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Schouten tensor and some topological properties

Pengfei Guan
1
, Chang-Shou Lin and Guofang Wang

In this paper, we prove a cohomology vanishing theorem on locally
conformally flat manifold under certain positivity assumption on
the Schouten tensor. And we show that this type of positivity of
curvature is preserved under 0-surgeries for general Riemannian
manifolds, and construct a large class of such manifolds.

1. Introduction.

The notion of positive curvature plays an important role in differential geom-
etry. The existence of such a metric often implies some topological properties
of the underlying manifold. A typical example is the Bochner vanishing the-
orem on manifolds of positive Ricci curvature. In this paper, we consider
Riemannian metrics with certain type of positivity on the Schouten tensor.
This notion of curvature was introduced by Viaclovsky [18] which extends
the notion of scalar curvature.

Let (M,g) be an oriented, compact and manifold of dimension n > 2.
And let Sg denote the Schouten tensor of the metric g, i.e.,

Sg =
1

n − 2

(
Ricg − Rg

2(n − 1)
· g

)
,

where Ricg and Rg are the Ricci tensor and scalar curvature of g respectively.
For any n×n matrix A and k = 1, 2, · · · , n, let σk(A) be the k-th elementary
symmetric function of the eigenvalues of n × n matrix A, ∀k = 1, 2, · · · , n.
Define σk-scalar curvature of g by

σk(g) := σk(g−1 · Sg),

where g−1 ·Sg is defined, locally by (g−1 ·Sg)ij = gik(Sg)kj. When k = 1, σ1-
scalar curvature is just the scalar curvature R (up to a constant multiple).
It is natural to consider manifolds with metric of positive k-scalar curvature.
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However, the surgery might not preserve this positivity. In fact, we consider
a stronger positivity. Define

Γ+
k = {Λ = (λ1, λ2, · · · , λn) ∈ R

n |σj(Λ) > 0,∀j ≤ k}.

A metric g is said to be in Γ+
k if σj(g)(x) > 0 for j ≤ k and x ∈ M . Such

a metric is called a metric of positive Γk-curvature, or a Γk-positive metric.
When k = 1, it is just the metric of positive scalar curvature. In this paper,
we are only interested in the case k ≥ 2.

It was proved in [6] that any metric g of positive Γk-curvature with
k ≥ n/2 is a metric of positive Ricci curvature. Hence, when the underlying
manifold M is locally conformally flat, (M,g) is conformally equivalent to
a spherical space form. We also proved in [5] that (M,g) is conformally
equivalent to a spherical space form if [g] has a metric with positive Γn

2
−1-

curvature and the Euler characteristic of M is positive. Here, we restrict
our attention to the case k < n/2.

The first result of this paper the following vanishing theorem.

Theorem 1.1. Let (Mn, g) be a compact, locally conformally flat manifold
with σ1(g) > 0.

(i) If g ∈ Γ+
k for some 2 ≤ k < n/2, then the qth Betti number bq = 0 for[

n + 1
2

]
+ 1 − k ≤ q ≤ n −

([
n + 1

2

]
+ 1 − k

)
.

(ii) Suppose g ∈ Γ+
2 , then bq = 0 for

[
n−√

n
2

]
≤ q ≤

[
n+

√
n

2

]
. If g ∈ Γ+

2 ,

p = n−√
n

2 and bp �= 0, then (M,g) is a quotient of S
n−p × Hp.

(iii) If k ≥ n−√
n

2 and g ∈ Γ+
k , then bq = 0 for any 2 ≤ q ≤ n − 2. If

k = n−√
n

2 , g ∈ Γk, and b2 �= 0, then (M,g) is a quotient of S
n−2×H2.

Here, S
n−p is the standard sphere of sectional curvature 1 and Hp is a

hyperbolic plane of sectional curvature −1.

A more precise and general statement will be given in Proposition 2.1
in the next section. When k = 1, the above was proved by Bourguignon [1]
(see also [10, 13, 14]).

The most direct examples of Γk-positive metrics are Einstein mani-
folds with a positive scalar curvature (for instance S

n and CPn) and their
small perturbations. Another example is the Hopf manifold (a quotient of
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S
n−1 × S

1 with the product metric). It is easy to check that the product
metric is Γk-positive if and only if k < n/2. It is implicitly proved in [7] that
for k < n

2 , the connected sum of two positive Γk-curved locally conformally
flat manifolds can be assigned a locally conformally flat metric with positive
Γk curvature. Here we modify the argument in [4] to construct more exam-
ples of manifolds with positive Γk-curvature without locally conformally flat
assumption. The construction of manifolds by connected sums for positive
scalar curvature was furnished in [4] and [16].

Theorem 1.2. Let 2 ≤ k < n/2, and let Mn
1 and Mn

2 be two compact mani-
folds (not necessarily locally conformally flat) of positive Γk-curvature. Then
the connected sum M1#M2 also admits a metric of positive Γk-curvature.
If in addition, M1 and M2 are locally conformally flat, then M1#M2 admits
a locally conformally flat structure with positive Γk-curvature.

It follows that the manifold of the form

(1.1) L1# · · ·#Li#H1# · · ·#Hj,

carries a locally conformally flat structure of positive Γk-curvature (k <
n/2), where L′

is and H ′
j are quotients of S

n−1 × S
1 and the standard sphere

S
n respectively. Hence, any free product of finitely many copies of Z with

finite many copies of the fundamental group of spherical space forms is the
fundamental group of a manifold of positive Γk-curvature, for k < n/2.
As mentioned that any locally conformally flat manifold with Γk-curvature
for some k ≥ n

2 is conformally equivalent to a spherical space form by [6].
For k = [n−1

2 ], one would like to classify all such locally conformally flat
manifolds with positive Γk-curvature. When n = 3, 4, results of Izeki [8] and
Schoen-Yau [17] imply that if (Mn, g) is a compact Riemannian manifold
with positive scalar curvature, then M has a form of (1.1).

The paper is organized as follows. In Section 2, we prove that the
positivity of Γk curvature implies a positivity of a quantity arising in the
Weitzenböck formula for p-forms. This leads to the application of the
Bochner type technique to obtain Theorem 1.1. In Section 3, we present
the construction of Γk-positive metrics on the connected sum.

2. A vanishing theorem.

We first introduce some notations. Let Λ = (λ1, λ2, · · · , λn) ∈ R
n be an

n-tuple. For any j = 1, 2, · · · , n, we set

Λ|j = (λ1, · · · , λj−1, λj+1, · · · , λn).



890 P. Guan, C.-S. Lin & G. Wang

Assume that 2 ≤ k < n/2, 1 ≤ p ≤ n/2. Define a function Gn,p : R
n → R

by

Gn,p(Λ) = min
(i1,··· ,in)


(n − p)

p∑
j=1

λij + p
n∑

j=p+1

λij


 ,

where (i1, · · · , in) is a permutation of (1, 2, · · · , n) and the minimum is taken
over all permutations. If we rearrange Λ = (λ1, λ2, · · · , λn) such that λ1 ≥
λ2 ≥ · · · ≥ λn. It is obvious that for p ≤ n/2,

Gn,p(Λ) = p

n−p∑
j=1

λj + (n − p)
n∑

j=n−p+1

λj .

In the rest of this section, we will always assume that Λ is so arranged. Gn,p

is related to a geometric quantity arising in the Weitzenböck form for p-forms
(see (2.8)). Let Ip = (1, 1, · · · , 1) ∈ R

p and s > 0. Define n-tuples by

En,p = (In−p,−Ip) and Es
n,p = (In−p,−sIp).

It is trivial to see that Gn,p(En,p) = 0. A straightforward calculation shows
that En,p (up to a constant multiplier) is the Schouten tensor of the man-
ifold S

n−p × Hp. It will become clear later that this manifold serves the
“minimal” model in our vanishing theorem.

We want to find a condition on k, p under which Λ ∈ Γ+
k implies

Gn,p(Λ) > 0. Our basic observation is that if σk(En,p) = 0, then Gn,p(Λ) is
a “linearization” of σk at En,p in the direction of Λ. Namely,

σk−1(En−1,p)
p

Gn,p(Λ) =
d

dt
σk((1 − t)En,p + tΛ)|t=0.

Then by the convexity of Γ+
k , if En,p ∈ Γ+

k with σk(En,p) = 0, we have
σk(En,p + tΛ) ≥ 0 for Λ ∈ Γ+

k . Note that Γ+
k is the closure of Γ+

k . It would
imply that Gn,p(Λ) ≥ 0. Roughly speaking, σk(En,p) = 0 is the condition
we are seeking (the precise statements are given in Proposition 2.5 and
Lemma 2.6).

The main objective of this section is to prove the following proposition.

Proposition 2.1. Let (Mn, g) be a compact, locally conformally flat man-
ifold and let 2 ≤ k ≤ n/2 and 1 ≤ p ≤ n/2. Suppose g ∈ Γ+

k and σ1(g) is
not identical to zero in M .

(i) If En,p ∈ Γ+
k−1 and En,p �∈ Γ+

k , then bq = 0 for all p ≤ q ≤ n − p.
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(ii) Suppose En,p ∈ Γ+
k , σk(En,p) = 0 and σk(g) > 0 at some point in M ,

then bq = 0 for all p ≤ q ≤ n − p.

(iii) Suppose En,p ∈ Γ+
k , σk(En,p) = 0, then bp �= 0 if and only if (M,g) is

a quotient of S
n−p × Hp.

We need some technical lemmas in the proof of Proposition 2.1.

Lemma 2.2. For any s > 0, if Es
n,p ∈ Γ+

k , then Es
n−1,p ∈ Γ+

k−1 and

Es
n−2,p−1 ∈ Γ+

k−1. If En,p ∈ Γ+
k , then En−2,p−1 ∈ Γ+

k .

Proof. First, it is easy to check that Es
n−1,p ∈ Γ+

k−1 implies Es
n−2,p−1 ∈ Γ+

k−1.

If Es
n,p ∈ Γ+

k (resp. Γ+
k ), then Es

n−1,p ∈ Γ+
k−1 (resp. Γ+

k−1). Hence, we only
need to deal with the case that σk(Es

n,p) = 0. Assume by contradiction that
σk−1(Es

n−1,p) = 0. Since σk(Es
n,p) = σk−1(Es

n−1,p) + σk(Es
n−1,p), we have

σk(Es
n−1,p) = 0. Together with Es

n−1,p ∈ Γ+
k−1, it implies Es

n−1,p ∈ Γ+
k . We

may repeat this argument to produce a sequence of integers m such that
Es

m,p ∈ Γ+
k and σk(Es

m,p) = σk(Es
m+1,p) = 0. This process must be stopped

somewhere since −sIp is not in Γ+
k . We then obtain an integer m such that

σk(Es
m,p) = σk(Es

m+1,p) = 0 and Es
m,p ∈ Γ+

k−1. Now

0 = σk(Es
m+1,p) = σk−1(Es

m,p) + σk(Es
m,p) > 0,

this is a contradiction.
To prove the last assertion in the lemma, note that we already have

En−2,p−1 ∈ Γ+
k−1. Now,

0 ≤ σk(En,p) = σk(En−2,p−1) − σk−2(En−2,p−1).

It follows that
σk(En−2,p−1) ≥ σk−2(En−2,p−1) > 0.

�

Lemma 2.3. Let 0 < s ≤ 1 and p ≤ n/2. If Es
n,p ∈ Γ+

k with σk(Es
n,p) = 0

for some k ≥ 2, then for any Λ ∈ Γ+
k ,

Gn,p(Λ) ≥ 0.

If in addition 0 < s < 1 and σ1(Λ) > 0, then

Gn,p(Λ) > 0.
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Proof. We first notice that if Λ ∈ Γ+
2 and σ1(Λ) = 0. This follows from

n∑
i=1

λ2
i = σ2

1(Λ) − 2σ2(Λ).

Thus, we now assume σ1(Λ) > 0. For 0 ≤ s ≤ 1, we note that
σ1(Es

n,p) ≥ 0. Since Es
n,p ∈ Γ+

2 (note that k ≥ 2 by assumption), we must
have σ1(Es

n,p) > 0. By Lemma 2.2, we have σk−1(Es
n−1,p−1) > 0. Using the

identity
∑n

j=1 σk−1(Λ|j)λj = kσk(Λ), we have

(2.1) 0 = kσk(Es
n,p) = (n − p)σk−1(Es

n−1,p) − spσk−1(Es
n−1,p−1).

We want to show that Gn,p(Λ) is positive for Λ ∈ Γ+
k with σ1(Λ) > 0. Con-

sider a function f(t) = σk((1− t)Es
n,p + tΛ). Denote Es

n,p = (e1, e2, · · · , en).
By the convexity of Γk, we know f(t) ≥ 0. Since f(0) = 0, we have f ′(0) ≥ 0
which implies

0 ≤ f ′(0) =
n∑

j=1

σk−1(Es
n,p|j)(λj − ej) =

n∑
j=1

σk−1(Es
n,p|j)λj − σk(Es

n,p)

(2.2)

= σk−1(Es
n−1,p)

n−p∑
j=1

λj + σk−1(Es
n−1,p−1)

n∑
j=n−p+1

λj

= σk−1(Es
n−1,p)




n−p∑
j=1

λj +
n − p

sp

n∑
j=n−p+1

λj


 (by (2.1))

=
σk−1(Es

n−1,p)
sp


sp

n−p∑
j=1

λj + (n − p)
n∑

j=n−p+1

λj


 .

From Lemma 2.2, we have σk−1(Es
n−1,p) > 0. Hence, (2.2) implies that

(2.3) sp

n−p∑
j=1

λj + (n − p)
n∑

j=n−p+1

λj ≥ 0.

If s = 1, this gives Gn,p(Λ) ≥ 0. If s < 1, from assumption that σ1(Λ) =∑n
j=1 λj > 0, we have

∑n−p
j=1 λj > 0 by our arrangement of Λ. Therefore,

(2.3) implies that Gn,p(Λ) > 0. �
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Lemma 2.4. Assume that for some 1 ≤ p < n
2 and 2 ≤ k ≤ n/2, En,p ∈ Γ+

k

with σk(En,p) = 0. If Λ ∈ Γ+
k , then Gn,p(Λ) ≥ 0. The equality holds if

and only if Λ = µEn,p for some µ ≥ 0. In particular, if Λ ∈ Γ+
k , then

Gn,p(Λ) > 0.

Proof. As in the proof of Lemma 2.3, we may assume σ1(Λ) > 0. Since
the positivity of G(Λ) does not change under a rescaling Λ → µΛ, we may
assume that σ1(Λ) = σ1(En,p). As in the previous lemma, we consider the
function f(t) = σk((1 − t)En,p + tΛ). We have f ′(0) ≥ 0. The argument
given in the previous Lemma implies that Gn,p(Λ) > 0 or Gn,p(Λ) = 0.
Hence, we only need to examine the latter case. In this case, we also have
f ′(0) = 0. Since f(0) = 0 and f(t) ≥ 0 for any t ∈ [0, 1], we have f ′′(0) ≥ 0.
By our choice of En,p, it is clear that Gn,p(En,p) = 0. This, together with
Gn,p(Λ) = 0, gives

(2.4) p

n−p∑
i=1

(ei − λi) + (n − p)
n∑

i=n−p+1

(ei − λi) = 0.

Here, we denote En,p by (e1, e2, · · · , en). The normalization σ1(Λ) =
σ1(En,p) gives

(2.5)
n−p∑
i=1

(ei − λi) +
n∑

i=n−p+1

(ei − λi) = 0.

(2.4) and (2.5) imply

(2.6)
n−p∑
i=1

(ei − λi) =
n∑

i=n−p+1

(ei − λi) = 0.

Let Λ̃1 = (e1−λ1, · · · , en−p−λn−p) and Λ̃2 = (en−p+1−λn−p+1, · · · , en−λn).
(2.6) means that σ1(Λ̃1) = σ1(Λ̃2) = 0. Now, we compute f ′′(0)

0 ≤ f ′′(0) =
∑
i�=j

σk−2(En,p|ij)(λi − ei)(λj − ej)(2.7)

= 2{σk−2(En−2,p−1)σ1(Λ̃1)σ1(Λ̃2)

+ σk−2(En−2,p−2)σ2(Λ̃1) + σk−2(En−2,p)σ2(Λ̃2)}

= σk−2(En−2,p−2)

[
σ2

1(Λ̃1) −
n−p∑
i=1

(ei − λi)2
]
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+ σk−2(En−2,p)


σ2

1(Λ̃2) −
n∑

n−p+1

(ei − λi)2




= −σk−2(En−2,p−2)
n−p∑
i=1

(ei − λi)2

− σk−2(En−2,p)
n∑

i=n−p+1

(ei − λi)2.

By Lemma 2.2, we know that σk−2(En−2,p−2) > 0 and σk−2(En−2,p) > 0.
Hence, (2.7) implies that

ei = λi, for any i.

Hence, the equality holds implies Λ = µEn,p for some µ > 0. �

Proposition 2.5. (i) Suppose that σk(En,p) < 0 for some 2 ≤ k < n/2 and
2 ≤ p < n/2. If Λ ∈ Γ+

k , then Gn,q(Λ) ≥ 0 for any p ≤ q ≤ n/2. If in
addition σ1(Λ) > 0, then Gn,q(Λ) > 0 for any p ≤ q ≤ n/2.

(ii) Suppose that σk(En,p) = 0 and En,p ∈ Γ+
k for some 2 ≤ k < n/2 and

2 ≤ p < n/2. If Λ ∈ Γ+
k , then Gn,q(Λ) ≥ 0 for any p ≤ q ≤ n/2. And if

Λ ∈ Γ+
k , then Gn,q(Λ) > 0 for any p ≤ q ≤ n/2.

Proof. Set 0p = (0, . . . , 0). Since Es
n,p = (In−p, 0p)−s(0n−p, Ip), σk(Es

n,p), as
a function of s, is decreasing. Hence, from σk(E0

n,p) > 0 and the assumption
that σk(E1

n,p) = σk(En,p) < 0, there is a s ∈ (0, 1) such that σk(Es
n,p) = 0.

And one can check that for any other integer 1 ≤ k′ < k, σk′(Es
n,p) > 0.

Hence, Es
n,p ∈ Γ̄k and we can apply Lemma 2.3 to show that Gn,p(Λ) ≥ 0

for any Λ ∈ Γ̄+
k , and Gn,p(Λ) > 0 for any Λ ∈ Γ̄+

k and σ1(Λ) > 0. For
n/2 ≥ q > p, it is easy to see that σk(En,q) < σk(En,p) < 0. Therefore, the
same argument applies for q. This proves (i). (ii) is proved by the same
argument. �

We now prove Proposition 2.1.

Proof of Proposition 2.1. Recall the Weitzenböck formula for p-forms ω

∆ω = ∇∗∇ω + Rω,
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where
Rω =

∑
j,l=1

ωj ∧ i(el)R(ej , el)ω.

Here, ej is a local basis and i(·) denotes the interior product ∆ = dd∗ + d∗d
is the Hodge-de Rham Laplacian and ∇∗∇ is the (positive) Lapalacian. In
local coordinates, let ω = ω1 ∧ · · · ∧ ωp. Then

(2.8) Rω =


(n − p)

p∑
i=1

λi + p

n∑
i=p+1

λi


 ω,

where λ’s are eigenvalues of the Schouten tenser Sg. Under the conditions
given in (i) or (ii), Proposition 2.5 implies that R is a non-negative operator
and positive at some point. It is clear from the Weitzenböck formula that any
q-harmonic form ω is parallel for such q considered in the Proposition. Since
R is positive at some point, this forces ω = 0 everywhere. So, Hq(M) = {0}.

Now, we prove (iii). By assumption, there is a non-zero harmonic p-
form ω. In this case, R is non-negative by Proposition 2.5. Again, from the
Weitzenböck formula, ω is parallel. Now, one can follow the argument given
in [11] to prove that the restricted holonomy group of M is reducible and
the universal cover M̃ of M is a Riemannian product. And we can conclude
that M̃ is S

n−p × Hp. �

Finally, we prove Theorem 1.1. We need to spell out the relationship of
k and p such that the conditions in Proposition 2.5 are satisfied.

Lemma 2.6. The followings are true.

(i) k = 2 and n
2 ≥ p ≥ [n−

√
n

2 ]; then En,p �∈ Γ+
2 . If p = n−√

n
2 is an integer,

then En,p ∈ Γ+
2 with σ2(En,p) = 0.

(ii) p = 2 and k ≥ [n−
√

n
2 ], then En,2 �∈ Γ+

k . If k = n−√
n

2 is an integer,
then En,2 ∈ Γ+

k with σk(En,2) = 0.

(iii) For the general case, En,p �∈ Γ+
k , if 3 ≤ p ≤ n/2, and

(2.9) k ≥ n − 2p + 4 −√
n − 2p + 4

2
;

or if 3 ≤ k < n/2, and

(2.10) p ≥ n − k + 2 −√
n − k + 2

2
.
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In particular, if n > 4 and k = [n+1
2 ] + 1 − p, then En,p �∈ Γ+

k .

Proof. It is easy to compute that

σ2(En,p) =
(n − 2p)2 − n

2
.

So, En,p �∈ Γ+
2 if n

2 ≥ p ≥ n−√
n

2 .
Similarly, if p = 2, we compute

σk(En,2) = σk(In−2) − 2σk−1(In−2) + σk−2(In−2)

=
(n − 2)!

k!(n − k)!
{(n − 2k)2 − n} ≤ 0,

if k ≥ n−√
n

2 .
If p > 2 and En,p ∈ Γk, applying Lemma 2.2 (the last assertion) repeat-

edly, we have En−2p+4,2 ∈ Γ+
k . However, one can compute

σk(En−2p+4,2) = σk(In−2p+2) + σk−2(In−2p+2) − 2σk−1(In−2p+2)
= (n−2p+2)!

k!(n−2p+4−k)!{(n − 2p + 4 − 2k)2 − (n − 2p + 4)} ≤ 0,

for k satisfies (2.9). A contradiction.
And if n

2 > k > 2 and En,p ∈ Γk, by Lemma 2.2, En−k+2,p ∈ Γ+
2 . This

implies that n − k − 2p + 2 > 0. By (2.10)

σ2(En−k+2,p) =
(n − k + 2 − 2p)2 − n + k − 2

2
≤ 0.

Contradiction again. �

The statements (i) and (ii) in Lemma 2.6 are sharp, but (iii) is not
sharp. When p > 2 and k > 2, the relationship of them is a combinatorial
problem which involves polynomials of degree k. By Lemma 2.2, there is an
optimal relation for each pair (k, p). For example, one may calculate that
for k ≥ n−√

3n−2
2 and p = 3, σk(En,p) ≤ 0. The dual relation is also true

for k = 3. In (iii), we simply reduced it to the cases p = 2 or k = 2 to
get relations (2.9) and (2.10). Regarding two relations (2.9) and (2.10), for
relative small p, the first one is sharper, and for relative small k, the later
is better.

Proof of Theorem 1.1. Theorem 1.1 follows from Proposition 2.1 and
Lemma 2.6. �
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3. Construction for the connected sums.

In this section, we first prove Theorem 1.2 for the case without the locally
conformally flat structure. The proof follows closely the idea in [4]. Then we
prove Theorem 1.2 for the case with the locally conformally flat structure.

Proof of Theorem 1.2 for the case without the locally conformally flat struc-
ture. Let M be an n-dimensional manifold with a Γk-positive metric and
n > 2k ≥ 4. Fix p ∈ M and let D = {x ∈ R

n | ‖x‖ ≤ r̄} be a small nor-
mal coordinate ball centered at p of radius r̄, where r̄ is smaller than the
injectivity radius of M . For any ρ < r̄, let Sn−1(ρ) = {x ∈ D | ‖x‖ = ρ}
be the geodesic ball of radius ρ. Following [4], we consider the Riemannian
product D × R with coordinates (x, t) and its hypersurface

T = {(x, t) ∈ D × R | (‖x‖, t) ∈ γ, }
where γ is a curve in the (r, t)-plane. We will choose γ satisfying

1. γ begins at one end with a vertical line segment t = 0, r1 ≤ r ≤ r̄
and γ ends at another end with a horizontal line segment r = r∞ > 0,
with r∞ sufficiently small, see figure in [4].

2. The resulted hypersurface T has a metric of Γk-positive.

The statement 2 is the crucial point of the construction. Now, we compute
the Schouten tensor at x̄ = (x, t) ∈ T with ‖x‖ = r �= 0. Choose an
orthonormal basis e1, e2, · · · , en of Tx̄ such that e1 is the tangent vector of
the curve {(sx, t)|s, t ∈ R+} ∩ T parametrized by arc length. Moreover,
one can choose this basis such that e1, e2, · · · , en are principal vectors of
the second fundamental form of T in D × R. The corresponding principal
curvature λi are

λ1 = κ,
λi = (−1

r + O(r)) sin θ, i ≥ 2,

where κ is the geodesic curvature of the curve γ at (r, t) and θ is the angle
between the normal to the hypersurface and the t-axis, see [4]. The Gauss
equation is

Rijkl = R̄ijkl + hikhjl − hilhjk

= R̄ijkl + λiλj(δikδjl − δilδjk).

Here, Rijkl (R̄ijkl resp.) is the curvature tensor of T (D × R resp.). It is
clear that
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R̄ijkl = R̄D
ijkl, i, j, k, l ≥ 2,

R̄1jkl = R̄D
∂rjkl cos θ, j, k, l ≥ 2,

R̄1j1l = R̄D
∂rj∂rl cos

2 θ j, l ≥ 2.

Hence, the Ricci tensor of T is given by (∀i, j ≥ 2),

Rij = RD
ij − RD

i∂rj∂r sin2 θ − κδij

(
1
r

+ O(r)
)

sin θ

+ (n − 2)δij

(
1
r

+ O(r)
)2

sin2 θ,

R11 = RD
∂r∂r − RD

∂r∂r sin2 θ − (n − 1)κ
(

1
r

+ O(r)
)

sin θ,

R1j = RD
1j − RD

1j(1 − cos θ).

We compute the scalar curvature R and Schouten tensor S:

R = RD − 2RD
∂r∂r sin2 θ + (n − 1)(n − 2)

(
1
r2

+ O(1)
)

sin2 θ

− 2(n − 1)κ
(

1
r

+ O(r)
)

sin θ,

S = SD + V sin2 θ

(3.1)

+
1
2

(
1
r2

+ O(1)
)

sin2 θ




1 0 · · · 0 0
0 1 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 1 0
0 0 · · · 0 −1




− κ

(
1
r

+ O(r)
)

sin θ




0 0 · · · 0 0
0 0 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 0 0
0 0 · · · 0 1




= SD + V sin2 θ +
1
2

(
1
r2

+ O(1)
)

sin2 θG0 − κ

(
1
r

+ O(r)
)

sin θG1,

where all entries of the matrix V are bounded (depending only on the metric
on D).

It is easy to check that the n × n matrix G0 is in Γ+
k if and only if

n > 2k. From this fact, one can see that when r is small, the third term in
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(3.1) dominates others. Since Γ+
k is a open cone and SD ∈ Γ+

k , there is an
positive constant c0 > 0 such that SD − c0I ∈ Γ+

k . Here, I is the identity
matrix, In order to satisfy 2, from the convexity of Γ+

k , we only need to find
a curve such that the matrix

(3.2) F := c0I − c1 sin2 θI +
1
2

(
1
r2

− c2

)
sin2 θG0 − κ

(
1
r

+ c3

)
sin θG1

is in Γ+
k , Where c1 > 0 is chosen such that (Vij)+c1I is positive definite and

c2, c3 are positive constants independent of r. Near the starting point (0, r1),
by the openness of Γ+

k , we can choose a small θ0 such that for 0 ≤ θ < θ0,
the matrix F is in Γ+

k . Hence, we can bend γ in a small region around the
point (0, r1) and end the “first bend” at (t2, r2) with θ = θ0, see [4]. Now,
we continue the curve γ by a straight line segment with angle θ0 and end at
a point (t3, r3) where r3 > 0 is very small which will be chosen later. Since
on (t2, t3) the geodesic curvature κ = 0, F is in Γ+

k . We find r3 small so that
for any r ≤ r3

(c0 − c1 sin2 θ)I +
1
2

(
1
r2

− c2

)
sin2 θG0 − κ

(
1
r

+ c3

)
sin θG1 ∈ Γ+

k ,

We compute

σk(F ) = ak (n − 1)!
k!(n − k)!

(
n − 2k − b

a

)
,

where

a =
1
2

(
1
r2

− c2

)
sin2 θ + (c0 − c1 sin2 θ),

b = κ

(
1
r

+ c3

)
sin θ − 2(c0 − c1 sin2 θ).

Since n > 2k, to keep the k-positivity, we only need b/a < 1/2, i.e.,

2κ
(

1
r

+ c3

)
sin θ <

1
2

(
1
r2

− c2

)
sin2 θ + 3(c0 − c1 sin2 θ).

Now, we can choose γ as in [15] to finish the proof. �

The proof of the last statement in Theorem 1.2 is inspired by arguments
in [12], we need a lemma which was proven in [7].

Lemma 3.1. Let D be the unit disk in R
n and ds2 the standard Euclidean

metric. Let g0 = e−2u0ds2 be a metric on D of positive Γk-curvature with
k < n/2. Then there is a conformal metric g = e−2uds2 on D\{0} of positive
Γk-curvature with the following properties:
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1) σk(g) > 0 in D\{0}.
2) u(x) = u0(x) for r = |x| ∈ (r0, 1].

3) u(x) = a + log r for r = |x| ∈ (0, r3) and some constant a.

for some constant r0 and r3 with 0 < r3 < r0 < 1.

Proof of Theorem 1.2 in the case of locally conformally flat. Let (M1, g1) and
(M2, g2) be two compact locally conformally flat manifolds of Γk-positive.
Let pi ∈ Mi. The locally conformally flatness of Mi implies that there is a
neighborhood Ui of pi such that (Ui, gi) = (D, e−2ui |dx|2). Applying Lemma
5, we obtain a new conformal metric g̃i on Mi\{pi} satisfying in D conditions
(1)–(3) with constants ri

0, r
i
3 and ai. By scaling of metrics, we may assume

that a1 = a2 = 0. Let r0 = min{r1
3, r

2
3}. Hence, in {0 < |x| ≤ r0} two

metrics g̃1 and g̃2 are the same, namely, g̃1 = g̃2 = 1
|x|2 |dx|2. The inversion

map φ(x) = (r0)2

2
x

|x|2 , maps { r0

2 ≤ |x| ≤ r0} into itself. Now, we can glue

M1 and M2 by identifying { r0

2 ≤ |x| ≤ r0} by φ. Note that φ is conformal.
It is clear that the glued manifold is a locally conformally flat manifold of
positive Γk. �

Added-in-proof. After this paper was completed, we learned two recent
papers by Chang-Hang-Yang [2] and González [3] on further topological
implications of Γk positivity for locally conformally flat manifolds.
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