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On the weak limits of smooth maps for the
Dirichlet energy between manifolds

FENGBO HANG

We identify all the weak sequential limits of smooth maps in
W12 (M, N). In particular, this implies a necessary and sufficient
topological condition for smooth maps to be weakly sequentially
dense in W2 (M, N).

1. Introduction.

Assume M and N are smooth compact Riemannian manifolds without
boundary and they are embedded into R! and R respectively. The following
spaces are of interest in the calculus of variations:

W2 (M, N) = {u e W2 (M, ]RJ) cu(z) €N ae. z € M} ,
H;I’/Z (M,N)={ue WL2 (M, N) : there exists a sequence u; € C*° (M, N)
such that u; — uin WhH? (M, N)}.

For a brief history and detailed references on the study of analytical and
topological issues related to these spaces, one may refer to [2, 3, 7]. In
particular, it follows from Theorem 7.1 of [3] that a necessary condition for
Hé{f (M,N) =W%H2 (M, N) is that M satisfies the 1-extension property with
respect to N (see Section 2.2 of [3] for a definition). It was conjectured in Sec-
tion 7 of [3] that the 1-extension property is also sufficient for H 114’/2 (M,N) =
W2 (M, N). In [1, 7], it was shown that Hyy> (M, N) = W2 (M, N) when
m (M) =0 or m (N) = 0. Note that if m (M) =0 or 7 (N) = 0, then M
satisfies the 1-extension property with respect to N. In Section 8 of [4], it
was proved that the above conjecture is true under the additional assumption
that IV satisfies the 2-vanishing condition. The main aim of the present arti-
cle is to confirm the conjecture in its full generality. More precisely, we have
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Theorem 1.1. Let M™ and N be smooth compact Riemannian manifolds
without boundary (n > 3). Take a Lipschitz triangulation h : K — M, then

1,2

Hy (M, N)
={ue W2 (M, N) : ug (h) has a continuous extension to M w.r.t. N}
= {u € WH2(M, N) : u may be connected to some smooth maps} .

In addition, if o € [M, N] satisfies a0 hf g1 = ug2 (h), then we may
find a sequence of smooth maps u; € C*°(M,N) such that u; — wu in
W2 (M, N), [u;] = a and du; — du a.e..

Here, uy o (h) is the 1-homotopy class defined by White [8] (see also
Section 4 of [3]) and [M, N| means all homotopy classes of maps from M to
N. It follows from Theorem 1.1 that

Corollary 1.2. Let M™ and N be smooth compact Riemannian manifolds
without boundary and n > 3. Then smooth maps are weakly sequentially
dense in W12 (M, N) if and only if M satisfies the 1-extension property
with respect to N.

For p € [3,n — 1] being a natural number, it remains a challenging open
problem to find out whether the weak sequential density of smooth maps
in WP (M, N) is equivalent to the condition that M satisfies the p — 1
extension property with respect to N. This was verified to be true under
further topological assumptions on N (see Section 8 of [4]). However, even
for W13 (S4, 52), it is still not known whether smooth maps are weakly
sequentially dense. Some very interesting recent work on this space can be
found in [5].

The paper is written as follows. In Section 2, we will present some tech-
nical lemmas. In Section 3, we will prove the above Theorem and Corollary.

2. Some preparations.

The following local result, which was proved by Pakzad and Riviere in [7],
plays an important role in our discussion.

Theorem 2.1 ([7]). Let N be a smooth compact Riemannian manifold.
Assume n >3, By = BY, f € W2 (0B, N)NC (0B1,N), f ~ const, u €
Wh2(By,N), ulgp, = f, then there erists a sequence u; € W2 (B, N) N
C (El,N) such that wilyp, = f, ui — u in W2 (By, N) and du; — du a.e..
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In addition, if v € W2 (By\B1, N)NC (B2\B1, N) satisfies vlpp, = f and
U|8B2 = const, then we may estimate

/|dui|2dH”§c(n,N) /|du|2d7-l”+/ o2 dH | .
By By B2\ B

For convenience, we will use those notations and concepts in Sections 2,
3 and 4 of [3]. The following Lemma is a rough version of Luckhaus’s Lemma
[6]. For readers’ convenience, we sketch a proof of this simpler version using
results from Section 3 of [3].

Lemma 2.2. Assume M"™ and N are smooth compact Riemannian man-
ifolds without boundary. Let e > 0, 0 < § < 1, A > 0, then there ex-
ists an ¢ = e(e,86,A,M,N) > 0 such that for any u,v € WH2 (M, N)
with |dulpzpy [Vl < A and [u =20y < &, we may find a
w € WH2(M x (0,0),N) such that, in the trace sense w(z,0) = u(x),
w(z,d) =v(z) ae. x € M and

|dwl 2005y < (M) V6 <|dU|L2(M) + |dvl 2y + 6’) :

Proof. Let epr > 0 be a small positive number such that
Vae,, (M) = {x eR':d(z, M) < zeM}

is a tubular neighborhood of M. Let mas : Vae,, (M) — M be the nearest
point projection. Similarly, we have ey, Vo, (IV) and 7y for N. Choose a
Lipschitz cubeulation h : K — M. We may assume each cell in K is a cube
of unit size. For { € BL | x € |K|, let he (x) = mp (B () + £). Assume ey
is small enough such that all h¢’s are bi-Lipschitz maps. Set m = [%] + 1,
using [0,1] = U, [%, %], we may divide each k-cube in K into m”* small
cubes. In particular, we get a subdivision of K, called K,,. It follows from
Section 3 of [3] that for a.e. £ € Bf:M, uohg,vohe € Wh2 (K, N). Applying
the estimates in Section 3 of [3] to each unit size k-cube in !Kﬁl

Jo,
J

, we get
! 2 ok k| 12
art (&) [ fd(woheljep) )| aH < e (M) 8 dulfa i)
| 5| "

2
dH' (€) / d (o heley )| dHt < e (M) 8 dvf3agyy
1% "

l
EM



932 F. Hang

and

(NI

(],

EM
3 1
< (630 (100 =0l b el o= liaan

< c(5,A,M)5i.

w0 he = v 0 heltoocr ) AH' (g))

By the mean value inequality, we may find a £ € B! ., Such that uohg, vohe €
W2 (K,,, N),

|uohg —vo hf‘L°°(|K1 ) < c(é,A,M)es% < ey when ¢ is small enough,

and

/\Kw Dd(“‘)hf’\m)r* \d(“’hf‘u«m)ﬂ i
<c(M)§kn (\du@Q(M) 4 |dv|%2(M))

for 1 <k <n. FixaneC®(R,R) such that 0 <7 <1, 17|(_007%) =1 and
77](%700) = 0. Letting f = uohg, g = vohg, we will define ¢ : |K|x[0,6] — N
inductively. First, set ¢ (z,0) = f (z) and ¢ (z,9) = g (z) for z € |K|. For
A e KL\KD, on A x [0,0], we let

6 (2,1) = Ty (n <§>f(a;)+ <1—n<§>>g(a§)> rEA0<E<S

For A € K2\K}, let ya be the center of A, and define ¢ on A x [0, ]
as the homogeneous degree zero extension of ¢| D(AX[0,8])) with respect to

(yA, %) Next, we handle each 3-cube, 4-cube, -- -, n-cube in a similar way.
Calculations show that

/ || dH™!
[K1x[04]
<oyt [ (e ) [+ (vo el )| o
k=1 m

+c(6,A, M) ez
2 2 2
< e (M)5 (|dul}aap) + vl ey, + )
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when ¢ is small enough. Finally, w : M x [0,] — N, defined by w (x,t) =
) <hg1 (x) ,t), is the needed map. O

Lemma 2.3. Assume N is a smooth compact Riemannian manifold, n > 2,
By = B}, u,v € W2 (By, N) such that ulyp, = v|yp,. Define w : By X
(0,1) = N by

u (), r € B1\By;
w(z,t) =1 u (%ﬁ) , © € Bi\By2;
v (t%) , T € By;

then w € Wh2 (By x (0,1),N) and

4] 2, x 017 < () (100l 2y + 0], )

Proof. Note that

|du ()], t < l|xl;
ldw (2,1)| < c(n)(du (f?m) L <l <t
c(n)|dv (%) %, |z < 2
Hence
2 n+1
/0<t<1 |dw (x,t)|" dH" " (z,1)
t2<|z|<t
/ dt / dr / du ﬁdH"—l ()
tz 9B, 7"2 rt
2(n—2)
t 2 n—1
L [ as Sy (e @) dH" (y)
0Bs S
c(n )ldU|L2 (B1) >
and

%«1 dw (, 8)[2 dH™ (x, )

|| <t?

<c(n / dt/
< c(n)|dvlfap,) -

The lemma follows. 0

1 n
dv 2 t—4d'H (x)
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3. Identifying weak limits of smooth maps.
In this section, we shall prove Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1. Let h: K — M be a Lipschitz cubeulation. We may
assume each cell in K is a cube of unit size. Let €37 > 0 be a small number
such that

Vae,, (M) = {:c eR:d(z,N) < 25M}

is a tubular neighborhood of M. Denote 7y : Vae,, (M) — M as the nearest
point projection. For & € BL | we let he (x) = mps (b (x) + ) for @ € |K],
the polytope of K. We may assume ¢, is small enough such that all he
are bi-Lipschitz maps. Replacing h by h¢ when necessary, we may assume
f=uohe W' (K,N). Then we may find a g € C (K|, N)N W2 (K, N)
such that [g o h_l] =« and g|‘K1| = f||K1‘ (see the proofs of Theorem 5.5
and Theorem 6.1 in [4]). For each cell A € K, let ya be the center of A.

For z € A, let |z|, be the Minkowski norm with respect to ya, that is

x|A:inf{t>0:yA—|—x_tyA€A}.

Step 1: For every A € K?\K!, we may find a sequence ¢; € C (A, N) N
W12 (A, N) such that ¢;|gn = glop, ¢ — fla in WH2 (A, N) and dg; —
d(f|lp) a.e. (see Lemma 4.4 in [3]). For € A, let

61 (@), 2la > &
2
@) =1 o (a+ b i) < hola< 3
g(ya+2%(@—-ya)), |zlp < h

It is clear that f; — f|y in WY (A, N), dfi — d(f|,) a-e. on A,

dfil 2ay < e+ (140l 2(a +1d (gla) |2 ) < €(F9)

and f; € C (‘KQ‘ ,N). In addition, if we define ha; : A x [0,1] — N by

9 (). jola > 35 + 25t
i <yA + ;ﬁ;ilg xxff) ; (% + 21571t>2 < |z|a
hai(7.1) = < kg2l
g <yA + m) ;o zla < (Qi - 2;7175)2
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Then by Lemma 2.3, we know ha; € W12 (A x [0,1], N),

|dh2,i|L2(AX[o,1]) <c <|d¢i’L2(A) + |d(g|A)’L2(A)> <c(f,9)

and h27i eC (‘K2| X [0, 1] ,N).
Step 2: Assume for some 2 < k < n — 1, we have a sequence f; €

C (|K*|,N) n W2 (K* N) and hy; € C (|K*| x [0,1],N) such that for
each A € K*, fi = f|n in WY2 (A, N), hy; € WH2 (A x [0,1], N),

(31> ’d(fl’A)’LQ(A) Sc(f?g)7

(Ax[0,1]) (f7 )

and hi; (2,0) = fi(z), b (2,1) = g(z) for € |K*|. Since for every
A € KFHIW\KF f — floa in WH2(OA,N), for fixed j by Lemma 2.2
we may find a n; > j such that for each A € KF K there exists a
w; € Wh2 (0A x [0,277],N) with w; (z,0) = f(z), w; (z ,21) In, ()
and

c(n)
2

c(f g)_
25

|dwj|L2(aAX(0,%>) = (’d(ﬂaA)’m o)+ |dfns | r2on) + 1)

NS,

Without loss of generality, we may replace f; by fn, and hy; by hy . Fix
a A€ KMIW\KF Forx € A, let

2% (z— —
£ (a+2522). 2l5 < 7
wi (ya+ 52 Jala - 571), ZEt <ol <1,

||

Yi(z) =

Then %‘Hmﬂ = fi and ¢ — f|p in W2 (A/N) as i — oo for each

A € K1\ K*. By Theorem 2.1 and (3.1) (use hy; and g for the needed “v”
in Theorem 2.1, one may refer to Lemma 9.8 of [4 ]) for every A € Kk“\Kk
we may find ¢; € C(A,N) N W2 (A, N) such that ¢ilgn = filoas
|6i = Vil p2(a) < 305 [ddilp2(a) < ¢(f,9) and

|dp; — dip] k+1 1
——— —dH"T < —.
/Mlﬂdqﬁi—dwiy - 2t

After passing to subsequence, we may assume d¢; — d ( f|,) a.e. on A. Fix
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a A€ KMI\KF for any x € A, define

h( 4+ Z yAl+2 x >’ l<:L’ <1;
Gk+1,i (95)2{ ki \UA T Tl (3 — lzla) VN

(yA+2(x_yA))a |$’A = 2>
¢i (z), |1‘|A
_ A 1 a— 1
film) =1 & (yﬁmgﬁm,y;), & < \x|A1<21,
L Jk+1,i (?JA +2% (z — Z/A))7 ‘33|A S o
21
: oi (2) )2 l2la > 5 + 25t
L.+21—.1t
7 7 — 1 27‘ 1
L (s L) (3 20)" <1
hiy1i(z,t) = L 9
N2
Gk+1,i <yA + <+2yA1t>z> ,lzla < <% + 22i1t) ;
2 2%
z Pk (yA +oe 12 (B WA)) S lala S
hiyi (@,t) = pe
g (yA + 5 (x — yA)> , [z[n < 575
and

Ek 171'(1‘,215), 0§t<l'
by (2,) =4 = .
hk+1,i (l’,Qt— 1), 5 S tS 1.
Simple calculations show that for any A € KFUWKE f, — f|\ in
WL (A,N), dfi — d(f]) ae. on A, b1, € WH2 (A x [0,1], N),

’df2’L2 < C(f: ) ) ‘dhk+1,i|L2(A><[o71]) < C(f, g)

and hjy1,4(2,0) = fl- (), hiy1,i (z,1) = g(x) for & € |K*|. Hence,
we finish when we reach f; € C(|K|,N) N WY (K,N) and h,; €
C (|K| x [0,1],N). Let v; = f; o h=%. Then it is clear that v; € C (M, N) N
W2 (M, N), [v] = «, |v; — ulp2apy) = 0, [dvil 200y < ¢ (u,g) and dv; — du
a.e. on M. Hence, we may find u; € C° (M, N) such that |u; — u[2(p) — 0,

|dui| 20y < ¢(u,9), [ui] = a and du; — du a.e. on M. In particular, this

shows

H;[’,z (M,N) >{ue W"?(M,N) : ugs (h) has a continuous extension to
M w.r.t. N}.

The other direction of inclusion was proved in Section 7 of [3]. To see
H;[’/Q(M, N) ={u € W"3(M, N) : u may be connected to some smooth
maps },
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we only need to use the above proved equality and proposition 5.2 of [3],
which shows

{ue W2 (M, N) : ugo (h) has a continuous extension to M w.r.t. N}
= {u € Wh2 (M, N) : u may be connected to some smooth maps} .
O

We remark that many constructions above are motivated from Sections
5 and 6 of [4].

Proof of Corollary 1.2. This follows from Theorem 1.1 and Corollary 5.4 of
[3]. O
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