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We construct a hyperbolic 3-manifold M (with ∂M totally geo-
desic) which contains no essential closed surfaces, but for any even
integer g > 0, there are infinitely many separating slopes r on ∂M
so that M [r], the 3-manifold obtained by attaching 2-handle to M
along r, contains an essential separating closed surface of genus
g and is still hyperbolic. The result contrasts sharply with those
known finiteness results for the cases g = 0, 1. Our 3-manifold M
is the complement of a simple small knot in a handlebody.

1. Introduction.

All manifolds in this paper are orientable. All submanifolds are embedded
and proper (F ⊂ M is proper if F ∩ ∂M = ∂F ), unless otherwise specified.
A connected 1-manifold (an arc or a circle) on a surface F is non-trivial if
it does not separate a disc from F .

Let M be a compact 3-manifold with the boundary ∂M �= ∅, F be a
surface in M which is not the 2-sphere S2. Say F is incompressible if a
circle c ⊂ F bounds a disk in M implies that c bounds a disc in F . Say a
surface in M is essential if either it is incompressible and is not parallel to a
sub-surface of ∂M , or it is a 2-sphere which does not bound a 3-ball in M .
Say a 3-manifold M is irreducible if each 2-sphere in M bounds a 3-ball. Say
M is ∂-irreducible if ∂M is incompressible. Say M is atoroidal if it contains
no essential tori; Say M is anannular if it contains no essential annuli.

Say a 3-manifold M is simple if M is irreducible, ∂-irreducible, anan-
nular and atoroidal. Suppose M is a simple 3-manifold with ∂M �= ∅. By
Thurston’s theorem, M admits a complete finite volume hyperbolic structure
with totally geodesic boundary (with torus components in ∂M removed) [8].
A knot K in M is simple if MK , the complement of K in M , is simple. A
3-manifold M is small if M contains no essential closed surface. A knot K
in M is small if MK is small.

1Both authors are supported by NSFC, the second author is also supported by
MOSTC.
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A (separating) slope r in ∂M is the isotopy class of a non-oriented non-
trivial (separating) circle in ∂M . We denote by M [r] the manifold obtained
by adding a 2-handle to M along a regular neighborhood of r in ∂M and
then capping off spherical components with 3-balls. Specially, if r lies in a
torus component of ∂M , this operation is known as Dehn filling.

Essential surface is a basic tool to study 3-manifolds and handle addition
is a basic method to construct 3-manifolds. A central topic connecting those
two aspects in 3-manifold topology is the following:

Question 1.1. Let M be a simple 3-manifold with ∂M �= ∅ which contains
no essential closed surface of genus g. How many slopes r ⊂ ∂M are there
so that M [r] contains an essential closed surface of genus g?

Remark on Question 1.1. The mapping class group of a simple 3-
manifold M with ∂M �= ∅ is finite. The question is asked only for simple
3-manifolds to avoid possibly infinitely many slopes produced from Dehn
twists along essential discs or annuli. The main result in this paper is the

following:

Theorem 1.2. There is a simple small knot K in the handlebody H of
genus 3 such that for any even integer g > 0, there are infinitely many
separating slopes r in ∂H so that HK [r] contains an essential separating
closed surface of genus g. Moreover, those HK [r] are still simple.

Remarks on Theorem 1.2
(1) Suppose M is a simple 3-manifolds with ∂M �= ∅.
(i) ∂M is a torus. Thurston’s pioneering result claims that there are at

most finitely many slopes r on ∂M so that M [r] is not hyperbolic [8], hence
the number of slopes are finite in Question 1.1 when g = 0, 1. The sharp
upper bound of such slopes are given by Gordon and Luecke and by Gordon
when g = 0, 1, see [2] for a survey. Hatcher proved the number of slopes in
Question 1.1 is finitely many for all g [3].

(ii) ∂M has genus > 1. Scharlemann and Y-Q Wu [7] have shown that if
g = 0, 1, then there are only finitely many separating slopes r so that M [r]
contains an essential closed surface of genus g. Very recently, Lackenby [5]
generalized Thurston’s finiteness result to handlebody attaching, that is to
adding 2-handles simultaneously. He proved that for a hyperbolic 3-manifold
M , there is a finite set C of exceptional circles on ∂M so that attaching a
handlebody to M is still hyperbolic if none of those circles is attached to a
meridian disc of the handlebody.
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Theorem 1.2 and those finiteness results of [8], [3], [7] and [5] give a
global view about the answer of Question 1.1. In particular, those finiteness
results of [8], [3] and [7] do not hold in general. We think the example in
Theorem 1.2 also indicates that the finiteness result of [5] does not hold in
general (a working project of the authors).

(2) It is unusual to the authors that a given manifold M provides non-
finiteness answer to Question 1.1 for all even genus g ≥ 2. From an aesthetic
point of view, one may wonder if there is a manifold that provides non-
finiteness answer to Question 1.1 for all genus g ≥ 2. We think that the
answer is positive. In this case, the knot K is complicated and then the
proof of that HK is small will be much more difficult (a working project of
the authors).

(3) Without handle addition, the 3-manifold M itself in Theorem 1.2
is interesting independently. First, the construction of the small knot in
Theorem 1.2 can be modified to provided infinitely many small knots in
handlebodies of any genus g > 1 (a working project of the authors). To our
knowledge, no examples of simple small knots in the handlebody of genus
> 1 were explicitly presented before. Secondly, M provides a hyperbolic 3-
manifold with totally geodesic boundary which splits over essential surfaces
of genus g in infinitely many different ways for each even g > 0.

Remarks on the Proof of Theorem 1.2 and the organization
of the paper. In Section 2, we construct a knot K and infinitely many
separating surfaces Sg,l of genus g for each even g > 0 in the handlebody
H of genus 3, such that all those surfaces Sg,l are disjoint from K and have
connected boundaries. Those ∂Sg,l will serve as the slopes r in Theorem 1.2.
Some elementary properties of Sg,l and of K are also described in Section 2.
Let Ŝg,l ⊂ HK [∂Sg,l] be the closed surface obtained by capping off ∂Sg,l with
a disk. In Section 3, we will prove that Ŝg,l is incompressible in HK [∂Sg,l] as
well as that ∂Sg,l and ∂Sg,l′ are not isotopic in ∂H when l �= l′. Sections 4
and 5 are devoted to proving that the knot K is simple and small.

A result in [4] is quoted in Section 3, which is a crucial step for the proof
of Proposition 3.2, and a result in [1] is quoted in Section 4, which is used
to shorten the argument of Case 2 in the proof of Lemma 4.4. Up to those
two results and the knowledge in the beginning of standard textbooks of
elementary algebraic topology, combinatorial groups and 3-manifolds, the
paper is self-contained. Even so, the argument of Case 1 (2) in the proof of
Lemma 4.4 is initiated by Gordon–Litherland in the mid 1980’s.
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Figure 1.

2. Construction of the surfaces Sg,l and the knot K in H.

Suppose X1 and X2 are connected proper sub-manifolds of M with comple-
mentary dimensions and meeting tranversely. Let ||X1,X2|| be the absolute
value of their algebraic intersection number. Since all manifolds are ori-
entable, ||X1,X2|| is well defined. For a compact manifold X, |X| denotes
the number of components of X. If X is an arc or an annulus, we often use
∂1X to denote one component of ∂X and ∂2X to denote another.

Let H be the handlebody of genus 3. Let
{
B1, B2, B3

}
be a set of basis

disks of H, and
{
E1, E2

}
be two separating disks of H which separate H

into three solid tori J1, J2 and J3. See Figure 1.
The orientable surface Sg of even genus g > 0 with |∂Sg| = 1 can be

presented as in Figure 2 (where g = 4). Each surface Sg,l we are going to
construct in H can be viewed as a properly embedded image of Sg, where
the disk in Figure 2 is sent to E1 (approximately) and the 1-handle ended at
vi and ui is sent to the 1-handle N(αi) attached to E1, which will be shown
in Figures 3 and 4

Remark on Figure 2 In Figure 2, if we attach g 1-handles on each
side of the disc for odd g in the same way, we get a surface of genus g − 1
with three boundary components rather than a surface of genus g with one
boundary component.

Let C be a closed curve in ∂H (with one self-intersection) as in Figure
3. Then ∂E1 ∪ ∂E2 separates C into eight embedded arcs c1, . . . , c8, where
c3, c7 ⊂ J1 with ||∂B1, c7|| = 3, ||∂B1, c3|| = 1; c2, c4, c6, c8 ⊂ J2 with
||∂B2, c4|| = 1, ||∂B2, c6|| = 3, ||∂B2, c2|| = ||∂B2, c8|| = 0; c1, c5 ⊂ J3 with
||∂B3, c1|| = 3, ||∂B3, c5|| = 1.

Let u1, . . . , u2g, v1, . . . , v2g be 4g points located on ∂E1 in the cyclic order
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Figure 2.

Figure 3.

u1, u3, . . . , u2g−3, u2g−1, v1, v3, . . . , v2g−3, v2g−1, v2g, v2g−2,. . . ,v4,v2, u2g,
u2g−2, . . . ,u4, u2 as in Figure 3 (see also Figure 2).

By the order of those points, we can assume that the isotopy has been
made so that ∂(c8∪ c1∪ c2) = {u1, v1}, ∂c3 = {v1, u2}, ∂c7 = {v2, u1}. Then
pick a proper arc c∗, (resp. c#) in ∂H ∩ (J2∪J3) connecting v3 and v2 (resp.
u2 and u3) as in Figure 4, where ||c∗, ∂B2|| = l, l ≥ 3. By construction,
intc# ∩ C = ∅ and c∗ ∩ C �= ∅.

Now, we define oriented arcs on ∂H to connect some pairs in
{ui, vj ; i, j = 1, . . . , 2g} as follows: First let u1v1 = c8 ∪ c1 ∪ c2, v1u2 = c3,
v2u1 = c7, u2u3 = c#, v3v2 = c∗. Then, let v2iu2i−1 and v2i−1u2i be proper
arcs on ∂H ∩ J1 parallel to c7 and c3 respectively, i = 2, . . . , g and u2iu2i+1

and v2i+1v2i be a proper arcs on ∂H ∩ (J2 ∪J3) parallel to c# and c∗ respec-
tively, i = 2, . . . , g − 1. See u3v4 and u4u5 in Figure 4. Now define
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Figure 4.

(2.0) α1 = u1v1,

and for 1 < 4k + j ≤ 2g, j = 1, 2, 3, 4,

α4k+1 = u4k+1u4k ∪ α4k ∪ v4kv4k+1,(2.1)
α4k+2 = v4k+2u4k+1 ∪ α4k+1 ∪ v4k+1u4k+2,(2.2)
α4k+3 = v4k+3v4k+2 ∪ α4k+2 ∪ u4k+2u4k+3,(2.3)
α4k+4 = u4k+4v4k+3 ∪ α4k+3 ∪ u4k+3v4k+4.(2.4)

Hence, αk−1 ⊂ αk is an increasing sequence of embedded arcs on ∂H.
Let α ⊂ ∂H be an arc which meets ∂S exactly in its two ends for a proper

separating surfaces S ⊂ H. The resulting proper surface by tubing S along
α in H, denoted by S(α), is obtained by first attaching 2-dimensional 1-
handle N(α) ⊂ ∂H to S, then making the surface S ∪ N(α) to be proper,
that is, pushing the interior of S ∪ N(α) into the interior of H. The image
of N(α) after the pushing is still denoted by N(α). Since S is orientable
and separating, it is a direct observation that S(α) is still orientable and
separating.

Since α1 meets E1 exactly in its two ends, we do tubing of E1 along α1

to get E1(α1). Now, α2 meets E1(α1) exactly in its two ends, we do tubing
of E1(α1) along α2 to get E1(α1, α2) = E1(α1)(α2), where the tube N(α2)
is thinner and closer to ∂H so that it goes over the tube N(α1). Hence,
E1(α1, α2) is a proper embedded surface. Repeating this process by tubing
along α3, . . . , α2g in order, we get a surface E1(α1, . . . , α2g), denoted by Sg,l,
in H. Clearly, Sg,l is a proper embedding of Sg into H for each even g > 0.
We survey this fact as
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Figure 5.

Lemma 2.1. Sg,l is an orientable separating surface in H. Moreover, Sg,l

is of genus g with |∂Sg,l| = 1 for even g > 0 (and of genus g − 1 with
|∂Sg,l| = 3 for odd g).

In the construction of Sg,l for all g, l, we may assume that (i) the positions
of the arcs α1, α2 are fixed; (ii) each tube N(αi) has distance δ/i from αi

for some δ > 0. By (i) and (ii), we have (iii) N(α1), N(α2) and the part of
N(α3) that goes over N(α2) are fixed for all g, l.

Now, our knot K is obtained by pushing C into the interior of H along
the inward normal direction of ∂H in the following way: (iv) first push the
arc c7∪ c8∪ c1∪ c2∪ c3 to stay between N(α2) and N(α3), (v) then push the
arc c4∪c5∪c6 so that it has distance larger than δ/3 from ∂H and is disjoint
from N(α1). Below, we use ai to denote the image of ci after pushing. Then
E1∪E2 separates K into 8 arcs a1, . . . , a8. See Figure 5 for K,ai ⊂ H, where
a6 is crossing under a8, and ||ai, Bk||(in H) = ||ci, ∂Bk||(in ∂H), i = 1, . . . , 8
and k = 1, 2, 3.

Lemma 2.2. K ∩ Sg,l = ∅ for all g, l.

Proof. By (iii) and (iv), the part a7 ∪ a8 ∪ a1 ∪ a2 ∪ a3 of K is disjoint from
Sg,l. By (ii), (iii) and (v), the part a4∪a5∪a6 ⊂ J2∪J3 of K is also disjoint
from Sg,l. Hence K ∩ Sg,l = ∅ for all g, l. �

Let N(K) = K×D be the regular neighborhood of K in H such that (i)
Sg,l ⊂ HK = H − intN(K) for all g, l, (ii) the product structure has been
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Figure 6.

adjusted so that ∪8
i=1∂ai × D ⊂ E1 ∪ E2. Let Fj = Ej − intN(K), j = 1, 2;

Mk = HK∩Jk, k = 1, 2, 3; and T = ∂(K×D). Then F1∪F2 separates T into
eight annuli A1, . . . , A8, where Ai = ai × ∂D. Moreover, K and C bound a
non-embedded annulus in H (the trace of pushing C to K) which is cut by
E1 ∪E2 into eight disk Di∗, with ai ⊂ ∂Di∗, i = 1, . . . , 8. Suppose ai ⊂ Mk,
then Di = Di∗ ∩Mk is a proper disc in Mk. Let Wi = ∂N(Di ∪ Ai) − ∂Mk,
where N(Di ∪Ai) is a regular neighborhood of Di ∪Ai in Mk. Then Wi is a
proper separating disk in Mk. Each Wi intersects F1 ∪F2 in two arcs li and
li+1. Note W = ∪i�=6Wi is still a (non-proper) disc. We use µ to denote the
meridian slope on T . See Figure 6 for Ai,Di,Wi, li, li+1 ⊂ Mk.

The following facts about K and ai, which are based on Figure 5 and
whose proofs involve only elementary algebraic topology rather than 3-
manifold topology, will be used in Sections 4 and 5.

Lemma 2.3. (1) K is not contractible in H.
(2) Suppose ai, aj ⊂ Jk. There is no relative homotopy on (Jk, E1 ∪ E2)

which either sends ai to E1 ∪ E2; or sends ai to aj unless (i, j) is (2, 8).
(3) Suppose ai, aj ⊂ Jk. The meridians of Ai and Aj are not homotopic

in Mk.
(4) Suppose B is a proper disc of Jk with |B ∩ Ej| ≤ 1, j = 1, 2. If

|B ∩ (∪ai⊂Jk
ai)| < 3 − |B ∩ (E1 ∪ E2)|, then B separates a 3-ball from Jk.

(5) There is no annulus A ⊂ H such that (i) ∂1A = K and ∂2A ⊂ ∂H,
(ii) each component of A ∩ (E1 ∪ E2) is non-trivial in A.

Proof. The proofs of (1), (2), and (3) are direct.



Small knots and large handle additions 947

(4) If B is a separating disk in Jk, then B separates a 3-ball from Jk,
since Jk is a solid torus. So we need only to show that each non-separating
disk in Jk does not meet the inequality in (4).

Note B ∩ Ej is either an arc or the empty-set. We suppose B is a
non-separating disk in J2 which meets each Ej in an arc dj , j = 1, 2 (the
remaining cases are more direct). Let bj be an arc in Ej connecting the two
endpoints of a6 and a8. Then c = b1 ∪ a6 ∪ b2 ∪ a8 is a circle which goes
around J3 three times. Hence

3 = ||B, c|| ≤ ||B, a6 ∪ a8|| + ||∂B, b1|| + ||∂B, b2||
= ||B, a6 ∪ a8|| + ||d1, b1|| + ||d2, b2||.

By the Jordan Curve Theorem, ||dj , bj || ≤ 1 = |B ∩ Ej |. Hence,

|B ∩ (∪ai⊂Jk
ai)| ≥ ||B, b1 ∪ a6 ∪ b2 ∪ a8|| ≥ 3 − |B ∩ (E1 ∪ E2)|.

(5) Otherwise, there is an annulus A that meets (i) and (ii) in (5). Then
by (1), A is cut by E1∪E2 into eight rectangles Ri, i = 1, . . . , 8, each Ri has
two opposite sides in E1∪E2 and remaining two sides ai in K and a∗i ⊂ ∂H.
Let bi be an arc in E1∪E2 connecting ∂a∗i , and denote the circle bi∪a∗i ⊂ Jk

by ei, i = 1, 3, 7, 5. In a basis of H1(∂J3, Z), e1 and e5 have coordinates (3, p)
and (1, q) respectively, and hence ||b1, b5|| = ||e1, e5|| = |3q − p| �= 0, since p
and 3 are co-prime. It follows that ∂b1 = ∂a∗1 and ∂b5 = ∂a∗5 are alternating
on ∂E2. By the same reason, ∂a∗3 and ∂a∗7 are alternating on ∂E1.

Now, back to J2, ∂a∗i ’s have the cyclic order 4, 8, 2, 6 in ∂E1, and the
cyclic order 4, 8, 6, 2 in ∂E2. Hence, there are four disjoint arcs on E1 ∪ E2

such that the two with a∗4 ∪ a∗8 form a circle e4,8 on ∂J2, and the other two
with a∗2 ∪ a∗6 form a circle e2,6 on ∂J2, moreover e2,6 and e4,8 are disjoint,
therefore they are parallel on ∂J2. But in a basis of H1(∂J2, Z), those two
circles have coordinates (3, p) and (1, q), and ||e2,6, e4,8|| = |3q−p| �= 0, since
3 and p are coprime. A contradiction. �

3. Proof of Theorem 1.2 by assuming that K is simple and
small.

In this section, g > 0 will be even integer. By Lemma 2.1, let Ŝg,l ⊂
HK [∂Sg,l] ⊂ H(∂Sg,l) the surface obtained by capping off the boundary of
Sg,l with a disk. Then Ŝg,l is a closed surface of genus g.

Now, Theorem 1.2 follows from the following two propositions (the
“Moreover” part of Theorem 1.2 follows directly from [7]).
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Proposition 3.1. K ⊂ H is a simple and small knot.

Proposition 3.2. (1) Ŝg,l is incompressible in HK [∂Sg,l].
(2) for given g, ∂Sg,l and ∂Sg,l′ are not the same slope in ∂HK when

l �= l′.

We choose the center of E1 as the common base point for the fundamental
groups of H and of all surfaces Sg,l. Now, π1(H) is the free group of rank
three generated by y1, y2, y3 indicated in Figure 1. and π1(Sg,l) is the free
group of rank 2g generated by x1, . . . , x2g, where xi is the generator given
by αi and two arcs in E1 (see Figure 2). Let φ : Sg,l → H be the inclusion
(precisely φ should be φg,l, we omit sub-index without making confusion),
φ∗ : π1(Sg,l) → π1(H) be the induced homomorphism. It is easy to see from
Figures 1, 3 and 4,

(*) c̃3 = y1, c̃7 = y3
1, c̃# = y2y3, c̃∗ = y−3

3 y−l
2

where c̃3 ∈ π1(H) is given by c3 and two arcs in E1 and so on.
Recall that v2iu2i−1, v2i−1u2i u2iu2i+1 and v2i+1v2i are parallel copies

of c7, c3, c# and c∗ respectively. One can read φ∗(xi) directly as words in
y1, y2, y3 by (2.0)–(2.4) and (*). They are:

(3.0) φ∗(x1) = y3
3,

and for 1 < 4i + j ≤ 2g, j = 1, 2, 3, 4,

φ∗(x4i+1) = y−1
3 y−1

2 φ∗(x4i)yl
2y

3
3 = (w−1

1 w2)iy3
3(w1w

−1
2 )i,(3.1)

φ∗(x4i+2) = y3
1φ∗(x4i+1)y1 = y3

1(w
−1
1 w2)iy3

3(w1w
−1
2 )iy1,(3.2)

φ∗(x4i+3) = y−3
3 y−l

2 φ∗(x4i+2)y2y3 = w2(w−1
1 w2)iy3

3(w1w
−1
2 )iw1,(3.3)

φ∗(x4i+4) = y−1
1 φ∗(x4i+3)y−3

1 = y−1
1 w2(w−1

1 w2)iy3
3(w1w

−1
2 )iw1y

−3
1 ,(3.4)

where w1 = y1y2y3 and w2 = y−3
3 y−l

2 y3
1 .(3.5)

Obviously

(w1w
−1
2 )jw1(w−1

1 w2)i = w2(w−1
1 w2)i−j−1 if i > j and(3.6)

(w1w
−1
2 )jw1(w−1

1 w2)i = (w1w
−1
2 )j−iw1 if i ≤ j.

(w1w
−1
2 )jw2(w−1

1 w2)i = w2(w−1
1 w2)i−j if i ≥ j and(3.7)

(w1w
−1
2 )jw2(w−1

1 w2)i = (w1w
−1
2 )j−i−1w1 if i < j.

Lemma 3.3. (1) Sg,l is incompressible in H.
(2) for given g, ∂Sg,l and ∂Sg,l′ are not in the same slope in ∂H if l �= l′.
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Proof. By (3.5), the right sides of (3.0)–(3.4) are reduced words in <
y1, y2, y3 >. Now, we present π1(Sl,g) as the free product G1 ∗ G2, where
G1 =< x1, x3, . . . , x2g−1 > and G2 =< x2, x4, . . . , x2g >.

(1) We need only to show that φ∗ : π1(Sg,l) → π1(H) is injective.
For each w2 ∈ G2, we may suppose that w2 is a reduced form in <

x2, . . . , x2g >. Now, we can present φ∗(w2) as a word in < y1, y2, y3 >
by first replacing each x±l

2i ∈ w2 by φ∗(x2i)±l and then applying (3.2) and
(3.4). By (3.5), (3.6), (3.7) and obvious cancellations, one can get a reduced
form of φ∗(w2) in < y1, y2, y3 >. Indeed by an induction on the length of the
reduced form w2, it is easy to see that if w2 �= 1, then φ∗(w2) �= 1 and φ∗(w2)
has the reduced form started from and ended by the non-zero powers of y1.
Similarly, one can argue that for 1 �= w1 ∈ G1, φ∗(w1) �= 1 and φ∗(w1) has
the reduced form started from and ended by the non-zero powers of y3 and y2.

Now, present each 1 �= w ∈ G1 ∗ G2 in a reduced form g1, g2, . . . , gn

of G1 ∗ G2, and each gi in a reduced form in G1 or G2. It is clear that
φ∗(w) �= 1.

(2) For given g, l, the conjugacy class corresponding to ∂Sg,l in π1(Sg,l)
can be presented by a reduced word below (see Figure 2):
(**)
x1x

−1
3 . . . x2g−3x

−1
2g−1x

−1
1 x3 . . . x−1

2g−3x2g−1x
−1
2g x2g−2 . . . x−1

4 x2x2gx
−1
2g−2 . . . x4x

−1
2

Now, we can present φ∗([∂Sg,l]) in π1(H) as a word of < y1, y2, y3 > by
(**) and (3.0)–(3.4). Then doing cancellations to get the reduced form of
φ∗([∂Sg,l]) is very direct and all powers of y2 are untouched in this process. It
follows that φ∗([∂Sg,l]) and φ∗([∂Sg,l′ ]) do not have the same cyclic reduced
form when l �= l′. Hence, if l �= l′, Sg,l and Sg,l′ are not homotopic in H,
and therefore, they are not isotopic in ∂H. �

Now, Sg,l separates H into two components P1 and P2, with ∂P1 =
T1 ∪ Sg,l and ∂P2 = T2 ∪ Sg,l, where T1 ∪ T2 = ∂H and ∂T1 = ∂T2 = ∂Sg,l.

Lemma 3.4. Ti is incompressible in H.

Proof. Let φ# : H1(Sg,l, Z) → H1(H,Z) be the induced homomorphism on
the first homology groups. Note that H1(H,Z) = Z + Z + Z generate ȳ1,
ȳ2 and ȳ3, where ȳi = π(yi), and π : π1(H,Z) → H1(H,Z) is the abeliza-
tion. By (3.0)–(3.4), it is easy to see that i#(H1(Sg,l, Z)) is a subgroup of
H1(H,Z) generated by 4ȳ1, (l + 1)ȳ2, ȳ3. Thus, H1(H,Z)/φ#(H1(Sg,l, Z))
is a finite group (of order 4l + 4).
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If Ti, i = 1 or 2, is compressible, then there is a compressing disk B′
1

in H for Ti. Since ∂B′
1 ∩ ∂Sg,l = ∅ and Sg,l is incompressible in H, by

standard argument in 3-manifold topology, we may assume that B′
1∩Sg,l = ∅.

Furthermore, since H is a handlebody, we may also assume that B′
1 is non-

separating in H. Thus, there are two properly embedded disks B′
2 and B′

3

in H such that, (B′
1, B

′
2, B

′
3) is a set of basis disks of H. Let z1, z2 and z3

be generators of π1(H) corresponding to B′
1, B

′
2 and B′

3. Since Sg,l misses
B′

1, φ∗(π1(Sg,l)) ⊂ G ⊂ π1(H), where G is generated by z2 and z3. Then,
clearly, H1(H,Z)/φ#(H1(Sg,l, Z)) is infinite group, a contradiction. �

Jaco’s Lemma [4]. Let M be a compact 3-manifold with compressible
∂M and r be a circle in ∂M . If ∂M − r is incompressible in M , then either
M [r] is a 3-ball or ∂M [r] is incompressible.

Proof of Proposition 3.2. Since Sg,l is incompressible in H by Lemma
3.3, and H contains no closed incompressible surface, ∂Pi is compressible in
Pi, i = 1, 2;

Since T1, T2 and Sg,l are incompressible in H by Lemma 3.4 and Lemma
3.3, Ti and Sg,l are incompressible in Pi. Hence ∂Pi − ∂Sg,l is incompress-
ible in Pi, i = 1, 2. Since, clearly, Pi[∂Sg,l] is not a 3-ball, ∂Pi[∂Sg,l] is
incompressible by Jaco’s Lemma. It follows that Ŝg,l, which is parallel to a
component of ∂Pi[∂Sg,l], is incompressible in Pi[∂Sg,l]. Since H[∂Sg,l] is a
union of P1[∂Sg,l] and P2[∂Sg,l] along Ŝg,l, Ŝg,l is incompressible in H[∂Sg,l].
Therefore, Ŝg,l is incompressible in HK [∂Sg,l]. We proved Proposition 3.2
(1).

Proposition 3.2 (2) follows Lemma 3.3. (2)

4. Hk is irreducible, ∂-irreducible, anannular.

Recall Ej , Fj , Jk, Mk, Bk, ai, Ai, Di, T , µ defined in Section 2.

Lemma 4.1. F1 ∪ F2 is incompressible and ∂-incompressible in HK .

Proof. Suppose first F1 ∪ F2 is compressible in HK . Then there is a disk
B ⊂ Mk such that B ∩ (F1 ∪ F2) = ∂B and ∂B is a non-trivial circle on
F1∪F2. Denote by B

′
the disk bounded by ∂B in E1∪E2. Then, B∪B

′
is a

2-sphere S2 in the solid torus Jk, so B ∪B
′
bounds a 3-ball B3 in Jk. Since

∂B is non-trivial in F1 ∪ F2, B
′

contains ∂1ai for some ai ⊂ Jk. Since S2

is separating and ai is connected, we must have (ai, ∂ai) ⊂ (B3, B′), which
provides a relative homotopy on (Jk, E1 ∪ E2) sending ai to E1 ∪ E2, see
Figure 7 (a), which contradicts Lemma 2.3 (2).
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Figure 7.

Suppose then F1 ∪ F2 is ∂-compressible in HK . Then there is a non-
trivial arc a in F1 ∪ F2 and an arc b in ∂HK bound a proper disk B in Mk.
There are two cases:

(1) b ⊂ T . Then b is a proper arc in Ai, i = 1, 5, 3, 7. Now, either b is
a trivial arc in Ai, then there is an arc b′ in ∂Ai such that the circle a ∪ b′

is non-trivial in F1 ∪ F2 but bounds a disc in Mk, which contradicts the
incompressibility of F1 ∪ F2 we just proved; or b is a non-trivial arc in Ai,
then the disc B provides a relative homotopy on (Jk, E1 ∪E2) sending ai to
E1 ∪ E2, which contradicts Lemma 2.3 (2).

(2) b ⊂ ∂H. Since |B ∩ (E1 ∪ E2)| = 1, B separates a 3-ball B3 from Jk

by Lemma 2.3 (4). Since a is non-trivial in F1 ∪ F2, by the same reason as
the end of the first paragraph, one of ai lies in B3 with ∂ai lies in a disc in
∂B3 ∩ E1, see Figure 7 (b), which contradicts Lemma 2.3 (2). �

Lemma 4.2. HK is irreducible.
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Proof. Otherwise, there is an essential 2-sphere S2 in HK. Since H is ir-
reducible, S2 bounds a 3-ball B3 in H with K ⊂ B3, which contradicts
Lemma 2.3 (1). �

Lemma 4.3. HK is ∂-irreducible.

Proof. Suppose HK is ∂-reducible. Let B be a compressing disk of ∂HK . If
∂B ⊂ T , then HK contains an essential 2-sphere, which contradicts Lemma
4.2. Below, we assume that ∂B ⊂ ∂H. Furthermore, we assume that

(*) |B ∩ (F1 ∪ F2)| is minimal among all compressing disks B of ∂Hk.
Suppose first B ⊂ Mk. Since B ∩ (E1 ∪E2) = ∅, B separates a 3-ball B3

from Jk by Lemma 2.3 (4). Since ∂B is non-trivial in ∂HK , then either B3

contains only one of E1 and E2, see Figure 7 (c), and then ||ai, B|| �= ∅ for all
ai ⊂ Jk, a contradiction; or B3 contains both E1 and E2 and k = 2 in this
case, see Figure 7 (d), a4 and a8 are properly homotopic in (B3, E1 ∪E2) ⊂
(Jk, E1 ∪ E2), which contradicts Lemma 2.3 (2).

Suppose then B∩ (F1 ∪F2) �= ∅. By Lemma 4.1 and the assumption (*),
B ∩ (F1 ∪ F2) consists of arcs. Then an outmost arc a of B ∩ (F1 ∪F2) ⊂ B
separates a disk B0 from B with B0 ⊂ Mk for some k. By (*) a must be
non-trivial in F1 ∪F2, (otherwise |B ∩ (F1 ∪F2)| can be reduced by pushing
B0 to a suitable side). Since |B0∩ (E1∪E2)| = 1, B0 separates a 3-ball from
Jk by Lemma 2.3 (4). Then we reach a contradiction by the same reason in
the end of the proof of Lemma 4.1 �

Lemma 4.4. M is anannular.

Proof. Suppose HK contains an essential annulus A. Assume that
(**) |A ∩ (F1 ∪ F2)| is minimal among all essential annuli in HK .
By Lemma 4.1 and (**), each component of A ∩ (F1 ∪ F2) is non-trivial

in both A and (F1 ∪ F2). There are three cases:

Case 1. ∂A ⊂ T . There are two sub-cases:
(1) ||∂1A,µ|| = 0. Let us assume ∂A ∩ (F1 ∪ F2) = ∅.
Suppose first A∩(F1∪F2) = ∅. Let us assume that A is contained in M2

(the remaining cases are more direct). The whole ∂A must lie in the same
Ai ⊂ M2 by Lemma 2.3 (3). Since A is essential, A ∩ Di = ∅ for i = 2, 4, 8.
Then ∂A ⊂ A6. Let M ′ be obtained by cutting M2 along D2,D4,D8. Then
A is still an incompressible annulus in M

′
, and D6 ⊂ M2 become a properly

embedding disk D′
6 ⊂ M

′
with ∂D′

6 ∩ A6 = ∂D6 ∩ A6, a non-trivial arc of
A6. Since ∂A ⊂ A6, A ∩ D′

6 is an arc in both A and D
′
6. Hence, there is a
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∂-compressing disk of A in M ′ which is also a ∂-compressing disk of A in
M2, which contradicts that A is essential in M2.

Suppose then A ∩ (F1 ∪ F2) �= ∅, which must be a union of circles. An
outmost circle a of A ∩ (F1 ∪ F2) ⊂ A and ∂1A bound an annulus A∗ ⊂ A.
May assume that a ⊂ F1, and ∂1A ⊂ Ai ⊂ Mk. Let B∗ be the disk bounded
by a on E1 and D be the meridian disk of N(K) bounded by ∂1A. B∗∪A∗∪D
is a separating 2-sphere S2 which bounds a 3-ball B3 ⊂ Jk, see Figure 7 (e).
Since |(A∗ ∪ D) ∩ (∪aj⊂Jk

aj)| = |(A∗ ∪ D) ∩ ai)| = 1, by applying Lemma
2.3 (2) as before, we have |B∗ ∩ (∪aj⊂Jk

aj)| = |B∗ ∩ ai| = 1. Hence, a and
∂1Ai bound an annulus A′ in F1. Now, by pushing the annulus A − A∗ ∪A′

to a suitable side of F1, |A ∩ (F1 ∪ F2)| is reduced, which contradicts (**).
(2) ||∂1A,µ|| ≥ 1. Now, A ∩ (F1 ∪ F2) consists of non-trivial arcs in A,

which cut A into 8||∂1A,µ|| rectangles and each rectangle has two opposite
edges on F1 ∪ F2 and two opposite edges on Ai and Aπ(i), where π(i) =
i + l mod 8. If l = 0, then the two ends of each arc of A∩ (F1 ∪F2) lie in a
same component of ∂(F1 ∪ F2), and an inner most arc is trivial in F1 ∪ F2,
a contradiction [2]. If l �= 0 mod8, then a6 and a6+l are properly isotopy in
M2, which contradicts to Lemma 2.3 (2).

Case 2. ∂1A ⊂ T and ∂2A ⊂ ∂H.
By Lemma 4.3, both ∂H and T are incompressible in HK . Clearly, HK

is not homeomorphic to T × I. Since both Dehn fillings along µ and ∂A1

compress ∂HK , by [1, 2.4.3], ∆(∂1A,µ) ≤ 1. There are two sub-cases.
(1) ||∂1A,µ|| = 0. Since ∂1A is disjoint from F1∪F2, ∂2A is disjoint from

F1∪F2 (otherwise, there is an arc in A∩(F1∪F2) with two ends in ∂2A which
is trivial in A). Then it follows that A is disjoint from F1 ∪ F2 by the proof
of Case 1. Suppose ∂1A ⊂ Ai ⊂ Mk for some i, k. Let D be the meridian
disk of N(K) bounded by ∂1A and B = A∪∂1A D. Then B is a proper disc
in Jk, ∂B is non-trivial in ∂H ∩ Jk, and |B,∪aj⊂Mk

aj| = |B, ai| = 1. Since
B∩ (E1∪E2) = ∅, B separates a 3-ball B3 from J2 by Lemma 2.3 (4). If B3

contains only one of E1 and E2, then B meets all aj in Jk. If B3 contains
both E1 and E2, then B meets ai in non-zero even number. In each case,
we reach a contradiction.

(2) ||∂1A,µ|| = 1. It is easy to see that this case is ruled out by Lemma
2.3 (5).

Case 3. ∂A ⊂ ∂H.
Suppose first A ∩ (F1 ∪ F2) = ∅. Since A is essential, A is disjoint from

Di for i �= 6. Let us assume that A ⊂ M2 (the remaining cases are the
same). Since ∂A ⊂ ∂H ∩J2 and A is disjoint from c4, c2, A separates J2 into
two solid torus J∗ and J ′ such that (E1 ∪E2) ∩ J ′ = ∅ and separates a disc
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B′ ⊂ J ′ from B2, see Figure 7 (f). Since J ′ is disjoint from all Ai ⊂ M2, A
is ∂-compressible in M2, which contradicts that A is essential in M2.

Suppose then A ∩ (F1 ∪ F2) �= ∅. There are two sub-cases:
(1) A ∩ (F1 ∪ F2) consists of circles. Then an outmost circle a of A ∩

(F1 ∪ F2) ⊂ A and ∂1A bound an annulus A∗ ⊂ A such that A∗ ⊂ Mk. Let
B∗ be the disk bounded by a on E1 ∪ E2 and D∗ = A∗ ∪ B∗. By slightly
pushing, we have D∗ ⊂ Jk, moreover, (i) D∗ ∩ ai �= ∅ for some ai ⊂ Jk, (ii)
for each aj ⊂ Jk, |D∗ ∩ aj | ≤ 2, and ≤ 1 if k = 2. Since ∂D∗ ⊂ Jk ∩ ∂H, D∗

separates a 3-ball B3 from Jk by Lemma 2.3 (4). Now either B3 contains
both E1 and E2, k = 2 in this case, and D∗ meets each aj ⊂ J2 in even
number of points, which contradicts (i) and (ii) above; or B3 contains only
one Ei, say E1, then ∂1A = ∂D∗ is parallel to ∂E1. Since A∗ is disjoint from
K, |B∗ ∩ (∪aj⊂Jk

aj)| = |D∗ ∩ (∪aj⊂Jk
aj)| = |E1 ∩ (∪aj⊂Jk

aj)| = 4. Hence,
a and ∂E1 bound an annulus A′ in F1 by applying Jordan Curve Theorem.
Now, we reach a contradiction by the same argument at the end of Case 1
(1).

(2) A ∩ (F1 ∪ F2) consists of arcs. Then F1 ∪ F2 cut A into rectangles
Ri, and each Ri has two opposite sides in F1 ∪ F2 and remaining two sides
in ∂H. Then Ri separates a 3-ball B3

i from Jk by Lemma 2.3 (4). Let D1
i

and D2
i be two disks of B3

i ∩ (E1 ∪ E2). By Lemma 2.3 (2), we have (i)
∂1aj ⊂ D1

i if and only if ∂2aj ⊂ D2
i . (ii) aj and al are contained in the same

B3
i implies that (j, l) = (2, 8).

If a2 and a8 belong to the same B3
i , then so do a3 and a7, which con-

tradicts (ii). Hence, there is only one aj in each B3
i . Hence, A separates

from H a solid torus with K as centerline (up to isotopy). Then K and a
component of ∂A ⊂ ∂H bound an annulus, which contradicts Lemma 2.3
(5). �

5. HK contains no closed essential surfaces.

Recall W , Wi, li defined in Section 2.
Suppose HK contains closed essential surfaces F . We define the com-

plexity of F by an ordered pair

C(F ) = (|F ∩ W |, |F ∩ (F1 ∪ F2)|).
Suppose F realizes the minimality of C(F ). By the minimality of C(F ),
Lemma 4.1 and the standard argument in 3-manifold topology, we have

Lemma 5.1. (1) Each component of F ∩ (F1 ∪F2) is a non-trivial circle in
both F and F1 ∪ F2,
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Figure 8.

Figure 9.

(2) F∩W ⊂ W is a union of arcs as in Figure 8. Hence, |F∩li| = |F∩lj|
for all i, j.

The positions of ∂Ai and li in F1 ∪ F2 are indicated as in Figure 9.
Below, we will use s̃ to denote a given family of parallel disjoint proper 1-

manifolds on some surface, and use s to denote a representive (a component)
of s̃.

Lemma 5.2. Each component of F ∩ Mk is isotopic to either Mk ∩ ∂H or
some Ai ⊂ Mk, where k = 1, 3.

Proof. The proofs for k = 1 and 3 are the same. Assume k = 3. First, we
need
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Figure 10.

Lemma 5.3. Components of F ∩F2 in F2 which are not parallel to a com-
ponent of ∂F2 are divided into two families of circles s̃1 and s̃2 in Figure 10
(a) and (c). Moreover, in each case, |s̃1| = |s̃2|.

Proof. Since each component of F ∩F2 isotopic to a component of ∂F2 con-
tributes the same to |F ∩ lk| for all lk ⊂ F2, we may assume that F ∩F2 con-
tains no such components when we apply Lemma 5.1 (2) to prove Lemma 5.3.

Note that l1, l2, l5, l6 separate F2 into four annuli and one disc which is
presented as an octagon E∗ in Figure 10 (b), where F ∩E∗ are presented as
five families of proper disjoint arcs d̃1, . . . , d̃4, d̃5 with ∂di in different lj and
lk for each i. By Lemma 5.1 (2), we have

|d̃4| + |d̃1| = |d̃2| + |d̃1| + |d̃5| = |d̃2| + |d̃3| = |d̃4| + |d̃3| + |d̃5|.
It follows |d̃5| = 0, |d̃1| = |d̃3| and |d̃2| = |d̃4|. Back to Figure 9 (b),

since no component is isotopic to ∂F2, it follows that either |d̃2| = 0, which
is Figure 10 (a), or |d̃1| = 0, which is Figure 10 (c). �

Let us return to the proof of Lemma 5.2. Let S be a component of
F ∩ M3. Each Wi separates a solid tori Pi from M3, i = 1, 5. Let M

′
3 =

M3 − (P1 ∪ P5), which is a solid torus. There are three cases to discuss.

Case 1. If a component of ∂S is isotopic to a component of ∂Ai, i =
1, 5. By the minimality of the complexity C(F ), S is disjoint from Wi, and
therefore S ⊂ Pi, which is an annulus isotopy to Ai, i = 1 or 5.

Case 2. If a component of ∂S is isotopic to ∂E2, let ∂1S be the outmost
component of ∂S ⊂ F2 which is isotopic to ∂E2. Now, ∂1S intersects Pi
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Figure 11.

Figure 12.

as in Figure 9 (b) and Wi ∩ S contains two arcs b∗i and b#
i with ends in

∂1S. Let Si be the component of S ∩ Pi which meets ∂1S, i = 1, 5. Then
Si is incompressible in Pi. Since ∂Si = (∂1S ∩ Pi) ∪ (b∗i ∪ b#

i ) bounds a
disk in Pi parallel to ∂M3, Si itself is such a disc, i = 1, 5. Let S3 be a
component of S ∩ M ′

3 which meets ∂1S, then S3 is incompressible in the
solid torus M ′

3 and ∂S3 has a component (∂1S ∩M ′
3) ∪ (b∗1 ∪ b#

1 )∪ (b∗5 ∪ b#
5 )

which bounds a disk in ∂M ′
3 as in Figure 11. Hence, S3 itself is such a disk.

Thus S = S1 ∪b∗1∪b#1
S3 ∪b∗5∪b#5

S5 is isotopic to M3 ∩ ∂H.
By Lemma 5.3, to finish the proof, we need only to rule out Case 3 below.
Case 3. |s̃1| = |s̃2| �= 0 in Figure 10 (a) or (b). Since the discussion for

(a) and (c) in Figure 10 are the same, we just discuss the former case.
We may assume that no component of S is isotopic to a component of

∂F2 by Case 1 and Case 2 we just discussed. Let S′
3 = S ∩ M ′

3. Then ∂S
′
3
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Figure 13.

contains 2|s̃1| circles which are produced from the arcs (s̃1 ∪ s̃2) ∩ M ′
3 and

the arcs (W1 ∪W5) ∩ S, as in Figure 12, where |s̃1| = 2. Note each circle in
∂S′

3 is non-trivial in ∂M ′
3. Since S′

3 is incompressible in the solid torus M ′
3,

each component of S
′
3 is an annulus which is ∂-compressible. Now, B′

3 ∩ S′
3

is a union of arcs, where B′
3 = B3 ∩ M ′

3. An outmost arc b of B′
3 ∩ S′

3 ⊂ B′
3

separates a disc D∗ from B′
3. As a ∂-compressing disc of S′

3, D∗ can be
moved into the positions of D∗

1,D
∗
2 ,D

∗
3, indicated as in Figure 12. Now,

back to M3, those D∗
i ’s in Figure 12 are corresponding to those D∗

i ’s in
Figure 13 (a), i = 1, 2, 3. In the cases of D∗

1 and D∗
3 in Figure 13 (a), one

can push F along the disc to reduce |F ∩ W |; in the case of D∗
2 in Figure

13 (a), one can push F along the disc to reduce |F ∩ (F1 ∪ F2)|, but not to
increase |F ∩ W |. In each case, it contradicts the minimality of C(F ). �

Remark on Figures 11, 12 and 14. In Figure 11, to simplify the
picture, W1 does not meet B3 in three arcs as it should be. But one verifies
easily that this simplification does not affect the proof. The same remark
is needed for Figures 12 and 14. Moreover in Figure 14, we only draw a
representative ei for a families ẽi and so on.

Proposition 5.4. HK contains no closed essential surface.

Proof. Now, we consider F ∩M2. Each component of F ∩(F1∪F2) is isotopic
to a component of ∂F2∪∂F1 by Lemma 5.2. Applying Lemma 5.1 (2) again,
we have |∂̃E2| = |∂̃E1|, where ∂̃Ei ⊂ Fi are components of F ∩ Fi isotopic
to ∂Ei, i = 1, 2. Each Wi separates a solid tori Pi from M2, i = 2, 4, 8. Let
M

′
2 = M2 − (P2 ∪ P4 ∪ P8), which is a handlebody of genus 2.
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Figure 14.

Note if F ∩ M2 has a component S such that a component of ∂S is
isotopic to ∂Ai, i = 2, 4, 8, by the minimality of C(F ), S ⊂ Pi and hence S
is isotopic to Ai, i = 2, 4, 8.

Let S
′
2 = F ∩ M

′
2. Then ∂S

′
2 consists of possibly five families of circles

ẽ1, ẽ2, ẽ3, f̃1 and f̃2, where ẽ1, ẽ2 and ẽ3 with |ẽi| = |∂̃E1| are produced from
the arcs (∂̃E1 ∪ ∂̃E2) ∩ M ′

2 and the arcs of (W2 ∪ W4 ∪ W8) ∩ F with end
points lying ∂̃E1 ∪ ∂̃E2, f̃1 ⊂ F1 and f̃2 ⊂ F2 are parallel copies of the two
components of ∂A6 respectively. All those are indicated in Figure 14 (see
Remark on Figures 11., 12, and 14). Moreover,

(i) each component of ẽ3 bounds a disk in ∂M ′
2, hence bounds also a disk

in F .
(ii) any two components in ẽ1 ∪ ẽ2 bound an annulus in ∂M ′

2 disjoint
from A6.

There is a proper disc B
′
in M ′

2 with ∂B′ shown in Figure 14 such that
(iii) ∂B′ meets those four families in the cyclic order ẽ1, ẽ2, f̃2, f̃1,
(iv) ∂B′ meets each component of ẽ1 ∪ ẽ2 ∪ f̃1 ∪ f̃2 in one point and

∂B′ ∩ A6 is a non-trivial arc in A6,
Let S′ be a component of S′

2. Since S
′
is incompressible in M ′

2, S
′ ∩ B

′

consists of arcs. By (iv), there is an outmost arc b of S′ ∩ B′ ⊂ B′ which
separates a disk D∗ from B′ so that

(v) ∂D∗ disjoint from A6 and D∗ is a ∂-compressing disk of S′.
We divide the remaining discussion into three cases by (iii). (Figure 13

(c) is helpful to understand (iii), (iv) and (v) above and each case below.)
Case 1. One end of b is in f1 ∈ f̃1 and the other is in f2 ∈ f̃2. In this
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case, |∂̃E1| = 0 and all ẽi’s do not exist by (iii) and (v). One can show that
S′ is isotopic to A6 by cutting and pasting argument in 3-manifold topology,
the detail is contained in what we will do in Case 2.

Case 2. One end of b is in e1 ∈ ẽ1 and the other is in e2 ∈ ẽ2. By (ii),
e1 and e2 bound an annulus A in ∂M ′

2 disjoint from A6. Let M ′′
2 , S′′, A′,

A′
6, e′1, e′2 be the images of M ′

2, S′, A, A6, e1, e2 respectively after cutting
M ′

2 along B′. By (iv), e′i is an arc, i = 1, 2. Let bi, D∗
i , i = 1, 2, be the two

copies of b and D∗ after cutting M ′
2 along B′. By (v), the circle c′ ⊂ ∂S′′

formed by four arcs e′1, e′2, b′1 and b′2 bound a disc D∗
1 ∪ A′ ∪ D∗

2 in ∂M ′′
2

which is disjoint from A′
6. Since S′′ is incompressible in M ′′

2 , S′′ is such a
disc up to isotopy. Back to M ′

2, S′ is isotopic to the annulus A ⊂ M ′
2. Back

to M2, by (i) and similar argument in Case 2 in the proof of Lemma 5.2, S
is isotopic to M2 ∩ ∂H.

Case 3. If either ∂b lie in one of the four families ẽ1, ẽ2, f̃1 and f̃2, or
one end of b is in ẽi and the other in f̃i, i = 1 or 2, then D∗ can be moved
in M ′

2 keeping to be a ∂-compressing disk of S′ so that when we go back to
M2, it is a ∂-compressing disk of F ∩M2 in the position of either D∗

1 or D∗
2

in Figure 13 (b). One can push F along either D∗
1 or D∗

2 to reduce C(F ),
which contradicts the minimality of C(F ). (Refer the end of the argument
in Case 3 of the Proof of Lemma 5.2).

So, each component S of F ∩ M2 is isotopic to either M2 ∩ ∂H or Ai,
i = 2, 4, 6, 8. In the former case, ∂S is ∂E1 and ∂E2 which bound (up to
isotopy) ∂H ∩ M1 and ∂H ∩ M3 respectively by Lemma 5.2, and then F
is isotopic to ∂H. In the later case, by Lemma 5.2, each component of
F ∩ (M1 ∪ M3) is an annulus isotopic to one of A1, A3, A5, A7. Since F is
closed, it follows that F is a torus isotopic to T . �

Proposition 3.1 follows from Lemmas 4.2, 4.3, 4.4 and Proposition 5.4.
Hence, Theorem 1.2 is proved.
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