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Stability of Gradient Kähler–Ricci Solitons

Albert Chau and Oliver C. Schnürer

We study the stability of non-compact gradient Kähler–Ricci soli-
tons under the Kähler–Ricci flow. Our main result is that ap-
propriate perturbations of Cao’s steady soliton metric on C

n will
converge to the original soliton under the Kähler–Ricci flow as time
tends to infinity. These perturbations correspond to appropriately
decaying perturbations of the soliton potential function; in par-
ticular, this includes any compactly supported perturbation. To
obtain this result, we construct appropriate barriers and introduce
an Lp-norm that decays for these barriers with non-negative Ricci
curvature.

1. Introduction.

In [17], Hamilton introduced the Ricci flow on a compact Riemannian man-
ifold and used this to produce an Einstein metric on a compact Riemannian
three manifold with positive Ricci curvature. The flow is a geometric evo-
lution equation which evolves a Riemannian metric on a smooth manifold
by its negative Ricci curvature. On a Kähler manifold, this becomes the
Kähler–Ricci flow

(1.1)
d

dt
gī = −Rī.

In [6], Cao used (1.1) to produce Kähler–Einstein metrics on compact
Kähler manifolds with zero or negative first Chern class, thus re-establishing
the results of Yau in [24]. In the special case of a Kähler metric gij̄ on C

n

with a smooth global Kähler potential U (thus gij̄ = Uij̄), (1.1) is equivalent
to the following evolution equation for U

(1.2)
d

dt
U = log det(Uī).

(For the notations and conventions used in this paper, we refer to Section
2.) In general Ricci and Kähler–Ricci flow may develop singularities well
before converging to an Einstein metric, and blow-up analysis gives rise to
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complete non-compact solitons for these flow equations [16, 4]. Thus, an un-
derstanding of the flow on non-compact manifolds is essential. The general
theory for the Ricci flow on complete non-compact Riemannian manifolds
was established by Shi. See [19] for a reference to this, and in particular,
to the parabolic maximum principles on non-compact manifolds which we
will use later. For a survey article concerning the Ricci flow and singularity
analysis in particular see [7, 15], and for a list of solitons for the Kähler–
Ricci flow see [11]. The stability of solitons and special metrics under the
Ricci flow is also a topic of special interest. In particular, Stability questions
for the Ricci flow have been considered near compact Ricci flat metrics and
near complete metrics on R

2 in [13, 23, 14].
In this paper, we focus on the non-compact complete gradient Kähler–

Ricci solitons found in [5]. They are rotationally symmetric with positive
holomorphic bisectional curvature and their existence has been proved by
solving an ordinary differential equation. It turns out that these solutions are
unique (up to scaling and dilatations) in the class of rotationally symmetric
gradient solitons with positive holomorphic bisectional curvature. To learn
more about these solitons, it is desirable to know whether they are stable
under appropriate perturbations. In this paper, we answer this question in
the affirmative. We will show that the gradient solitons in [5] on C

n are
stable under appropriately decaying perturbations of the Kähler potential.

A further question in this direction is, whether there exist other solitons
without rotational symmetry. We wish to remark that recently, Xu-Jia
Wang found strictly convex translating solutions to the mean curvature flow
without rotational symmetry in [22]. The problem of stability for these
solutions seems to be unsolved.

We wish to give a heuristic argument why we impose the condition that
the perturbation should decay at infinity. In our situation, we do not expect
to get stronger results than for the standard heat equation on R

n. In this
case, however, we can take a bounded perturbation of the stationary solution
u = 0 that satisfies for t = 0

(1.3) u((x1, x2, . . . , xn), t) →
{

1 as x1 → ∞,

−1 as x1 → −∞,

uniformly in (x2, . . . , xn). It follows directly from the heat kernel represen-
tation of a solution that (1.3) remains true during the evolution, i.e. for
t > 0. Similarly, we expect that for general bounded perturbations of the
potential in our equation, the oscillation of a perturbation will not tend to
zero. Of course, in such special cases as the one above, one can show that the
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solution flattens out on compact sets. This explains why it is natural to have
decay assumptions in our stability theorem. To simplify its formulation, we
give the following

Definition 1.1. A function u0 : C
n → R is called a C-potential, if it is

rotationally symmetric, (u0)ī is a Kähler metric with positive holomorphic
bisectional curvature, and gives rise to a gradient Kähler–Ricci soliton.

We refer to Theorem 1 in [5], where C-potentials are shown to exist and
to be unique up to scaling and holomorphic transformations. In particular,
using Notation 2.3, it is shown that C-potentials are characterized by the
Equations (5.1) and (5.2).

Theorem 1.2. Let u0 be a C-potential in complex dimension n ≥ 2 and ũ
a smooth perturbation such that

1. ũī defines a complete Kähler metric on C
n equivalent to (u0)ī with

bounded curvature.

2. u = ũ− u0 satisfies |u(x)| ≤ K and

(1.4) |u(x)| ≤ K · (2 log |x|)−α for |x| > 1

for some 0 < K, 0 < α < 1.

Then, with u as initial condition, (2.3) has a long time smooth solution
converging to 0 as time tends to infinity. As a consequence, the Kähler
metric defined by ũī converges back to the soliton metric (u0)ī under the
following reparametrization of (1.1)

d

dt
gī = −Rī + fī,

where f is a smooth potential for the Ricci tensor of (u0)ī.

In the special case of a compactly supported perturbation, we get

Corollary 1.3. Let u0 be a C-potential in complex dimension n ≥ 2 and ũ
a smooth perturbation such that ũī defines a complete Kähler metric on C

n

equivalent to (u0)ī and u = ũ− u0 is compactly supported. Then, with u as
initial condition, (2.3) has a long time smooth solution converging to 0 as
time tends to infinity.
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A geometric interpretation of the decay condition (1.4) is as follows. If
the eigenvalues of the perturbed metric minus the soliton metric ũī − (u0)ī
with respect to the soliton metric (u0)ī decay like (log |x|)−2−α and u tends
to 0 at infinity, then (1.4) is fulfilled for an appropriate value of K. This
is obtained by integrating u radially. Note that along a ray, Du, evaluated
radially, has to become small on a sequence of points tending to infinity.
That can be used to anchor the integration. We wish to mention that the
barriers introduced in (5.3) have the same decay in terms of the metric.

To give an overview of the method used here to prove Theorem 1.2,
we describe our proof in words. It will be convenient to transform our flow
equation such that the gradient solitons we are interested in become station-
ary solutions of the new equations, namely (2.1). In Section 4, we obtain
smooth longtime existence and get uniform estimates for the perturbation
of a C-potential. Then, we want to apply the maximum principle to deduce
that the oscillation of the perturbation is strictly decreasing in time (or
zero). Due to the non-compactness of C

n, however, we have to make sure
that the supremum is attained somewhere. We do not know how to prove
this directly. Instead, we enclose our perturbation from above and from
below by radially symmetric barriers that decay at infinity (as a function
of r = |x|) and correspond to Kähler metrics with positive holomorphic bi-
sectional curvature. During the evolution, the upper barrier stays positive,
monotone in r, and rotationally symmetric. This ensures that it attains its
maximum at the origin and we can apply the strong maximum principle to
deduce that the oscillation, as a function of time t, is strictly decreasing.
However, this is not enough to show that the barrier converges to zero. It
might happen (and seems to be an interesting question, for which equations
it actually happens), that the fact that the perturbation tends to zero at
infinity is destroyed during the evolution as t→ ∞. This would imply that
the perturbation would converge to a positive constant as t → ∞. For the
standard heat equation, however, it is quite easy to exclude this phenom-
enon as the L2-norm of a solution is non-increasing, so it remains finite
during the evolution, at least for H1,2 initial data. The argument extends
to any smooth solution. In our situation, we can find a quantity (Lemma
6.3) that is equivalent to the intrinsic Lp-norm of the perturbation and is
also decaying. This property relies heavily on the construction of special
barriers with positive holomorphic bisectional curvature (this is preserved
during the evolution [19]). As the total (intrinsic) volume of our soliton is
infinite, this excludes the possibility that the perturbation tends to a pos-
itive constant. Similar considerations apply to the lower barrier and thus
the original perturbation, enclosed in between these two barriers during the
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evolution, converges to zero. Once C0-convergence is established, smooth
convergence follows immediately from our a priori estimates.

In Section 2, we introduce the notations that we will use throughout
the paper and transform the evolution equation (1.2) to other coordinate
systems. We explain in Section 3, why we have short time existence of
solutions, and prove uniform a priori estimates that guarantee long time
existence in Section 4. We sketch how to construct barriers in Section 5 and
refer to the Appendices B and C for details. In the proof of Theorem 1.2,
we use the evident Lemma 6.2 and give it’s proof in Appendix A. Finally,
Section 6 contains the proof, that our barrier converges to zero, the crux of
the proof of Theorem 1.2.

2. Preliminaries and Transformations.

2.1. Preliminaries.

Notation 2.1. We use indices to denote partial derivatives,

ui =
∂

∂zi
u, uī =

∂2

∂zi∂z̄
u, . . . .

If for a function u : C
n → R, the matrix (uī) is positive definite, we call u

a Kähler potential. Then, (uī) is a Kähler metric and we denote its inverse
by
(
uī
)
. Lower case Latin indices range from 1 to n. We use the Einstein

summation convention with a special convention for Latin capitals, e.g.

uīwī :=
n∑

i=1

n∑
̄=1

uīwī, zIuI :=
n∑

i=1

ziui +
n∑

̄=1

z̄ū.

We will use
(
zi
)

and (z̄) to denote standard flat coordinates on C
n. Some-

times, it will be appropriate to use standard Euclidean coordinates
(
xi
)
.

The Laplace operator with respect to the metric (uī) is defined by

∆uw = uīwī.

In the estimates that follow, we will use c to denote a fixed positive constant
that does not depend on time, but may change its value from line to line.
Indices preceded by a comma, e.g. u,īk, indicate covariant differentiation
with respect to the background metric (u0)ī introduced in (2.3). As usually,
we use Rī to denote the Ricci tensor, Rm for the Riemannian curvature
tensor, ‖·‖ to denote a (pointwise) norm with respect to the induced metric,
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and ∇g to indicate covariant differentiation with respect to the metric gī.
We do not use different notations for the initial value u : C

n → R and for
the corresponding solution to Kähler–Ricci flow u : C

n × [0,∞) → R.

Notation 2.2. For a Kähler metric (gī), we obtain Christoffel symbols as
follows

Γi
jk = gil̄

∂gjl̄

∂zk
, Γı̄

̄k̄ = Γi
jk,

and other components are identically zero. Covariant differentiation is de-
fined by

ωA
,B =

∂ωA

∂zB
+ ΓA

BCω
C , XA,B =

∂XA

∂zB
− ΓC

ABXC .

We can interchange covariant derivatives,

Xc,ab =Xc,ba, Xc̄,ab =Xc̄,ba,

Xc,ab̄ =Xc,b̄a −Rab̄cd̄g
d̄eXe, Xc̄,ab̄ =Xc̄,b̄a +Rab̄dc̄g

dēXē.

In these formulae, the (holomorphic) Riemannian curvature tensor appears,
which is defined by

Rīkl̄ = − ∂2gī

∂zk∂z l̄
+ gpq̄ ∂giq̄

∂zk

∂gp̄

∂z l̄
.

Contracting with respect to the metric yields, the (holomorphic) Ricci tensor

Rī = gkl̄Rīkl̄ = −(log det(gkl̄))ī.

Finally, a Kähler manifold has positive biholomorphic sectional curvature,
if

Rīıj̄ > 0.

Note, that we do not sum here.

Notation 2.3. In the proofs, we will switch between equivalent forms of
the evolution equation. If we assume in the following that a function U
fulfills (1.2), we will also assume that the function u is obtained from U by
applying the transformations leading to (2.3), so it solves (2.3). Similarly,
we assume that ũ fulfills (2.1). When we consider a rotationally symmetric
solution of (2.1) depending on the variable s = log |z|2, we denote this by
û. Analogous notations are used for other functions solving (1.2). Given a
C-potential u0, we will denote by U0 the corresponding solution to (1.2).
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2.2. Transformations.

We will now fix a C-potential u0. Here, and in the rest of the paper, all
evolution equations are defined on C

n.
For further considerations, it will be convenient, to change coordinates

such that the evolution of a C-potential in time is as simple as possible. This
can be obtained by introducing

ũ(x, t) := U
(
e

1
2
tx, t

)
+ 1

2nt
2,

where U is a solution to (1.2). We immediately get d
dt ũ = 1

2UIz
Ie

1
2
t+ d

dtU+nt
and det(ũī) = ent det(Uī). Using (1.2), we see that the evolution equation
for ũ is given by

(2.1)
d

dt
ũ = log det(ũī) + 1

2

(
ziũi + z̄ũ̄

)
,

where we write again zi and z̄ for e
1
2 tzi and e

1
2 tz̄, respectively, i.e. we

evaluate ũ at
((
zi
)
, (z̄) , t

)
. The initial value is clearly unchanged, ũ(x, 0) =

U(x, 0).
We now show that the C-potentials introduced in [5] are in fact stationary

for (2.1). These potentials are characterized in [5] by radially symmetric
functions û(s) in the variable s = log |z|2 for which the following conditions
are satisfied. For û′(s) ≡ ϕ(s), it is required that ϕ(s) → 0 for s→ −∞ and
ϕ fulfills (when normalized appropriately) the ordinary differential equation

(2.2) ϕn−1ϕ′eϕ = ens.

By differentiating û
(
log |z|2) = ũ, we obtain

1
2

(
ziũi + z̄ũ̄

)
=û′,

ũī =û′′
zı̄zj
|z|4 + û′

1
|z|2

(
δī − zı̄zj

|z|2
)
.

In appropriate coordinates, it is easily seen that the eigenvalues of ũī with
respect to the flat metric are û′′

|z|2 and û′
|z|2 with multiplicity (n− 1). We get

log det(ũī) + 1
2

(
ziũi + z̄ũ̄

)
= log û′′ + (n− 1) log û′ − n log |z|2 + û′

= logϕ′ + (n− 1) log ϕ− ns+ ϕ.

Compare this to (2.2). Thus, we deduce that a C-potential is a stationary
solution to (2.1). To show stability of (2.1) at u0, it will be convenient to
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write ũ = u0 +u. As ũ and u0 solve (2.1), we get directly from the definition
of u its evolution equation

(2.3)
d

dt
u = log

det((u0)ī + uī)
det((u0)ī)

+ 1
2

(
ziui + z̄ū

)
.

The advantage of this evolution equation is that u0 is time-independent and
it will turn out that it allows to consider functions u(x, t) that are uniformly
bounded in time.

2.3. Hölder spaces.

We now define the parabolic and elliptic Hölder spaces of a non-compact
Kähler manifold (M,gī). We will use these spaces to apply Schauder esti-
mates in proving a priori estimates for (2.3). These are parabolic versions
of the elliptic spaces defined in [8, 20, 21].

Definition 2.4. Let m be a positive integer and α ∈ (0, 1). A complex
n-dimensional Kähler manifold (M,gī) is said to have bounded geometry
of order m+ α if there are numbers r1, r2, k1, k2, C > 0 such that for every
p ∈M :

1. There is a neighborhood Up of p and a non-degenerate holomorphic
map ξp : Vp → Up where Vp ⊂ C

n, Br1(0) ⊆ Vp ⊆ Br2(0) and ξp(0) = p.

2. k1δab̄ ≤ ξ∗pgab̄ ≤ k2δab̄ on Vp,

3. For all a, b, we have ‖ξ∗pgab̄‖p,m+α ≤ C where ‖ ·‖p,m+α is the standard
Cm+α Hölder norm on Vp ⊂ C

n.

(M,gī) is said to have bounded geometry of order ∞ if it has bounded
geometry of order m+ α for every m. Let (M,gī) have bounded geometry
of order m+α and let [0, T ) be an arbitrary time interval. For some choice
of maps ξp as in Definition 2.4, consider the following norm for any smooth
function u on M × [0, T ):

(2.4) ‖u‖m+α,m/2+α/2 := supp∈M{‖ξ∗pu‖p,m+α,m/2+α/2},

where ξ∗pu is the pull back of u to Vp and ‖ · ‖p,m+α,m/2+α/2 is the standard
parabolic Hölder norm on Vp×[0, T ). The following definition is independent
of the choice of ξ′ps.
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Definition 2.5. : Let (M,gī) be a complete Kähler manifold with bounded
geometry of order m + α. With respect to (2.4), we define the parabolic
Hölder spaces Cm+α,m/2+α/2(M × [0, T )) to be the closure of the set of all
smooth functions u(x, t) : M × [0, T ) �−→ R for which (2.4) is finite. Also,
given (M,gī) above, one can define the elliptic Hölder spaces Cm+α(M) in
an obvious way.

Cm+α,m/2+α/2(M × [0, T )) with the norm (2.4) for some choice of maps ξp,
and Cm+α(M) with the analogous elliptic norm, are easily checked to be
Banach spaces.

3. Short Time Existence.

We now establish the following general short time existence result.

Lemma 3.1. Let (M,gī) be a complete non-compact Kähler manifold such
that ‖Rm‖ ≤ c0 and f : M → R is a smooth potential of the Ricci tensor,
i.e. Rī = −fī. Then, for some T > 0 depending only on c0, the following
initial value problem has a smooth solution u(x, t) for t ∈ (0, T ].

du

dt
= log

det(gī + uī)
det(gī)

+ f

u(x, 0) = 0
(3.1)

Moreover, for any t ∈ (0, T ], the Kähler metric gī(x)+uī(x, t) is equivalent
to gī and has bounded geometry of order ∞ and f(x) + (log det(uī))(x, t)
is a potential for Rī(x, t).

This is the Kähler potential version of the following theorem of Shi [19].

Theorem 3.2. Let (M,gī) be a complete non-compact Kähler manifold
such that ‖Rm‖ ≤ c0. Then, for some constant T > 0 depending only
on c0, there is a smooth short time solution g̃ī(x, t) to the Kähler Ricci
flow equation

dg̃ī

dt
= −R̃ī

g̃ī(x, 0) = gī.
(3.2)

for t ∈ (0, T ]. Moreover, for all t ∈ (0, T ], g̃ī(x, t) is a complete Kähler
metric on M equivalent to gī and we have the following estimates for the
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covariant derivatives of the curvature tensor of g̃ī(x, t).

∥∥∥∇m
g̃ R̃m(x, t)

∥∥∥2 ≤ C(n,m, c0)(1/t)m.

Proof of Lemma 3.1. Under the hypothesis of the lemma, Theorem 3.2
guarantees a short time solution g̃ī to the Kähler–Ricci flow (3.2). Using
this solution, we solve the following ordinary differential equation on [0, T ]
for x ∈M

du

dt
= log

det(g̃ī)
det(gī)

+ f

u(x, 0) =0

for a smooth function u(x, t). It is then straightforward to verify that we
must have g̃ī(x, t) = gī(x) + uī and thus, u(x, t) is a smooth solution to
(3.1). The details of this verification can be found in [9]. To complete
the proof of Lemma 3.1, we need to show that for any t ∈ (0, T ] the Kähler
metric g̃ī(x, t) = gī(x)+uī(x, t) has bounded geometry of order ∞. In [21],
the authors prove that on a non-compact Kähler manifold, one has bounded
geometry of order 2+α provided one has bounded curvature and gradient of
scalar curvature. Their proof can in fact be extended to show that one has
bounded geometry of infinite order provided one has all covariant derivatives
of curvature bounded. Thus, since g̃ī(x, t) has all covariant derivatives of its
curvature bounded by Theorem 3.2, we see that g̃ī(x, t) in fact, has bounded
geometry of order infinity. This completes the proof of Lemma 3.1. �

4. A Priori Estimates And Longtime Existence.

In this section, we prove a priori estimates for solutions of (2.3). We follow
the approach first used by Cao [6] which is to adapt the elliptic estimates
proved by Yau [24] and Aubin [3] for the elliptic complex Monge–Ampère
equation to the parabolic case. As we may transform (2.3) to an equation
of the form (3.1), we get short time existence. We may assume that we have
a smooth solution v ∈ C∞(Cn × [0, T ]) to (2.3), that is, if v is not smooth
at t = 0, we use t − ε, 1 � ε > 0, instead of t. Choosing T smaller if
necessary, we may also assume that v(·, t) gives rise to a complete Kähler
metric uniformly equivalent to (u0)ī.



Stability of Gradient Kähler–Ricci Solitons 779

4.1. Lower Order Estimates.

Lemma 4.1. A solution v to (2.3) satisfies

|v(·, t)|C0 ≤|v(·, 0)|C0 =: K0

and ∣∣∣∣ ddtv(·, t)
∣∣∣∣
C0

≤
∣∣∣∣ ddtv(·, 0)

∣∣∣∣
C0

=: K d
dt

for all t ∈ [0, T ].

Proof. This follows directly from the maximum principle in [10]. �

Lemma 4.2. A solution v to (2.3) satisfies
∣∣zIvI

∣∣ ≤ c =: Kz∇v uniformly
in t.

Proof. We estimate

1
2

∣∣zIvI

∣∣ ≤ ∣∣∣∣ 12zIvI − d

dt
v

∣∣∣∣+
∣∣∣∣ ddtv

∣∣∣∣ ≤
∣∣∣∣log det(ṽī)

det((u0)ī)

∣∣∣∣+K d
dt

=
∣∣∣∣log det(Vī)

det((U0)ī)

∣∣∣∣+K d
dt

=
∣∣∣∣ ddtV − d

dt
U0

∣∣∣∣+K d
dt
.

As (V − U0)
(
e

1
2
tx, t

)
= (ṽ − ũ0)(x, t) = v(x, t) is uniformly bounded in

C0, it suffices to prove that∣∣∣∣ d2

dt2
V − d2

dt2
U0

∣∣∣∣ ≤ c.

Then, interpolation gives the claimed inequality. We differentiate (1.2) and
obtain

d2

dt2
V − d2

dt2
U0 =

d

dt
log det(Vī) − d

dt
log det((U0)ī)

=V ī

(
d

dt
V

)
ī

− U ī
0

(
d

dt
U0

)
ī

=V ī(log det(Vkl̄))ī − U ī
0 (log det((U0)kl̄))ī

= −RV +RU0,
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where RV and RU0 are the scalar curvatures of the metrics Vī and (U0)ī,
respectively. As V and U0 give rise to solutions of Kähler–Ricci flow, the
corresponding scalar curvatures are uniformly bounded [19]. �

We are not able to prove gradient estimates directly. Instead, we have

Lemma 4.3. Let v be a solution to (2.3). Then, there exists a constant
K1+α that depends only on the C-soliton such that

‖v(·, t)‖1+α ≤ K1+α ·
(
K0 +

(
n+ sup

Cn
∆u0v(·, t)

))

for all t ∈ [0, T ].

Proof. We apply Lp-estimates [12, Theorem 9.11] to 0 < n+∆u0v and obtain
spatial H2,p-bounds for v. Then, the Sobolev imbedding theorem implies
the result. Note that we only used 0 < n+ ∆u0v and the C0-bound. �

4.2. Second Order Estimates.

Consider the quantity

(4.1) A = log(n+ ∆v) − kv,

where ∆v denotes the Laplacian of v with respect to (u0)ī(x) and the con-
stant k � 1 is to be chosen later. Clearly, a bound on |A| implies a bound
on |∆v|. We will bound A from above using the maximum principle. The
bound from below will follow directly from some simple inequalities.

Lemma 4.4. Assume that sup
Cn

∆v ≥ 1. Then,

1
n+ ∆v

(
∆
(
zIvI

)) ≤ zIAI + k
(
zIvI

)
+ c

holds in Ω :=
{
x ∈ C

n : ∆v(x) ≥ 1
2 sup

Cn
∆v
}

.

Proof. We compute

∆
(
zIvI

)
=(u0)lk̄

(
zivi + z̄v̄

)
lk̄

=(u0)lk̄
(
zi
,lvi + ziv,il + z̄v,̄l

)
k̄

≤(u0)lk̄
(
zi
,lv,ik̄ + z̄

,k̄
v,̄l + ziv,lk̄i + z̄v,lk̄̄

)
+ c · ‖∇v‖0

(4.2)
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and

(4.3) zIAI =
1

n+ ∆v
zi
(
(u0)lk̄v,lk̄

)
,i

+
1

n+ ∆v
z̄
(
(u0)lk̄v,lk̄

)
,̄
− kzIvI .

Note that zi, z̄, and the Riemannian curvature tensor induced by u0 are
bounded with respect to the metric ((u0)ī), see Remark C.3. This allows
to estimate the terms obtained by interchanging the order of covariant dif-
ferentiation.

We combine (4.2) and (4.3), and get in Ω

1
n+ ∆v

∆
(
zIvI

)− zIAI

≤kzIvI + c
‖∇v‖0

n+ ∆v
+

1
n+ ∆v

(u0)lk̄
(
zi
,lvik̄ + z̄

,k̄
v̄l

)
≤kzIvI + c

∆v
n+ ∆v

+ c
1

n+ ∆v
.

(4.4)

Here, we have used that at a fixed point, we can always choose holomorphic
coordinates such that (u0)lk̄ = δlk̄ and vik̄ = 0 for i = k, so we get

(u0)lk̄
(
zi
,lvik̄ + z̄

,k̄
v̄l

)
≤ c∆v + c

and deduce the second inequality in (4.4). In such coordinates, the terms
1 + vīı are positive for each i and are simply the eigenvalues of the tensor
(u0)ī + vī with respect to metric (u0)ī = δī. Finally, in passing to the last
line of (4.4), we have used Lemma 4.3. �

We are now in a position to prove the following

Lemma 4.5. There is a constant K2 > 0 such that |∆v(x, t)| ≤ K2 for all
(x, t) ∈ C

n× ∈ [0, T ].

Proof. For the proof of the upper bound for ∆v, we will only consider those
(x, t) ∈ C

n × [0, T ] such that sup
Cn×{t}

∆v > 1 and ∆v(x, t) > 1
2 sup

Cn
∆v(·, t).

Thus, we can use Lemmata 4.3 and 4.4. We compute the evolution equation
for A, interchange fourth covariant derivatives and use [3, p. 264] to estimate
third derivatives

dA

dt
− ∆̃A ≤ 1

n+ ∆v
d∆v
dt

− k
dv

dt
− (k − c)ṽī(u0)ī

− 1
n+ ∆v

(
∆
dv

dt
− 1

2∆
(
zIvI

))
+ nk,
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where ∆̃ denotes the Laplacian in the metric ṽī(x, t) = (u0)ī(x) + vī(x, t)
with inverse ṽī. We use the geometric–arithmetic means inequality and(

n∑
i=1

1
λi

)n−1

≥ 1
n

n∑
i=1

λi ·
n∏

i=1

1
λi
, λi > 0,

which is proved easily as we may assume that 1 = λ1 ≤ λ2 ≤ . . . ≤ λn, to
obtain

(n + ∆v) ≥
[

det(ṽī)
det((u0)ī)

] 1
n

= e
1
n(− 1

2
zIvI+ dv

dt ),

ṽī(u0)ī ≥ 1
c(n)

[
(n + ∆v) · e 1

2
zIvI− dv

dt

] 1
n−1

.

We apply Lemma 4.4 and estimate

dA

dt
− ∆̃A ≤ 1

n+ ∆v
d∆v
dt

− k
dv

dt
− (k − c)ṽī(u0)ī

− 1
n+ ∆v

∆
dv

dt
+ 1

2z
IAI + 1

2kz
IvI + nk + c

≤− (k − c)ṽī(u0)ī + 1
2z

IAI + 1
2kz

IvI + nk − k
dv

dt
+ c

≤− k − c

c(n)
e

1
n−1( 1

2
zIvI− dv

dt )(n + ∆v)
1

n−1

+ 1
2z

IAI + 1
2kz

IvI + nk − k
dv

dt
+ c.

Fixing k � 1 so large that k−c is bounded below by some positive constant,
the maximum principle can be applied to the evolution equation

d

dt
A− ∆̃A ≤ −1

ce
A−c
n−1 + 1

2z
IAI + c,

implying the upper bound.
To prove a lower bound for ∆v, we use coordinates as in Lemma 4.4.

Our lower order estimates (Lemmata 4.1 and 4.3) imply that
∏n

i=1(1+vīı) is
bounded below by a positive constant. The function v gives rise to a Kähler
metric. So, all the factors are positive. As we have seen that vīı is uniformly
bounded above for each i, the lower bound follows. �

Corollary 4.6. There is a constant K1 > 0 depending only on K0 and K2

such that ‖v(·, t)‖1 < K1 for all t ∈ [0, T ].
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Proof. Use Lemmata 4.1, 4.3 and 4.5. �

Corollary 4.7. The metric wī(x, t) = vī(x, t) + (u0)ī(x) is equivalent to
(u0)ī(x) for all t ∈ [0, T ]. Moreover, the equivalence factor depends only on
K0, K1 and K2.

Proof. This follows from the proof of Lemma 4.5. �

4.3. Higher Order Estimates and Long Time Existence.

Consider the quantities

Q3 = ṽīṽkl̄ṽrs̄v,il̄rv,̄ks̄,

and

Q4 = ṽīṽkl̄ṽrs̄ṽab̄v,il̄rb̄v,̄ks̄a,

where the covariant differentiation is with respect to (u0)ī and ṽī represents
the inverse of the time dependent metric ṽī(x, t) = (u0)ī(x) + vī(x, t). By
the previous section, this norm is equivalent to that using (u0)ī.

Lemma 4.8. There are constants K3,K4 > 0 depending only on K0, K1,
K2 such that |Q3|C0 < K3 and |Q4|C0 < K4 for all t ∈ [0, T ].

Proof. The above estimates are known in the special case that v is a solution
to (3.1) and have appeared in several places in various equivalent forms. We
describe some of these briefly. Calabi first estimated |Q3|C0 for the elliptic
Monge–Ampère equation on a compact manifold. This estimate was later
used by Aubin [3] and by Yau [24] in proving the Calabi conjecture. Calabi’s
estimate was applied directly by Cao [6] to (3.1) and later by Shi [19] to
(1.1). In [19], Shi goes further to estimate an appropriate second derivative
of the solution to (1.1) and observes that this is equivalent to estimating
the curvature tensor of the evolving metric. An equivalent estimate can be
found in [9] where |Q4|C0 is estimated for (3.1).

In our case that v is a solution to (2.3), we point out that it is straight-
forward to adapt the arguments of the authors cited above to our case. �

Notice that while the estimates in Lemma 4.8 follow rather painlessly from
the corresponding estimates for (3.1), such is not the case for our laplacian
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estimate in Lemma 4.5. The difference is that, in Lemma 4.8, we have
already estimated all derivatives of lower order and second derivatives of
the form vī, while in the case of Lemma 4.5 do not have a priori gradient
estimates. This does not cause a problem in (3.1) while in our case it does.

Note that the a priori estimates obtained so far imply that for any t ∈
[0, T ], n + ∆u0v(·, t) ∈ Cα with uniform bounds. Thus, elliptic Schauder
theory implies that v(·, t) ∈ C2+α. Differentiating (2.3) yields vī ∈ Cα, α

2

and v ∈ C2+α,1+ α
2 with uniform bounds.

Lemma 4.9. Let v be a solution to (2.3) and let Ck+α, k
2
+ α

2 be the Hölder
spaces on C

n relative to the metric ṽī. Then, for every k, v is bounded in
Ck+α, k

2
+ α

2 independent of t.

Proof. We prove the respective result for Hölder spaces with respect to the
background metric. The corresponding results in these Hölder spaces imply
the claimed estimates. Consider an arbitrary coordinate neighborhood Vβ

with coordinates
(
zi
)

as in Definition 2.4. Differentiating (2.3) with respect
to zi in these coordinates and rearranging terms gives

d

dt
vi =ṽrs̄v,rs̄i − 1

2

(
ẑIvI

)
i

=ṽrs̄v,irs̄ − 1
2 ẑ

Iv,iI +
(
ṽrs̄Ris̄rd̄ũ

ed̄
0 ve − 1

2 ẑ
I
,ivI

)
,

(4.5)

where ẑi are the local components of the global vector field zi. For covari-
ant differentiation and the curvature tensor, we use the background metric
(u0)ī. We view (4.5) as a parabolic equation for vi(x, t) on the coordinate
domain Vβ × [0,∞) with the third term on the right-hand side considered
as a single inhomogeneous term. In what follows, all bounds stated will be
independent of β and t. It is readily seen that our estimates from above
provide us with a Cα, α

2 bound for the coefficients and terms of (4.5). We
may then apply standard parabolic Schauder estimates to obtain a C2+α,1+ α

2

bound for vi(x, t) in an interior domain of Vβ. A standard bootstrapping
argument [6] combined with the fact that the metric ṽī has bounded geom-
etry of order ∞ then allows us to obtain a Ck+α, k

2
+ α

2 bound on v(x, t) in Vβ

for all k. The lemma now follows readily from Definition 2.5. �

Corollary 4.10. The solution v is smooth and exists for all time. More-
over, the metric ṽī(x, t) = (u0)ī(x) + vī(x, t) remains equivalent to
(u0)ī(x) uniformly over all t and the curvature of ṽī(x, t) remains bounded
on C

n independent of t.
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Proof. By our a priori estimates, it is straightforward to see that the curva-
ture of the metric ṽī(x, t) stays uniformly bounded on [0, T ]. Corollary 4.7
implies that the metrics stay uniformly equivalent. Thus, to prove the corol-
lary, it suffices to prove the assertion of long time existence. Moreover, long
time existence for v follows from long time existence for (1.2) with initial
condition ṽ(x, 0) = u0(x) + v(x, 0). Begin by assuming that T is the maxi-
mal time up to which we have a smooth solution. Choosing a time T ′ < T
arbitrarily close to T and applying Lemma 3.1 to the metric ṽī(x, T ′), we
may extend ṽ past T as a solution to (1.2) thus arriving at a contradiction
and thus proving the corollary. �

5. Barrier Construction.

Before we can construct a barrier, we have to determine the precise asymp-
totic behavior of our soliton. According to [5], we may assume that the
function ϕ(s) = û′(s) fulfilling

(5.1) ϕn−1ϕ′eϕ = ens

and

(5.2) ϕ(s) → 0 for s→ −∞,

where s = log |z|2, gives rise to our soliton. The second condition is required
to obtain a smooth solution at the origin. We derive in Appendix B the
following expansions for ϕ and its derivatives at infinity

ϕ =ns+ o(s),
ϕ′ =n+ o(1),

ϕ′′ =
n− 1
s2

+ o

(
1
s2

)
,

and

ϕ′′′ = − 2
n− 1
s3

+ o

(
1
s3

)
.

In the following, we construct barriers in the case n ≥ 2. Now, we assume
that our perturbation u(x, 0) of the initial value is such that

|u(x, 0)| ≤ K · min
{
1, s−α

}
, where s = 2 log |x|, 0 < α < 1.



786 A. Chau & O.C. Schnürer

For our barrier, we make the ansatz

(5.3) ϕb(s) = ϕ(s) ∓Ks−1−αα(2R)αψ
( s
R

)
with ϕ as above, that corresponds to the barrier

b̂(s) = û(s) ±
∞∫
s

Kσ−1−αα(2R)αψ
( σ
R

)
dσ.

Here, ψ is a smooth monotone function such that

ψ(s) =

{
0 if s ≤ 1,
1 if s ≥ 2.

Assume from now on that R ≥ 1
2 . It is straightforward to check that b̂(s)

lies above/below our perturbed initial value.
To prove that for R� 1 fixed sufficiently large

(5.4) ϕb > 0, ϕ′
b > 0, ϕb −ϕ′

b > 0, ϕ′2
b −ϕbϕ

′′
b > 0, ϕ′′2

b −ϕ′
bϕ

′′′
b > 0

is again a technical calculation, we refer to Appendix C.
Note that it is essentially the integrability condition for ϕb and not (5.4)

that determines the possible exponents in the decay condition.
For n = 1, our method does not seem to work. In this case, ϕ(s) is even

explicitly known to be log (1 + es), but

ϕ′′2 − ϕ′ϕ′′′ = e−s +O
(
e−2s

)
seems to exclude such a barrier construction. For results concerning long
time behavior of solutions to Ricci flow in the corresponding real dimension
2, we refer to [14, 23].

6. Convergence to Zero.

In this section, we prove Theorem 1.2. We use the radially symmetric decay-
ing barriers constructed in Section 5 to enclose our initial perturbation from
above and from below. By smoothly evolving our barriers and perturbed
initial value using (2.3) for all time, the maximum principle of [10] implies
that our perturbation will converge to zero provided such is true of our bar-
riers. In particular, the perturbed soliton converges back to the original
soliton as t→ ∞. We will only show that the upper barrier converges back
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to the original soliton. Studying the behavior during Kähler–Ricci flow is
simpler for the barriers as they are rotationally symmetric and decaying in
|z|.
Lemma 6.1. Let b be the upper (lower) barrier constructed in Section 5.
Then, (2.3) with initial condition b has a long time smooth solution, which
we also denote by b, which converges to zero as t→ ∞ in the C0 norm.

The proof is divided into several steps. We sketch the proof for the case of
the upper barrier and note that the case of the lower barrier is similar. Part
of the argument is a modification of the convergence proof in [18]. We first
show that the condition that b initially decays monotonely in |z| is preserved
for all time, so we get especially b(0, t) ≥ b(x, t) for all (x, t) ∈ C

n × [0, ∞).
We do this in Lemma 6.2. The strong maximum principle then guarantees
that supCn b is strictly decreasing in t. In fact, we claim that b must converge
to a constant. This can be seen as follows. In view of our a priori estimates,
we can find for every sequence tn → ∞ a subsequence, again denoted by tn,
such that the maps

C
n × [−tn,∞) � (x, t) �→ b(x, t+ tn)

converge locally uniformly in any Ck-norm to a smooth function b∞(x, t)
satisfying the evolution equation (2.3) everywhere in C

n×R. Moreover, since
the oscillation of b decreases strictly in time by the strong maximum principle
[1], it must converge to some non-negative constant. In other words, the
limit solution b∞(x, t) has non-negative oscillation which is constant in time.
But it is easy to see that the rotational symmetry and decay condition on
b(x, t) also holds for b∞(x, t) and thus by the strong maximum principle,
the oscillation of b∞(x, t) cannot be a positive constant. Thus, b∞(x, t) is
constant in space. The monotonicity of b(0, t) shows that this constant is
independent of the chosen subsequence and hence, b actually converges to a
constant. In Corollary 6.4, we show that during the evolution the Lp-norm,
for some p ≥ 2, of b is dominated by its value at t = 0. We compute the
Lp-norm with respect to an evolving volume form which stays uniformly
equivalent to the volume form for the initial soliton metric, thus the integral
of any positive constant over C

n with respect to this volume form for fixed t
is infinite. By Remark C.4, the Lp-norm is finite for t = 0 provided p > n+1

α
with α as in Section 5. So, b has to converge uniformly to zero on compact
subsets of C

n as t → ∞. Note, that the monotonicity in |z| is preserved
during the evolution and when we extract subsequences. Moreover, b(0, t)
is decreasing in t. So, b(0, t) has to converge to zero and it follows that the
perturbed soliton converges back to the original soliton in C

n.
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Lemma 6.2. Let b be the upper barrier constructed in Section 5. Then, b
stays rotationally symmetric and the property that b decays in |z| is preserved
during the evolution of b by (2.3).

It is quite evident that this lemma is true. Thus, we defer its proof to
Appendix A.

Lemma 6.3. Let u0 be a C-potential and b a barrier as constructed in Sec-
tion 5. Then, there exists a metric aī, uniformly equivalent to (u0)ī and
(u0)ī + bī, such that for b evolving according to (2.3), we have∫

Cn

|b(t)|p det(aī(t)) ≡ Ip(t) ≤ Ip(0)

for p ≥ 2 and t ≥ 0.

Proof. Interpolating between the two determinants in (2.3) and using upper
indices to denote inverses, we get

d

dt
b =log det((u0)ī + bī) − log det((u0)ī) + 1

2z
IbI

=

1∫
0

((u0)·· + τb··)īdτbī + 1
2z

IbI

≡aībī + 1
2z

IbI .

Now, we define (aī) to be the inverse of
(
aī
)
. By definition, (aī) is uni-

formly equivalent to (u0)ī and (u0 + b)ī as these two metrics stay uni-
formly equivalent during the evolution. For showing the definiteness of
time derivatives of certain metrics, it will be convenient to make a sub-
stitution so that we almost come back to the original evolution equation
(1.2). Set b(x, t) := b

(
e−

1
2
tx, t

)
, u0(x, t) := u0

(
e−

1
2
tx
)
. This implies that

(u0 + b)(x, t) = B(x, t) + 1
2nt

2, where B = B(u0 + b) is as in (1.2). As the
metric Bī has positive holomorphic bisectional curvature for t = 0 (Appen-
dix C), this is preserved during the evolution [19], so the Ricci curvature
also stays positive definite. From (1.1), we obtain that

(6.1)
d

dt
(u0 + b)ī ≤ 0 and similarly

d

dt
(u0)ī ≤ 0

in the sense of matrices. The second inequality follows by noting that
(u0)ī = (U0)ī and thus also corresponds to a solution to (3.2) with positive
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holomorphic bisectional curvature. The chain rule and the transformation
formula for integrals imply that

Ip(t) =
∫

Cn

|b|p det(aī)

as det(aī) = e−nt det(aī) and the volume elements differ by a factor ent.
Here, (aī) is the inverse of

1∫
0

((u0)·· + τb··)
ī dτ.

Note that
(u0)ī + τbī = τ((u0)ī + bī) + (1 − τ)(u0)ī

and we get from (6.1)
d

dt

(
(u0)ī + τbī

) ≤ 0.

As (aī) is obtained by taking the inverse of this matrix, integrating, and
taking the inverse once more, the definiteness for the time derivative is
inverted twice, so d

dtaī ≤ 0. Finally, (aī) is positive definite, so it follows
that

(6.2)
d

dt
det(aī) ≤ 0.

It is not obvious, whether Ip(t) is differentiable with respect to t or not.
Therefore, we define for radii R > 0 and balls BR with respect to the flat
metric of C

n

Ip,R(t) :=
∫

BR

|b|p det(aī)dV,

where dV denotes the Euclidean volume element. In order to compute
d
dtIp,R(t), we have to compute the evolution equation for b,

(6.3)
d

dt
b = log

det((u0)ī + bī)
det((u0)ī)

= aībī.

Using (6.2) and (6.3)

d

dt
Ip,R(t) =

∫
BR

p|b|p−2b

(
d

dt
b

)
det(aī)dV +

∫
BR

|b|p d
dt

det(aī)dV

≤
∫

BR

p|b|p−2bdet(akl̄)a
ībīdV.
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To estimate further, we denote by g the real metric corresponding to (aī),
see e.g. [19], and obtain in real coordinates

d

dt
Ip,R(t) ≤

∫
BR

p|b|p−2b∆gb
√

det(g) dV ≡
∫

BR

p|b|p−2b∆gb dµg.

We apply the divergence theorem and use ν to denote the exterior unit
normal to BR with respect to the metric g which coincides with x

|x| up to a
positive factor

d

dt
Ip,R(t) ≤ −

∫
BR

p(p− 1)|b|p−2〈∇b,∇b〉g dµg +
∫

∂BR

p|b|p−2b〈∇b, ν〉gdH2n−1
g .

Here, we used suggestive invariant notation. We apply Lemma 6.2 to see
that the boundary integral is non-positive and get Ip,R(t1) ≥ Ip,R(t2) for
0 ≤ t1 ≤ t2. Finally, we let R→ ∞ and obtain the claimed inequality. �

Corollary 6.4. Let u0 be a C-soliton and b : C
n → R the barrier con-

structed in Section 5. Assume that p ≥ 2 is chosen such that the Lp-norm

‖b‖Lp :=
∫

Cn

|b|p det((u0)ī + bī)

is finite for t = 0. Then, the Lp-norm of b stays uniformly bounded when b
evolves by Kähler–Ricci flow (2.3)

‖b(t)‖Lp ≤ c · ‖b(0)‖Lp ,

where the constant depends only on the uniform equivalence of the metrics
(u0)ī and (u0)ī + bī that is guaranteed during the evolution.

Proof of Lemma 6.1 and Theorem 1.2. Lemmata 6.2 and 6.4 together
with the arguments at the beginning of the section complete the proof of
Lemma 6.1 and thus of Theorem 1.2. �

Appendix A. Preserving Monotonicity.

Proof of Lemma 6.2. It is clear that the rotational symmetry is preserved
during the evolution.
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If b is not a monotone decaying function of |z| for all t > 0, we choose
0 ≤ T < ∞ maximal such that b is monotone decaying in |z| for t ∈ [0, T ].
Note that b is clearly monotone on a relatively closed subset in time. Our
lemma follows if we can show that b stays monotone for a while after T .
To simplify notation, we note, that applying (the independently proven)
Lemma 6.3 to the time interval [0, T ], where b is monotone, yields that
lim|z|→∞ b(|z|, T ) = 0. A similar argument works if we do not use this fact,
we just have to take into account the possibly different inf b(·, T ).

First, we consider b on C
n\BR(0) for R� 1. The radius R depends only

on the fact, that certain coefficients in the ordinary differential equation are
not too far from the corresponding values in the asymptotic expansion for the
soliton. So, the value of R depends only on b(·, 0) and our initial soliton as
the initial soliton and the perturbed soliton stay uniformly equivalent during
the evolution. We have b(R, T ) > 0 as otherwise the strong maximum
principle would imply b(·, T ) ≡ 0, so b(·, t) ≡ 0 for t > T , contradicting
the maximality of T . Due to the uniformly bounded geometry during the
evolution, there exists T ∗ > T such that b(R, t) − 1

2b(R, T ) ≥ 1
c > 0 for

t ∈ [T, T ∗].
Note that both u0 and b̃ = u0 + b solve (2.1). We consider u0 and b as

functions of s = log |z|2 and t and use u0 and b to indicate that. Equation
(2.1) and calculations similar to those in Section 2.2 imply that

d

dt
u0 = log u′′0 + (n− 1) log u′0 − ns+ u′0

and

d

dt

(
u0 + b

)
= log

(
u′′0 + b

′′)+ (n− 1) log
(
u′0 + b

′)− ns+ u′0 + b
′
.

Considering the difference of these two evolution equations gives

d

dt
b =

1∫
0

1

u′′0 + τb
′′dτ · b

′′ + (n− 1)

1∫
0

1

u′0 + τb
′ dτ · b

′ + b
′
.

As u′0 = ϕ in the notation of Appendix B, we see that b fulfills a parabolic
equation of the form

d

dt
b = αb

′′ + βb
′
,
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where α, β, α−1 ∈ L∞((logR2,∞)) for R � 1 fixed appropriately. As
b(R, t) − 1

2b(R, T ) ≥ 1
c > 0 for T ≤ t ≤ T ∗, we can extend α, β, and b

from [logR2,∞] × [T, T ∗] to R × [T, T ∗] as in the case with boundary in
[2] and apply the result of this paper to see that for h ∈ (

0, 1
2b(R, T )

)
,

#{r ≥ R : b(r, t) = h} = 1 for fixed t ∈ (T, T ∗]. This implies monotonicity
for r ≥ R.

It remains to prove that monotonicity is preserved for b > 1
2b(R, T ).

Similarly, as above, we can fix a radius R∗ > R and T∗ > T such that
b(R∗, t) < 1

2b(R, T ) for T ≤ t ≤ T∗. Fix ε > 0 and assume that for
t0 ∈ [T, T∗], there exist 0 ≤ r1 < r2 < R∗ such that b(r2, t0) ≥ b(r1, t0) + ε
and t0 is chosen minimal with this property. b(r, t0) tends to zero as r → ∞.
Choose r3 > r2 minimal such that b(r3, t0) = 1

2(b(r1, t0) + b(r2, t0)) and
r0 < r1 maximal such that b(r0, t0) = 1

2(b(r1, t0) + b(r2, t0)) (if such an
r0 exists). Set Ω := Br3 \ Br0 if r0 with this property exists, otherwise
Ω := Br3 . From our assumptions, we get that

osc(b, t,Ω) := sup
x∈Ω

b(x, t) − inf
x∈Ω

b(x, t)

is strictly smaller than ε for T ≤ t < t0 and equals ε for t = t0. Note that
for t close to t0, b is close to 1

2(b(r1, t0)+ b(r2, t0)) on ∂Ω. So, b|∂Ω does not
“contribute” to the oscillation for t close to t0 and we get a contradiction
to the strong maximum principle as a positive oscillation has to be strictly
decreasing in time (Huisken, see e.g. [1]).

As ε was arbitrary, we see that monotonicity is preserved in BR∗(0)
for T ≤ t ≤ T∗, so monotonicity is preserved everywhere for T ≤ t ≤
min{T ∗, T∗} and our lemma follows. �

Appendix B. Asymptotic Soliton Behavior.

Lemma B.1. A solution ϕ : R → R, ϕ = ϕ(s), fulfilling

(B.1) ϕn−1ϕ′eϕ = ens
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and ϕ→ 0 for s→ −∞ has the following asymptotic behavior at infinity

ϕ =ns− log
(
nnsn−1

)
+ (n− 1)

log
(
nnsn−1

)
ns

+ (n− 1)
1
ns

+
1
2
(n− 1)

log2
(
nnsn−1

)
n2s2

− (n − 1)(n − 2)
log
(
nnsn−1

)
n2s2

− 1
2
(n− 1)(3n − 5)

1
n2s2

+
1
3
(n− 1)

log3
(
nnsn−1

)
(ns)3

− 1
2
(n− 1)(3n − 5)

log2
(
nnsn−1

)
(ns)3

+ (n− 1)
(
n2 − 6n + 7

) log
(
nnsn−1

)
(ns)3

+
1
6
(n− 1)

(
11n2 − 46n+ 47

) 1
(ns)3

+ o

(
1
s3

)
,

(B.2)

ϕ′ =n− n− 1
s

− (n− 1)
log
(
nnsn−1

)
ns2

+ (n − 1)(n − 2)
1
ns2

− (n− 1)
log2

(
nnsn−1

)
n2s3

+ (n− 1)(3n − 5)
log
(
nnsn−1

)
n2s3

− (n− 1)
(
n2 − 6n + 7

) 1
n2s3

+ o

(
1
s3

)
,

(B.3)

ϕ′′ =
n− 1
s2

+ 2(n− 1)
log
(
nnsn−1

)
ns3

− (n− 1)(3n − 5)
1
ns3

+ o

(
1
s3

)
,

(B.4)

and

ϕ′′′ = − 2
n− 1
s3

+ o

(
1
s3

)
.

(B.5)

We wish to emphasize that for the application we have in mind, we do
not need the high precision of (B.2) explicitly. But as we are not only aiming
for the asymptotic expansion for ϕ, but also for ϕ′, ϕ′′ and ϕ′′′, we have to
compute the expansion for ϕ with high precision, as we have to use (B.1)
and derivatives of this equation to determine derivatives of ϕ iteratively.
Obviously, derivatives of the expansion of a function do not necessarily have
to coincide with expansions of the derivatives. In our situation, however,
these two operations commute. This is essentially due to the fact that ϕ
satisfies (B.1).
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Proof. We start as in [5]. Separation of variables, integration by parts and
induction give

(B.6)
n−1∑
k=0

(−1)n−k−1n!
k!
ϕkeϕ = ens + (−1)n−1n!,

where the constant on the right-hand side is chosen such that ϕ(s) → 0 for
s→ −∞. From this formula, Cao deduces that

ϕ(s) = ns+ o(s) and ϕ′(s) = n+ o(1) for s→ ∞.

To get the asymptotic behavior of ϕ in (B.2), we can directly plug an
appropriate ansatz for ϕ in (B.6) and obtain an expression for the next
correction. This results in carrying out long computations with increasing
precision.

To verify that the expansion (B.2) is correct, it is convenient to rewrite
(B.6) as

1 + (−1)n−1n!e−ns =

(
n−1∑
k=0

(−1)n−k−1n!
k!

ϕk

n(ns)n−1

)(
n(ns)n−1eϕ−ns

)
.

We note that (B.2) implies

eϕ−nsn(ns)n−1 = 1 + (n− 1)
log
(
nnsn−1

)
ns

+
n− 1
ns

+
1
2
n(n− 1)

log2
(
nnsn−1

)
n2s2

+ (n− 1)
log
(
nnsn−1

)
n2s2

− (n− 1)(n − 2)
1

n2s2
+

1
6
(n− 1)n(n + 1)

log3
(
nnsn−1

)
n3s3

− 1
2
(n − 1)

(
n2 − 2n− 1

) log2
(
nnsn−1

)
n3s3

− (n− 1)
(
n2 − 3

) log
(
nnsn−1

)
n3s3

+
1
2
(n − 1)

(
n2 − 8n+ 11

) 1
n3s3

+ o

(
1
s3

)
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and

n−1∑
k=0

(−1)n−k−1n!
k!

ϕk

n(ns)n−1
= 1 − (n− 1)

log
(
nnsn−1

)
ns

− n− 1
ns

+
1
2
(n− 1)(n − 2)

log2
(
nnsn−1

)
n2s2

+ (n− 1)(2n − 3)
log
(
nnsn−1

)
n2s2

+ (n− 1)(2n − 3)
1

n2s2
− 1

6
(n− 1)(n − 2)(n − 3)

log3
(
nnsn−1

)
n3s3

− 1
2
(n− 1)

(
3n2 − 12n + 11

) log2
(
nnsn−1

)
n3s3

− 2(n− 1)(n − 2)(2n − 3)
log
(
nnsn−1

)
n3s3

− 1
2
(n− 1)

(
7n2 − 24n + 21

) 1
n3s3

+ o

(
1
s3

)
.

(B.7)

Moreover, it is not too complicated to see that additional terms do not
improve the approximation unless they belong to the class o

(
s−3
)
. Thus,

(B.2) follows.
Note that the right-hand side of (B.7) can also be used for the expansion

of exp(ns−ϕ)
n(ns)n−1 , because

n−1∑
k=0

(−1)n−k−1n!
k!

ϕk

n(ns)n−1
=

exp(ns− ϕ)
n(ns)n−1

+ o

(
1
s3

)
.

To determine the behavior of ϕ′ at infinity, we note that direct calcula-
tions give(
ns

ϕ

)n−1

=1 + (n − 1)
log
(
nnsn−1

)
ns

+
1
2
(n− 1)n

log2
(
nnsn−1

)
n2s2

− (n− 1)2
log
(
nnsn−1

)
n2s2

− (n− 1)2
1

n2s2

+
1
6
(n − 1)n(n + 1)

log3
(
nnsn−1

)
n3s3

− 1
2
(n − 1)2(2n+ 1)

log2
(
nnsn−1

)
n3s3

− 2(n − 1)2
log
(
nnsn−1

)
n3s3

+
1
2
(n− 1)2(3n− 5)

1
n3s3

+ o

(
1
s3

)
.

Combining this with (B.1), (B.7), and the remark following (B.7) gives (B.3).
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To obtain (B.4) and (B.5), we make use of the Taylor expansion of ns
ϕ .

We get

1
ϕ

=
1
ns

+
log
(
nnsn−1

)
n2s2

+
log2

(
nnsn−1

)
n3s3

− (n − 1)
log
(
nnsn−1

)
n3s3

− (n − 1)
1

n3s3
+ o

(
1
s3

)
,

ϕ′′ =ϕ′
(
n− ϕ′ − (n− 1)

ϕ′

ϕ

)
,

ϕ′

ϕ
=

1
s

+
log
(
nnsn−1

)
ns2

− (n− 1)
1
ns2

+
log2

(
nnsn−1

)
n2s3

− 3(n − 1)
log
(
nnsn−1

)
n2s3

+ (n− 1)(n − 3)
1

n2s3
+ o

(
1
s3

)
,

ϕ′′′ = ϕ′′
(
n− 2ϕ′ − 2(n− 1)

ϕ′

ϕ

)
+ (n− 1)

(
ϕ′

ϕ

)2

ϕ′,

and deduce directly (B.4) and (B.5). �

Appendix C. Positive Holomorphic Bisectional Curvature.

Lemma C.1. For the function ϕb introduced in (5.3), we have

ϕb >0,(C.1)
ϕ′

b >0,(C.2)
ϕb − ϕ′

b >0,(C.3) (
ϕ′

b

)2 − ϕbϕ
′′
b >0,(C.4) (

ϕ′′
b

)2 − ϕ′
bϕ

′′′
b >0(C.5)

for R� 1 sufficiently large.

Remark C.2. Before we give a proof of Lemma C.1, we wish to note that
it implies that (u0)ī + bī has positive holomorphic bisectional curvature.
This follows from the calculations in [5]. Cao gives a proof of this lemma
for a C-soliton, so it suffices to proof it in regions where we have changed ϕ.

Note that the proof of Lemma C.1 shows also that the metric of the
barrier is uniformly equivalent to the soliton metric.
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Proof. We differentiate the definition of ϕb, use Lemma B.1, and get

ϕb(s) =ns+ o(s) ∓Ks−1−αα(2R)αψ
( s
R

)
,

ϕ′
b(s) =n+ o(1) ±K(1 + α)s−2−αα(2R)αψ

( s
R

)
∓Ks−1−αα(2R)α

1
R
ψ′
( s
R

)
,

ϕ′′
b (s) =

n− 1
s2

+ o

(
1
s2

)
∓K(1 + α)(2 + α)s−3−αα(2R)αψ

( s
R

)

± 2K(1 + α)s−2−αα(2R)α
1
R
ψ′
( s
R

)
∓Ks−1−αα(2R)α

1
R2

ψ′′
( s
R

)
,

ϕ′′′
b (s) = − 2

n− 1
s3

+ o

(
1
s3

)

±K(1 + α)(2 + α)(3 + α)s−4−αα(2R)αψ
( s
R

)
∓ 3K(1 + α)(2 + α)s−3−αα(2R)α

1
R
ψ′
( s
R

)
± 3K(1 + α)s−2−αα(2R)α

1
R2

ψ′′
( s
R

)
∓Ks−1−αα(2R)α

1
R3

ψ′′′
( s
R

)
.

To get (C.1), we study s−1−αRαψ in detail. When we choose R sufficiently
large, |s−1−αRα| becomes arbitrarily small for s ≥ R. For s ≤ R, however,
ψ
(

s
R

)
vanishes. Thus, (C.1) follows for s ≥ R when R is sufficiently large

and is true for s < R by the calculations in [5].
Equations (C.2), (C.3), and (C.4) are proved similarly. Note, however,

that the term s−1−αRα−2ψ′′ is estimated by choosing R large, as s−1−α

decays slower as the “leading” term n−1
s2 as a function of s. This works as

ψ′′ is zero outside R ≤ s ≤ 2R. The same arguments can also be applied to
ψ′′′. Thus, for ϕb, ϕ′

b, ϕ
′′
b , and ϕ′′′

b , the additional terms with a factor K can
all be absorbed in the original error terms for R� 1 fixed sufficiently large.
We wish to stress, that the sign of ϕ′′′

b , as s→ ∞, is important to get (C.5).
For this reason, we had to do all the approximations in Appendix B up to
such a high precision. �

Remark C.3. The expression for the Riemannian curvature tensor for a
radially symmetric Kähler potential in [5] and the expansions of ϕ and ϕb

at infinity imply ‖Rm‖ ≤ c for the Kähler metrics corresponding to ϕ and
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ϕb, respectively. Moreover, the vector fields
(
zi
)

and (z̄) have finite length
with respect to these metrics.

Remark C.4. We want to check, that the Lp-norm Ip considered in Corol-
lary 6.4 and Lemma 6.3 is finite. Use that the metric aī is uniformly equiva-
lent to the metric (u0)ī. As in Section 2.2, we compute det((u0)ī). Lemma
B.1 implies that this quantity behaves like sn−1r−2n, r = |z| = e

1
2
s, near

infinity. The definition of b̂ implies that at infinity, b̂ decays like s−α. We
introduce polar coordinates and get that Ip(0) is finite, if p ≥ 2 is choosen
so large that

(C.6)

∞∫
e

(log r)n−1−αp 1
rdr <∞.

Choose p such that αp > n+1, with 1 > α > 0 as in (5.3). Introducing a new
variable for log r, we see, that the integral in (C.6) is finite as

∫∞
1 ρ−2dρ <∞.
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