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Phase Space for the Einstein Equations

Robert Bartnik1

A Hilbert manifold structure is described for the phase space F
of asymptotically flat initial data for the Einstein equations. The
space of solutions of the constraint equations forms a Hilbert sub-
manifold C ⊂ F . The ADM energy-momentum defines a function
which is smooth on this submanifold, but which is not defined in
general on all of F . The ADM Hamiltonian defines a smooth func-
tion on F which generates the Einstein evolution equations only
if the lapse-shift satisfies rapid decay conditions. However a reg-
ularised Hamiltonian can be defined on F which agrees with the
Regge-Teitelboim Hamiltonian on C and generates the evolution
for any lapse-shift appropriately asymptotic to a (time) transla-
tion at infinity. Finally, critical points for the total (ADM) mass,
considered as a function on the Hilbert manifold of constraint solu-
tions, arise precisely at initial data generating stationary vacuum
spacetimes.

1. Introduction.

It has long been known that the Einstein equations can be expressed as
a Hamiltonian field theory, at least formally. Our aim is to justify these
calculations by providing Hilbert space structures in which important quan-
tities such as the constraint map and the total energy-momentum, become
smooth functions. We work with a phase space F consisting of pairs (g, π)
of H2 ×H1 local regularity with decay appropriate for asymptotically flat
spacetimes. Our main results imply in particular:

• the constraint set C is a Hilbert submanifold of F (Theorem 3.12);

• the ADM energy-momentum is a C∞ function on C (Theorem 4.1);
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tralian Research Council.
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• a regularization H(g, π; ξ) of the Regge–Teitelboim (RT) Hamiltonian
is C∞ on F and generates the correct equations of motion (Theo-
rem 5.2); and

• constrained critical points of the regularized Hamiltonian H on C cor-
respond to Killing initial data (Theorem 6.1).

In Section 3, we show that the set of asymptotically flat solutions to
the constraint equations Φ(g, π) = 0 is a smooth Hilbert submanifold of the
phase space F . This is the property of linearization stability [18], so-called
because it implies that any solution of the linearized Einstein equations
corresponds to a curve of solutions of the non-linear equations, provided a
suitable local existence result is available for the regularity class in question.

However, the best local existence and uniqueness results for the vacuum
Einstein evolution at present require slightly more: (g, π) ∈ Hs × Hs−1

with s > 2 [4, 32, 22]. Interestingly, it has been conjectured that this
can be improved to s = 2, the case examined here, and possibly even to
s > 3/2, but the calculations here rely heavily on s = 2. Maxwell [23]
has shown that the conformal method can be used to construct trgK =
0 constraint solutions with s > 3/2 data, which suggests at least some
of the results here can be improved. Also, an alternative approach based
on the Corvino–Schoen perturbation technique [15, 16] has been used [14]
to obtain Banach manifold structures for the constraint set under a wide
range of asymptotic condition, but with much more stringent regularity
conditions.

The ADM total mass and energy momentum [2] are defined by limits
at infinity of coordinate-dependent integrals. The consistency of these de-
finitions, and their independence of the coordinate framing, is established
in Section 4; this extends previous results [5, 13, 26]. Furthermore, the
ADM energy-momentum is a smooth function on the constraint manifold C;
however, it is not finite in general on F .

The Einstein evolution equations may be written in Hamiltonian form
[3], with the lapse-shift ξ freely specifiable. In Section 5, we show that the
ADM Hamiltonian is also smooth on F , provided ξ decays suitably, and its
derivative on F generates the evolution equations. To extend this result to ξ
asymptotic to a time translation at infinity, we modify the RT Hamiltonian
[28] to construct a regularized Hamiltonian which is smooth on all F and
agrees with the ADM energy-momentum on C ⊂ F .

It is appealing to conjecture that, although the Hamiltonian flow vector
field is only densely defined on F , it might still be possible to construct
integral curves directly, perhaps by a judicious choice of lapse-shift ξ to
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smooth the tangent vectors. This would amount to a direct proof of local
existence for s = 2 and is unlikely to succeed, because it does not take into
account the characteristic structure of the Einstein equations, which plays
an important role in other approaches to the low-regularity local existence
problem [22, 32].

The lapse-shift ξ in the regularized Hamiltonian may be regarded as a
Lagrange multiplier for constrained variations, and in Section 6, we use this
to establish rigorously an identity of Brill–Deser–Fadeev [10], which equates
constrained critical points of the ADM energy with Killing initial data, i.e.
DΦ(g, π)∗ξ = 0.

Critical points of energy arise naturally from the mass-minimizing defi-
nition of quasi-local mass [6, 8], which motivates the conjecture that mass-
minimizing extensions of a given region (Ω, g, π) are stationary. The static
case has been established in [15] by a different method, but a direct varia-
tional proof, based on extending the results of Section 6 to data sets with
boundary, would be more natural. This question will be addressed in future
work.

2. Notation and Formulae.

In this section we introduce the basic framework and notations used in
the paper and recall some well-known formulae concerning the constraint
equations.

Let M be a connected, oriented and non-compact 3-dimensional man-
ifold, and suppose there is a compact subset M0 ⊂ M such that there is
a diffeomorphism φ : M\M0 → E1, where ER ⊂ R

3 is an exterior region,
ER = {x ∈ R

3 : |x| > R}. We also use the notation BR for the open ball of
radius R centred at 0 ∈ R

3, AR = B2R\BR for the annulus and SR = ∂BR

for the sphere of radius R. Although we assume ∂M = Ø for simplicity,
most of the earlier results are valid also when ∂M is non-empty and con-
sists of a finite collection of disjoint compact 2-surfaces. Let g̊ be a fixed
Riemannian metric on M satisfying g̊ = φ∗(δ) in M\M0, where δ is the nat-
ural flat metric on R

3. In the terminology of [5], φ is a structure of infinity
on M. Let r ∈ C∞(M) be some function satisfying r(x) ≥ 1 ∀x ∈ M and
r(x) = |x| ∀x ∈ M\M0. Using r and g̊, we define the weighted Lebesgue
and Sobolev spaces [5] Lp

δ , W
k,p
δ , 1 ≤ p ≤ ∞, δ ∈ R, as the completions of

C∞
c (M) under the norms

‖u‖p,δ =
(∫

M
|u|pr−δp−3dvo

)1/p

,
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‖u‖k,p,δ =
k∑

j=0

‖∇̊ju‖p,δ−j ,

if p < ∞, and the appropriate supremum norm if p = ∞. Here dvo, ∇̊ are
respectively the volume measure and connection determined by the metric
g̊. The weighted Sobolev space of sections of a bundle E over M is defined
similarly and denoted W k,p

δ (E). We distinguish especially the spaces

G = W 2,2
−1/2(S), K = W 1,2

−3/2(S̃),
L = L2

−1/2(T ), L∗ = L2
−5/2(T ∗ ⊗ Λ3),

where S = S2T ∗M is the bundle of symmetric bilinear forms on M,
S̃ = S2TM ⊗ Λ3T ∗M is the bundle of symmetric tensor-valued 3-forms
(densities) on M and T is the bundle of spacetime tangent vectors. Thus
for example, L is a class of spacetime tangent vector fields on M, and L
and L∗ are dual spaces with respect to the natural integration pairing. The
following Hilbert manifolds modelled on G are natural domains for asymp-
totically flat metrics:

G+ = {g : g − g̊ ∈ G, g > 0},
G+

λ = {g ∈ G+, λ̊g < g < λ−1g̊}, 0 < λ < 1.

We note that by virtue of the Sobolev inequality and the Morrey lemma [5],
tensors in G are Hölder continuous (with Hölder exponent 1/2) and thus the
matrix inequality conditions on g in the definitions of G+,G+

λ are satisfied
in the pointwise sense. The Hilbert manifold we shall consider as the phase
space for the Einstein equations is then

(2.1) F = G+ ×K.

Theorem 4.7 shows that F is independent of the choice of structure of infinity
φ.

If we suppose that M is a spacelike submanifold of a 4-dimensional
Lorentzian manifold (spacetime), then the second fundamental form or ex-
trinsic curvature tensor K is the bilinear form defined by

(2.2) K(u, v) = g(4)(u,∇(4)
v n),

where g(4), ∇(4) are the spacetime metric and connection, u, v are tangent
vectors to M and n ∈ T is the future unit normal to M. It is often
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convenient to use the conjugate momentum π as a reparameterisation of K
— we adopt the definition

(2.3) πij = (Kij − trgK gij)
√
g,

where
√
g =

√
det g/

√
det g̊ denotes the volume form of the induced metric

g, so π is a section of the bundle S̃ = S2TM ⊗ Λ3T ∗M. Either (g,K) or
(g, π) can be used as coordinates on F , and we will move freely between
these two parameterisations in the following formulæ.

For sufficiently smooth metric g and second fundamental form K (or π),
the constraint functions Φ = (Φ0,Φi) = Φ(g, π) are defined by

Φ0(g, π) =
(
R(g) − |K|2 + (trgK)2

)√
g,(2.4)

= R(g)
√
g − ( |π|2 − 1

2(trgπ)2)/
√
g

Φi(g, π) = 2
(
∇jKij −∇i(trgK)

)√
g(2.5)

= 2 gij∇kπ
jk,

where R(g), ∇, trg are respectively the Ricci scalar, covariant derivative and
trace of the metric g, and |K|2 = gikgjlKijKkl. Notice that Φ takes values
in T ∗ ⊗ Λ3T ∗M, the bundle of density-valued spacetime cotangent vectors
on M. If the Einstein equations are satisfied, then the normalisation chosen
ensures that Φ and the stress-energy tensor are related by Φα = 16πκTnα

√
g,

where n = e0 is the future unit normal to M, κ is Newton’s gravitational
constant, and Tnα

√
g is the local energy-momentum density 4-covector as

seen by an observer with world vector n. Consequently our sign conventions
vary slightly from those used in [24, 18].

The functional derivative DΦ is given formally by

DΦ0(g, π)(h, p) = (δgδgh− ∆gtrgh)
√
g − hij

(
Ricij − 1

2R(g)gij
)√

g

(2.6)

+ hij

(
trgπ π

ij − 2πi
kπ

kj + 1
2 |π|

2gij − 1
4(trgπ)2gij

)
/
√
g

+ pij (trgπgij − 2πij) /
√
g,

DΦi(g, π)(h, p) = πjk (2∇jhik −∇ihjk) + 2hij∇kπ
jk + 2gik∇jp

jk,

(2.7)

where δgδgh = ∇i∇jhij. Multiplying by (N,Xi) and integrating by parts
and ignoring boundary terms gives formulæ for the formal L2(dvo)-adjoint
operator DΦ∗,
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(h, p) ·DΦ0(g, π)∗N =(2.8)

hij

(
∇i∇jN − ∆gNg

ij
)√

g −Nhij

(
Ricij − 1

2R(g)gij
)√

g

+Nhij

(
trgπ π

ij − 2πi
kπ

kj + 1
2 |π|

2gij − 1
4(trgπ)2gij

)
/
√
g

+Npij (trgπgij − 2πij) /
√
g,

(h, p)·DΦi(g, π)∗Xi =(2.9)

hij

(
Xk∇kπ

ij + ∇kX
kπij − 2∇kX

(iπj)k
)
− 2 pij∇(iXj).

These calculations are carefully described in [18]. Adopting some natural
shorthand notations, the adjoint operator can be rewritten

(h, p)·DΦ(g, π)∗(N,X) =(2.10)

h •

{(
∇2N − ∆gNg −N

(
Ric− 1

2R(g)g
))#√

g

−N
(
Kπ + πK − 1

2π •K g
)# + LXπ

}
− p • (2KN + LXg)

where # signifies the indexed-raised tensor, LX is the Lie derivative in the
direction X, (Kπ)ij = Ki

kπ
kj and • is the natural contraction between 2-

tensors, eg. π •K = πijKij . Defining

(2.11) Sij = g−1(trgππ
ij − 2πi

kπ
jk + 1

2 |π|
2gij − 1

4(trgπ)2)gij),

and Eij = Ricij − 1
2R(g)gij , we may express DΦ in matrix form as

(2.12) DΦ(g, π)(h, p) =
[ √

g(δgδg − ∆gtrg + S − E) −2K
π̂∇ + 2δgπ 2δg

] [
h
p

]
,

where
π̂∇h = π̂jkl

i ∇jhkl = (πjkδl
i + πjlδk

i − πklδj
i )∇jhkl.

Similarly the adjoint may be written as
(2.13)

DΦ(g, π)∗(N,X) =
[ √

g(∇2 − g∆g + S − E) ∇π − π̂∇
−2K −εg

] [
N
X

]
,

where
(∇π − π̂∇)X = LXπ = ∇Xπ

ij − π̂kij
l ∇kX

l
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and εg(X) = LXg = 2∇(iXj) is the strain operator. Let DΦ(g, π)∗a(N,X),
a = 1, 2 denote the two components of DΦ∗ in (2.13).

We will also use the notation ξ = (ξα) = (N,Xi), where ξ has a natural
interpretation as the lapse-shift of the spatial slicing of the evolved space-
time. If g and (N,Xi) depend on an evolution parameter t and N > 0, then
the Lorentzian metric

(2.14) ds2 = −N2dt2 + gij(dxi +Xidt)(dxj +Xjdt)

describes a spacetime satisfying some form of the Einstein equations, and
ξ = Nn+Xi∂i coincides with the time evolution vector ∂t.

Greek letters α, β, . . . will be used for spacetime indices, with range
0, . . . , 3, and Latin letters i, j, . . . , will indicate spatial indices (on M), with
range 1, 2, 3. Index-free and indexed expressions will be intermixed as con-
venient. The letters c, C will be used to indicate constants which may vary
from line to line, with c generally denoting a constant depending only on
the background metric g̊ and the ellipticity λ, and C denoting a constant
whose dependence on significant parameters will be explicitly indicated.

3. The constraint manifold.

In this section we show that the constraint map

(3.1) Φ : F → L∗

is a smooth map between Hilbert manifolds, and that the level sets C(ε, S) =
Φ−1(ε, S) are Hilbert submanifolds. In particular, the space C = Φ−1(0) of
asymptotically flat vacuum initial data is a Hilbert manifold. The proof
is based on the implicit function theorem method used in previous studies
[18, 24, 1] of the constraint set over a compact manifold. In fact, the main
result of this section may be considered as the logical extension of those
results to the case of asymptotically flat manifolds. We note in particular
that the quadratic Taub constraints on the linearised solutions which arise
in the case where the underlying spacetime admits a symmetry, do not occur
in the asymptotically flat case — as was observed by Moncrief [25] — and
consequently, the cone-like singularities which occur in the space of solutions
of the constraints over a compact manifold (at data sets generating vacuum
spacetimes admitting a Killing vector), are absent in the asymptotically flat
constraint manifold. The space of asymptotically flat (vacuum) constraint
data is a smooth Hilbert manifold, at all points.
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However, the result shown here, that the space of solutions of the con-
straint equations forms a Hilbert manifold, does not prove that the Einstein
equations with asymptotically flat data are linearization stable, in the sense
of [18, 24], because the regularity condition (g, π) ∈ F is too weak to be able
to apply known local existence and uniqueness theorems for the Einstein
equations. It is interesting, therefore, that it has been conjectured that the
minimal regularity conditions for the well-posedness of the Einstein equa-
tions exactly correspond to (g, π) ∈ F . If this conjecture is correct, then
linearization stability will hold under the conditions considered here as well.

Alternatively, linearization stability may be obtained by requiring higher
differentiability in the spaces G+,K and L∗, and then observing that the
results about the boundedness and smoothness of Φ and the triviality of the
kernel of DΦ∗ remain valid — the result is a phase space of initial data with
sufficient regularity for known existence and uniqueness theorems to apply.
The details of this extension are left to the interested reader.

Proposition 3.1. Suppose g ∈ G+
λ for some λ > 0 and π ∈ K. Then there

is a constant c = c(λ) such that

‖Φ0(g, π)‖2,−5/2 ≤ c
(
1 + ‖g − g̊‖2

2,2,−1/2 + ‖π‖2
1,2,−3/2

)
,(3.2)

‖Φi(g, π)‖2,−5/2 ≤ c
(
‖∇̊π‖2,−5/2 + ‖∇̊g‖1,2,−3/2 ‖π‖1,2,−3/2

)
.(3.3)

Proof. Since g ∈ G+
λ , g is Hölder-continuous with Hölder exponent 1/2 and

we have the global pointwise bounds

(3.4) λ̊gij(x)vivj < gij(x)vivj < λ−1g̊ij(x)vivj ∀x ∈ M, v ∈ R
3.

For later use, we note the following consequence of the weighted Hölder and
Sobolev inequalities [5], valid for any function or tensor field u,

‖u2‖2,−5/2 = ‖u‖2
4,−5/4 ≤ c ‖u‖2

4,−3/2(3.5)

≤ c ‖u‖3/2
6,−3/2 ‖u‖

1/2
2,−3/2

≤ c ‖u‖2
1,2,−3/2.

The g, g̊ connections are related by the difference tensor Ak
ij = Γk

ij − Γ̊k
ij ,

which may be defined invariantly by

(3.6) Ak
ij = 1

2g
kl

(
∇̊igjl + ∇̊jgil − ∇̊lgij

)
.
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The scalar curvature can be expressed in terms of ∇̊ and Ak
ij by

R(g) = gjkRic(̊g)jk + gjk
(
∇̊iA

i
jk − ∇̊jA

i
ik +Al

jkA
i
il −Ai

jlA
l
ki

)
(3.7)

= gikgjl
(
∇̊2

ijgkl − ∇̊2
ikgjl

)
+Q(g−1, ∇̊g) + gjkRic(̊g)jk,

where Q(g−1, ∇̊g) denotes a sum of terms quadratic in g−1, ∇̊g. Using (3.4),
(3.5), (3.7), we may estimate

‖R(g)‖2
2,−5/2 ≤ c

∫
M

(
|∇̊2g|2 + |∇̊g|4 + |Ric(̊g)|2

)
r2 dvo

≤ c
(
1 + ‖∇̊2g‖2

2,−5/2 + ‖∇̊g‖4
4,−5/4

)
≤ c

(
1 + ‖∇̊g‖4

1,2,−3/2

)
,

and since
‖ |π|2‖2,−5/2 ≤ c ‖π‖2

1,2,−3/2,

the estimate (3.2) follows and Φ0(g, π) ∈ L2
−5/2.

The proof of the corresponding estimates for the momentum constraint
is similar, but somewhat simpler. Since

(3.8) ∇jπ
ij = ∇̊jπ

ij +Ai
jkπ

jk,

we have

(3.9) Φi(g, π) = 2gij

(
∇̊kπ

jk +Aj
klπ

kl
)
,

and Hölder’s inequality, (3.4) and (3.5) give

‖Φi(g, π)‖2
2,−5/2 ≤ c

(
‖∇̊π‖2

2,−5/2 + ‖∇̊g‖2
1,2,−3/2 ‖π‖2

1,2,−3/2

)
.

�

Thus Φ is a quadratically bounded map between the Hilbert manifolds
F = G+ ×K and L∗ = L2

−5/2(T ); together with the polynomial structure of
the constraint functionals, this enables us to show that Φ is smooth, in the
sense of infinitely many Frechét derivatives.

Corollary 3.2. Φ : F → L∗ is a smooth map of Hilbert manifolds.
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Proof. Proposition 3.1 shows that ‖Φ(g, π)‖L∗ ≤ c(1 + ‖g − g̊‖2
G + ‖π‖2

K),
so Φ is locally bounded on F . To show Φ is smooth, we note from the
representations (3.6), (3.7), (3.9) that Φ can be expressed as the composition

Φ(g, π) = F (g, g−1,
√
g, 1/

√
g, ∇̊g, ∇̊2g, π, ∇̊π),

where F = F (a1, . . . , a8) is a polynomial function which is quadratic in the
parameters a5 and a7 and linear in the remaining parameters. The map
g �→ (g, g−1,

√
g, 1/

√
g) is analytic on the space of positive definite matrices,

and the maps g �→ ∇̊g, g �→ ∇̊2g and π �→ ∇̊π are bounded linear, hence
smooth, from the Hilbert manifolds G+ and K to L∗. Results of Zorn and
Hille [21, Section 3, Section 26] on locally bounded polynomial functionals
show Φ has continuous Frechét derivatives of all orders. �

The constraint set C = Φ−1(0) ⊂ F is of particular interest, since it gives
the class of initial data for the vacuum Einstein equations. To show that
C is a Hilbert manifold using the implicit function method, we study the
kernel of the adjoint operator DΦ(g, π)∗.

The first step establishes coercivity of DΦ(g, π)∗.

Proposition 3.3. DΦ∗ satisfies the ellipticity estimate, for all ξ ∈W 2,2
−1/2,

(3.10)
‖ξ‖2,2,−1/2 ≤ c( ‖DΦ(g, π)∗1(ξ)‖2,−5/2 + ‖DΦ(g, π)∗2(ξ)‖1,2,−3/2) + C ‖ξ‖1,2,0

where C depends on g̊, λ and ‖(g, π)‖F .

Proof. Rearranging the first component of (2.8) gives

∇2N = Q− 1
2trgQg,(3.11)

Q = DΦ(g, π)∗1(ξ)/
√
g + (E − S)N − LXπ/

√
g,

and thus |∇2N |2 ≤ 5
4 |Q|2. This leads to the estimate

‖∇̊2N‖2,−5/2 ≤ c

(
‖DΦ0(g, π)∗1(ξ)‖2,−5/2

(3.12)

+ ‖N‖∞,0 ( ‖E‖2,−5/2 + ‖S‖2,−5/2) + ‖A∇̊N‖2,−5/2

+ ‖X‖∞,0 ‖∇̊π‖2,−5/2 + ‖∇̊X‖3,−1 ‖π‖6,−3/2

)
.
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Using a combination of the weighted Sobolev and Hölder inequalities, we
can establish estimates which control the various right-hand terms in (3.12).
For example,

‖u‖∞,0 ≤ c ‖u‖1,4,0(3.13)

≤ c ‖u‖λ
1,2,0 ‖u‖1−λ

1,6,0, λ = 1
4 ,

≤ c ‖u‖λ
1,2,0 ‖u‖1−λ

2,2,0

≤ ε ‖∇̊2u‖2,−2 + cε−3 ‖u‖1,2,0,

for any ε > 0. Similarly we find, for any δ ∈ R,

‖u‖3,δ ≤ ε ‖∇̊u‖2,δ−1 + cε−1 ‖u‖2,δ .

Consequently there is a constant C, depending only on λ, g̊, ε and ‖(g, π)‖F ,
such that

(3.14) ‖∇̊2N‖2,−5/2 ≤ c ‖DΦ0(g, π)∗1(ξ)‖2,−5/2 + ε ‖∇̊2ξ‖2,−2 + C ‖ξ‖1,2,0.

From the identity (using the metric g ∈ G+)

(3.15) Xi|jk = −RijklX
l +X(i|j)k +X(i|k)j −X(j|k)i,

which is valid for any sufficiently smooth Xi, we may write
(3.16)
Xi|jk = −RijklX

l−1
2

(
Hij|k +Hik|j −Hjk|i

)
−(NKij)|k−(NKik)|j+(NKjk)|i,

where
Hij = Hij(X) = −2(NKij +X(i|j)) = DΦ(g, π)∗2(ξ)

and (N,Xi) are assumed sufficiently smooth. The various terms of (3.16)
can be controlled using the Sobolev, Hölder and interpolation inequalities
in a similar fashion, leading to the estimate

(3.17) ‖∇̊2X‖2 ≤ c ‖DΦ0(g, π)∗2(ξ)‖1,2,−3/2 + ε ‖∇̊2ξ‖2,−2 + C ‖ξ‖1,2,0.

Since ‖u‖k,p,δ1 ≤ ‖u‖k,p,δ2 if δ1 ≥ δ2, ε may be chosen such that (3.14),
(3.17) combine to give

(3.18)
‖∇̊2ξ‖2,−5/2 ≤ c( ‖DΦ0(g, π)∗1(ξ)‖2,−5/2+ ‖DΦ0(g, π)∗2(ξ)‖1,2,−3/2)+C ‖ξ‖1,2,0,

for smooth ξ. Since C∞
c is dense in W 2,2

−1/2, it follows that (3.18) holds for

all ξ ∈W 2,2
−1/2. Now (3.10) follows from the weighted Poincaré inequality [5,

Theorem 1.3]
‖u‖p,δ ≤ c ‖∇̊u‖p,δ−1 ≤ c ‖∇̊2u‖p,δ−2,
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for any δ < 0 and u ∈W 2,p
δ . �

It will be useful to restructure DΦ∗ into the operator P ∗ defined by

P ∗(ξ) =

[
g1/4 (∇i∇jN − δi

j∆gN + (Si
j − Ei

j)N) + g−1/4LXπ
i
j

− g1/4∇p(2Ki
jN + LXg

i
j)

]
(3.19)

= ρ ◦
[

1 0
0 ∇

]
◦DΦ(g, π)∗ξ,

where g1/4 = (det g/det g̊)1/4 is a density of weight 1
2 , and

ρ = ρ(g) =
[
g−1/4gjk 0

0 g1/4gik

]
.

The L2(dv0)-adjoint of P ∗ is then

(3.20) P = DΦ(g, π) ◦
[

1 0
0 −δg

]
◦ ρ,

where δgq = ∇p(qij
p ), so P (f j

i , q
j

pi) = DΦ(fij,−∇p(q ij
p )), and the composi-

tion PP ∗ is well-defined.

Proposition 3.4. P ∗ : W 2,2
−1/2(T ) → L2

−5/2 is bounded and satisfies

(3.21) ‖ξ‖2,2,−1/2 ≤ c ‖P ∗ξ‖2,−5/2 + C ‖ξ‖1,2,0,

where C depends on ‖(g, π)‖F , and P ∗ = P ∗
(g,π) has Lipschitz dependence

on (g, π) ∈ F ,

(3.22) ‖(P ∗
(g,π) − P ∗

(g̃,π̃))ξ‖2,−5/2 ≤ C1 ‖(g − g̃, π − π̃)‖F ‖ξ‖2,2,−1/2,

where C1 depends on ‖(g, π)‖F , ‖(g̃, π̃)‖F .

Proof. That P ∗ is bounded,

(3.23) ‖P ∗
(g,π)ξ‖2,−3/2 ≤ C ‖ξ‖2,2,−1/2,

follows from estimates similar to but simpler than those of Proposition 3.3.
The elliptic estimate (3.21) follows directly from (3.10). (P ∗

(g,π) − P ∗
(g̃,π̃))ξ is
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controlled by breaking it up. Since ‖g − g̃‖∞, ‖(N,X)‖∞ are bounded by
‖g − g̃‖2,2,−1/2, ‖ξ‖2,2,−1/2 respectively, terms such as[

g−1/4 − g̃−1/4 0
0 g1/4 − g̃1/4

]
◦

[
1 0
0 −δ1

]
◦DΦ(g, π)∗ξ

are controlled by C ‖g − g̃‖2,2,−1/2 ‖ξ‖2,2,−1/2. Since ∇− ∇̃ ∼ ∇̊(g − g̃), we
may use (3.5) to estimate, for example,

‖(∇− ∇̃)DΦ∗
2ξ‖2,−5/2 ≤ c ‖∇̊(g − g̃)‖1,2,−3/2 ‖DΦ∗

2ξ‖1,2,−3/2.

Using DΦ∗
2ξ = −2(NKij + ∇(iXj)) shows

‖DΦ(g, π)∗2ξ −DΦ(g̃, π̃)∗2ξ‖1,2,−3/2

≤ c ‖N(K − K̃)‖1,2,−3/2 + c ‖∇̊(g − g̃)X‖1,2,−3/2,

which is controlled by

‖N‖∞ ‖K − K̃‖1,2,−3/2 + ‖∇̊N(K − K̃)‖2,−5/2

for the first, and similarly for the second term. Again using the L∞ bound
and (3.5) controls the difference by C ‖ξ‖2,2,−5/2 as required; the terms in
DΦ(g, π)∗1ξ − DΦ(g̃, π̃)∗1ξ are controlled by very similar estimates, giving
(3.22). �

We now show that the elliptic estimate is also satisfied by weak solutions,
which are a priori only in L2. We say that ξ ∈ L is a weak solution of
DΦ(g, π)∗(ξ) = (f1, f2) for (f1, f2) ∈ L2

−3/2(S̃) ×W 1,2
−3/2(S) if

(3.24)
∫
M
ξ ·DΦ(g, π)(h, p) =

∫
M

(f1, f2) · (h, p), ∀ (h, p) ∈ G × K.

In this definition, it suffices to test with just (h, p) ∈ C∞
c (S × S̃), since this

space is dense in G × K.

Proposition 3.5. Suppose (g, π) ∈ F , (f1, f2) ∈ L2
−3/2(S̃)×W 1,2

−3/2(S), and
ξ = (N,Xi) ∈ L = L2

−1/2(T ) is a weak solution of DΦ(g, π)∗(ξ) = (f1, f2).

Then ξ ∈W 2,2
−1/2(T ) is a strong solution and ξ satisfies (3.10).

Proof. We first show ξ ∈W 2,2
loc , so restrict to a coordinate neighbourhood Ω.

In local coordinates, P ∗(ξ) = f is equivalent to relations of the form

A · ∂2ξ +B · ∂ξ + Cξ = f,
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where A : R
36 → R

36 is invertible and determined solely by g; see (3.11),
(3.16). Furthermore, A ∈W 2,2, B ∈W 1,2, C ∈ L2 in Ω, so this is equivalent
to

(3.25) ∂2
ijξ

α + ∂k(bkα
ijβξ

β) + cαijβξ
β = fα

ij

for suitable b ∈ W 1,2, c, f ∈ L2. Thus ξ ∈ L2 satisfies the weak form of
(3.25), ∫

Ω
(∂2

ijφ
ij
α + bkβ

ijα∂kφ
ij
β + cβijαφ

ij
β )ξα dx =

∫
Ω
φij

α f
α
ij dx,

for all φ ∈ W 2,2
c (Ω). Replacing φ by Jεφ where Jε is a Friedrichs mollifier

with mollification parameter ε > 0, we see that ξε = Jεξ is smooth and
satisfies

∂2ξε + ∂Jε(bξ) + Jε(cξ) = Jεf.

Following a suggestion of L. Simon, we let u = χξε where χ ∈ C∞
c (Ω) is

any cutoff function. Then taking a trace shows that u ∈ C∞
c (Ω) satisfies an

equation of the form
∆0u = F + ∂G,

where F = F1 +F2 +F3, G = G1 +G2 and F1 = χ′′ξε +χJεf , F2 = χ′Jε(bξ),
F3 = χJε(cξ), G1 = χ′ξε, G2 = χJε(bξ). The terms F,G are smooth with
compact support, so u has a representation

u(x) = Γ ∗ (F + ∂G) =
∫

Ω
Γ(x− y)(F (y) + ∂G(y)) dy,

where Γ(x − y) = (4π|x − y|)−1 is the fundamental solution of Laplace’s
equation. Let D = (−∆0)1/2 be the Riesz potential [31, Ch. V]. The opera-
tors Kij = ∂2

ijΓ and Ki = ∂iΓD are Calderon–Zygmund kernels in the sense
of [31, Ch. II], and hence satisfy

(3.26) ‖Kij ∗ w‖Lp(Ω) + ‖Ki ∗ w‖Lp(Ω) ≤ c ‖w‖Lp(Ω).

We now use these bounds to control the various terms in Γ ∗ (F + ∂G)
and thereby bootstrap the estimates for u up to a W 2,2 bound which is
independent of ε.

Since Kij ∗ F1 = ∂2
ij(Γ ∗ F1), (3.26) with p = 2 shows that

‖Γ ∗ F1‖2,2 ≤ c ‖F1‖2 ≤ c( ‖ξ‖2 + ‖f‖2),
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where the norms here are over Ω. In particular, Γ∗F1 is uniformly bounded
in W 2,2(Ω), independent of ε. Since bξ ∈ W 1,2 · L2 ⊂ L6 · L2 ⊂ L3/2, F2 is
uniformly bounded in L3/2 and thus

‖Γ ∗ F2‖2,3/2 ≤ c ‖F2‖3/2 ≤ c ‖b‖1,2 ‖ξ‖2.

Now F3 ∈ L1(Ω) only, so we instead note that ∂iu = Ki ∗ (Du) where D
satisfies

‖Dw‖p ≤ c ‖w‖q ,

for either 1 < q < n with 1/p = 1/q − 1 , or if q = 1, with any 1 < p <
n/(n− 1) = 3/2. With q = 1 and p < 3/2, we thus have

‖∂Γ ∗ F3‖p ≤ c ‖D ∗ F3‖p ≤ c ‖F3‖1,

and the Sobolev inequality now shows that ‖Γ ∗ F3‖3−δ is uniformly
bounded in terms of ‖c‖2 ‖ξ‖2, for any small δ > 0. Now, ‖G1‖2 ≤ c ‖ξ‖2,
so we use the identity Γ ∗ (∂kG

k
1) = ∂kΓ ∗Gk

1 and the Sobolev inequality to
estimate

‖Γ ∗ (∂G1)‖6 ≤ c ‖Kk ∗Gk
1‖2 ≤ c ‖G1‖2 ≤ c ‖ξ‖2.

Likewise, since G2 ∈ L3/2 uniformly, we find by a similar argument that
‖Γ ∗ (∂g2)‖3 ≤ c ‖b‖1,2 ‖ξ‖2.

Assembling all the pieces now shows that ξ ∈ L3−δ
loc , for any δ > 0,

and we now repeat the above arguments with this stronger bound on ξ.
Bootstrapping in this way shows eventually that ξ ∈ W 2,2

loc . Thus χRξ ∈
W 2,2

−1/2 for any cutoff function χR ∈ C∞
c (M), χR(x) = χ(x/R) with χR(x) =

1 on BR. Now (3.10) shows that χRξ is uniformly bounded in W 2,2
−1/2 since

ξ ∈ L2
−1/2 and χRξ → ξ, so ξ ∈W 2,2

−1/2 as required. �

We next show that the kernel of DΦ∗ is trivial in the space of lapse-
shift pairs decaying at infinity. We may interpret this result as saying there
are no generalised Killing vectors decaying to zero at infinity, where by
generalised Killing vector ξ of (g, π) ∈ F , we mean that ξ ∈ W 2,2

loc (T ) sat-
isfies DΦ(g, π)∗ξ = 0. Likewise, if there exists a non-trivial vector field ξ
satisfying DΦ(g, π)∗ξ = 0 then (g, π) is a Killing initial data set, where
the terminology is motivated by a result of Moncrief [25] which shows that
if (g, π) satisfies the constraint equations, then a generalised Killing vec-
tor determines a standard Killing vector field in the spacetime generated
from the initial data (g, π) by solving the vacuum Einstein equations. Of
course, this requires that (g, π) has enough regularity that a local existence
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and uniqueness theorem for the Einstein evolution can be applied, which
is not the case at present for general (g, π) ∈ F . However, if local ex-
istence and uniqueness could be established for s = 2, then it would be
possible to identify a generalised Killing vector (ie. ξ ∈ kerDΦ∗) with the
spatial restriction of a true vacuum spacetime Killing vector. A similar
technique was used [23] to show non-existence of spatial conformal Killing
vectors.

Theorem 3.6. Suppose Ω ⊂ M is a connected domain and ER ⊂ Ω for
some exterior domain ER, fix (g, π) ∈ F and suppose ξ ∈ L2

−1/2(T ) satisfies
DΦ(g, π)∗ξ = 0 in Ω. Then ξ ≡ 0 in Ω.

Proof. By Proposition 3.5, ξ ∈ W 2,2
−1/2(T ) and (3.16), the equation

DΦ(g, π)∗ξ = 0 shows that ξ satisfies an equation of the form

(3.27) ∇̊2ξ = b1∇ξ + b0ξ,

with coefficients b0 ∈ L2
−5/2, b1 ∈W 1,2

−3/2. We must now show that a solution

of (3.27) which decays as ξ = o(r−1/2), must vanish. The structure of the
argument to follow is well-known: the difficulty here lies in the absence of
the continuity assumptions used essentially in [12].

If u ∈ W 1,2
0 (Rn), then the Sobolev inequality is true in the sharp form

‖u‖n/(n−1) ≤ c ‖Du‖1. Such an inequality remains valid without the hy-
pothesis of compact support, provided u vanishes on a sufficiently large set.

Lemma 3.7. Suppose n ≥ 3, BR ⊂ R
n, 1 ≤ p < ∞, and q ≤ np/(n− p) if

p < n, q < ∞ if p = n, q ≤ ∞ if p > n. If u ∈ W 1,p(BR) satisfies u ≡ 0 in
BηR for some 0 < η ≤ 1, then

(3.28) ‖u‖q;BR
≤ cη2(1−n/p)R1+n/q−n/p ‖Du‖p;BR

.

Proof. By rescaling, we may assume R = 1. Let ũ(x) = u(ψ(x)), where
ψ : R

n\{0} → R
n\{0} is the inversion map, ψ(x) = x/ |x|2. Since 1 ≤

|dψ(x)| ≤ η−2 for η ≤ |x| ≤ 1, we see that ũ ∈ W 1,p(Rn\B1) and ũ(x) = 0
for |x| ≥ η−1. The usual argument for the Sobolev inequality in R

n applies
also to R

n\B1 (see [19, Chapter 7]) and shows that for p < n,

‖ũ‖np/(n−p) ≤ c ‖Dũ‖p;
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it is not necessary that ũ be defined in B1. Now ‖ũ‖q ≤ c ‖ũ‖np/(n−p) gives

‖ũ‖q ≤ c ‖Dũ‖p;

if p ≥ n, then this estimate follows similarly from Sobolev embedding. The
result now follows from the bounds 1 ≤ |dψ(x)| ≤ η−2 and rescaling. �

Lemma 3.8. Suppose Ω ⊂ R
3 and u = (u1, . . . , uK) ∈ W 2,2(Ω,RK) satis-

fies

(3.29) D2
iju

A = aAB
ij uB + bAB

ijkDku
B ,

where a ∈ L2(Ω,R9K2
), b ∈ L6(Ω,R27K2

). Then there is a constant R1 > 0,
depending on ‖a‖2, ‖b‖6, such that if R ≤ R1, BR(x0) ⊂ Ω, and u ≡ 0 in
BR/2(x0), then u ≡ 0 in BR(x0).

Proof. Since u = 0 in BR/2, Lemma 3.7 may be applied with q = ∞ and
q = 6 to give

‖D2u‖2;BR
≤ ‖a‖2;Ω ‖u‖∞;BR

+ ‖b‖6;Ω ‖Du‖3/2;BR
(3.30)

≤ cR1/2 ‖a‖2;Ω ‖D2u‖2;BR
+ cR3/2 ‖b‖6;Ω ‖Du‖6;BR

≤ cR1/2 ( ‖a‖2;Ω +R ‖b‖6;Ω) ‖D2u‖2;BR
.

Thus if R ≤ R1 = 1
2 min{1, c−2( ‖a‖2;Ω + ‖b‖6;Ω)−2}, then ‖D2u‖2;BR

= 0
and hence u ≡ 0 as claimed. �

Proposition 3.9. Suppose (g, π) ∈ F , ξ = (N,Xi) satisfies DΦ(g, π)∗ξ = 0
in a connected subset Ω ⊂ M, and ξ ≡ 0 in some open set U ⊂ Ω. Then
ξ ≡ 0 in Ω.

Proof. We may cover Ω ⊂ M by a finite set of coordinate neighbourhoods
in which C−1 |v|2 ≤ gijv

ivj ≤ c |v|2, ∀ v = vi∂i, where |v|2 = Σ(vi)2. Since
∇2

ij = D2
ij −Γk

ijDk, after moving some Christoffel terms into b1 the equation
(3.27) in a given coordinate chart Ω′ may be written symbolically as

(3.31) D2ξ = aξ + bDξ,

where a ∈ L2(Ω′), b ∈W 1,2(Ω′) ⊂ L6(Ω′) and

‖a‖2;Ω′ +R ‖b‖6;Ω′ ≤ C
(
‖g − g̊‖2,2−1/2 + ‖π‖1,2,−3/2

)
.
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We can apply the previous lemma in each coordinate chart: in particular,
if ξ ≡ 0 in some open set U ⊂ Ω but ξ �= 0 at some point of Ω, then
there is a coordinate chart Ω′ and a ball BR2(x0) ⊂ Ω′ such that ξ ≡ 0 in
BR2(x0) but ξ �≡ 0 in BR3(x0) for every R3 ≥ R2. But Lemma 3.8, applied
to BR/2(x0 + (R2 − R/2)e) for any unit vector e ∈ R

3 and R ≤ R1, shows
that ξ ≡ 0 in BR2+R/2(x0), which is a contradiction. Thus ξ vanishes in the
coordinate set Ω′, and hence in all Ω since it is connected. �

To complete the proof of Theorem 3.6, we must show ξ vanishes near
infinity. To do this, we establish a weighted Poincaré inequality about the
point at infinity.

Lemma 3.10. Suppose p, δ satisfy p ≥ 1, |δp/n + 1| < 1 and u ∈
W 1,p

δ (ER), ER ⊂ R
n, then there is c = c(n, p, δ) such that

(3.32) ‖u‖p,δ;ER
≤ c ‖Du‖p,δ−1;ER

.

Proof. Since C∞
c (ER) is dense in W 1,p

δ (ER), it suffices to prove (3.32) for
smooth, compactly supported u. For λ ∈ R

+, f ∈ C∞
c (ER), d

dλf(λx) =
|x|Drf(λx) implies

f(x) = −
∫ ∞

1
|x|Drf(λx) dλ,

because f(x) = 0 for r = |x| sufficiently large. Hence∫
ER

|f(x)| dx ≤
∫ ∞

1

∫
ER

|x| |Drf(λx)| dx dλ

≤
∫ ∞

1

∫
EλR

|x| |Drf(x)| dxλ−n−1dλ

≤ 1
n

∫
ER

|x| |Drf(x)| dx.

Now substituting f(x) = |u(x)|p|x|−δp−n, whence

|Drf | ≤ p |u|p−1 |Du| |x|−δp−n + |δp + n| |u|p |x|−δp−n−1,

we find that

1
n

∫
ER

|x| |Drf | dx ≤ |1 + δp/n|
∫

ER

|u|p |x|−δp−ndx
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+
p

n

(∫
ER

|u|p |x|−δp−ndx

)1−1/p (∫
ER

|Du|p |x|−(δ−1)p−ndx

)1/p

.

Thus if |1 + δp/n| < 1, then

(3.33) ‖u‖p,δ;ER
≤ p/n

1 − |1 + δp/n| ‖Du‖p,δ−1;ER
,

as required. �

In particular, in R
3 and in ER ⊂ M, we have the estimates

‖Du‖2,−3/2;ER
≤ 2

3 ‖D
2u‖2,−5/2;ER

,(3.34)

‖u‖2,−1/2;ER
≤ 2 ‖Du‖2,−3/2;ER

,(3.35)

for R ≥ R0, valid whenever both sides of the inequalities are finite. Using
the weighted Hölder and Sobolev inequalities [5], we have in ER,

‖D2ξ‖2,−5/2 ≤
(
‖b0‖2,−5/2 ‖ξ‖∞ + c ‖b1‖6,−3/2 ‖Dξ‖3,−1

)
.

But from (3.34),

‖Dξ‖3,−1 ≤ ‖Dξ‖1,2,−1

≤ R−1/2
(
‖Dξ‖2,−3/2 + ‖D2ξ‖2,−5/2

)
≤ cR−1/2 ‖D2ξ‖2,−5/2,

since ‖u‖p,δ;ER
≤ Rη−δ ‖u‖p,η;ER

for η < δ. Thus there is R1 =
R1( ‖b1‖1,2,−3/2) such that for any R ≥ R1, we have

(3.36) ‖D2ξ‖2,−5/2;ER
≤ c ‖b0‖2,−5/2 ‖ξ‖∞,0;ER

.

Since for any u ∈W 2,2
−1/2,

‖u‖∞,0;ER
≤ R−1/2 ‖u‖∞,−1/2;ER

≤ cR−1/2 ‖u‖2,2,−1/2;ER

≤ cR−1/2 ‖D2u‖2,−5/2,ER
,

by the Sobolev inequality and Lemma 3.10, it follows that

(3.37) ‖D2ξ‖2,−5/2;ER
≤ CR−1/2 ‖D2ξ‖2,−5/2;ER

and thus ξ vanishes in ER for R sufficiently large. Combining this result
with Proposition 3.9 completes the proof of Theorem 3.6, since Ω ⊂ M is
assumed to be connected. �
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Corollary 3.11. There is a constant C2 depending on ‖(g, π)‖F such that
for all ξ ∈W 2,2

−1/2,

(3.38) ‖ξ‖2,2,−1/2 ≤ C2 ‖P ∗ξ‖2,−5/2.

Proof. This follows from a standard Morrey contradiction argument. Sup-
pose not, so there is a sequence ξk, k = 1, 2, . . . such that ‖ξk‖2,2,−1/2 = 1,
‖P ∗ξk‖2,−5/2 ≤ 1/k. Then P ∗ξk → 0 strongly in L2

−5/2. Now W 2,2
−1/2 embeds

compactly in W 1,2
0 , so ξk converges strongly in W 1,2

0 , to ξ say. Applying
(3.21) to ξj − ξk shows that ξk is a Cauchy sequence in W 2,2

−1/2 and hence

converges strongly to ξ in W 2,2
−1/2. Then ‖ξ‖2,2,−1/2 = 1 and P ∗ξ = 0, which

contradicts the triviality of kerP ∗ (Theorem 3.6). �

The Implicit Function Theorem method is used to conclude that C is a
smooth Hilbert submanifold of F — in fact we show that all level sets of Φ
are smooth submanifolds.

Theorem 3.12. For each (ε, Si) ∈ L∗, the constraint set

(3.39) C(ε, Si) = {(g, π) ∈ F : Φ(g, π) = (ε, Si)}

is a Hilbert submanifold of F . In particular, the space of solutions of the
vacuum constraint equations, C = Φ−1(0) = C(0, 0), is a Hilbert manifold.

Proof. By the implicit function theorem, it suffices to show that DΦ : G ×
K → L∗ is surjective and splits. Since DΦ is bounded, its kernel is closed
and hence splits. We have shown in Proposition 3.5 and Theorem 3.6 that
ker{DΦ(g, π)∗ : L → (G × K)∗} = {0}, so the cokernel of DΦ is trivial.
It remains to show that DΦ has closed range, which we show by a direct
argument. Note that the argument of Fischer–Marsden [18] based on the
ellipticity of PP ∗ encounters some difficulties, arising from the low regularity
of some low order coefficients (such as ∇2Ric) of PP ∗, and we have not been
able to overcome these problems. This difficulty appears to restrict the
Fischer–Marsden elliptic method to neighbourhoods of data (g, π) which
are 2 derivatives smoother, ie. H4 ×H3.

Instead, we consider particular variations (h, p) of (g, π) determined from
fields (y, Y i), of the form (cf. [16])

hij = 2ygij , pij = (∇iY j + ∇jY i −∇kY
kgij)

√
g
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and define

F (y, Y ) = DΦ(h, p)

(3.40)

=
[

−4
√
g∆y + Φ0(g, π)y + trgπ∇kY

k − 4π•∇Y
2
√
g(∆Yi +RicijY

j) + 2Φi(g, π)y + (4πj
i − 2trgπδ

j
i )∇jy

]
.

We see that if y ∈ W 2,2
−1/2(M), Y ∈ W 2,2

−1/2(TM), then (h, p) ∈ G × K, and
it is straightforward to check that

(3.41) F : W 2,2
−1/2(M) ×W 2,2

−1/2(TM) → L2
−5/2(T ∗ ⊗ Λ3) = L∗

is bounded. Moreover, the general scale-broken elliptic estimate [5]

‖u‖2,2,−1/2 ≤ c ‖∆u‖2,−5/2 + C ‖u‖2,0

shows that

‖(y, Y )‖2,2,−1/2 ≤ c ‖F (y, Y )‖2,−5/2 + C ‖(y, Y )‖2,0

+ ‖Φy‖2,−5/2 + ‖π∇(y, Y )‖2,−5/2 + ‖Ric(Y )‖2,−5/2,

and the last terms are estimated by Hölder, Sobolev and interpolation in-
equalities, eg:

‖π∇u‖2
2,−5/2 ≤ c ‖∇u‖3,−1 ‖π‖6,−3/2

≤ c ‖π‖1,2,−3/2 ‖∇u‖3,−1

≤ ε ‖u‖2,2,−1/2 + C ‖u‖2,0,

where C depends on ε, λ and ‖(g, π)‖F as usual. Thus, F satisfies the
scale-broken estimate

(3.42) ‖(y, Y )‖2,2,−1/2 ≤ c ‖F (y, Y )‖2,−5/2 + C ‖(y, Y )‖2,0.

Now the adjoint F ∗ has a similar structure and the same argument shows
F ∗ also satisfies an estimate (3.42). It follows that F has closed range (from
(3.42)) with finite dimensional cokernel (since F ∗ has finite dimensional
kernel by the elliptic estimate for F ∗). Since clearly ranF ⊂ ranDΦ, we
have shown that DΦ has closed range and the proof of Theorem 3.12 is
complete. �
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4. ADM energy-momentum.

The ADM total energy-momentum P(g, π) = (Pα) = (E, pi) is usually de-
fined by the formal expressions

16πE =
∮

S∞
(∂igij − ∂jgii) dSj(4.1)

16πpi = 2
∮

S∞
πij dS

j(4.2)

where dSj is the normal element of the sphere at infinity S∞, the indices refer
to a suitable rectangular coordinate system near infinity, and the integral
over S∞ is understood as a limit of integrals over finite coordinate spheres.
The expression for the total energy E was investigated in [5] and shown to be
well-defined (that is, independent of the limiting process used to define S∞
and of the choice of structure at infinity), for metrics satisfying g−g̊ ∈W 2,q

−1/2

for some q > 3, and R(g) ∈ L1. In this section, we reformulate (4.1),
(4.2) and show that the redefined P is well-defined under weaker regularity
conditions, which are better adapted to the Hilbert manifold structure of C.
It is not immediately clear the formal definitions (4.1), (4.2) can be made
sensible under the weaker conditions; that this can be done, with result
agreeing with the definitions (4.10), (4.11) below, is shown in Proposition
4.5. We also show that P is independent of the choice of structure of infinity,
thereby extending the mass uniqueness result of [5].

The first result implies in particular that P (after suitable reformulation)
defines a bounded function from the (vacuum) constraint manifold C to
R

4, which is smooth with respect to the Hilbert manifold structure of C.
However, it turns out that the definition of P cannot be extended to all
(g, π) ∈ F as a bounded (well-defined) function. This restriction is not an
artifact of the rather weak regularity conditions of F ; rather it reflects the
need for additional decay conditions in defining P. In the usual physics
framework, where (g, π) satisfy the decay conditions (with r = |x|),

|gij − δij | + r |∂igjk| + r2 |∂i∂jgkl| = O(1/r),(4.3)
|Kij | + r |∂iKjk| = O(1/r2),(4.4)

the nature of the additional decay conditions is usually expressed by the
requirements [35]

(4.5) R(g) = O(r−4), ∂iKij − ∂jKii = O(r−4).
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These may be reformulated more invariantly (and more generally) as

(4.6) R(g) ∈ L1(M), ∇jπ
ij ∈ L1(TM),

and we emphasise that these conditions are not satisfied by general (g, π) ∈
F . Indeed, they are equivalent to requiring Φ(g, π) ∈ L1(T ∗), and exactly
this condition turns out to be sufficient for P(g, π) to be well-defined.

In order to define P in all of F , we first need a suitable definition of
translation vector at infinity. Fix a 4-vector ξ∞ = (ξα∞) = (ξ0∞, ξi∞) ∈ R

4

(where the indices take the ranges α = 0, 1, . . . , 3, i = 1, . . . , 3); using the
metric g̊ near infinity, which we consider as defining a connection on the
spacetime tangent bundle T which is flat near infinity, we may identify ξ∞
with a parallel vector field ξ̃∞ defined in an exterior region ER1 for some
R1 ≥ R0. We say that a vector field ξ̂∞ ∈ C∞(T ) is a constant translation
near infinity representing ξ∞ ∈ R

4 if ξ̂∞ = ξ̃∞ in E2R1 and ξ̂∞ = 0 in
M \ ER1 . Obviously ξ̂∞ is not uniquely determined by its constant value
ξ∞; however two representatives of ξ∞ differ only by a smooth, compactly
supported, vector field.

A vector field ξ = (ξα) is then said to be an asymptotic translation
if there is ξ∞ ∈ R

4 with a corresponding constant translation vector at
infinity ξ̂∞, such that ξ− ξ̂∞ ∈ L2

−1/2(T ) = L. Note that if ξ(1), ξ(2) are two
asymptotic translations (representing the same translation vector ξ∞), then
ξ(1) − ξ(2) ∈ L; hence we may define the class

(4.7) ξ∞ + L = {ξ : ξ − ξ̂∞ ∈ L},

of asymptotic translation vector fields representing ξ∞. By replacing L with
W k,2

−1/2(T ), k ≥ 1, we may similarly define classes of asymptotically constant
vectors with better regularity properties.

Rather than work with the asymptotic boundary integrals (4.1), (4.2),
it is more convenient (although logically equivalent, as we shall show) to
work with spatial integrals of exact divergences. Therefore we introduce the
density-valued linear operators Ro(g),Po(π) by

Ro(g) =
(
∇̊ijgij − ∆otr̊gg

)√
g̊,(4.8)

Poi(π) = g̊ij∇̊kπ
jk.(4.9)

The ADM (total) energy-momentum vector P(g, π) = (E, p) is then de-
fined by describing the pairing with a vector at infinity ξ∞ ∈ R

3,1; let ξ̂∞ be
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a corresponding representative translation vector field at infinity, then we
define ξα∞Pα(g, π) by

16πξ0∞P0(g, π) =
∫
M

(
ξ̂0∞Ro(g) + ∇̊iξ̂0∞

(
∇̊jgij − ∇̊itr̊gg

) √
g̊,

)
(4.10)

16πξi
∞Pi(g, π) = 2

∫
M

(
ξ̂i
∞Poi(π) + πij∇̊iξ̂∞j

)
,(4.11)

where indices are raised and lowered using the background metric g̊. The
physical interpretation of ξα

Pα is as the energy of (M, g, π) as observed
by the asymptotic time vector ξ∞, and Pα is the total energy-momentum
covector of (M, g, π). Since Ro(g),Po(π),

√
g̊, π are all tensor densities, the

volume elements in (4.10),(4.11) are present implicitly, and it is readily seen
that the right-hand sides depend only on ξ∞ and not on the specific choice
of representative asymptotic translation vector ξ̂∞, since a change of ξ̂∞
changes the integrands only by an exact divergence of compact support.

Theorem 4.1. If (ε, S) ∈ L1(T ∗), then P defined by (4.10),(4.11) defines a
smooth function on the Hilbert manifold C(ε, S),

P ∈ C∞(C(ε, S),R3,1).

Proof. We begin by proving an analogue of the L2 bounds (3.2), (3.3).

Proposition 4.2. Suppose g ∈ G+
λ for some λ > 0 and π ∈ K. There is a

constant c = c(λ) such that

‖Φ0(g, π) −Ro(g)‖L1(M) ≤ c
(
1 + ‖∇̊g‖2

2,−3/2 + ‖π‖2
2,−3/2(4.12)

+ ‖g − g̊‖2,−1/2 ‖∇̊2g‖2,−5/2

)
,

‖Φi(g, π) − Poi(π)‖L1(M) ≤ c
(
‖g − g̊‖2,−1/2 ‖∇̊π‖2,−5/2(4.13)

+ ‖∇̊g‖2,−3/2 ‖π‖2,−3/2

)
.

Proof. From (3.7), we may express the scalar curvature in terms of Ro(g) by

R(g) = Ro(g)/
√
g̊ +Q(g−1, ∇̊g) + gjkRic(̊g)jk(4.14)

+
((
gik − g̊ik

)
gjl + g̊ik

(
gjl − g̊jl

)) (
∇̊2

ijgkl − ∇̊2
ikgjl

)
,
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The individual terms may be easily estimated as before, giving
(4.15)
‖R(g)

√
g −Ro(g)‖L1(M) ≤ c(λ)

(
1 + ‖g − g̊‖2,−1/2 ‖∇̊2g‖2,−5/2 + ‖∇̊g‖2

2,−3/2

)
,

from which (4.12) follows, since

‖ |π|2g‖L1(M) ≤ c(λ) ‖π‖2
2,−3/2.

From (3.9), it follows that

Φi(g, π) − Poi(π) = (gij − g̊ij) ∇̊kπ
jk + gijA

j
klπ

kl,

which can be bounded easily,

‖Φi(g, π) − Poi(π)‖L1(M)(4.16)

≤ c
(
‖g − g̊‖2,−1/2 ‖∇̊π‖2,−5/2 + ‖∇̊g‖2,−3/2 ‖π‖2,−3/2

)
,

as required. �

Since P(g, π) depends linearly on (g, π), to complete the proof of Theorem
4.1, it will suffice to show that P is bounded on C(ε, S). From (4.12), we see
that

‖Ro(g)‖L1 ≤ ‖Φ0(g, π) −Ro(g)‖L1 + ‖Φ0(g, π)‖L1

≤ c(g)
(
1 + ‖∇̊g‖2

2,−3/2 + ‖π‖2
2,−3/2

+ ‖g − g̊‖2,−1/2 ‖∇̊2g‖2,−5/2

)
+ ‖ε‖L1 ,

and hence Ro(g) is integrable. Since ∇̊ξ̂∞ has compact support, it follows
that the integrand of (4.10) is integrable and P0(g, π) is finite on C(ε, S).
Similarly we estimate using (4.13), assuming |ξ̂i∞| ≤ 1 for simplicity,

‖ξ̂i
∞Poi(π)‖L1 ≤ ‖ξ̂i

∞(Φi(g, π) − Poi(g))‖L1 + ‖ξ̂i
∞Φi(g, π)‖L1

≤ c
(
‖g − g̊‖2,−1/2 ‖∇̊π‖2,−5/2 + ‖∇̊g‖2,−3/2 ‖π‖2,−3/2

)
+ ‖S‖L1 ,

whereupon the integrand of (4.11) is integrable and thus Pi(g, π) is
finite. �

We now show that the definitions (4.10), (4.11) adopted for P agree
with the formal definitions (4.1), (4.2), when suitably interpreted, under the
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general conditions of the mass existence Theorem 4.1, and that the value
of P(g, π) does not depend on the choice of structure of infinity φ and its
associated background metric g̊ = φ∗(δ) cf. [5, Theorem 4.2].

The following two elementary lemmas will take care of the major tech-
nical details of the proof, and will be useful elsewhere. The first lemma
reviews the validity of integration by parts, and is valid under considerably
more general circumstances than required here.

Lemma 4.3. Suppose M =
⋃

k≥1 Mk is an exhaustion of a non-compact,
n-dimensional manifold M by compact subsets with smooth boundaries
∂Mk, and suppose β ∈W 1,2

loc (Λn−1T ∗M) satisfies dβ ∈ L1(ΛnT ∗M). Then

(i) ∮
∂Mk

β exists for k ≥ 1;

(ii) ∮
∂M∞

β := lim
k→∞

∮
∂Mk

β exists.

Proof. Since ∂Mk is smooth, the trace theorem [31, 33] shows that β ∈
W 1/2,2(∂Mk) ⊂ L2(∂Mk) ⊂ L1(∂Mk), where the fractional Sobolev space
is defined using the Fourier transform in the usual manner. This shows
that the finite boundary integrals are well-defined. The definition of weak
derivative allows us to apply Stokes’ theorem to dβ over any compact region;
in particular, for 1 ≤ q ≤ p, we have∮

∂Mp

β −
∮

∂Mq

β =
∫
Mp\Mq

dβ.

Since dβ ∈ L1(ΛnT ∗M), the right-hand side is o(1) as q = min(p, q) → ∞
and hence {

∮
∂Mk

β}∞k=1 is a Cauchy sequence and convergent as claimed. �

Likewise, the second lemma is valid with more general values for the
indices, but this will not be needed here.

Lemma 4.4. Suppose ER0 ⊂ R
3, R0 ≥ 1 and u ∈ W 1,2

−3/2(ER0). Then
u ∈ L4(SR) for every R ≥ R0, and there is a constant c, independent of R,
such that

(4.17)
∮

SR

|u| dS ≤ cR1/2 ‖u‖1,2,−3/2;AR
,
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(where the notation indicates the norm over the annular domain AR); hence

(4.18) ‖u‖1;SR
= o(R1/2) as R→ ∞.

Proof. As in [5], we define uR(x) = u(Rx) and recall the uniform comparison

‖uR‖k,p;A1 ≈ Rδ ‖u‖k,p,δ;AR
, for any R ≥ R0.

Since uR ∈W 1,2(A1), the trace theorem again implies uR ∈W 1/2,2(S1), and

(4.19) ‖uR‖1/2,2;S1
≤ ‖uR‖1,2;A1 .

It readily follows that

‖uR‖1;S1 ≤ c ‖uR‖4;S1 ≤ c ‖uR‖1/2,2;S1
≤ ‖uR‖1,2;A1

and thus
‖u‖1;SR

≤ cR2 ‖uR‖1,2;A1 ≤ cR1/2 ‖u‖1,2,−3/2;AR
.

In fact, using the Sobolev inequality in W 1/2,2(S1) gives

‖u‖4;SR
≤ cR−1 ‖u‖1,2,−3/2;AR

;

a stronger inequality which we will not need here. The conclusion (4.18)
follows as in [5], since u ∈ W k,p

δ (ER0) implies both ‖u‖k,p,δ;AR
= o(1) and

‖u‖k,p;AR
= o(Rδ) as R→ ∞. �

It follows easily that the formal asymptotic definition of (E, p) agrees
with the integral definition of P. This generalises and extends Proposition
4.1 of [5].

Proposition 4.5. Suppose (g, π) ∈ Φ−1(L1(T ∗ ⊗ Λ3)). Then (E, p) from
(4.1), (4.2) are defined, in the sense of Lemma 4.3, and satisfy (E, p) = P.

Proof. After noting that the integrals of (4.10), (4.11) may be written as
exact divergences, respectively of

∇̊i
(
ξ̂0∞

(
∇̊jgij − ∇̊itr̊gg

))√
g,

2∇̊i

(
ξ̂k
∞g̊jkπ

ij
)
,(4.20)

which both satisfy the integrability condition of Lemma 4.3, by Proposition
4.2 and the hypothesis Φ(g, π) ∈ L1(T ∗ ⊗ Λ3), we see that (E, p) is well-
defined. The equality of the two definitions is now a tautology. �



872 R. Bartnik

Corollary 4.6. The definition (4.10), (4.11) of ξα∞Pα(g, π) remains valid
(and unchanged) if the constant translation at infinity ξ∞ is replaced by any
asymptotic translation ξ ∈ ξ∞ +W 2,2

−1/2(T ).

Proof. The difference between the two definitions of P (using ξ̂∞, ξ respec-
tively) is a sum of divergences of the form (4.20), with ξ̂∞ replaced by
ξ − ξ̂∞ ∈ W 2,2

−1/2(T ). The weighted Sobolev inequality implies ξ − ξ̂∞ is

Hölder continuous and decays as o(R−1/2), so by Lemma 4.4, the boundary
integral of (4.20) is defined and decays as o(R−1/2)o(R1/2) = o(1). �

The proof that the value of P is independent of the choice of structure
of infinity φ follows [5, Theorem 4.2].

Theorem 4.7. Suppose φ : M\M0 → R
3, ψ : M\M1 → R

3 are two
structures of infinity such that (g, π) ∈ F(φ) ∩ F(ψ), where the notation
indicates the phase space (and weighted Sobolev spaces) defined with respect
to the indicated structure of infinity. Then F(φ) = F(ψ), the underlying
Hilbert Sobolev spaces have comparable norms, and P(g, π;φ) = P(g, π;ψ).

This justifies the notation used elsewhere in this paper, where we do not
indicate the choice of structure of infinity.

Proof. If g ∈ G+ then by the Sobolev inequality, φ∗g − δ ∈ W 1,6(ER), and
φ,ψ satisfy the conditions of [5, Section 3]. Hence the transition function
ψ ◦ φ−1 : ER2 → R

3 for some R2 ≥ 1, after possibly moving ψ by a rigid
motion of R

3, satisfies ψ ◦ φ−1 − Id ∈ W 2,6
1/2(ER2). A trivial modification

shows ψ ◦φ−1 − Id ∈W 3,2
1/2(ER2), whereupon the background metrics satisfy

φ∗δ − ψ∗δ ∈ W 2,2
−1/2(S(M0 ∩M1)) and it follows that the spaces G+,K are

in fact independent of the choice of structure of infinity φ.
To show invariance of the ADM energy-momentum, let g̃ be a back-

ground metric for ψ, so g̃ = ψ∗δ in M\M1, and let y(x) = ψ ◦ φ−1(x),
x ∈ ER2 be the coordinate transition function. Let ∇̃ and P̃, respectively,
be the connection and total ADM energy-momentum operators of g̃. By
Corollary 4.6 and the uniqueness of W 2,2

−1/2, we may use the same vector

field ξ ∈ ξ∞ +W 2,2
−1/2(T ) to define both P, P̃.

The divergence expression (4.20) for the integrand for ξα∞Pα may be
written in arbitrary coordinates in the form

∂p

(
ξ0g̊ipg̊jk

(
∇̊kgij − ∇̊igjk

) √
g̊
)

+ 2∂i

(
ξkg̊jkπ

iij
)
,
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with a similar expression being valid for ξα∞P̃α. Since

∇̊igjk − ∇̃igjk = Ãp
ijgpk − Ãp

ikgjp,

where Ãp
ij = Γ̃p

ij − Γ̊p
ij, after a certain amount of calculation, we find that

the difference between the energy-momentum integrands may be written in
the form

∂
(
ξ(̊g − g̃)(π + ∇̊g) + ξ(g − g̊)∇̊g̃

)
+ ∂j

(
ξ0

(
∇̊jtr̊gg̃ − g̊jk∇̊lg̃kl

)√
g̊
)
.

The precise form of the first term is of no account, since by the argument
of Corollary 4.6 and the decay conditions on g, g̃, ξ, the first term integrates
to zero. Integrating, we arrive at the relation

(4.21) ξα
Pα(g, π) − ξα

P̃α(g, π) = ξα
Pα(g̃, 0),

and it remains to show that (g̃, 0) has vanishing energy-momentum (notice
that the fact g̃ = ψ∗(δ) has not yet been used, so (4.21) is valid more
generally).

Working in the g̊ rectangular coordinates xi, in which g̊ij = δij , the met-
ric g̃ is given in terms of the transition functions y(x) by g̃ij = ∂iy

p∂jy
p,

where ∂i = ∂/∂xi. Since g̊ is explicitly flat in the coordinates xi,
ξα

Pα(g̃, 0) = ξ0P0(g̃, 0) is the integral of the R
3-divergence of

ξ0(∂ig̃ij − ∂j g̃ii) = ξ0(∂2
iiy

p∂jy
p − ∂iy

p∂2
ijy

p).

After a rotation, we may assume ∂yp/∂xi−δp
i ∈W 2,2

−1/2
in the exterior region,

and therefore, by the argument of Corollary 4.6 again, the above expression
may be reduced to

∂2
iiy

j − ∂2
ijy

i.

Expressing this explicitly as a 2-form gives

(
∂2

iiy
j − ∂2

ijy
i
)
∗dxj = ∂i

(
∂iy

j − ∂jy
i
)
∗dxj

= −d
(
εijk∂iy

j dxk
)
,

which is a closed 2-form and therefore it does not contribute to any boundary
integral. It follows that P(g̃, 0) = 0. �
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5. Hamiltonians.

The formal variational structure of the Einstein equations is well-known and
due originally to Hilbert and Einstein [17, 20]: the Euler–Lagrange equations
of the Lagrangian functional

(5.1) LEH(g(4)) :=
∫

V
R(g(4))

√
g(4) d4x,

are obtained in the usual manner, by making a compactly supported varia-
tion of the spacetime metric g(4) and once integrating by parts, and are just
the (vacuum) Einstein equations. In this respect, the Einstein equations are
similar to the equations of motion of most other Lagrangian field theories,
such as the classical wave equation. However, it differs in that although the
resulting equations are second order in the metric, the Lagrangian contains
explicit second derivatives. As is well known, the Gauss–Bonnet formula
shows that the Einstein–Hilbert integrand can be written in a local coordi-
nate system in the form

R(g(4))
√
g(4) d4x = d(A1(g(4), ∂g(4))) +A2(g(4), ∂g(4)),

where A1 is linear and A2 is quadratic in ∂g(4), and thus the Euler–Lagrange
equations are determined by A2 since compactly supported variations of the
divergence terms dA1 will not contribute to the equations. However, A2

depends on a choice of frame (cf. (3.7)) and thus is neither unique nor a
geometrically invariant quantity. We therefore have the curious situation of
a non-unique, non-geometric (coordinate dependent), integrand giving rise
to a geometric (tensorial) Euler-Lagrange equation.

The Hamiltonian interpretation of the Einstein–Hilbert Lagrangian was
provided by Arnowitt, Deser and Misner [2], who decomposed LEH by im-
posing a 3+1 splitting of the spacetime V and after an integration by parts
in the time direction and dropping the resulting boundary integral, arrived
at the ADM form of the Lagrangian

(5.2) LEH �
∫

V
(π•∂tg − ξαΦα(g, π))

where ξ = (N,Xi) is the (unspecified) lapse and shift of the 3+ 1 decompo-
sition. This decomposition, incidentally, is the origin of the form (2.3) for
the conjugate momentum π. Now introducing the ADM Hamiltonian,

(5.3) HADM(g, π; ξ) = −
∫
M
ξαΦα(g, π),
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the Einstein–Hilbert variational computation, with compactly supported
variations, may be re-expressed as Hamilton’s equations of motion for
HADM ,

(5.4)
d

dt

(
g
π

)
= −J DΦ(g, π)∗(ξ)

where J =
(

0 1
−1 0

)
: TF → TF is the implied symplectic form,

J

(
−p
h

)
=

(
h
p

)
, in the (g, π) coordinates on F [18, 11].

We note parenthetically that this 3+1 reduction involves two geometric
(gauge) choices; that of a timeflow vector field (reducing to ξ on the hyper-
surface) and a choice of spacelike hypersurface. Rather remarkably, it turns
out that the spacelike integrand may be considered as the restriction to the
hypersurface of a 3-form defined globally on the spacetime, and depending
only on the spacetime metric and the choice of timeflow vector field — see
[27] for the computations involved.

In this section we are instead concerned with formulating the above
equations in the context of the phase space F . The aim is to construct
Hamiltonian functionals which, together with apropriately chosen decay and
boundary conditions for the lapse-shift ξ, lead to the evolution equations
(5.4). The existence and uniqueness for the Einstein evolution equations is a
separate and rather difficult question in analysis which will not be considered
here — in particular, it does not seem possible to deduce this on general
grounds from the Hamiltonian structure on the phase space.

Since one of the primary difficulties is the control of boundary terms, we
record the complete form of the boundary terms arising from the integration
by parts relating the variational derivative DΦ(g, π) to the adjoint operator
DΦ(g, π)∗. This follows directly from the expressions (2.8–2.10).

ξαDΦα(g, π)(h, p) −DΦ(g, π)∗ξ · (h, p)(5.5)

= ∇i
{
ξ0

(
∇jhij −∇itrgh

)
−

(
hij∇jξ0 − trgh∇iξ

0
)}√

g

+ ∇i

{
2ξjpij + 2ξjπikhjk − ξiπjkhjk

}
In the following, we assume that ∂M is empty.

Theorem 5.1. The ADM Hamiltonian (5.3) with lapse-shift ξ ∈ L defines
a smooth map of Hilbert manifolds

HADM : F × L → R.
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If ξ ∈W 2,2
−1/2(T ), then for all (h, p) ∈ T(g,π)F ,

(5.6) D(g,π)HADM (g, π; ξ)(h, p) = −
∫
M

(h, p) ·DΦ(g, π)∗(ξ).

Proof. Hölder’s inequality and the decay condition ξ ∈ L = L2
−1/2(T ) shows

that HADM is defined and bounded on F×L, hence the linearity in ξ implies
smoothness with respect to ξ. Likewise, smoothness with respect to (g, π)
follows from the smoothness of the map (g, π) �→ Φ(g, π).

To show (5.6), we must control the boundary terms in (5.5). For this, we
use the trace theorem, in the form of Lemma 4.4. The individual components
of the boundary term

Bi = ξ0
(
∇jhij −∇itrgh

)√
g −

(
hij∇jξ0 − trgh∇iξ

0
)√

g,(5.7)

+ ξjp
ij + ξjπikhjk − 1

2ξ
iπjkhjk

have well-defined traces on the spheres SR (and on any other smooth hyper-
surface in M), thus integration of the adjoint operator formula (5.5) yields
the expected boundary integrals. We may now estimate the boundary con-
tribution over SR in the limit as R→ ∞,∮

SR

|B| dS ≤ ‖ξ‖∞;SR
( ‖∇h‖1;SR

+ ‖p‖1;SR
)

+ ‖h‖∞;SR
( ‖∇ξ‖1;SR

+ ‖ξ‖∞;SR
‖π‖1;SR

)
≤ o(1)

(
‖∇h‖1,2,−3/2;AR

+ ‖∇ξ‖1,2,−3/2;AR

+ ‖π‖1,2,−3/2;AR
+ ‖p‖1,2,−3/2;AR

)
,

which shows the boundary integral is o(1) as R → ∞. Integrating (5.5)
over MR := {x ∈ M : σ(x) < R} and letting R → ∞ establishes (5.6)
and completes the proof of Theorem 5.1. Note that the use of the spheri-
cal exhaustion MR, R ≥ R0, is merely a convenience; since the integrands
ξDΦ(h, p), (h, p)·DΦ∗ξ are integrable, the improper integrals in (5.6) are in-
dependent of the choice of exhaustion used to define them, and the boundary
integrals evaluated with any other smooth exhaustion of M will also vanish
in the limit. �

We emphasise that an identity of the form (5.6) is necessary if the Hamil-
tonian is to generate the correct equations of motion. The restriction above
to lapse-shift ξ decaying at infinity is essential, both in defining HADM
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(since Φ(g, π) is not integrable for generic (g, π) ∈ F) and in ensuring that
asymptotic boundary terms are absent in (5.6). However, we would like to
be able to choose ξ asymptotic to a translation at infinity in the evolution
equations and retain the validity of (5.6); this necessitates a modification of
the Hamiltonian functional HADM , as suggested in [28].

The underlying principle here is that adding a divergence to the Hamil-
tonian (or the Einstein–Hilbert Lagrangian) will not change the formal equa-
tions of motion, but such a term will affect the phase space (domain of defi-
nition) of the Hamiltonian and the resulting equations of motion. In partic-
ular, to extend the definition of the ADM Hamiltonian to permit lapse-shift
asymptotic to a (non-zero) translation at infinity, we should add a divergence
which cancels the dominant contribution from the asymptotic translation —
from (4.10), (4.11), we recognise that the ADM energy ξα∞Pα is an appro-
priate choice. Thus we arrive at the Regge–Teitelboim Hamiltonian [28]

(5.8) HRT (g, π; ξ) = 16πξα
∞Pα(g, π) −

∫
M
ξαΦα(g, π),

where ξ ∈ ξ∞+L. This expression is well-defined on C, where it has the value
ξα∞Pα(g, π), and more generally on Φ−1(L1(T ∗)), but for general (g, π) ∈ F ,
the individual terms are not defined, and thus (5.8) does not provide a
definition valid on all F . We circumvent this problem by inserting the
definition of P and rearranging terms — thus for general (g, π) ∈ F and
ξ ∈ ξ∞ + L, we define the regularised Hamiltonian H(g, π, ξ) by

H(g, π; ξ) =
∫
M

(
ξ̂0∞ − ξ0

)
Φ0(g, π) +

∫
M

(
ξ̂i
∞ − ξi

)
Φi(g, π)

(5.9)

+
∫
M
ξ̂0∞ (Ro(g) − Φ0(g, π)) +

∫
M

∇̊iξ̂0∞
(
∇̊jgij − ∇̊itr̊gg

) √
g̊

+
∫
M
ξ̂i
∞ (Poi(π) − Φi(g, π)) +

∫
M

2πij∇̊iξ̂∞j,

where ξ ∈ ξ∞ +L and ξ̂∞ is constant at infinity with value ξ∞. For (g, π) ∈
Φ−1(L1(T ∗)), this agrees with (5.8). As in Section 4, the sum of the integrals
in (5.9) is independent of the particular choice of constant at infinity vector
field ξ̂∞ representing the translation ξ∞, although the pointwise values of the
integrands are not invariant. We emphasise that for generic (g, π) ∈ F , H
does not have a simple geometric interpretation such as (5.8). Nevertheless,
it does have some useful properties.
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Theorem 5.2. The functional H(g, π; ξ) defined by (5.9) is bounded on F×
(R3,1 + L) and smooth with respect to the Hilbert structure on this space. If
ξ ∈ ξ∞ +W 2,2

−1/2(T ), then for all (g, π) ∈ F and (h, p) ∈ T(g,π)F , we have

(5.10) D(g,π)H(g, π; ξ)(h, p) = −
∫
M

(h, p) ·DΦ(g, π)∗ξ.

Proof. As before, for smoothness it suffices to show that H is bounded on
F × (R3,1 + L). Since ‖ξ − ξ̂∞‖2,−1/2 ≤ C for ξ ∈ ξ∞ + L, the first two
integrals of (5.9) may be estimated by∣∣∣∣

∫
M

(
ξ̂α
∞ − ξα

)
Φα(g, π)

∣∣∣∣ ≤ ‖ξ − ξ̂∞‖2,−1/2 ‖Φ(g, π)‖2,−5/2,

which is bounded, by Theorem 3.1. The fourth and sixth integrals are
bounded because ∇̊ξ̂∞ has compact support, and the third and fifth integrals
are bounded, since Proposition 4.2 shows that Ro(g)−Φ0(g, π) and Poi(π)−
Φi(g, π) are both integrable (L1(M)). Hence H is bounded and therefore
smooth, by the same arguments as used in Proposition 3.1. To show (5.10),
we must separately consider the variational derivatives of the individual
terms of (5.9). Since ξ − ξ̂∞ ∈ W 2,2

−1/2(T ), Theorem 5.1 may be applied to
the variation of the first two integrals, which may then be rewritten as

(5.11)
∫
M

(h, p) ·DΦ(g, π)∗(ξ̂∞ − ξ).

The variational derivative of the third and fourth terms of (5.9) may be
rearranged using (4.8), (2.6), (5.5) to give∫
M

{
∇̊i

(
ξ̂0∞

(
∇̊jhij − ∇̊itr̊gh

))√
g̊ − ξ̂0∞DΦ0(g, π)(h, p)

}
=

∫
M

{
∇̊i

(
ξ̂0∞

(
∇̊jhij − ∇̊itr̊gh

)) √
g̊ −∇i

(
ξ̂0∞

(
∇jhij −∇itrgh

))√
g

+∇i
(
∇j ξ̂0∞hij −∇iξ̂

0
∞trgh

)√
g − (h, p) ·DΦ0(g, π)∗(ξ̂0∞)

}
.

The dominant terms of the first two divergences in this expression cancel,
and the remaining parts of the boundary term may therefore be written
symbolically as ξ̂∞(g − g̊)(∇̊h + h∇̊g). Now, |ξ̂∞| = O(1) and g − g̊ =
o(R−1/2), and Lemma 4.4 serves to show that the remaining terms have well-
defined traces, hence the boundary integral is o(1) as R→ ∞. Consequently
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the variation of the third and fourth terms of (5.9) is just

−
∫
M

(h, p) ·DΦ0(g, π)∗(ξ̂0∞).

The argument controlling the variational derivative of the final two terms of
(5.9) is very similar, and results in the expression

−
∫
M

(h, p) ·DΦi(g, π)∗(ξ̂i
∞),

from which the final identity (5.10) follows. �

6. Critical points of the ADM mass.

The results of the previous section, particularly Theorem 5.2, have an elegant
interpretation in terms of critical points of the ADM mass. The fundamen-
tal observation is that stationary metrics are critical points of the ADM
energy functional on the constraint manifold; and an argument implying
the converse was suggested in [10]. In this section, we show that the phase
space F and the regularised Hamiltonian functional H allow a rigorous pre-
sentation of the previously heuristic arguments relating stationary metrics
and criticality properties of the ADM mass. The main result establishes
the equivalence between critical points of the total energy and generalised
Killing vectors.

Theorem 6.1. Suppose (g, π) ∈ F satisfies Φ(g, π) = (ε, Si) ∈ L1(T ∗⊗Λ3),
let ξ∞ ∈ R

3,1 be a fixed future timelike vector and define the energy functional
E ∈ C∞(C(ε, Si)) by

(6.1) E(g, π) = ξα
∞Pα(g, π), ∀ (g, π) ∈ C(ε, Si).

Then the following two statements are equivalent:

(i) For all (h, p) ∈ T(g,π)C(ε, Si) we have

DE(g, π)(h, p) = 0;

(ii) There is ξ ∈ ξ∞ +W 2,2
−1/2(T ) satisfying

DΦ(g, π)∗ξ = 0.
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If the energy-momentum covector P is timelike or null, then the ADM
(total) mass can be defined,

mADM =
√

−PαPα,

and in many applications, such as the quasi-local mass definition of [6], it is
more natural to usemADM rather than the energy E(g, π) with respect to the
direction ξ∞. The following corollary shows how Theorem 6.1 can be used
to relate critical points of mADM to stationary metrics. The hypothesis that
P be timelike follows from the extension in [7] of the spinorial proof [34] of
the Positive Mass Theorem [29, 30, 34] to the decay and regularity condition
(g, π) ∈ C(ε, Si), assuming that the local energy-momentum density (ε, Si)
satisfies the Dominant Energy Condition

ξ0ε+ ξiSi ≥ 0, for all future timelike vector fields ξ ∈ C∞
c (T ).

Similarly, it is well-known that if ξ is a Killing vector, timelike near infinity,
then P

α and ξα∞ are proportional [9].

Corollary 6.2. Suppose (g, π) ∈ F , Φ(g, π) = (ε, Si) ∈ L1(T ∗) and
P = P(g, π) is a future timelike vector. If DmADM(g, π)(h, p) = 0 for
all (h, p) ∈ TC(ε, Si), then (g, π) is a generalised stationary initial data
set, with generalised Killing vector ξ such that ξα∞ is proportional to P

α =
ηαβ

Pβ(g, π). Conversely, if (g, π) is a generalised stationary initial data set,
with generalised Killing vector ξ such that ξα∞ is proportional to P

α, then
DmADM(g, π)(h, p) = 0 for all (h, p) ∈ TC(ε, Si).

Proof. If Pα is a timelike vector, then we may choose mADMξ
α∞ = −ηαβ

Pβ,
thereby normalising ξ∞ to be a future unit timelike vector. Defining E =
ξα∞Pα, we have DmADM = ξα∞DPα = DE, and mADM is critical on C(ε, Si)
exactly when E is critical also. Thus if (g, π) is a critical point for mADM

on C(ε, Si), then Theorem 6.1 shows that (g, π) admits a generalised Killing
vector ξ ∈ ξ∞ +W 2,2

−1/2, with ξ∞ proportional to (Pα).
Conversely, if (g, π) admits a generalised Killing vector ξ with ξ∞ pro-

portional to (Pα), then defining E(g′, π′) = ξα∞Pα(g′, π′) with ξ normalised
so ξ∞ is a unit timelike vector, it follows that DE(g, π) = 0 on C(ε, Si);
since DmADM = DE, we then have DmADM(g, π) = 0 on C(ε, Si). �

The proof of Theorem 6.1 is based on a generalisation of the classical
method of Lagrange multipliers to Banach spaces, which we now recall. I
am indebted to John Hutchinson for the following elegant proof.
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Theorem 6.3. Suppose K : B1 → B2 is a C1 map between Banach spaces,
such that DK(u) : B1 → B2 is surjective and splits (ie. DK(u) has closed
kernel, with closed complementary subspace), for every u ∈ K−1(0), and
suppose f ∈ C1(B1). Let u ∈ K−1(0) be given, then the following are
equivalent:

(i) For all v ∈ kerDK(u), we have

Df(u)v = 0;

(ii) There is λ ∈ B∗
2 such that for all v ∈ B1,

Df(u)v = 〈λ,DK(u)v〉,

where 〈 , 〉 denotes the dual pairing;

(iii) Defining F : B1×B∗
2 → R, F (u, λ) = f(u)−〈λ,K(u)〉, there is λ ∈ B∗

2

such that DF (u, λ)(v, µ) = 0, for all v ∈ B1, µ ∈ B∗
2 .

We can paraphrase (i) by saying that “u is a critical point of f on
K−1(0)”. The conditions on DK ensure that K−1(0) is a Banach subman-
ifold of B1, by the Implicit Function Theorem, and thus Tu(K−1(0)) =
kerDK(u). Clearly, λ is the infinite dimensional Lagrange multiplier.

Proof. The equivalence of (ii) and (iii) is obvious, as is the implication
(ii) ⇒ (i). If u is a critical point of f on K−1(0), then kerDK(u) ⊂
kerDf(u) ⊂ B1, with both subspaces closed and having closed complements.
It follows that there is a natural projection

π : B1/ kerDK(u) → B1/ kerDf(u)

which is a bounded map of Banach (quotient) spaces. Since Df(u) ∈ B∗
1 , we

have a homomorphism j1 : B1/ kerDf(u) → R. Since DK(u) is surjective
and splits, it factors asDK(u) = j2◦π2, where π2 : B1 → B1/ kerDK(u) and
j2 : B1/ kerDK(u) → B2 is an isomorphism. Then λ = j1 ◦π◦j−1

2 : B2 → R

is a bounded linear map, ie. λ ∈ B∗
2 , and λ ◦DK(u) = j1 ◦ π ◦ π2 = Df(u),

which gives (ii). �

To show (ii) ⇒ (i) in Theorem (6.1), notice that for (g, π) ∈ C(ε, S), we
have H(g, π; ξ) = E(g, π) −

∫
M(ξ0ε+ ξiSi) and thus

D(g,π)H(g, π; ξ)(h, p) = DE(g, π)(h, p), ∀(h, p) ∈ T(g,π)C(ε, S).
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But (ii) and Theorem 5.2 together imply that

D(g,π)H(g, π; ξ)(h, p) = 0 ∀(h, p) ∈ G × K,

and (i) follows. To show the converse (i) ⇒ (ii), choose any ξ̃ ∈ ξ∞ +
W 2,2

−1/2(T ) and consider the functional

H̃(g′, π′) := H(g′, π′; ξ̃), (g, π) ∈ F .

From (i), it follows that (g, π) is a critical point for both H̃ and E = ξα∞Pα on
the submanifold C(ε, S). We may apply Theorem 6.3 with B1 = G×K ⊃ F ,
B2 = L∗, K = Φ − (ε, S) and f = H̃; since (i) holds, there is λ ∈ L =
L2
−1/2(T ) such that

(6.2) DH̃(g, π)(h, p) =
∫
M
λαDΦα(g, π)(h, p)

for all (h, p) ∈ G × K = T(g,π)F . Defining ξ = ξ̃ + λ ∈ ξ∞ + L2
−1/2(T )

and inserting the definition of H̃ into (6.2) shows that D(g,π)H(g, π; ξ) = 0;
Theorem 5.2 then implies DΦ(g, π)∗ξ = 0 (weakly) and thus (by Proposi-
tion 3.5), it follows that ξ ∈ ξ∞ +W 2,2

−1/2(T ) is a generalised Killing vector,
as required. This completes the proof of Theorem 6.1.

Observe that under the conditions of Theorem 6.1, alternative (iii) of
Theorem 6.3 shows that (g, π; ξ) is a critical point in all F × L for the
functional

H(g, π; ξ) −
∫
M

(ξ0ε+ ξiSi).
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