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In [14], Ngai and Wang introduced the concept of finite type IFS to
study the Hausdorff dimension of self-similar sets without open set
condition. In this paper, by applying the M-matrix theory([15]),
we generalize the notion of finite type IFS to the general finite type
IFS.
A family of IFS with 3 parameters, but without open set condition
is presented. The Hausdorff dimension of the associated attractors
can be calculated by both the M-matrix method and the general
finite type IFS method. But these IFS are not finite type except
for those parameters lying in a set of measure zero.

1. Introduction.

For any map f : Rn → Rd define

(1.1) u(f) = inf{a ∈ R; |f(v1) − f(v2)| ≤ a|v1 − v2| for all v1, v2 ∈ Rd}.
Then, |f(v1) − f(v2)| ≤ u(f)|v1 − v2| for all v1, v2 ∈ Rd. f is called a
contraction if u(f) < 1 and f is called a similarity if |f(v1) − f(v2)| =
u(f)|v1 − v2| for all v1, v2 ∈ Rd. A finite set of contractions on Rd is called
an IFS (iterated function system ) on Rd. For any IFS Φ on Rd, there exists
an unique compact subset E ⊂ Rd such that ∪f∈Φf(E) = E. E is called the
attractor of Φ and is denoted as A(Φ). Attractor of IFS is one of the most
important kinds of fractals.

If Φ consists of contractive similarities, the attractor A(Φ) is called a
self-similar set. When an IFS Φ on Rd consists of similarities and satisfies
open set condition, in 1981 Hutchinson [4] proved that dimH A(Φ) = α,
where α is the unique solution of Moran’s equation[13].

(1.2)
∑
f∈Φ

u(f)α = 1.
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In 1982, Dekking [2] constructed a new kind of fractals, called recurrent
sets, which can be described as the limit set of an orbit on Rn of an semigroup
endomorphism, and gave a formula to calculate its Hausdorff dimension. In
1986, Bedford [1] generalized the concept and the dimension formula of
recurrent sets such that some kinds of self-similar set can be expressed as a
recurrent set.

In 1988, Mauldin and Williams [9] studied the Hausdorff dimension of
graph directed construction objects, which generalized the concept of re-
current sets. Their results include those of Hutchinson and Dekking, and
has some parts similar to those of Bedford. They used a directed graph
G = (V,E) to construct the fractal set. A collection of contractive similari-
ties {φe, e ∈ E} indexed by E is associated with the graph G. They proved
that when the graph is strongly connected, there exists a unique collection
of non-empty compact sets {Fv , v ∈ V } such that Fu = ∪v∈V,e∈Euvφe(Fv),
where Euv is the set of edges from u to v. The graph directed construction
objects is defined as ∪v∈V Ev.

Attractors of IFS and recurrent sets are two different kinds of fractals.
However, some attractors of IFS can be described as recurrent sets. The
most interesting fact is that there are some special attractors of IFS, without
open set condition, hence, we cannot calculate their Hausdorff dimension
by Hutchinson–Moran formula, but these attractors can be described as
recurrent sets and their Hausdorff dimension can be gotten by the methods
given at [1, 2, 9].

In [15], we introduced the concepts of M-matrix and c-vector. An M-
matrix means a matrix whose entries are sets of mappings. It is a general-
ization of IFS and graph directed construction. Meanwhile, the concepts of
M-matrix are also generalization of Markov partition and Iterated Function
Scheme which are used to study fractals in complex dynamic system (cf.
[5, 10, 11, 12]). An IFS can be considered as an M-matrix of size 1× 1. If E
is a recurrent set generated by m contractions φi, i = 1, . . . ,m, and recurrent
positions aij ∈ Rn (see [1, 2]), we let φij(x) = φj(x) + aij and define M-
matrix M = (Mij) with Mij = {φij}, then E is the union of the components
of the maximal invariant c-vector of M . For the graph directed construc-
tions in [9], it can be described as an M-matrix with each entry consists of
contractive similarities and each row contains at least one non-empty entry.

In [14], Ngai and Wang introduced the notation of finite type IFS. The
attractor of finite type IFS can be realized as recurrent sets. Hence, their
Hausdorff dimensions are computable. A lot of IFS without open set con-
dition are finite type. So, their Hausdorff dimension can be calculated ac-
cording to Ngai and Wang’s results and recurrent method. But as we shall
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see in Section 4 of this paper, there are some restrictions for an IFS to be
finite type (see Theorems 4.1 and 4.2). In this paper, we remove these re-
strictions and define the general finite type IFS, which includes more IFS
which are not finite type in Ngai and Wang’s sense. A general finite type IFS
can be equipped with an M-matrix. Then, we can calculate the Hausdorff
dimension of a general finite type IFS by M-matrix theory.

A brief review of the M-matrix theory [15] is given in Section 2. In
Section 3, we recall the definition of finite type IFS in [14]. In Section 4,
we give a necessary condition for an IFS to be finite type and we find the
relation between finite type IFS and M-matrix. In Section 5, we define the
general finite type IFS. We prove that the attractor of a general finite type
IFS can be realized by an invariant c-vector of an M-matrix which satisfies
open set condition. Hence, we can calculate the Hausdorff dimension of the
attractor of general finite type IFS by M-matrix theory. As an example, we
study a family of general finite type IFS which are not finite type except
some occasional cases.

2. M-matrix and c-vector.

Motivating from the self-similar property of fractals, we introduced the con-
cepts of M-matrix and c-vector in [15]. An M-matrix means a matrix whose
entries are sets of mappings. It is a generalization of IFS and graph directed
construction. Meanwhile, the concepts of M-matrix and c-vector are also
generalization of Markov partition and Iterated Function Scheme which are
used to study fractals in complex dynamic system (cf. [5, 10, 11, 12]). An
IFS can be considered as an M-matrix of size 1 × 1. If E is a recurrent
set generated by m contractions φi, i = 1, . . . ,m, and recurrent positions
aij ∈ Rn (see [1, 2]), we let φij(x) = φj(x) + aij and define M-matrix
M = (Mij) with Mij = {φij}, then E is the union of the components of the
maximal invariant c-vector of M . For the graph directed constructions in [9],
it can be described as an M-matrix where each entry consists of contractive
similarities and each row contains at least one non-empty entry.

In this section, we give a brief description of the M-matrix and c-vector
theory ([15]).

Definition 2.1. An M-matrix is a matrix whose entries are finite sets of
mappings on Rd. The set of all M-matrices of size m × n is denoted as
M(m,n). We use Mc(m,n) (or Ms(m,n)) to express the set of all M-
matrices whose entries are finite sets of contractions (or similarities, respec-
tively).



824 N. Jin & S.S.T. Yau

For any two sets of mappings Φ and Ψ, define ΦΨ = {f ◦g|f ∈ Φ, g ∈ Ψ}.
We shall frequently identify {f} with f for a mapping f and write fg
for f ◦ g. For a set of mappings Φ and a subset X ⊆ Rd, define
Φ(X) = ∪f∈Φf(X). For any M-matrix M = (Mij) ∈ M(m,n) and N =
(Nij) ∈ M(n, p), define MN ∈ M(m, p) with (i, j) entry ∪qMiqNqj. For
M-matrices (Mij), (Nij) ∈ M(m,n), we define (Mij) ∪ (Nij) = (Mij ∪Nij)
and (Mij) ∩ (Nij) = (Mij ∩ Nij). Then, (M(m,m),∪,∩, ·) satisfies some
algebraic law with ∅ as “zero” element and I as “unit” element, where ∅ is
the M-matrix whose entries are all empty sets and I =diag({1}, . . . , {1}),
1 is the identity mapping. We call M(m,m) M-algebra for the time being.
Mc(m,m) and Ms(m,m) form two M-subalgebras of M(m,m). An M-
matrix M ∈ M(m,m) is called invertible if there exists N ∈ M(m,m) such
that MN = NM = I and we denote N by M−1. A permutation M-matrix
is an M-matrix P = (Pij) ∈ M(m,m) such that each column and row has
precisely one non-empty entry Pij = {1}, where 1 is the identity mapping,
all the other entries are empty set. An M-matrix M ∈ M(m,m) is invertible
if and only if M = Pdiag({φ1}, . . . , {φm}) for some permutation M-matrix
P and M−1 =diag({φ−1

1 }, . . . , {φ−1
m })P t.

We write M1 = M and M q = MM q−1 for q ≥ 2 when M ∈ M(m,m).
For an M-matrix M = (Mij) ∈ M(m,m), we call M is irreducible if
for any 1 ≤ i, j ≤ m, there exist some k1, . . . , ks ∈ {1, . . . ,m} such
that Mik1Mk1k2 . . .Mksj = {f0 ◦ f1 ◦ . . . ◦ fs|f0 ∈ Mik1 , fi ∈ Mkiki+1

,
fs ∈ Mksj} �= ∅. The standard form of M-matrix is given by the follow-
ing theorem:

Theorem 2.2 ([15]). For any M ∈ M(m,m), there exists a permutation
M-matrix P ∈ M(m,m) such that

PMP t =




H1 B12 · · · B1s

∅ H2 · · · B2s

· · · · · · · · · · · ·
∅ ∅ · · · Hs




where, for each i = 1, . . . , s, either Hi ∈ M(mi,mi) is irreducible with
mi > 0 or Hi = ({∅}).

Now, we consider the vector of subsets of Rd. We shall call a vector
whose components are compact subsets of Rd to be a c-vector. Let Km

(and Km) be the set of all c-vectors with m entries (or m non-empty entries
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respectively):

Km
= {(E1, . . . , Em)t|Ei ⊂ X is compact },

Km = {(E1, . . . , Em)t|Ei ⊂ X is compact , Ei �= ∅}.

Define operations “∪” and “∩” on Km
by

(E1, . . . , Em)t ∪ (F1, . . . , Fm)t = (E1 ∪ F1, . . . , Em ∪ Fm)t

and
(E1, . . . , Em)t ∩ (F1, . . . , Fm)t = (E1 ∩ F1, . . . , Em ∩ Fm)t.

For an M-matrix M = (Mij) ∈ M(m,n) and a vector X = (X1, . . . ,Xn)t

(Xi ⊆ Rd), we define

(2.1) M(X) =




∪qM1q(Xq)
∪qM2q(Xq)

...
∪qMmq(Xq)


 .

For M ∈ M(m,m) and E ∈ Km, if M(E) = E, we call E to be an invariant
c-vector of M . Denote the maximal invariant c-actor of M by A(M).

The following theorem gives a complete description about the invariant
c-vectors of an M-matrix M when Mk ∈ Mc(m,m) for some k.

Theorem 2.3 ([15]). Let M ∈ M(m,m). Suppose there is some integer
k > 0 such that Mk ∈ Mc(m,m).

(1) A(M) ∈ Km
exists and


∪i≥1M i(F ) = ∪i≥1M

i(F ) ∪A(M) ∈ Km
, ∀F ∈ Km,

∩k≥1∪i≥kM i(F ) = A(M),∀F ∈ Km,

∪i≥1M i(F ) ⊆ ∪i≥1M
i(F ) ∪A(M) ∈ Km

, ∀F ∈ Km
,

∩k≥1∪i≥kM i(F ) ⊆ A(E),∀F ∈ Km
.

(2) If E ∈ Km and M(E) = E, then A(M) = E.

(3) For the empty M-matrix ∅, A(∅) = ∅.
(4) If M is irreducible, then there are only two M-invariant c-vectors:

A(M) ∈ Km and ∅.
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(5) Suppose P ∈ M(m,m) is an invertible M-matrix. Then, E is an
invariant c-vector of M if and only if P (E) is invariant under PMP−1.
In particular, A(PMP−1) = P (A(M)).

(6) Suppose M =
(
H1 B
∅ H2

)
with Hi ∈ M(mi,mi), B ∈ M(m1,m2),

m1 +m2 = m, and m1,m2 > 0. Then, any invariant c-vector E of M
must has the form (

E1 ∪ (∪∞
i=0H

i
1B(E2))

E2

)
,

E1 and E2 are invariant c-vectors of H1 and H2 respectively. In par-
ticular,

A(M) =
(
A(H1) ∪ (∪∞

i=0H
i
1B(A(H2)))

A(H2)

)
.

Furthermore, A(M) =
(
A(H1)

∅
)

if H2 = ∅ and A(M) =(
A(H1)
A(H2)

)
if B = ∅.

Similar with the IFS case, we define the open set condition for M-matrix
as follows.

Definition 2.4. Let M = (Mij) ∈ M(m,m) and U = (U1, . . . , Um)t, where
Ui ⊆ Rd are non-empty bounded open sets. M satisfies open set condition
with respect to U if

(1) ∪jMij(Uj) ⊂ Ui, i = 1, . . . ,m;

(2) Mij(Uj) ∩Mij′(Uj′) = ∅ if j �= j′;

(3) φ(Uj) ∩ ψ(Uj) = ∅ if φ,ψ ∈Mij and φ �= ψ.

When M satisfies open set condition with respect to U , Mk satisfies
open set condition with respect to U and M satisfies open set condition
with respect to Mk(U) for any k = 1, 2, . . .. While we use M-matrices to
describe recurrent sets [1, 2], graph directed objects [9], conformal iterated
function schemes [5] and Markov partition for conformal dynamic systems
equipped with invariant densities [10, 11, 12], it can be proved that all these
M-matrices must satisfy the open set condition for M-matrix.
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For an M-matrix M = (Mij) ∈ M(m,m) and a real number x ≥ 0, we
define a numerical matrix F (M,x) by

(2.2) F (M,x) = (
∑
f∈Mij

u(f)x)1≤i,j≤m,

where u(f) is defined by (1.1). The eigenvalue of F (M,x) has closed relation
with the Hausdorff dimension of the components of invariant c-vector of M .

Theorem 2.5 ([15]). Let M ∈ M(m,m) and Mk ∈ Mc(m,m) for some
k. Suppose P is a permutation M-matrix such that

PMP t =




H1 B12 · · · B1s

∅ H2 · · · B2s
...

...
. . .

...
∅ ∅ · · · Hs




where Hi ∈ M(mi,mi), i = 1, . . . , s, are either irreducible or empty with
size 1 × 1.

(1) A(M), A(PMP t) and each A(Hi), i = 1, . . . , s, exist.

(2.3) A(M) = P tA(PMP t) = ∪∞
i=0M

iP t


 A(H1)

...
A(Hs)


 .

(2) Write A(PMP t) = P (A(M)) as (E(1), . . . ,E(s))t, where E(i) ∈ K(mi),
i = 1, . . . , s. Then, for any fixed i, each component of E(i) has the
same Hausdorff dimension. Write this dimension as dimH E(i), then

dimH E(i) = max{dimH A(Hi),dimH E(j)|Bij �= ∅}.

(3) Let Di be the unique number such that the biggest real eigenvalue
of F (Hi,Di) is 1. Then, dimH A(Hi) ≤ Di. In particular, if
Hi ∈ Ms(mi,mi) and the open set condition holds for Hi, then
dimH A(Hi) = Di.

Let M = (Mij) ∈ M(m,m) be a M-matrix. Let kij be the cardinality of
Mij . The integer matrix T = (kij) is called the incidence matrix of M . The
following result will be used to compare with the results of [14].
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Corollary 2.6. Let M = (Mij) ∈ M(m,m) be an irreducible M-matrix
and 0 < ρ < 1. Suppose that each mapping φ ∈ ∪ijMij is a similarity
with contractive ratio ρ. If the open set condition holds for M , then the
Hausdorff dimension of each component of A(M) is

(2.4) − lnλ
ln ρ

,

where λ is the maximal real eigenvalue of the incidence matrix T = (kij) of
M , where kij = |Mij |.

3. IFS of finite type (Ngai and Wang [14]).

In this section, we recall the notion of finite type IFS of Ngai and Wang[14].
Let Φ = {φj ; 1 ≤ j ≤ q} be an IFS on Rd, where each φj is a contractive
similarity with similar ratio u(φj) = ρj, 0 < ρj < 1. The code space Σq

concerned with Φ is defined as the set of all finite sequence in {1, . . . , q}:
Σq = {(j1, . . . , jk)|1 ≤ j1, . . . , jk ≤ q, k = 1, 2, . . .}.

An element j = (j1, . . . , jk) ∈ Σq is called a word of length k. We denote the
length of j by |j|. In particular, we can define an empty word ∅ which has
length 0. And we define Σ∗

q = {∅} ∪ Σq. For i ∈ Σ∗
q and j ∈ Σ∗

q, let ij ∈ Σ∗
q

be the concatenation of i and j, and call i an initial (proper) segment of ij
(if j �= ∅).

For j = (j1, . . . , jm) ∈ Σ∗
q, define

(3.1) φj :=
{
φj1 ◦ . . . ◦ φjm , if |j| ≥ 1
1, the identity mapping, if j = ∅

and

(3.2) ρj :=
{
ρj1 . . . ρjm if |j| ≥ 1
1, if j = ∅

Then, φj is a contractive similarity with similar ratio u(φj) = ρj.
Let ρ = min{ρj , j = 1 . . . , q}. Define

(3.3)




Λ0 = {∅},
Λk = {j ∈ Σ∗

q| ρj ≤ ρk but ρi > ρk if i is a
proper initial segment of j

}, k = 1, 2, . . . .

Vk = {φj|j ∈ Λk}, k = 0, 1, 2, . . .
V = ∪k≥0Vk.
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A non-empty bounded open set Ω ⊂ Rd is invariant under IFS Φ if
φj(Ω) ⊆ Ω for all j. Such an Ω always exists. We say two mappings
f1, f2 ∈ Vk are neighbors (with respect to Ω) if f1(Ω) ∩ f2(Ω) �= ∅. For
f ∈ Vk, the set

Ω(f) := {g ∈ Vk|g is a neighbor of f}
is called the neighborhood of f (with respect to Ω). Two mappings f1 ∈ Vk

and f2 ∈ Vk′ are said to have the same neighborhood type if there exists a
similarity τ with similar ratio ρk−k′ such that

(3.4) Ω(f1) = τΩ(f2) and f1 = τ ◦ f2.

We denote it by f1 ∼ f2 (or f1
τ∼ f2 to indicate the mapping τ). Then, “∼”

is an equivalence relation on V. The IFS Φ is said to be of finite type if
there are finite many distinct neighborhood types.

Using V as the set of vertices, we can define a graph G as follows. Give
two mappings f, g ∈ V , if f = φi with i ∈ Λk, g = φj with j ∈ Λk+1 and
there exists an word l ∈ Σ∗

q such that j = il, then we connect a directed
edge l : f �→ g. We call f a parent of g and g an offspring of f .

Notice that a vertex in G might have several parents. We will remove
some edges from G so that every vertex has at most one parent. To do
this, we use the lexicographical order on Σ∗

q . For each vertex f ∈ V, let
l1, . . . , lp be all the directed edges going from some vertices to f . Suppose
that l1 < . . . < lp in the lexicographical order. Then, we keep l1 and remove
all other edges. Thus, we obtain GR. If f is a parent of g (i.e., g is an
offspring of f) in the reduced graph GR, we denote it as f � g.

The incidence matrix S = (sαβ) for the IFS Φ is defined as follows.
Suppose that there are m neighborhood types. Then, the size of S is m×m.
Choose any mappings v ∈ V that has neighborhood type α. Its offspring
in GR will have various neighborhood types β. The entry sαβ denotes the
number of offsprings that have neighborhood type β. From the following
Lemma, it is proved that S is well defined (cf. [14]).

Lemma 3.1. Suppose f1, f2 ∈ V and f1
τ∼ f2. Let g be an offspring of f2

with edge l : f2 �→ g. Then, τ ◦ g τ∼ g and τ ◦ g is an offspring of f1 with
edge l : f1 �→ τ ◦ g.

The following is the main theorem of [14]

Theorem 3.2. Let Φ = {φj ; 1 ≤ j ≤ q} be an IFS on Rd, where each φi is
a contractive similarity with similar ratio ρi, 0 < ρi < 1. Suppose that Φ is
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of finite type with respect to a bounded invariant open set Ω, and let S be
the corresponding incidence matrix. Then, the Hausdorff dimension of the
attractor F = A(Φ) is

(3.5) dimH(F ) = − log λ
log ρ

,

where ρ = minjρj and λ is the maximal real eigenvalue of S.

Remark 3.3. The incidence matrix S of Φ depends on the open set Ω. It
can be proved that if Φ is a finite type IFS with respect to open set Ω with
incidence matrix S and Ω′ is another open set such that Φ(Ω′) ⊆ Ω′, then
Φ is also finite type with respect to Ω′. Suppose the incidence matrix of Φ
with respect to Ω′ is S′, then S′ �= S in most cases.

4. Necessary conditions for an IFS to be finite type.

In this section, we will discuss the conditions for an IFS to be finite type.

Theorem 4.1. Let Φ = {φi; 1 ≤ i ≤ q} be an IFS on Rd, where each φi is
a contractive similarity with similar ratio ρi, 0 < ρi < 1. Suppose that Φ is
of finite type. Then, there exists a real number 0 < ρ0 < 1 such that each
ρi = ρki

0 for some positive integer ki, 1 ≤ i ≤ q.

Proof. Assume that ρ1 ≤ ρ2 ≤ . . . ≤ ρq. Let P = {ρa1|a ∈ Q, a > 0}. If
{ρ1, . . . , ρq} �⊂ P, then there exists an i0, 2 ≤ i0 ≤ q, such that

(4.1) ρi0 �∈ P.
For any k > 0, there exists an positive integer nk such that

ρnk
i0

≤ ρk1 and ρnk−1
i0

> ρk1

So, by (3.3),
jk := ( i0 . . . i0︸ ︷︷ ︸

nk

) ∈ Λk.

Hence, φjk ∈ Vk, k = 1, 2, . . .. As Φ is of finite type, so there exist k �= k′

such that φjk and φjk′ have the same neighborhood type. Thus, there exists
a similarity τ with similar ratio ρk

′−k
1 such that

τ ◦ φjk = φjk′
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The similar ratio of τ ◦ φjk is ρk
′−k

1 ρnk
i0

. The similar ratio of φjk′ is ρnk′
i0

.
Hence,

ρk
′−k

1 ρnk
i0

= ρ
nk′
i0

This implies
ρi0 = ρ

(k′−k)/(nk′−nk)
1 ∈ P

This contradict with (4.1). Thus, we have {ρ1, . . . , ρq} ⊂ P.
As {ρ1, . . . , ρq} ⊂ P, so there exist si

ti
∈ Q, i = 1, . . . , q, where si and ti

are positive integers, such that

ρi = ρ
si/ti
1 , i = 1, . . . , q

Let T be the minimal common multiple of t1, . . . , tq. Then, Tsi
ti

are integers.

Let ρ0 = ρ
1/T
1 and ki = Tsi

ti
, then ρi = ρki

0 . �

In view of Theorem 4.1, one can see that even though there exist some
finite type IFS without open set condition, finite type condition is quite
restrictive. Furthermore, we have the following result.

Theorem 4.2. An attractor of any finite type IFS must be a component
of an invariant c-vector of an M-matrix M = (Mij) with open set condition
such that each mapping φ ∈ ∪ijMij is a similarity with a fixed contractive
ratio 0 < ρ < 1.

Proof. Let Φ = {φj ; 1 ≤ j ≤ q} be a finite type IFS on Rd respect to open
set Ω with m neighborhood types and incidence matrix S = (sij). Let
ρ = min1≤j≤q{u(φj)}. Let F = A(Φ).

For any f ∈ V, define

C0(f) = {f},
C(f) = C1(f) := {g ∈ V|f � g}, the set of all offsprings of f,
Ci+1(f) = {g ∈ V|h� g for some h ∈ Ci(f)}, i = 1, 2, . . . .

Then, it is easy to see that

(4.2) Ci(1) = Vi, i = 1, 2, . . . ,

where Vi is defined by (3.3). For each neighborhood type i = 1, . . . ,m, we
choose one mappings vi ∈ Vki

that has neighborhood type i. In particular,
we can assume that v1 = 1 = φ∅ ∈ V0, the identity mapping. Suppose

(4.3) C(vi) = {gijt|j = 1, . . . ,m, 1 ≤ t ≤ sij},



832 N. Jin & S.S.T. Yau

where gijt has neighborhood type j. As vi ∈ Vki
, so gijt ∈ Vki+1. But gijt

and vj has the same neighborhood type, so there exists a similarity τijt with
similar ratio ρki−kj+1 such that (see (3.4))

(4.4) gijt
τijt∼ vj .

Hence,

(4.5) gijt = ρkj−kiτijt ◦ (ρki−kjvj).

Write ρkj−kiτijt as τ̂ijt. Then, τ̂ijt is a similarity with similar ratio ρ and

(4.6) ρ−kigijt = τ̂ijt ◦ ρ−kjvj .

Let Mij = {τ̂ijt|1 ≤ t ≤ sij}. Define M-matrix M = (Mij). Then, by (4.3)
and (4.6), we have

(4.7)


 ρ−k1C(v1)

...
ρ−kmC(vm)


 = M


 {ρ−k1v1}

...
{ρ−kmvm}


 .

Using Lemma 3.1, by induction on p, we can prove that

(4.8)


 ρ−k1Cp(v1)

...
ρ−kmCp(vm)


 = Mp


 {ρ−k1v1}

...
{ρ−kmvm}


 .

Now, M is a M-matrix. Its incidence matrix T is the same as the incidence
matrix S of Φ. We shall prove that F is a component of A(M). Let

F =


 {ρ−k1v1}

...
{ρ−kmvm}


 (F ) =


 ρ−k1v1(F )

...
ρ−kmvm(F )


 .

Then, by (1) of Theorem 2.3,

(4.9) A(M) = ∩i≥1∪p≥iMp(F)

But
F = V0(F ) = . . . = Vp(F ) = . . . .

So, by (4.2),

(4.10) F = C0(1)(F ) = . . . = Cp(1)(F ) = . . . .
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Notice that v1 is the identity mapping and ρ−k1 = 1, (4.8) and (4.10) imply
that the first component of Mp(F) is always F . Thus, by (4.9), the first
component of A(M) is F .

Finally, let

(4.11) Ui = ρ−ki [∪p≥0(Cp(vi)(Ω) − ∪f∈Ω(vi),f �=vi
Cp(f)(Ω))], i = 1, . . . ,m,

where Ω is the open set mentioned at the begining of the proof. Then, Ui
are open sets and it is easy to check that M satisfies open set condition with
respect to U1, . . . , Um (see Definition 2.4). �

Remark 4.3. According to Theorem 4.2, we can apply Corollary 2.6 to
finite type IFS. This will yield Theorem 3.2. In other words, we give a new
proof of Theorem 3.2.

Remark 4.4. There are more than one way to represent the attractor of a
IFS as a component of an invariant c-vector of a M-matrix. Theorem 4.2
shows that the neighborhood type method of Ngai and Wang is an useful
method for getting a suitable M-matrix for finite type IFS. In the next
section, we will generalize this method to study more IFS.

5. General finite type IFS.

In this section, we will define the (general) finit type IFS. Let Φ = {φj ; 1 ≤
j ≤ q} be an IFS on Rd with attractor E = A(Φ), where each φi is a
contractive similarity with similar ratio u(φj) = ρi, 0 < ρi < 1. Let Σq be
the code space concerned with Φ and Σ∗

q = {∅} ∪ Σq. Let G = {1} ∪ Φ ∪
Φ2 ∪ . . . = {φi|i ∈ Σ∗

q}.
We define a finite set of mappings V ⊂ G to be a section if: (1) For any

mapping f ∈ G, there exist h, g, ψ ∈ G such that ψ ∈ V and fh = ψg; (2)
For any two mappings f, g ∈ V , if f = gh for some h ∈ G, then f = g.
Sections always exist (For example, Ψ = Φ \ {f ∈ Φ|∃g ∈ Φ and h ∈ G, h �=
1,� f = gh} is a section). If V is a section, then V (E) = E.

For two sections V1, V2 ⊂ G, we write V1 � V2 if for each f ∈ V2, there
exists g ∈ V1 and h ∈ G, h �= 1, such that f = gh. We call a sequence of
sections (Vi, i = 0, 1, 2, . . .) to be a flag if V0 = {1} and Vi � Vi+1 for each
i = 0, 1, 2, . . .. (For example, (3.3) defines a flag.)

Let (Vi, i = 0, 1, 2, . . .) be a flag and Ω ⊂ Rd be a non-empty bounded
open set which is invariant under Φ. We say two mappings f1, f2 ∈ Vk are
neighbors (with respect to Ω) if f1(Ω) ∩ f2(Ω) �= ∅. For f ∈ Vk, the set
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Ω(f) := {g ∈ Vk|g is a neighbor of f} is called the neighborhood of f (with
respect to Ω). Two mappings f1 ∈ Vk and f2 ∈ Vk′ are said to have the
same neighborhood type (in general sense) if there exists a similarity τ such
that

(5.1) Ω(f1) = τΩ(f2) and f1 = τ ◦ f2.

(Notice that, here, we omit the restriction on the similar ratio of τ in (3.4).)
We denote it by f1 ∼2 f2 (or f1

τ∼2 f2 to indicate the mapping τ). Let
V = ∪kVk. It is clear that for any f1, f2, f3 ∈ V , (1). f1

1∼2 f1, where 1 is

the identity mappings; (2). f1
τ∼2 f2 ⇒ f2

τ−1∼2 f1; (3). f1
τ∼2 f2 and f2

τ ′∼2 f3

⇒ f1
ττ ′∼2 f3. So “∼2” is an equivalence relation on V .

Using V as the set of vertices, same with Ngai and Wang’s [14] process
recalled in Section 3 of this paper, we define a graph G as follows. Give two
mappings f, g ∈ V , if f ∈ Vk, g ∈ Vk+1 and there exists a mapping h ∈ G
such that g = fh, then, we connect a directed edge h : f �→ g. We call f a
parent of g and g an offspring of f .

Similar to the case in Section 3, a vertex in G might have several parents
and we use the lexicographical order on Σ∗

q to remove extra edges from G.
For each vertex f ∈ V , let l1, . . . , lp ∈ Σ∗

q be all the words such that φlk are
directed edges going from some vertices to f . Suppose that l1 < . . . < lp
in the lexicographical order. Then, we keep φl1 and remove all other edges.
Thus, we obtain G2. If f is a parent of g (i.e., g is an offspring of f) in the
reduced graph G2, we denote it as f �2 g.

If for any f1, f2, g ∈ V and h ∈ G such that f1
τ∼2 f2 and g is an offspring

of f2 with edge h : f2 �→ g in the graph G2, we always have that τg τ∼2 g
and τg is an offspring of f1 with edge h : f1 �→ τg in the graph G2, then, we
say (Vk) is a recurrentable flag. For example, by Lemma 3.1, we know that
(3.3) defines a recurrentable flag.

The IFS Φ is said to be of general finite type if there exist a flag F =
(Vk|k = 0, 1, 2, . . .) and a Φ-invariant non-empty bounded open set Ω such
that F is a recurrentable flag and there are finite many distinct neighborhood
types in the sense of (5.1).

Let Φ be a general finite type IFS Φ with respect to open set Ω and
recurrentable flag F = (Vk|k = 0, 1, 2, . . .). The incidence M-matrix S =
(sαβ) for the Φ is defined as follows. Suppose that there are m neighborhood
types α1, . . . , αm. Then, the size of S is m × m. For each i = 1, . . . ,m,
choose a mapping fi ∈ V that has neighborhood type αi. Let C2(fi) =
{g ∈ V |fi �2 g}. Each mapping g ∈ C2(fi) will belong to one of the
neighborhood types αj . So, there exists a similar mapping τg such that
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g
τg∼2 fj. We collect these mappings τg to form the (i, j)-entry of S, i.e.,

define

(5.2)
{
S = (Sij)1≤i,j≤m,
where Sij = {τ |∃g ∈ C(fi) � g τ∼2 fj}.

Notice that τg = gf−1
j if g

τg∼2 fj, so τg is unique determined by g.
Consequently, Sij is unique determined by fi and fj. Now, we study what
will happen on S if we choose different fi. Suppose {f̂i, i = 1, . . . ,m} ⊂ V
is another collection of mappings such that f̂i has neighborhood type αi and
Ŝ = (Ŝij) is the M-matrix defined by Ŝij = {τ |∃g ∈ C2(f̂i) � g

τ∼2 f̂j},
where C2(f̂i) = {g ∈ V |f̂i �2 g}. As fi and f̂i have the same neighborhood
type, so there exist similar mappings σi such that fi

σi∼2 f̂i. Let τ ∈ Sij.
Then, ∃g ∈ C2(fi) such that g τ∼2 fj. Because F is a recurrentable flag,

fi
σi∼2 f̂i and g ∈ C2(fi) imply g σi∼2 σ

−1
i g and σ−1

i g ∈ C2(f̂i). Now, σ−1
i g

σ−1
i∼2

g
τ∼2 fj

σj∼2 f̂j. So, σ−1
i g

σ−1
i τσj∼2 f̂j. Thus, σ−1

i τσj ∈ Ŝij. So, σ−1
i Sijσj ⊆ Ŝij.

Similarly, it can be proved that σiŜijσ−1
j ⊆ Sij. So, σ−1

i Sijσj = Ŝij. Let
P =diag({σ1}, . . . , {σm}). Then, we have Ŝ = P−1SP .

The following theorem gives the relation of the invariant c-vector of S
and the attractor E of Φ. As a consequence, we can get the Hausdorff
dimension of E by applying Theorem 2.5 on S.

Theorem 5.1. Let Φ be a general finite type IFS Φ with respect to recur-
rentable flag F = (Vk|k = 0, 1, 2, . . .) and open set Ω. Suppose that there are
m neighborhood types α1, . . . , αm and that the identity mapping 1 has type
α1. Choose mappings fi ∈ V such that fi has neighborhood type αi and
f1 = 1. Let S be the associated incidence M-matrix. Then, Sk ∈ Mc(m,m)
for some k and S satisfies open set condition. Furthermore, the attractor E
of Φ is the first component of the maximal invariant c-vector A(S) of S.

Proof. For any f ∈ V = ∪kVk, define

C0
2(f) := {f},

C1
2(f) := C2(f) = {g ∈ V|f �2 g},

Ci+1
2 (f) = {g ∈ V|h�2 g for some h ∈ Ci2(f)}, i = 1, 2, . . . .

Then, it is easy to see that

(5.3) Ci2(1) = Vi, i = 1, 2, . . . .
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By (5.2),

(5.4)
Sij = {τ |∃g ∈ C2(fi),� g

τ∼2 fj}
= {gf−1

j |g ∈ C2(fi), g ∼2 fj}.
So

(5.5) Sijfj = {g ∈ C2(fi)|g ∼2 fj}.
Every mapping in C(fi) must belong to one of the neighberhood types of
α1, . . . , αm. So C2(fi) = ∪j{g ∈ C(fi)|g ∼2 fj} = ∪jSijfj. Hence,

(5.6) S


 f1

...
fm


 =


 C2(f1)

...
C2(fm)


 .

Denote the (ij)-entry of Sp as S(p)
ij . Now, we shall prove

(5.7)




(A). Sp


 f1

...
fm


 =


 Cp2 (f1)

...
Cp2 (fm)


 ,

(B). g ∈ S
(p)
ij and h ∈ Cq2(fj) ⇒ gh ∈ Cp+q2 (fi) and gh

g∼2 h,

for p = 1, 2, 3, . . . and q = 0, 1, 2, . . . by induction.
If p = 1 and q = 0, by (5.5) and (5.6), we know that (5.7) holds. Suppose

K ≥ 1 is an integer. Assume that (5.7) holds if p+ q ≤ K.
Let g ∈ CK+1

2 (fi). Then, there exists h ∈ CK2 (fi) such that h �2 g.
By induction assumption, (A) of (5.7) holds when p = K an p = K − 1.
So, CK2 (fi) = ∪jS(K)

ij fj = ∪j(∪tSitS(K−1)
tj fj) = ∪tSitCK−1

2 (ft). Hence,
h ∈ Sit0C

K−1
2 (ft0) for certain t0 ∈ {1, . . . ,m}. So, we can suppose that

h = αβ, where α ∈ Sit0 and β ∈ CK−1
2 (ft0). By induction assumption, (B)

of (5.7) holds when p = 1 and q = K − 1. So, h = αβ
α∼2 β. Hence, β α−1∼2 h.

But F is a recurrentable flag, so β �2 α
−1g. Therefore, α−1g ∈ CK2 (ft0).

So, g = αα−1g ∈ Sit0C
K
2 (ft0). Thus, we have

(5.8)
CK+1

2 (fi) ⊆ ∪tSitCK2 (ft)
= ∪tSit(∪jS(K)

tj fj)
= ∪jS(K+1)

ij fj.

Conversly, let g ∈ ∪jS(K+1)
ij fj. Because ∪jS(K+1)

ij fj = ∪j ∪t SitS(K)
tj fj =

∪tSitCK2 (ft), there exists t0 ∈ {1, . . . ,m} such that g ∈ Sit0CK2 (ft0). Choose
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α ∈ Sit0 and β ∈ CK2 (ft0) such that g = αβ. By the definition of CK2 (ft0),
there exists γ ∈ CK−1

2 (ft0) such that γ �2 β. By induction assumption, (B)
of (5.7) holds if p = 1 and q = K− 1. So, α ∈ Sit0 and γ ∈ CK−1

2 (ft0) imply
αγ ∈ CK2 (fi) and αγ α∼2 γ. Because F is recurrentable, we have αγ �2 αβ.
So, g = αβ ∈ CK+1

2 (fi). Thus, we proved that

(5.9) CK+1
2 (fi) ⊇ ∪jS(K+1)

ij fj

Combining (5.8) and (5.9), we have

(5.10) CK+1
2 (fi) = ∪jS(K+1)

ij fj

Thus, (A) of (5.7) holds if p ≤ K + 1. Consequently, we also get that if
p + q ≤ K + 1, α ∈ S

(p)
ij and β ∈ Cq2(fj) imply αβ ∈ Cp+q2 (fi). To prove

that (B) of (5.7) holds in this case, we only need to prove that αβ α∼2 β if
p+ q = K + 1.

Suppose 1 ≤ p ≤ K and q = K − p+ 1. Choose γ ∈ CK−p
2 (fj) such that

γ �2 β. By induction assumption, αγ α∼2 γ. As F is recurrentable, we have
αβ

α∼2 β.
Now, suppose p = K + 1 and q = 0. Then, α ∈ S

(K+1)
ij and β = fj. But

S
(K+1)
ij = ∪tSitS(K)

tj , so α = α1α2 for some α1 ∈ Sit0 and α2 ∈ S
(K)
t0j

. By

induction assumption, α2β
α2∼2 β and α2β ∈ CK2 (ft). By previous paragraph,

α1α2β
α1∼2 α2β. So α1α2β

α1α2∼2 β, i.e. αβ α∼2 β.
Thus, we proved that (5.7) holds when p+q ≤ K+1. Hence, (5.7) holds

for all p = 1, 2, 3, . . . and q = 0, 1, 2, . . ..
Now, we shall find a k such that Sk ∈ Mc(m,m). Let ρmax =

max{u(φ)|φ ∈ Φ}, umax = max{u(fi)|1 ≤ i ≤ m} and umin =
min{u(fi)|1 ≤ i ≤ m}. Then, 0 ≤ ρmax < 1. For any f ∈ Cp2 (fi),
u(f) ≤ u(fi)ρ

p−1
max ≤ umaxρ

p−1
max. Choose k such that umaxρk−1

max ≤ 1
2umin.

For any f ∈ S
(k)
ij , ffj ∈ Ck2 (fi). So, u(ffj) ≤ 1

2umin ≤ 1
2u(fj). Thus,

u(f) ≤ 1
2 . Therefore, Sk ∈ Ms(m,m).

Now, we shall prove that E is a component of A(S). Let

E :=


 f1

...
fm


 (E) =


 f1(E)

...
fm(E)


 .

Then, E ∈ Km. So by (1) of Theorem 2.3,

(5.11) A(S) = ∩i≥1∪p≥iSp(E)
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But
E = V0(E) = . . . = Vp(E) = . . . .

So, by (5.3),

(5.12) E = C0
2 (1)(E) = . . . = Cp2 (1)(E) = . . . .

Noticing that f1 = 1 is the identity mapping, (5.12) and (A) of (5.7) implies
that the first component of Sp(E) is always E. Thus, by (5.11), the first
component of A(S) is E.

Finally, let

(5.13) Ui = [∪p≥0(C
p
2 (fi)(Ω) − ∪f∈Ω(fi),f �=fi

Cp2 (f)(Ω))], i = 1 . . . ,m.

Then, Ui are open sets and it is easy to check that S satisfies open set
condition with respect to U1, . . . , Um (see Definition 2.4). �

6. Examples.

In this section, we study a class of general finite type IFS as examples.
Suppose 0 < β < 1/2, 0 < α < (1 − 2β)/(1 − β) and γ �= 0. Let Φ =
{φ1, φ2, φ3}, where φ1(x) = αx, φ2(x) = βx + αγ, and φ3(x) = βx + γ.
Then, Φ is an IFS on R. According to Theorem 4.1, α = βp for some p ∈ Q

is a necessary condition for Φ to be finite type. So, these IFS are not finite
type in Ngai and Wang’s sense [14] except some occasional cases. It is easy
to check that Φ does not satisfy the open set condition. Let E = A(Φ) be
the attractor of Φ.

Firstly, we shall find the Hausdorff dimension of E by M-matrix theory.
Let W1 = {1}, where 1 is the identity mapping. Let W2 = {φ1, φ2}. Then,
it is easy to check

(6.1)
{
W1Φ = φ3W1 ∪W2

W2Φ = φ2φ3W1 ∪ {φ1, φ2}W2

Define

(6.2) M =
( {φ3} {1}

{φ2φ3} {φ1, φ2}
)
.

Then, (6.1) becomes

(6.3)
(
W1

W2

)
Φ = M

(
W1

W2

)
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Let E = (W1(E),W2(E))t = (E,φ1(E) ∪ φ2(E))t. Then, E ∈ K2.

M(E) =
( {φ3} {1}

{φ2φ3} {φ1, φ2}
)(

W1(E)
W2(E)

)
=

(
(φ3W1 ∪W2)(E)

(φ2φ3W1 ∪ {φ1, φ2}W2)(E)

)
=

(
W1Φ(E)
W2Φ(E)

)
=

(
W1(E)
W2(E)

)
= E.

So, E is invariant under M . It is clear that M is irreducible and M2 ∈
Mc(2, 2). But E ∈ K2, so by Theorem 2.3, we know that E = A(M).

Define open intervals

(6.4) U1 :=
{

(0, γ/(1 − β)) if γ > 0
(γ/(1 − β), 0) if γ < 0

and

(6.5) U2 := W2(U1) =

{
(0, ( 1

1−β + α)γ) if γ > 0
(( 1

1−β + α)γ, 0) if γ < 0

Then, one can check that

(6.6)




φ3(U1) ∩ U2 ⊆ U1,
φ2φ3(U1) ∪ φ1(U2) ∪ φ2(U2) ⊆ U2,
φ3(U1) ∩ U2 = ∅,
φ2φ3(U1) ∩ (φ1(U2) ∪ φ2(U2)) = ∅,
φ1(U2) ∩ φ2(U2) = ∅.

So, M satisfies the open set condition with respect to U1 and U2. By Theo-
rem 2.5, the Hausdorff dimension d = dimE (notice that E is the first com-
ponent of E) is the unique number such that F (M,d) has 1 as the biggest
real eigenvalue. Now

F (M,d) =
(

βd 1
β2d αd + βd

)
.

It has two eigenvalues. The bigger one is

λ =
αd + 2βd +

√
α2d + 4β2d

2
.
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Then, λ = 1 implies

(6.7) αd + 2βd = 1 + αdβd.

So, the Hausdorff dimension dimH A(Φ) is the solution of (6.7).
Now, we shall prove that Φ is a general finite type IFS and get the

Hausdorff dimension of E by the incidence M-matrix. We can prove that
Φn, n = 1, 2, . . ., are sections. To do this, we only need to prove that for
any f, g ∈ Φn, f = gh for some h ∈ G will give f = g. Otherwise, suppose
f �= g. Then, f(U1) = gh(U1) ⊆ g(U1). So

(6.8) f(U1) ∩ g(U1) �= ∅.

By (6.3), we have

(6.9)
(
W1

W2

)
Φn = Mn

(
W1

W2

)
.

Denote the (i, j)-th entry of Mn by M (n)
ij . Then,

(6.10) Φn = W1Φn = M
(n)
11 W1 ∪M (n)

12 W2 = M
(n)
11 ∪M (n)

12 W2.

Because M satisfies the open set condition with respect to
(
U1

U2

)
=(

W1

W2

)
(U1), we know that Mn also satisfies the open set condition with

respect to
(
W1

W2

)
(U1). Hence,

(6.11)




h1, h2 ∈M
(n)
11 , h1 �= h2 ⇒ h1(U1) ∩ h2(U1) = ∅,

h1 ∈M (n)
11 , h2 ∈M

(n)
12 ⇒ h1(U1) ∩ h2W2(U1) = ∅,

h1, h2 ∈M
(n)
12 , h1 �= h2 ⇒ h1W2(U1) ∩ h2W2(U1) = ∅,

So, (6.8) holds only in the case {f, g} ∈ ψW2 for some ψ ∈ M
(n)
12 . Notice

that f = gh and W2 = {φ1, φ2}. So, φ1 = φ2h or φ2 = φ1h. Thus,

(6.12) φ1(U1) = φ2h(U1) ⊆ φ2(U1) or φ2(U1) ⊆ φ1(U1).

But φ1(U1) = (0, αγ
1−β ) and φ2(U1) = (αγ, βγ

1−β + αγ). Hence, (6.12) cannot
hold. So, the assumption f �= g is impossible. Thus, we proved f = g.
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Now, let V0 = {1}, Vn = Φn for n = 1, 2, . . .. Then, (Vn) is a flag. Using
U1 as the open set Ω. From (6.10) and (6.11), noticing that φ1(U1)∩φ2(U1) �=
∅, we know that the neighborhood (in the sense of (5.1)) of any f ∈ Φn is

(6.13) Ω(f) =

{
{f} if f ∈M

(n)
11

ψW2 if f ∈ ψW2 for some β ∈M
(n)
12 .

Thus, we have

(6.14)




f
f∼2 1 if f ∈M

(n)
11

f
ψ∼2 φ1 if f = ψφ1 for some ψ ∈M

(n)
12

f
ψ∼2 φ2 if f = ψφ2 for some ψ ∈M

(n)
12

It is clear that φ1 �∼2 φ2. So, there are three neighborhood types.
From (6.14), one can check that (Vn;n = 0, 1, 2, . . .) is a recurrent flag.

Select 1, φ1, φ2 to represent the three different neighborhood types. Consider
the offsprings of 1, φ1 and φ2 in the graph G2. 1 has offsprings φ1, φ2 and
φ3

φ3∼2 1. φ1 has offsprings φ2
1

φ1∼2 φ1, φ1φ2
φ1∼2 φ2 and φ1φ3

φ1φ3∼2 1. φ2

has offsprings φ2
2

φ2∼2 φ2 and φ2φ3
φ2φ3∼2 1. Thus, the associated incidence

M-matrix

(6.15) S =


 φ3 1 1

φ1φ3 φ1 φ1

φ2φ3 ∅ φ2


 .

The Hausdorff dimension d = dimE (notice that E is the first component
of A(S)) is the unique number such that F (S, d) has 1 as the biggest real
eigenvalue. Now

F (S, d) =


 βd 1 1

αdβd αd αd

β2d 0 βd


 .

It has there eigenvalues:

0,
αd + 2βd ±

√
α2d + 4β2d

2
.

The fact that the biggest eigenvalue is one implies

(6.16) αd + 2βd = 1 + αdβd.

This is same as (6.7).

Recently we were informed by Sze–Man Ngai that he and Ka–Sing Lau have
done similar works in our Section 5 by different method.
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