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On the weak limits of smooth maps for the
Dirichlet energy between manifolds

Fengbo Hang

We identify all the weak sequential limits of smooth maps in
W 1,2 (M,N). In particular, this implies a necessary and sufficient
topological condition for smooth maps to be weakly sequentially
dense in W 1,2 (M,N).

1. Introduction.

Assume M and N are smooth compact Riemannian manifolds without
boundary and they are embedded into R

l and R
l respectively. The following

spaces are of interest in the calculus of variations:

W 1,2 (M,N) =
{
u ∈ W 1,2

(
M,Rl

)
: u (x) ∈ N a.e. x ∈ M

}
,

H1,2
W (M,N) =

{
u ∈ W 1,2 (M,N) : there exists a sequence ui ∈ C∞ (M,N)

such that ui ⇀ u in W 1,2 (M,N)
}
.

For a brief history and detailed references on the study of analytical and
topological issues related to these spaces, one may refer to [2, 3, 7]. In
particular, it follows from Theorem 7.1 of [3] that a necessary condition for
H1,2

W (M,N) = W 1,2 (M,N) is thatM satisfies the 1-extension property with
respect toN (see Section 2.2 of [3] for a definition). It was conjectured in Sec-
tion 7 of [3] that the 1-extension property is also sufficient for H1,2

W (M,N) =
W 1,2 (M,N). In [1, 7], it was shown that H1,2

W (M,N) = W 1,2 (M,N) when
π1 (M) = 0 or π1 (N) = 0. Note that if π1 (M) = 0 or π1 (N) = 0, then M
satisfies the 1-extension property with respect to N . In Section 8 of [4], it
was proved that the above conjecture is true under the additional assumption
that N satisfies the 2-vanishing condition. The main aim of the present arti-
cle is to confirm the conjecture in its full generality. More precisely, we have
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Theorem 1.1. Let Mn and N be smooth compact Riemannian manifolds
without boundary (n ≥ 3). Take a Lipschitz triangulation h : K → M , then

H1,2
W (M,N)

=
{
u ∈ W 1,2 (M,N) : u#,2 (h) has a continuous extension to M w.r.t. N

}
=
{
u ∈ W 1,2 (M,N) : u may be connected to some smooth maps

}
.

In addition, if α ∈ [M,N ] satisfies α ◦ h||K1| = u#,2 (h), then we may
find a sequence of smooth maps ui ∈ C∞ (M,N) such that ui ⇀ u in
W 1,2 (M,N), [ui] = α and dui → du a.e..

Here, u#,2 (h) is the 1-homotopy class defined by White [8] (see also
Section 4 of [3]) and [M,N ] means all homotopy classes of maps from M to
N . It follows from Theorem 1.1 that

Corollary 1.2. Let Mn and N be smooth compact Riemannian manifolds
without boundary and n ≥ 3. Then smooth maps are weakly sequentially
dense in W 1,2 (M,N) if and only if M satisfies the 1-extension property
with respect to N .

For p ∈ [3, n− 1] being a natural number, it remains a challenging open
problem to find out whether the weak sequential density of smooth maps
in W 1,p (M,N) is equivalent to the condition that M satisfies the p − 1
extension property with respect to N . This was verified to be true under
further topological assumptions on N (see Section 8 of [4]). However, even
for W 1,3

(
S4, S2

)
, it is still not known whether smooth maps are weakly

sequentially dense. Some very interesting recent work on this space can be
found in [5].

The paper is written as follows. In Section 2, we will present some tech-
nical lemmas. In Section 3, we will prove the above Theorem and Corollary.

2. Some preparations.

The following local result, which was proved by Pakzad and Riviere in [7],
plays an important role in our discussion.

Theorem 2.1 ([7]). Let N be a smooth compact Riemannian manifold.
Assume n ≥ 3, B1 = Bn

1 , f ∈ W 1,2 (∂B1, N) ∩ C (∂B1, N), f ∼ const, u ∈
W 1,2 (B1, N), u|∂B1

= f , then there exists a sequence ui ∈ W 1,2 (B1, N) ∩
C
(
B1, N

)
such that ui|∂B1

= f , ui ⇀ u in W 1,2 (B1, N) and dui → du a.e..
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In addition, if v ∈ W 1,2 (B2\B1, N)∩C (B2\B1, N
)

satisfies v|∂B1
= f and

v|∂B2
≡ const, then we may estimate

∫
B1

|dui|2 dHn ≤ c (n,N)

(∫
B1

|du|2 dHn +
∫

B2\B1

|dv|2 dHn

)
.

For convenience, we will use those notations and concepts in Sections 2,
3 and 4 of [3]. The following Lemma is a rough version of Luckhaus’s Lemma
[6]. For readers’ convenience, we sketch a proof of this simpler version using
results from Section 3 of [3].

Lemma 2.2. Assume Mn and N are smooth compact Riemannian man-
ifolds without boundary. Let e > 0, 0 < δ < 1, A > 0, then there ex-
ists an ε = ε (e, δ, A,M,N) > 0 such that for any u, v ∈ W 1,2 (M,N)
with |du|L2(M) , |dv|L2(M) ≤ A and |u− v|L2(M) ≤ ε, we may find a
w ∈ W 1,2 (M × (0, δ) , N) such that, in the trace sense w (x, 0) = u (x),
w (x, δ) = v (x) a.e. x ∈ M and

|dw|L2(M×(0,δ)) ≤ c (M)
√
δ
(
|du|L2(M) + |dv|L2(M) + e

)
.

Proof. Let εM > 0 be a small positive number such that

V2εM (M) =
{
x ∈ R

l : d (x,M) < 2εM
}

is a tubular neighborhood of M . Let πM : V2εM (M) → M be the nearest
point projection. Similarly, we have εN , V2εN (N) and πN for N . Choose a
Lipschitz cubeulation h : K → M . We may assume each cell in K is a cube
of unit size. For ξ ∈ Bl

εM
, x ∈ |K|, let hξ (x) = πM (h (x) + ξ). Assume εM

is small enough such that all hξ’s are bi-Lipschitz maps. Set m =
[1

δ

]
+ 1,

using [0, 1] = ∪m
i=1
[

i−1
m , i

m

]
, we may divide each k-cube in K into mk small

cubes. In particular, we get a subdivision of K, called Km. It follows from
Section 3 of [3] that for a.e. ξ ∈ Bl

εM
, u◦hξ, v◦hξ ∈ W1,2 (Km, N). Applying

the estimates in Section 3 of [3] to each unit size k-cube in
∣∣Kk

m

∣∣, we get∫
Bl

εM

dHl (ξ)
∫
|Kk

m|
∣∣∣d(u ◦ hξ||Kk

m|
)∣∣∣2 dHk ≤ c (M) δk−n |du|2L2(M) ,∫

Bl
εM

dHl (ξ)
∫
|Kk

m|
∣∣∣d(v ◦ hξ||Kk

m|
)∣∣∣2 dHk ≤ c (M) δk−n |dv|2L2(M) ,
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and (∫
Bl

εM

|u ◦ hξ − v ◦ hξ|2L∞(|K1
m|) dHl (ξ)

) 1
2

≤ c (δ,M)
(

|d (u− v)|
3
4
L2(M) |u− v|

1
4
L2(M) + |u− v|L2(M)

)
≤ c (δ, A,M) ε

1
4 .

By the mean value inequality, we may find a ξ ∈ Bl
εM

such that u◦hξ, v◦hξ ∈
W1,2 (Km, N),

|u ◦ hξ − v ◦ hξ|L∞(|K1
m|) ≤ c (δ, A,M) ε

1
4 < εN when ε is small enough,

and ∫
|Kk

m|

[∣∣∣d(u ◦ hξ||Kk
m|
)∣∣∣2 +

∣∣∣d(v ◦ hξ||Kk
m|
)∣∣∣2] dHk

≤ c (M) δk−n
(
|du|2L2(M) + |dv|2L2(M)

)
for 1 ≤ k ≤ n. Fix a η ∈ C∞ (R,R) such that 0 ≤ η ≤ 1, η|(−∞, 13)

= 1 and
η|( 2

3 ,∞) = 0. Letting f = u◦hξ, g = v◦hξ, we will define φ : |K|×[0, δ] → N

inductively. First, set φ (x, 0) = f (x) and φ (x, δ) = g (x) for x ∈ |K|. For
∆ ∈ K1

m\K0
m, on ∆ × [0, δ], we let

φ (x, t) = πN

(
η

(
t

δ

)
f (x) +

(
1 − η

(
t

δ

))
g (x)

)
x ∈ ∆, 0 ≤ t ≤ δ.

For ∆ ∈ K2
m\K1

m, let y∆ be the center of ∆, and define φ on ∆ × [0, δ]
as the homogeneous degree zero extension of φ|∂(∆×[0,δ]) with respect to(
y∆,

δ
2

)
. Next, we handle each 3-cube, 4-cube, · · · , n-cube in a similar way.

Calculations show that∫
|K|×[0,δ]

|dφ|2 dHn+1

≤ c (n)
n∑

k=1

δn+1−k

∫
|Kk

m|

[∣∣∣d(u ◦ hξ||Kk
m|
)∣∣∣2 +

∣∣∣d(v ◦ hξ||Kk
m|
)∣∣∣2] dHk

+ c (δ, A,M) ε
1
2

≤ c (M) δ
(
|du|2L2(M) + |dv|2L2(M) + e2

)
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when ε is small enough. Finally, w : M × [0, δ] → N , defined by w (x, t) =
φ
(
h−1

ξ (x) , t
)
, is the needed map. �

Lemma 2.3. Assume N is a smooth compact Riemannian manifold, n ≥ 2,
B1 = Bn

1 , u, v ∈ W 1,2 (B1, N) such that u|∂B1
= v|∂B1

. Define w : B1 ×
(0, 1) → N by

w (x, t) =


u (x) , x ∈ B1\Bt;

u
(

t2

|x|
x
|x|
)
, x ∈ Bt\Bt2 ;

v
(

x
t2

)
, x ∈ Bt2 ;

then w ∈ W 1,2 (B1 × (0, 1) , N) and

|dw|L2(B1×(0,1)) ≤ c (n)
(
|du|L2(B1) + |dv|L2(B1)

)
.

Proof. Note that

|dw (x, t)| ≤


|du (x)| , t < |x| ;

c (n)
∣∣∣du( t2

|x|
x
|x|
)∣∣∣ t2

|x|2 , t2 < |x| < t;

c (n)
∣∣dv ( x

t2

)∣∣ 1
t2
, |x| < t2.

Hence ∫
0<t<1

t2<|x|<t

|dw (x, t)|2 dHn+1 (x, t)

≤ c (n)
∫ 1

0
dt

∫ t

t2
dr

∫
∂Br

∣∣∣∣du( t2r2x
)∣∣∣∣2 t4r4dHn−1 (x)

= c (n)
∫ 1

0
dt

∫ 1

t
ds

∫
∂Bs

t2(n−2)

s2(n−2) |du (y)|2 dHn−1 (y)

≤ c (n) |du|2L2(B1) ,

and ∫
0<t<1
|x|<t2

|dw (x, t)|2 dHn+1 (x, t)

≤ c (n)
∫ 1

0
dt

∫
Bt2

∣∣∣dv ( x
t2

)∣∣∣2 1
t4
dHn (x)

≤ c (n) |dv|2L2(B1) .

The lemma follows. �
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3. Identifying weak limits of smooth maps.

In this section, we shall prove Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1. Let h : K → M be a Lipschitz cubeulation. We may
assume each cell in K is a cube of unit size. Let εM > 0 be a small number
such that

V2εM (M) =
{
x ∈ R

l : d (x,N) < 2εM
}

is a tubular neighborhood of M . Denote πM : V2εM (M) → M as the nearest
point projection. For ξ ∈ Bl

εM
, we let hξ (x) = πM (h (x) + ξ) for x ∈ |K|,

the polytope of K. We may assume εM is small enough such that all hξ

are bi-Lipschitz maps. Replacing h by hξ when necessary, we may assume
f = u ◦ h ∈ W1,2 (K,N). Then we may find a g ∈ C (|K| , N) ∩ W1,2 (K,N)
such that

[
g ◦ h−1

]
= α and g||K1| = f ||K1| (see the proofs of Theorem 5.5

and Theorem 6.1 in [4]). For each cell ∆ ∈ K, let y∆ be the center of ∆.
For x ∈ ∆, let |x|∆ be the Minkowski norm with respect to y∆, that is

|x|∆ = inf
{
t > 0 : y∆ +

x− y∆

t
∈ ∆

}
.

Step 1: For every ∆ ∈ K2\K1, we may find a sequence φi ∈ C (∆, N) ∩
W 1,2 (∆, N) such that φi|∂∆ = g|∂∆, φi → f |∆ in W 1,2 (∆, N) and dφi →
d (f |∆) a.e. (see Lemma 4.4 in [3]). For x ∈ ∆, let

fi (x) =


φi (x) , |x|∆ ≥ 1

2i ;

φi

(
y∆ + 1

22i|x|∆
x−y∆
|x|∆

)
, 1

22i ≤ |x|∆ ≤ 1
2i ;

g
(
y∆ + 22i (x− y∆)

)
, |x|∆ ≤ 1

22i .

It is clear that fi ⇀ f |∆ in W 1,2 (∆, N), dfi → d (f |∆) a.e. on ∆,

|dfi|L2(∆) ≤ c ·
(
|dφi|L2(∆) + |d (g|∆)|L2(∆)

)
≤ c (f, g)

and fi ∈ C
(∣∣K2

∣∣ , N). In addition, if we define h2,i : ∆ × [0, 1] → N by

h2,i (x, t) =



φi (x) , |x|∆ ≥ 1
2i + 2i−1

2i t;

φi

(
y∆ +

(
1
2i + 2i−1

2i t
)2

|x|∆
x−y∆
|x|∆

)
,
(

1
2i + 2i−1

2i t
)2 ≤ |x|∆

≤ 1
2i + 2i−1

2i t;

g

(
y∆ + x−y∆(

1
2i + 2i−1

2i t
)2

)
, |x|∆ ≤

(
1
2i + 2i−1

2i t
)2
.
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Then by Lemma 2.3, we know h2,i ∈ W 1,2 (∆ × [0, 1] , N),

|dh2,i|L2(∆×[0,1]) ≤ c ·
(
|dφi|L2(∆) + |d (g|∆)|L2(∆)

)
≤ c (f, g)

and h2,i ∈ C
(∣∣K2

∣∣× [0, 1] , N
)
.

Step 2: Assume for some 2 ≤ k ≤ n − 1, we have a sequence fi ∈
C
(∣∣Kk

∣∣ , N) ∩ W1,2
(
Kk, N

)
and hk,i ∈ C

(∣∣Kk
∣∣× [0, 1] , N

)
such that for

each ∆ ∈ Kk, fi ⇀ f |∆ in W 1,2 (∆, N), hk,i ∈ W 1,2 (∆ × [0, 1] , N),

(3.1) |d (fi|∆)|L2(∆) ≤ c (f, g) , |dhk,i|L2(∆×[0,1]) ≤ c (f, g)

and hk,i (x, 0) = fi (x), hk,i (x, 1) = g (x) for x ∈ ∣∣Kk
∣∣. Since for every

∆ ∈ Kk+1\Kk, fi ⇀ f |∂∆ in W 1,2 (∂∆, N), for fixed j by Lemma 2.2
we may find a nj ≥ j such that for each ∆ ∈ Kk+1\Kk, there exists a
wj ∈ W 1,2

(
∂∆ × [0, 2−j

]
, N
)

with wj (x, 0) = f (x), wj

(
x, 1

2j

)
= fnj (x)

and

|dwj |L2
(
∂∆×

(
0, 1

2j

)) ≤ c (n)

2
j
2

(
|d (f |∂∆)|L2(∂∆) +

∣∣dfnj

∣∣
L2(∂∆) + 1

)
≤ c (f, g)

2
j
2

.

Without loss of generality, we may replace fi by fni and hk,i by hk,ni
. Fix

a ∆ ∈ Kk+1\Kk. For x ∈ ∆, let

ψi (x) =

 f
(
y∆ + 2i(x−y∆)

2i−1

)
, |x|∆ ≤ 2i−1

2i ;

wi

(
y∆ + x−y∆

|x|∆ , |x|∆ − 2i−1
2i

)
, 2i−1

2i ≤ |x|∆ ≤ 1.

Then ψi||Kk| = fi and ψi → f |∆ in W 1,2 (∆, N) as i → ∞ for each

∆ ∈ Kk+1\Kk. By Theorem 2.1 and (3.1) (use hk,i and g for the needed “v”
in Theorem 2.1, one may refer to Lemma 9.8 of [4]), for every ∆ ∈ Kk+1\Kk,
we may find φi ∈ C (∆, N) ∩ W 1,2 (∆, N) such that φi|∂∆ = fi|∂∆,
|φi − ψi|L2(∆) <

1
2i , |dφi|L2(∆) ≤ c (f, g) and

∫
M

|dφi − dψi|
1 + |dφi − dψi|dH

k+1 ≤ 1
2i
.

After passing to subsequence, we may assume dφi → d (f |∆) a.e. on ∆. Fix
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a ∆ ∈ Kk+1\Kk, for any x ∈ ∆, define

gk+1,i (x) =

{
hk,i

(
y∆ + x−y∆

|x|∆ , 1 + 2
(1

2 − |x|∆
))
, 1

2 ≤ |x|∆ ≤ 1;
g (y∆ + 2 (x− y∆)) , |x|∆ ≤ 1

2 ,

fi (x) =


φi (x) , |x|∆ ≥ 1

2i ;

φi

(
y∆ + 1

22i|x|∆
x−y∆
|x|∆

)
, 1

22i ≤ |x|∆ ≤ 1
2i ;

gk+1,i

(
y∆ + 22i (x− y∆)

)
, |x|∆ ≤ 1

22i ,

h̃k+1,i (x, t) =



φi (x) , |x|∆ ≥ 1
2i + 2i−1

2i t;

φi

(
y∆ +

(
1
2i + 2i−1

2i t
)2

|x|∆
x−y∆
|x|∆

)
,
(

1
2i + 2i−1

2i t
)2 ≤ |x|∆

≤ 1
2i + 2i−1

2i t;

gk+1,i

(
y∆ + x−y∆(

1
2i + 2i−1

2i t
)2

)
, |x|∆ ≤

(
1
2i + 2i−1

2i t
)2
,

˜̃
hk+1,i (x, t) =

 hk,i

(
y∆ + x−y∆

|x|∆ , 1 + 2
(1+t

2 − |x|∆
))
, 1+t

2 ≤ |x|∆ ≤ 1;

g
(
y∆ + 2

1+t (x− y∆)
)
, |x|∆ ≤ 1+t

2 ,

and

hk+1,i (x, t) =

{
h̃k+1,i (x, 2t) , 0 ≤ t ≤ 1

2 ;˜̃
hk+1,i (x, 2t− 1) , 1

2 ≤ t ≤ 1.

Simple calculations show that for any ∆ ∈ Kk+1\Kk, fi ⇀ f |∆ in
W 1,2 (∆, N), dfi → d (f |∆) a.e. on ∆, hk+1,i ∈ W 1,2 (∆ × [0, 1] , N),

|dfi|L2(∆) ≤ c (f, g) , |dhk+1,i|L2(∆×[0,1]) ≤ c (f, g)

and hk+1,i (x, 0) = fi (x), hk+1,i (x, 1) = g (x) for x ∈ ∣∣Kk+1
∣∣. Hence,

we finish when we reach fi ∈ C (|K| , N) ∩ W1,2 (K,N) and hn,i ∈
C (|K| × [0, 1] , N). Let vi = fi ◦ h−1. Then it is clear that vi ∈ C (M,N) ∩
W 1,2 (M,N), [vi] = α, |vi − u|L2(M) → 0, |dvi|L2(M) ≤ c (u, g) and dvi → du
a.e. onM . Hence, we may find ui ∈ C∞ (M,N) such that |ui − u|L2(M) → 0,
|dui|L2(M) ≤ c (u, g), [ui] = α and dui → du a.e. on M . In particular, this
shows

H1,2
W (M,N) ⊃{u ∈ W 1,2 (M,N) : u#,2 (h) has a continuous extension to

M w.r.t. N
}
.

The other direction of inclusion was proved in Section 7 of [3]. To see

H1,2
W (M,N) =

{
u ∈ W 1,2(M,N) : u may be connected to some smooth

maps
}
,
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we only need to use the above proved equality and proposition 5.2 of [3],
which shows{

u ∈ W 1,2 (M,N) : u#,2 (h) has a continuous extension to M w.r.t. N
}

=
{
u ∈ W 1,2 (M,N) : u may be connected to some smooth maps

}
.

�

We remark that many constructions above are motivated from Sections
5 and 6 of [4].

Proof of Corollary 1.2. This follows from Theorem 1.1 and Corollary 5.4 of
[3]. �
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