ . Then limτ→−∞�Mτ = sT .

Recall that in case n = 2, the simple measured foliations with compact
leaves are dense in the space of all measured foliations. It is therefore natural
to conjecture that the result proved here will yield the general case by a limit
argument. We will not consider this problem here.

Our results here hold for simplicial flat spacetimes in general dimension
n + 1, n ≥ 2. The relation of the case of simplicial flat spacetimes to the
general case can be expected to be quite complicated in higher dimensions.
In fact, Scannell [16] showed there are non-rigid, compact, hyperbolic 3-
manifolds (i.e. ones with H1(Γ, so(4, 1)Ad) 	= {0}) which have no immersed
totally geodesic hypersurfaces. Therefore, it is not clear if the 2 + 1 dimen-
sional picture described above generalizes to the higher dimensional case.
It is an interesting open problem to describe the asymptotics of both the
foliation by level sets of the cosmological time function and of the CMC
foliation of general higher dimensional flat spacetimes.

One of the main ideas in the work of Benedetti and Guadagnini is that
the foliation by level sets of the cosmological time function realizes in a
natural way the earthquake deformation of Thurston, with respect to the
measured foliation defined by the translational part of the holonomy of the
spacetime. It is an interesting problem to understand the corresponding
picture in the higher dimensional case, see [6] for results in this direction.
As discussed below, the level sets of the cosmological time function in a flat
simplicial spacetime have locally conformally flat induced geometry. Recall
that H1(Γ, R3+1

vec ) = H1(Γ, so(4, 1)Ad). This raises the possibility that the
cosmological time foliation in a general 3+1 dimensional flat spacetime gives
a parametrization of the identity component of the deformation space of flat
conformal structures on M , in a way analogous to the 2+1 dimensional case
described above. The situation in dimension 3 is however more complicated
than in dimension 2, as shown by examples of Scannell [17], which demon-
strate that the moduli space of flat conformal structures can have an infinite
number of components, even when the cohomology H1(Γ, so(4, 1)Ad) van-
ishes. Since the moduli space of MGHF n + 1 dimensional spacetimes with
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compact hyperbolic Cauchy surface is a manifold [1], if the above mentioned
relation holds, it would imply the conjecture of Kapovich [11, Conjecture 2],
that the space of flat conformal structures on a compact hyperbolic manifold
is smooth at the hyperbolic structure in dimension 3.

2. CMC hypersurfaces in wedge spacetimes.

In this section, we will consider the CMC foliations of wedge spacetimes, and
show that the the induced geometry of CMC slices converges to an interval
as τ → −∞, i.e. in the direction of the singularity.

Let (M,g) be a compact hyperbolic manifold of sectional curvature −1,
with compact totally geodesic embedded hypersurface Σ, and denote the
induced hyperbolic (if n ≥ 3) metric on Σ by h. Let V = (0,∞)×M be the
flat Lorentz cone over M with metric

ds2 = −dρ2 + ρ2g, ρ ∈ (0,∞).

For � > 0, the wedge spacetime V� is V , with the cone over Σ replaced by
the wedge W� of width �, given by

W� = (0,∞) × Σ × I�,

with metric
−dρ2 + ρ2h + dr2, (ρ, r) ∈ (0,∞) × I�.

V� is a MGHF simplicial spacetime which is a deformation of V . The above
type of deformation was called elementary in [5]. It will be useful to pass
to the covering of these spacetimes defined w.r.t. the fundamental group
π1(Σ). We use notation of the form Ṽ� or UΣ(V�) for this cover, while U(V )
denotes the universal cover. Let In+1

+ ({0}) denote the interior of the future
light cone of the origin in Mn+1. Then W̃� = In

+({0}) × I�. In coordinates
t, y, r, W̃� is the set −t2 + |y|2 < 0, with metric

−dt2 + dy2 + dr2.

The level sets M̃ρ of ρ in Ṽ� have metric ρ2g in ˜(V \ Σ) and metric ρ2h
in U(Σ × I�). This metric is C1 but not C2, the second derivatives being
bounded, but not continuous, and it is conformally flat. To see this explicitly,
note that in the Gauss foliation based on Σ, the metric g can be written in
the form

(2.1) g = cos−2(v)(dv2 + h), v ≥ 0,
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where v = 0 at Σ. The metric g has constant sectional curvature and is in
particular locally conformally flat, and hence the wedge metric dv2 + h is
also locally conformally flat.

2.1. Mean curvature of Mρ.

The second fundamental form is K = −1
2∂ρg(ρ). On M \ Σ, we have K =

−ρ−1g, while on Σ × I�, we have K = −ρ−1h ⊕ 0. The mean curvature
τ = trK is given by τ = −n/ρ on M \ Σ while on Σ × I�, τ = −(n − 1)/ρ.
This means, in particular, that if we choose ρ0, ρ1 so that

−n − 1
ρ0

<
−n

ρ1
,

then

max

(
τ

∣∣∣∣
Mρ0,�

)
< min

(
τ

∣∣∣∣
Mρ1,�

)
.

This shows that the level sets Mρ are barriers, in the sense of [3], for the
mean curvature equation in V�, which using the argument of Gerhardt [10]
gives an easy proof that the wedge spacetimes V� are globally foliated by
CMC hypersurfaces. The function ρ defined above is the cosmological time
[2] of V�.

2.2. CMC hypersurfaces.

Now consider the CMC hypersurfaces Mτ of mean curvature τ < 0, in the
unique global CMC foliation of V�. We will scale V� by a factor λ2, the
rescaled metric is g′ = λ2g. This has the effect of scaling τ to λ−1τ . We
shall choose

λ = |τ |/(n − 1),

so that the rescaled version of the hypersurface Mτ has mean curvature
−(n − 1), and consider the limit as τ → −∞, i.e. as λ → ∞.

The scaling changes V� to Vλ�, in particular, the wedge in Vλ� is Wλ�,
which after a change of coordinates ρ′ = λρ, r′ = λr, has metric of the form

(2.2) −(dρ′)2 + ρ′
2
hijdxidxj + dr′

2
, r′ ∈ I�.

where xi, i = 1, . . . , n−1 is a coordinate system on Σ. On W̃λ�, we also have
the scaled Minkowski coordinate system (t′, y′, r′) = λ(t, y, r), with metric

−(dt′)2 + (dy′)2 + (dr′)2,
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so that ρ′2 = t′2 − |y′|2. We see from this that the scaling has the effect
of stretching the wedge W� to the wedge Wλ� of width λ�. We denote the
unique CMC hypersurface in Vλ� with mean curvature −(n− 1) by Mλ. Let
uτ and uλ denote the height functions of Mτ and Mλ with respect to the
time function ρ, defined by uτ = ρ

∣∣
Mτ

and uλ = ρ′
∣∣
Mλ

and let ũτ , ũλ denote
the corresponding lifts. Similarly, let vτ = t

∣∣
M̃τ

and vλ = t′
∣∣
M̃λ

.
In view of the mean curvature of the level sets of ρ, we have by the

maximum principle, λ−1 ≤ uτ ≤ λ−1n/(n − 1), and 1 ≤ uλ ≤ n/(n − 1).
The mean curvature of Mλ is −(n− 1), and hence the derivative bounds for
constant mean curvature hypersurfaces [7, 19] apply to vλ. It follows that
there is a subsequence of uλ which converges uniformly in C3 on compacts
to a hypersurface M∞ with mean curvature −(n − 1) in W∞, where W∞ is
the Kasner type spacetime (0,∞) × Σ × R with metric

−dρ2 + ρ2h + dr2, −∞ < r < ∞

This spacetime is the product of the flat Lorentz cone over Σ with a line.
The conclusion, so far, is that the limiting hypersurface is an entire CMC

hypersurface in W∞, with mean curvature −(n − 1). Further, due to the
fact that 1 ≤ uλ ≤ n/(n − 1), M∞ lies between the barriers ρ = 1 and
ρ = n/(n − 1). In fact, as we will now prove, a surface M∞ with these
properties splits as a product. We state this as the following:

Claim 2.1. Let M be an entire CMC hypersurface of mean curvature −(n−
1) in W∞, bounded from above and below by the barriers N1, N2

N1 = {ρ = ρ1}, ρ1 ≤ 1
N2 = {ρ = ρ2}, ρ2 ≥ n/(n − 1)

Then, M splits as M = Σ × R and M coincides with the level set ρ = 1.

We will prove the claim as a special case of a more general splitting theorem.

Theorem 2.2. Let W = (0,∞) × Σn−1 × Rk, with metric

ds2 = −dρ2 + ρ2h + (dz1)2 + · · · (dzk)2.

Let M be an entire CMC hypersurface in W with mean curvature −(n− 1),
bounded between the barrier surfaces

N1 = {ρ = ρ1}, ρ1 ≤ 1,
N2 = {ρ = ρ2}, ρ2 ≥ n/(n − 1).
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Then M splits as a product M = Σ × Rk with metric

h + (dz1)2 + · · · (dzk)2,

and M coincides with the level set ρ = 1.

Proof. Recall that the universal cover of the Lorentz cone over Σ is In
+({0}),

the interior of the future light cone in the n dimensional Minkowski space
Mn. The universal cover p : Σ̃ → Σ induces the universal cover p : W̃ → W ,
with W̃ = In

+({0}) × Rk ⊂ Mn+k, the n + k dimensional Minkowski space.
Let M̃ be the lift of M to W̃ . Then M̃ is an entire CMC hypersurface in W̃
which we therefore may think of as a CMC hypersurface in Mn+k. Introduce
coordinates (t, y1, . . . , yn−1, z1, . . . , zk) on Mn+k. We will use the notation
x = (y, z). Let |y|2 = (y1)2 + · · · + (yn−1)2, |z|2 = (z1)2 + · · · + (zk)2, and
define the function ρ̃ on Mn+k by

ρ̃2 = t2 − |y|2.

Then Ñi = {ρ̃ = ρi}, i = 1, 2 are the universal covers of N1, N2, and from
the maximum principle and the assumptions of the theorem, it follows that
M̃ is bounded between Ñ1 and Ñ2.

We will now make use of some results of Choi and Treibergs [8]. The
conclusion of [8, Section 4] can be summarized as follows. Let v be the
height function of a τ 	= 0 CMC hypersurface M̃ ⊂ Mn+k, v = t

∣∣
M̃

. Let Vv

be the positive homogenous of degree one function defined by

Vv = lim
r→∞, r>0

v(rx)
r

.

By [8, Lemma 4.6], the tangent cone to Vv at 0, χVv is given by

χVv(0) = conv(Lv),

the convex hull of some closed subset Lv in Hn−1+k(∞). Here, Hn−1+k may
be identified with the unit ball in Rn−1+k with coordinates (y, z), so that
Hn−1+k(∞) ∼= Sn+k−2. Let En−1 = {(y, z) ∈ Rn−1+k : z = 0}. By [8,
Lemma 4.3], cf. proof of [8, Lemma 4.6]

Vv = sup
ξ∈Lv

x · ξ .

We now make the following
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Claim 2.3. Lv ⊂ Sn+k−2 ∩ En−1.

If this holds, then the splitting theorem [8, Theorem 4.8] shows that in
fact M̃ splits as M̃ ′n−1 × Rk. The claim will follow if Vv(0, z) = 0 for all
z ∈ Rk. Let v2 be the height function of the future barrier N2. By construc-
tion, v2(y, z) = w2(y), in particular w2 is independent of z. It follows that
Vv2(0, z) = 0. Since v(x) ≤ v2(x), we have Vv(0, z) ≤ Vv2(0, z) and hence
Vv(0, z) = 0, which proves the claim. It follows that Lv ⊂ Sn+k−2 ∩ En−1

and hence M̃ splits as a metric product M̃ = M̃ ′n−1 × Rk, where M̃ ′n−1 is
a CMC hypersurface of Mn.

Applying this result to the universal cover M̃ of M as described above,
we see that the splitting also applies to M and the conclusion is that M
splits as M = Σn−1 × Rk. By assumption, the mean curvature of M is
−(n − 1) which due to the split of M implies that M = {ρ = 1}. �

Going back to the limiting process, we see that we have proved that Mλ

converges on compacts to the metric product Σ× R. In terms of the height
function uλ, we have proved

Lemma 2.4. uλ converges uniformly in C2 on compacts in Wλ� to the con-
stant function 1.

By the barrier construction, we have

1 < uλ <
n

n − 1
,(2.3)

or

λ−1 < uτ < λ−1 n

n − 1
.(2.4)

The second fundamental form K of Mτ satisfies K ≤ 0 with our conventions.
This means that the height functions w.r.t. t and t′, vτ and vλ are convex,
cf. [8, Prop. 1.1], in particular

∂2
r vτ (y, r) ≥ 0.

We have

(2.5) v2
τ = ũ2

τ + |y|2.

From the above, ũτ varies by at most λ−1 which means that |vτ (y, r1) −
vτ (y, r2)| ≤ 1

(n−1)λ . Further, if we restrict to one fundamental domain of

M̃τ , the projection on the y-variables is bounded by Cλ−1.
We shall need the following elementary calculus Lemma.
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Lemma 2.5. Let f : [a, b] → R be a convex C2 function which takes values
in [0,∆]. Then for any ε > 0, ε < (b − a)/2, the estimate

|f ′(x)| ≤ ∆
ε

,

holds in the interval [a + ε, b − ε].

Let I�,ε = (ε, � − ε). Note that uτ∂ruτ = vτ∂rvτ , and hence in view of the
above mentioned bound on y in a fundamental domain of M̃τ , and the lower
bound on uτ , the Lemma applies to ∂ruτ to give an estimate of the form

|∂ruτ | ≤
C

λε
, for r ∈ I�,ε.

The derivative bounds give |D′vλ| ≤ C, |D′2vλ| ≤ C, |D′3vλ| ≤ C over
compacts. Taking into account the boundedness of the fundamental domain
of π1(Σ) in Σ̃ and consequently in Mλ, and the relation of uλ to vλ, we have
the corresponding bounds for uλ. The same bounds hold also in terms of
the coordinates x, r′, r = λr′ on Σ × λI�.

Now, we consider uτ , and note that this is just a rescaling of uλ by a
factor 1/λ,

uτ (x, r′) = λ−1uλ(x, r′).

This gives, in view of the fact that the x-coordinate does not scale,

(2.6) |Dk
xuτ | ≤ C/λ, k = 1, 2, 3.

From Lemma 2.4, we have also |Druτ | ≤ C
λε , for r ∈ I�,ε. Without the use

of the Lemma, we would just have an estimate of the form |Druτ | ≤ C.

Lemma 2.6. Fix (x0, r0) ∈ Σ × I�. Then

lim
λ→∞

λDxuτ (x0, r0) → 0.

Proof. We have λDxuτ (x, r) = Dxuλ(x, r′). Let r′0 = λr0, r̄ = r′ − r′0 and
ūλ(x, r′) = uλ(x, r′ − r′0). This has the effect of translating r′0 to 0. The
derivative bounds apply to ūλ and hence also the conclusion of Theorem 2.2,
which implies that ūλ → 1 in C2 on compacts. The result follows. �

To compute the induced metric on Mτ , we work in coordinates (x, r), x =
(x1, . . . , xn−1) on Σ × I�, and define the map Φτ : Σ × I� → W�, by

Φτ (x, r) = (uτ (x, r), x, r).
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Then the image of Φτ is precisely Mτ ∩ W�. Let the indices i, j run over
1, . . . , n−1 and let the index n correspond to the coordinate r. Pulling back
the metric −dρ2 + ρ2h + dr2 by Φτ gives

gτ = u2
τh + dr ⊗ dr − duτ ⊗ duτ , in Mτ ∩ W�,

which shows that gτ ≤ u2
τh + dr ⊗ dr as quadratic forms. From this, it

follows that
det gτ ≤ u2(n−1)

τ deth, in Mτ ∩ W�.

Similarly, we have

det gτ ≤ u2n
τ det g, in Mτ \ W�,

where g is the hyperbolic metric on M . From this, it follows, in particular,
that

(2.7) lim
λ→∞

λn−1Vol(Mτ \ W�) = 0.

We have in view of the fact that λuτ ≤ n/(n − 1),

(2.8) λn−1

∫
Σ×(I�\I�,ε)

√
det gτdxdr ≤ CεVol(Σ).

First, consider the case n = 2. Then Σ is 1 dimensional with metric hdx2,
and the explicit form of det gτ is

det gτ = [1 − (
∂uτ

∂r
)2]u2

τh − (
∂uτ

∂x
)2 ≤ u2

τh.

Here, we may take h ≡ 1 by choosing x to be the arclength parameter on
Σ. By Theorem 2.2, λuτ → 1, and by Lemma 2.6 λ∂uτ/∂x → 0, pointwise
as λ → ∞. The dominated convergence theorem now shows

λ

∫
Σ×I�,ε

√
det gτdxdr = (� − 2ε)L(Σ),

where L(Σ) denotes the length of Σ. Since ε > 0 is arbitrary, we conclude

lim
λ→∞

λVol(Mτ ∩ W�) = �L(Σ).

Finally, by (2.7), we have

lim
λ→∞

λVol(Mτ ) = �L(Σ).
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For n ≥ 3, working in an h–orthonormal frame with en−1 proportional to
Dxuτ , so that Dxuτ = uτ,xen−1, with |Dxuτ |2h = u2

τ,x, we have

gτ =


u2

τh⊥ 0 0
0 −u2

τ,x + u2
τh// −uτ,x∂ruτ

0 −uτ,x∂ruτ −(∂ruτ )2 + 1


 ,

where h⊥, h// the restriction of h to e⊥n−1 and to en−1 respectively. This
gives

det gτ = det(u2
τh⊥)

(
(1 − (∂ruτ )2)u2

τh// − |Dxuτ |2h
)
.

Taking into account det h = (det h⊥)h//, and arguing by analogy with the
case n = 2 shows that

lim
λ→∞

λn−1Vol(Mτ ) = �Vol(Σ).

Next, we consider the distance function on Mτ . Let p, q ∈ Mτ ∩ W� and let
γ be a curve connecting p, q. We may restrict our consideration to curves
such that dr(γ̇) 	= 0. By parametrizing γ = γ(s) so that dr(γ̇) = 1, we have

|γ̇|2gτ
= u2

τ |γ̇x|2h + 1 − |duτ (γ̇)|2 = 1 + O(λ−2),

and hence
L[γ] = |r(p) − r(q)| + O(λ−2).

We state the conclusions of this section as

Theorem 2.7. 1. limτ→−∞ λn−1Vol(Mτ ) = �Vol(Σ),

2. As τ → −∞, the geometry of Mτ converges in the Gromov sense to
the interval of length �.

3. CMC hypersurfaces in simplicial flat spacetimes.

Let (M,g) be a compact hyperbolic manifold with metric g of sectional
curvature −1, of dimension n ≥ 2, and let L = {(Σk, �k), k = 1, . . . ,m}
be a weighted, finite collection of non-intersecting, compact, simple, totally
geodesic hypersurfaces with weights �k ∈ R, in (M,g). Further, let V be the
simplicial flat spacetime obtained by performing elementary deformations
w.r.t. the elements (Σk, �k) of L. Let (T , d) be the simplicial R–tree dual
to L.

Let Mτ be the leaves of the global CMC foliation of V , and let �Mτ , sT
be the marked length spectrum of Mτ and the marked measure spectrum of
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T , respectively. The conclusion of Theorem 2.7 generalizes immediately, cf.
the discussion in section 1.1, to the situation of simplicial flat spacetimes.

Theorem 3.1. With the notation introduced above, the following holds.

1. limτ→−∞ M̃τ = T , where the limit is understood in the Gromov sense.
Thus, the induced geometry on the universal cover M̃τ converges, as
τ → −∞, in the Gromov sense to (T , d).

2. limτ→−∞ �Mτ = sT

4. Dirichlet energy and rescaled Hamiltonian.

The Gauss map ϕ : Mτ → M is harmonic from the CMC hypersurface Mτ

with its induced geometry to M with its hyperbolic geometry [1]. Further,
ϕ is the unique harmonic map Mτ → M isotopic to the identity. The
harmonic map (Dirichlet) energy of ϕ, defined by E(Mτ , ϕ) =

∫
Mτ

|dϕ|2µg,
can be written as

E(Mτ , ϕ) =
∫

M
|K|2dµg =

∫
Mτ

Rµg + τ2Vol(M,g),

In case n = 2,
∫
M Rµg = 4πχ(M) by Gauss–Bonnet, which gives the inter-

esting formula

E(Mτ , ϕ) = 4πχ(Mτ ) + τ2Vol(Mτ , g),

found by Puzio [15].
The rescaled Hamiltonian H = |τ |nVol(Mτ ) is the Hamiltonian for grav-

ity in a suitably chosen gauge, see [9]. As shown in [1], it satisfies

(4.1) H ≥ nnVol(M,g).

Equality in (4.1) holds if and only if V is the Lorentz cone over (M,g).
We will use our results on flat simplicial spacetimes to understand the

limiting behavior of the Dirichlet energy and the rescaled Hamiltonian. Let
V,M,L be as in Section 3, and let Mτ ,Mλ be the leaves of the CMC foliation
of V and the rescaled leaves, respectively. If we let λ = |τ |/(n−1) as above,
then

(4.2) E(Mλ, ϕ) = λn−2E(Mτ , ϕ)

is scale invariant. Let Kλ be the second fundamental form of Mλ. Since
we know from the above that for a wedge spacetime, the height functions
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uλ → wλ, we are able to conclude in the simplicial case, from the bounds on
the derivatives of uλ that Kλ → −h⊕0, on each wedge, where h is the metric
on Σ. We have |h ⊕ 0|2 = n − 1, which taking into account the fact that
the contribution from the part of Mλ off the wedge can be ignored by the
arguments above, gives that the contribution from each wedge to E(Mλ, ϕ)
behaves like (n − 1)Vol(Mλ). By (4.2), this gives limλ→∞ λn−3E(Mτ , ϕ) =
(n − 1)

∑m
k=1 �kVol(Σk).

The rescaled Hamiltonian H is scale invariant, so we can consider its
behavior on Mλ. Here, we have mean curvature approximate to 1 in the
wedges, while the wedges have length λ�k, which gives limλ→∞ λ−1H =∑m

k=1 �kVol(Σk). Summarizing, we have

Theorem 4.1. 1. limλ→∞ λn−3E(Mτ , ϕ) = (n − 1)
∑m

k=1 �kVol(Σk),

2. limλ→∞ λ−1H =
∑m

k=1 �kVol(Σk).
Specializing to the 2 + 1 dimensional case, we have denoted the length of

Σ by L(Σ), limλ→∞ λ−1E(Mτ , ϕ) =
∑m

k=1 �kL(Σk), and similarly for H.

Let us compare this result to what is known about the time dependence of
the Dirichlet energy in the 2 + 1 dimensional case. It has been proved [4,
Lemma 4.4] that with our present conventions,

A(Mτ0)|τ0|2/|τ | ≤ |τ |A(Mτ ) ≤ |τ0|A(Mτ0), for τ < τ0 < 0

A(Mτ0)|τ0| ≤ |τ |A(Mτ ) ≤ |τ0|2A(Mτ0)/|τ |, for τ0 < τ < 0

This together with Puzio’s result gives

A(Mτ0)|τ0|2 ≤ E(Mτ , ϕ) − 4πχ(Mτ ) ≤ A(Mτ0))|τ ||τ0|, for τ < τ0 < 0

which gives the correct leading order behavior in the collapsing direction,
but which does not identify the coefficient. Similarly, in the expanding
direction, we know that

lim
τ→0

|τ |2A(Mτ ) = 4A(M,g),

where A(M,g) is the area of the hyperbolic geometry on M . Therefore, we
find that

lim
τ→0

E(Mτ , ϕ) = 4πχ(Mτ ) + 4A(M,g) = 4π|χ(M)|.
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