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Finite propagation speed for solutions of the
parabolic p-Laplace equation on manifolds

S.A.J. (Fieke) Dekkers
1

We consider a class of degenerate parabolic equations containing
the parabolic p-Laplace equation, on Riemannian manifolds. We
prove that, on arbitrary manifolds, bounded solutions of such equa-
tions have finite propagation speed, and show that the rate of prop-
agation can be estimated in terms of bounds on the Ricci curva-
ture. The main technical tool in the proof is a new mean value
type inequality for bounded solutions.

1. Introduction.

We consider solutions on an n-dimensional Riemannian manifold M of a
class of degenerate parabolic equations modelled on the parabolic p-Laplace
equation

(1.1) ut = �pu,

where
�pu = div(|∇u|p−2∇u),

and u = u(x, t), x ∈ M , t ≥ 0.
We assume p > 2. This condition on p implies that the equation degen-

erates at at points where ∇u = 0.
Not only is Equation (1.1) one of the simplest possible generalisations

of the heat equation, it also has applications in fluid dynamics, where it
describes the non-stationary flow in a porous medium of a non-Newtonian
fluid, see [13] and references therein. Additionally, Equation (1.1) describes
the propagation of heat after the explosion of a hydrogen bomb in the at-
mosphere [15]. This has motivated much of the research concerning equa-
tions such as (1.1). An account of the theory in R

n is given in [8], where the
degenerate case p > 2 is considered as well as the singular case 1 < p < 2.
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See also, for example, [7, 9, 13, 14, 15] and references therein. In contrast,
there appears to be almost no literature concerning equations such as (1.1)
on manifolds. Our study of these equations on manifolds is motivated by
the fact that solutions of the heat equation on a Riemannian manifold are
sensitive to the geometry of the manifold, and it seems natural to ask if
this is true for solutions of the non-linear generalisation (1.1) of the heat
equation, too.

In this paper, we consider one aspect of the behaviour of solutions of
equations modelled on (1.1): their propagation speed. The behaviour of
solutions of the degenerate Equation (1.1) with p > 2 on R

n differs markedly
from that of solutions of the heat equation, equation (1.1) with p = 2, since
unlike solutions of the heat equation, bounded solutions of (1.1) on R

n have
finite propagation speed. By this, we mean that the support of u(·, t) is
contained in an r-neighbourhood of the support of the initial data, where
r = r(t) < ∞.

On R
n, there are several ways to prove this. One proof, see [8], involves a

comparison with a known explicit solution, the so-called Barenblatt solution
[3, 18]. A similar approach is followed in [1, 4, 7]. Another proof (see [9, 14])
uses the Sobolev inequality in R

n. If we change the setting to a Riemannian
manifold, where no analogue of the Barenblatt solution is available and
Sobolev inequalities analogous to that in R

n do not in general hold, neither
of these approaches works, and the question arises if finite propagation speed
is a particular property of solutions of (1.1) on R

n, or a generic property of
solutions on Riemannian manifolds. We prove that the latter is the case,
and that for solutions of the parabolic p-Laplace equation (which will be
defined in Section 2) the following theorem holds (cf. Theorem 4.1):

Theorem 1.1. Assume that M is a non-compact, complete, Riemannian
manifold. Let u(x, t) be a non-negative, bounded, weak solution of

ut = �pu

on M × [0, T ) where p > 2 and T > 0, and suppose that for some ball
B(x0, d)

B(x0, d) ∩ suppu(·, 0) = ∅.

Then, there exists t0 > 0 such that for all 0 ≤ t < min(t0, T ),

B

(
x0,

d

2

)
∩ suppu(·, t) = ∅.
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The constant t0 has the explicit value

t0 = Cdp‖u(·, 0)‖−(p−2)
∞,M ,

where C depends on p, and on some intrinsic geometric properties of the
ball B(x0, d); in particular, it can be estimated in terms of bounds on the
Ricci curvature on B(x0, d) (see Theorem 4.1 for more details).

The proof of this theorem (see the proof of Theorem 4.1 in Section 4)
uses a mean value type inequality, which generalises a well known result for
solutions of the heat equation. Two versions of the inequality are discussed
in Section 3. We emphasise that the proofs only depend on a local analogue
of the Sobolev inequality in R

n, not on the global geometry of M .
The preceding theorem can be used to prove that solutions of the para-

bolic p-Laplace equation have finite propagation speed, at least locally (in
time), as is stated in the following theorem (cf. Theorem 4.2):

Theorem 1.2. Let M be a non-compact, complete Riemannian manifold,
and let u(x, t) be a non-negative, bounded, weak solution of{

ut = �pu
u(·, 0) = u0(·)

on M × R
+, where suppu0 is compact.

There exist T > 0 and an increasing, non-negative function

r : [0, T ) → [0,+∞)

such that for any 0 < t < T , the support of u(·, t) is contained in the r(t)-
neighbourhood of suppu0.

For the constant T > 0, we can take

T = sup
r>0

C(ν, p, r)rp‖u0‖−(p−2)
∞,M

where C(ν, p, r) depends on volume doubling and Poincaré inequalities in
an r-neighbourhood of suppu0, and can be estimated in terms of a lower
bound on the Ricci curvature on this neighbourhood.

For a proof of this theorem, see the proof of Theorem 4.2 in Section 4.
Given a lower bound for the Ricci curvature on the manifold M , the results
in the previous theorem admit the following global version (cf. Corollary
4.3):
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Corollary 1.3. Let M be a non-compact, complete Riemannian manifold
with metric g, and let u be a non-negative, bounded, weak solution of{

ut = �pu
u(·, 0) = u0(·)

on M × R
+.

If suppu0 is compact, and the Ricci curvature of M satisfies for all
x �∈ suppu0

RicM (x) ≥ − c(n− 1)
dist(x, suppu0)2

g,

then for all t > 0, suppu(·, t) is contained in the r(t) neighbourhood of
suppu0, with

r(t) = C
(
‖u0‖p−2

∞,M t
) 1

p
.

2. Preliminaries.

2.1. Notation.

Throughout this paper, M will be an n-dimensional (n ≥ 2), complete,
non-compact Riemannian manifold with metric g. For every x ∈ M , TxM
denotes the tangent space to M at x. The inner product in TxM is denoted
by 〈·, ·〉, suppressing the dependence on x. If σ is a smooth, positive function
on M , we can define a measure µ on M by

dµ = dµ(x) = σ(x)dν(x),

where dν is the Riemannian measure on M . The pair (M,µ) is called a
weighted manifold.

The requirement that we should be able to integrate by parts on (M,µ)
leads to a natural definition of the divergence divµ on (M,µ). In local
coordinates,

divµ v =
1

σ
√
g

∂

∂xi
(σ

√
gvi),

where g = det gij , and gij are the components of the metric tensor. Here,
we sum over repeated indices.

Throughout this paper, Ω will be an open subset of M (not necessarily
bounded), x0 will be a fixed point in M , and U will be a precompact set
containing x0. We write IT to denote the interval [0, T ), where T > 0 is an
arbitrary real number, and ΩT for Ω × IT .
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For the geodesic ball of radius r centred at the point x, we write B(x, r),
and V (x, r) = µ(B(x, r)).

If f = f(x, t) is a function defined on ΩT , we use ∇f to denote the
gradient with respect to the spatial variable x. The derivative with respect
to t is denoted ft.

Also, we write
f+ = max(f, 0).

If f ∈ Lq(Ω) = Lq(Ω;µ), then ‖f‖q,Ω denotes the Lq(Ω;µ) norm of f .

For q ≥ 1 the spaces W 1,q(Ω) = W 1,q(Ω;µ) and
o
W 1,p(Ω) =

o
W 1,p(Ω;µ) are

the usual Sobolev spaces.
The notation f ∈ Lq(IT ;Lq(Ω)) means that f is a function defined on

ΩT such that for almost every t ∈ IT the function x �→ f(x, t) is in Lq(Ω),
and ∫

IT

∫
Ω

|f |qdµdt < ∞.

The function spaces Lq(IT ;W 1,q(Ω)), Lq(IT ;
o
W 1,q(Ω)), Ck(IT ;Lq(Ω)) and

W 1,q(IT ;Lq(Ω)) are defined analogously.

2.2. Degenerate parabolic equations and weak solutions.

We consider the following parabolic equation on M ,

(2.1) ut = divµ A(x, t, u,∇u)

where u = u(x, t), x ∈ M , t ≥ 0.
Throughout this paper, we assume that the mapping A : M × R

+ ×
R × TM → TM is such that A(x, t, u, ξ) is measurable in (x, t, u, ξ) and
continuous in (u, ξ) for a.e. (x, t) ∈ M×R

+ and that A satisfies the following
conditions for real constants

2 < p < ∞, and c, C > 0 :

for all x ∈ M , t ∈ R
+, u ∈ R and ξ ∈ TxM

|A(x, t, u, ξ)| ≤ c|ξ|p−1,(2.2)
〈A(x, t, u, ξ), ξ〉 ≥ C|ξ|p,(2.3)

Note that, by (2.2), Equation (2.1) degenerates if ∇u = 0.
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Solutions of (2.1) on a set ΩT are defined as follows: a function u(x, t)
is a weak sub-solution resp. super-solution of (2.1) on ΩT if

(2.4) u ∈ Sp(ΩT ) = C(IT ;L2(Ω)) ∩ Lp(IT ;W 1,p(Ω))

and for all t1, t2 ∈ IT , t1 < t2, for all non-negative test functions

(2.5) φ ∈ Tp(ΩT ) = W 1,2(IT ;L2(Ω)) ∩ Lp(IT ;
o
W 1,p(Ω))

u satisfies
(2.6)∫

Ω
uφdµ

∣∣∣∣
t2

t=t1
+
∫ t2

t1

∫
Ω

[−uφt + 〈A(x, t, u,∇u),∇φ〉] dµdt ≤ (resp. ≥) 0.

A function that is both a weak sub-solution and a weak super-solution is a
weak solution.

If we assume that in addition to (2.2) and (2.3), A satisfies

〈A(x, t, u, ξ1) − A(x, t, u, ξ2), ξ1 − ξ2〉 ≥ 0,

for all (x, t, u) ∈ M × R
+ × R and for all ξ1, ξ2 ∈ TxM , as is clearly the case

for the parabolic p-Laplace equation, and that Ω is bounded, then (see [16,
chapter V]) a Galerkin procedure can be used to show that the Dirichlet
problem

(2.7)




ut = divµ A(x, t, u,∇u) in ΩT ,
u|∂Ω×(0,T ) = 0,
u(x, 0) = u0(x), u0 ∈ L2(Ω),

has a weak solution, by which we mean a solution to (2.1) that is in

(2.8)
o
Sp(ΩT ) = C(IT ;L2(Ω)) ∩ Lp(IT ;

o
W 1,p(Ω)),

the class of weak solutions that are zero on ∂Ω × IT , and satisfies the initial
condition.

In the proofs of several of the estimates that will follow, it would have
been convenient if in the definition (2.6) of a weak solution, we could have
taken u itself (or u multiplied by a cut-off function) as a test function.
Unfortunately, as can be seen from the Definitions (2.4) and (2.5), a weak
solution of (2.1) is not in general admissible as a test function, since it is
not sufficiently regular in t: ut generally only has a meaning in the sense of
distributions. This difficulty can be overcome by using the so-called Steklov
average of u (see for example [16, Chapter 2]), which is defined as follows:
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Definition 2.1. Let u be a measurable function on ΩT . For h ∈ (0, T ),
define the Steklov average uh on ΩT by

uh(·, t) =
{

1
h

∫ t+h
t u(·, τ)dτ, t ∈ IT−h,

0, t ≥ T − h.

If u is a sub- resp. super-solution of (2.1) in ΩT , then the Steklov average
uh is in C1(IT−h;L2(Ω)) and satisfies
(2.9)∫

Ω

[
∂uh(x, t)

∂t
φ(x) + 〈[A(x, t, u,∇u)]h(x, t),∇φ(x)〉

]
dµ(x) ≤ (resp. ≥ ) 0,

∀h ∈ (0, T ), ∀t ∈ IT−h, ∀φ ∈ L2(Ω) ∩
o
W 1,p(Ω). In contrast to the situation

for the non-averaged function u, uh can be used as a test function in (2.9).
We will use this in combination with the following standard lemma, which
can easily be proved using Hölder’s inequality,

Lemma 2.2. If u ∈ C(IT ;Lq(Ω)), then uh(·, t) → u(·, t) in Lq(Ω) as h → 0
for every t ∈ IT . If u ∈ Lq(ΩT ), then uh → u in Lq(ΩT ) as h → 0.

In this paper, we consider only bounded solutions of (2.1) and (2.7).
Using Steklov averages, one can prove that a sufficient condition for a so-

lution u ∈
o
Sp(ΩT ) of the Dirichlet problem (2.7) to be bounded is that u0

is bounded. To show this, we use the following lemma that is proved in [8,
Chapter II]:

Lemma 2.3 ([8]). If u is a sub-solution of (2.1) in ΩT , and A satisfies
(2.3), then for any θ ∈ R

+

(u− θ)+

is a sub-solution of (2.1) in ΩT .

We use this lemma to prove

Lemma 2.4. Let u ∈
o
Sp(ΩT ) be a sub-solution of (2.7). If A satisfies (2.3)

and u0 ∈ L∞(Ω), then u(·, t) ∈ L∞(Ω) for all t ∈ IT , and

‖u(·, t)‖∞,Ω ≤ ‖u0‖∞,Ω.

Proof. If we define
v = (u− ‖u0‖∞,Ω)
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then, by Lemma 2.3, v+ is a subsolution of (2.7), so its Steklov average

satisfies (2.9) ∀h ∈ (0, T ), ∀t ∈ IT−h, ∀φ ∈ L2(Ω) ∩
o
W 1,p(Ω). If t ∈ IT and

h ∈ (0, T − t), then

[(u− ‖u0‖∞,Ω)+]h(·, τ) ∈ L2(Ω) ∩
o
W 1,p(Ω),

so it is a valid test function in (2.9). Integrating (2.9) over [0, t], t ∈ IT ,
with this choice of test function gives

1
2

∫
Ω

([v+]h)
2 (x, t)dµ(x) − 1

2

∫
Ω

([v+]h)
2 (x, 0)dµ(x)

≤ −
∫ t

0

∫
Ω
〈[A(x, t, v+,∇v+)]h ,∇[v+]h(x, τ)〉dµ(x)dτ.

Letting h → 0, and applying Lemma 2.2, we find

∫
Ω
(u− ‖u0‖∞,Ω)2+(x, t)dµ(x)

≤ −
∫ t

0

∫
Ω
〈A(x, t, v+,∇v+),∇v+(x, τ)〉dµ(x)dτ

≤ 0,

by the estimate (2.3), for all t ∈ IT . �

2.3. Local Sobolev inequality.

The proof in [9, 14] of the finite propagation speed property for solutions of
(2.1) relies on the Sobolev inequality in R

n. On a manifold M , a Sobolev
inequality in general does not hold, see for example [20]. However, a local
version does hold on any given Riemannian manifold M . Recall that U ⊂
M is a precompact set. By a compactness argument, the following two
conditions are always satisfied. First, there exist positive constants DU and
ν such that for all balls

B(x, r1), B(y, r2) ⊂ U,

with r1 ≤ r2, the following volume doubling inequality holds

(2.10)
V (y, r2)
V (x, r1)

≤ DU

(
r2
r1

)ν
.
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Here, ν can be taken equal to or larger than the dimension n of the manifold,
so we can assume

ν > p.

Second, the following Poincaré inequality holds: there exists a positive con-
stant PU such that if B(x, r) ⊂ U is a ball split by a hyper-surface Γ into
two disjoint parts U1 and U2 such that B(x, r)\Γ = U1 ∪ U2, then

(2.11) PUA(Γ) ≥ 1
r

min(µ(U1), µ(U2))

where A(Γ) is the (n− 1)-dimensional measure of Γ, weighted by σ.
It can be proved from (2.10) and (2.11) (following a procedure similar to

that in [10] or [19], see [6]) that if M is non-compact, for any ball B(x, r) ⊂
U , for all non-negative f ∈

o
W 1,p(B(x, r))

(2.12)

(∫
B(x,r)

f
pν

ν−pdµ

) ν−p
ν

≤ Sx,r,U

∫
B(x,r)

|∇f |pdµ,

with

(2.13) Sx,r,U = C(ν, p)(D2
UPU )p

rp

V (x, r)
p
ν

.

This local version of the Sobolev inequality is one of the tools that we
will be using in later proofs.

We will mostly be using these inequalities in balls U = B(x0, r) ⊂ Ω,
where x0 is fixed, in which case, we will use the shorter notation

P = PB(x0,r), D = DB(x0,r), Sr = Sx0,r,B(x0,r)

for the constants in (2.13).
The constants PU and DU both are curvature dependent, and can be

estimated in terms of bounds on the Ricci curvature. Since the Ricci cur-
vature of M is a bilinear form, we can compare it with the metric g. If µ
is the Riemannian measure on M , U = B(x0, r) and the Ricci curvature on
B(x0, r) is bounded from below by

−(n− 1)kg,

k > 0, then the constants D and P satisfy

(2.14) D,P ≤ CeCn

√
kr,
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see [12], resp. [10, 5]. If the manifold M has non-negative Ricci curvature,
the constants DU and PU are global.

Most of the estimates that we will obtain are curvature dependent, as a
consequence of the curvature dependence throughDU and PU of the constant
Sx,r,U in (2.12).

In this paper, we assume that M is non-compact. If M is compact, then
provided that B(x, r) �= M , (2.12) holds with the constant Sx,r,U replaced
with
(2.15)

Sx,r,M = C(ν, p)
(

1
min (V (x, r), µ(M) − V (x, r))

)p
(DMPM )p

(
µ(M)1− 1

ν

diamM

)p
,

where diamM is the diameter of the manifold (see [6]). All proofs in this
paper can easily be modified to apply to compact manifolds if in all references
to the local Sobolev inequality (2.15) is used instead of (2.13).

3. Mean value type inequalities.

In this section, we assume
p ≥ 2.

If M is a geodesically complete manifold of non-negative Ricci curvature,
a positive solution u of the heat equation in a cylinder B(x,

√
t) × (0, t],

x ∈ M , t > 0, is known to satisfy the following mean value inequality, see
for example [11]:

(3.1) u(x, t) ≤ C
1

tV (x,
√
t)

∫ t

0

∫
B(x,

√
t)
udµdτ,

We will show that this is a special case of an estimate that holds for sub-
solutions of Equation (2.1). In the second half of this section, we show
that for t > 0 a simplified mean value type inequality holds away from the
support of u(·, 0). The result we obtain in this case will be used to prove
that solutions to (2.1) have finite propagation speed.

We start with a preliminary lemma, giving an estimate for sub-solutions
of (2.1).

Lemma 3.1. Let u ∈ Sp(ΩT ) be a bounded, non-negative, weak sub-
solution of (2.1), where the mapping A is assumed to satisfy (2.2) and (2.3).
Let η be a piecewise smooth, bounded, non-negative function in ΩT , with
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compact support in Ω at all times t ∈ IT , and with bounded first order deriv-
atives, and let q ≥ 2, s ≥ p. Fix θ ≥ 0 and denote v = (u− θ)+. Then,
∫

Ω
vqηsdµ

∣∣∣∣
t2

t1

+
∫ t2

t1

∫
Ω

∣∣∣∇(v p+q−2
p

)∣∣∣p ηsdµdτ
≤ C

(
‖v‖p−2

∞,ΩT
‖∇η‖p∞,ΩT

‖η‖s−p∞,ΩT
+ ‖η‖s−1

∞,ΩT
‖ηt‖∞,ΩT

)∫ t2

t1

∫
Ω
vqdµdτ,

for all 0 < t1 < t2 < T , with C = C(A, q, s).

Proof. By Lemma 2.3, v is a sub-solution of (2.1), so its Steklov average
satisfies

(3.2)
∫

Ω

[
∂vh(x, t)

∂t
φ(x) + 〈[A(x, t, v,∇v)]h(x, t),∇φ(x)〉

]
dµ(x) ≤ 0

∀h ∈ (0, T ), ∀t ∈ IT−h, ∀φ ∈ L2(Ω)∩
o
W 1,p(Ω). By assumption, u is bounded,

so for fixed t ∈ IT−h

(vh)q−1(·, t)ηs ∈ L2(Ω) ∩
o
W 1,p(Ω),

which makes it a valid test function in (3.2). Integrating the equation over
a time interval [t1, t2], we get

∫
Ω
[vh]qηsdµ

∣∣∣t2
t1

≤
∫ t2

t1

∫
Ω

[
−q〈[A(x, t, v,∇v)]h ,∇[(vh)q−1ηs]〉 + s[vh]qηs−1ηt

]
dµdt.

(3.3)

Now, let h → 0. Since u ∈ Sp(ΩT ) is bounded and A satisfies (2.2), all
Steklov averages in (3.3) converge to the corresponding non-averaged func-
tions in the appropriate spaces by Lemma 2.2. Applying the estimates (2.2)
and (2.3) for A as well as Young’s inequality, we get
∫

Ω
vqηsdµ

∣∣∣∣
t2

t1

≤
∫ t2

t1

∫
Ω

[
−Cq(q − 1)vq−2ηs|∇v|p + svqηs−1ηt

+csqvq−1ηs−1|∇v|p−1|∇η|
]
dµdτ

≤ A

∫ t2

t1

∫
Ω

[
−
∣∣∣∇v p+q−2

p

∣∣∣p ηs + svqηs−1ηt + |∇η|pηs−pvp+q−2
]
dµdτ,
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for a constant A = A(c, C, q, s) > 0. The lemma now follows. �

The restriction that u is bounded is not necessary if q = 2.
The next step toward our mean value inequality involves a comparison

of integrals of a sub-solution of (2.1) over two cylinders, one contained in
the other, of (u − θ)q+, with θ a positive constant and q ≥ 2, using a local
Sobolev inequality in a precompact set U . This estimate will later be used
repeatedly for a sequence of shrinking cylinders.

We define

(3.4) κ = κ(q) = qp+ ν(p− 2),

where ν is the constant in (2.10).
The following is a generalisation of a result in [9].

Lemma 3.2. Let r0 > 0, define U = B(x0, r0) and let 0 < r1 < r0, 0 ≤
t0 < t1 < T , 0 ≤ θ0 < θ1. Define two cylinders

Ψi = B(x0, ri) × [ti, T ), i = 0, 1.

Let u ∈ Sp(Ψ0) be a non-negative, bounded, weak sub-solution of Equa-
tion (2.1). The mapping A is assumed to satisfy (2.2) and (2.3). Define two
integrals

Yi =
∫∫

Ψi

(u− θi)
q
+dµdτ, i = 0, 1.

Denote δr = r0 − r1, δθ = θ1 − θ0 and δt = t1 − t0. If q ≥ 2, then

Y1 ≤ Cδ
− qκ

κ+qν

θ S
qν

κ+qν
r0

[
δ−p
r ‖u‖p−2

∞,Ψ0
+ δ−1

t

] q(ν+p)
κ+qν

Y
1+ pq

κ+qν

0 .

The constant κ was defined in (3.4), Sr0 in (2.12) and ν in (2.10), and C
depends on p, q and ν.

Proof.
Write v = (u− θ1)+. By Hölder’s inequality, for all l > q,

(3.5) Y1 ≤
(∫∫

Ψ1

vldµdτ

) q
l

µ ({(x, t) ∈ Ψ1|u(x, t) > θ1})1− q
l .
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The second term on the right-hand side of (3.5) can easily be estimated in
terms of Y0: since Ψ1 ⊂ Ψ0, and θ1 > θ0

µ ({(x, t) ∈ Ψ1|u(x, t) > θ1}) ≤
∫∫

Ψ0

(u− θ0)
q
+

(δθ)q
1{u>θ1}dµdτ

≤ (δθ)
−q Y0.

(3.6)

To estimate the integral on the right-hand side of (3.5), introduce r̃0 =
r0+r1

2 , and let ζ(x, t) ≡ ζ(x) be a piecewise smooth, non-negative function
supported in B(x0, r̃0), such that ζ ≡ 1 on B(x0, r1), |∇ζ| ≤ 2

δr
and ζ ≤ 1

on B(x0, r̃0). Then, using Hölder’s inequality,∫∫
Ψ1

vldµdτ ≤
∫ T

t1

∫
B(x0,r̃0)

vlζpdµdτ

≤ sup
t1≤τ<T

(∫
B(x0,r̃0)

v
(l−p−q+2)ν

p dµ

) p
ν

×

×
∫ T

t1

(∫
B(x0,r̃0)

(
v

p+q−2
p ζ

) pν
ν−p

dµ

) ν−p
ν

dτ,

(3.7)

provided that l satisfies

(3.8) l > p+ q − 2.

This replaces the earlier condition l > q.

Since u is bounded, v
p+q−2

p ζ ∈ Lp(IT ;
o
W 1,p(B(x0, r̃0))), so we can apply

the local Sobolev inequality (2.12):

∫ T

t1

(∫
B(x0,r̃0)

(
v

p+q−2
p ζdµ

) pν
ν−p

dµ

) ν−p
ν

dτ

≤ Sr0

∫ T

t1

∫
B(x0,r̃0)

∣∣∣∇(v p+q−2
p ζ

)∣∣∣p dµdτ
≤ Sr0C

∫ T

t1

∫
B(x0,r̃0)

[∣∣∣∇v p+q−2
p

∣∣∣p +
(

2
δr

)p
vp+q−2

]
dµdτ.

(3.9)

Substituting (3.9) into (3.7), we get

∫∫
Ψ1

vldµdτ ≤ CSr0 sup
t1≤τ<T

(∫
B(x0,r̃0)

v
(l−p−q+2)ν

p dµ

) p
ν

×

×
∫ T

t1

∫
B(x0,r̃0)

[∣∣∣∇(v p+q−2
p

)∣∣∣p +
(

2
δr

)p
‖v‖p−2

∞,Ψ0
vq
]
dµdτ.

(3.10)
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To estimate this in terms of Y0, we apply Lemma 3.1 in B(x0, r0) × IT ,
which yields estimates for the integrals on the right-hand side of (3.10).

For the function η in Lemma 3.1, we take η(x, τ) = η1(x)η2(τ), with η1
a piecewise smooth, non-negative function supported in B(x0, r0) such that
η1 ≡ 1 on B(x0, r̃0), |∇η1| ≤ 2

δr
, η1 ≤ 1 on B(x0, r0), and

(3.11) η2(τ) =
{ τ−t0

δt
t0 ≤ τ < t1,

1 t1 ≤ τ < T.

Lemma 3.1, with s = p, now gives that for any t1 ≤ τ < T (note that
η(·, t0) ≡ 0)∫

B(x0,r̃0)
vq(x, τ)dµ(x) +

∫ τ

t0

∫
B(x0,r̃0)

∣∣∣∇(v p+q−2
p (x, t)

)∣∣∣p dµ(x)dt

≤ C
(
δ−p
r ‖v‖p−2

∞,Ψ0
+ δ−1

t

)
Y0.

(3.12)

This provides us with the necessary estimate for (3.10), if we choose l so
that

(3.13)
l − p− q + 2

p
ν = q, i.e. l =

κ+ qν

ν
.

Observe that l satisfies the Condition (3.8). We can now rewrite (3.10)∫∫
Ψ1

vldµdτ ≤ CSr0

(
δ−p
r ‖u‖p−2

∞,Ψ0
+ δ−1

t

)1+ p
ν
Y

1+ p
ν

0 .

To finish the proof of the lemma, we substitute this and (3.6) into (3.5). �

The following theorem contains the first of two mean value type inequal-
ities. The proof consists of two steps. In the first step, taking ideas from
[9], we repeatedly apply the last lemma in a sequence of shrinking cylinders,
whereas in the second step, we apply a technique from [17] that requires
growing cylinders.

Theorem 3.3. Assume that (M,µ) is a non-compact, complete, weighted
Riemannian manifold.

Let r > 0, T > 0, and define U = B(x0, r) and

(3.14) Ψ0 = B(x0, r) × IT , Ψ = B(x0,
r

2
) × [

(
1
2

)p
T, T ).
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Let u ∈ Sp(Ψ0) be a non-negative, bounded, weak sub-solution of (2.1),
where A is assumed to satisfy the estimates (2.2) and (2.3). Then, for q ≥ 1

(3.15) ‖u‖∞,Ψ ≤ CS
ν
κ
r

(∫∫
Ψ0

uqdµdτ

) p
κ [(

r−p‖u‖p−2
∞,Ψ0

+ T−1
)] ν+p

κ
,

C = C(ν, p, q), ν and Sr as in (2.10) and (2.12), and κ given by (3.4).

Proof.
Step 1: We will first prove the theorem for q ≥ 2. To do this, we follow
ideas from [9], and define a sequence of increasing times tm and a sequence
of decreasing radii rm

rm =
1
2

(
1 +

(
1
2

)m)
r,

tm =
(

1
2

)p(
1 −

(
1
2

)pm)
T,

and a corresponding sequence of shrinking cylinders Ψm:

Ψm = B(x0, rm) × [tm, T ).

Note that Ψ = limm→∞ Ψm, where Ψ was defined in (3.14).
We introduce an increasing sequence θm,

θm =
(

1 −
(

1
2

)m)
θ,

where a value for θ > 0 will be fixed below, and, finally, we introduce the
following integrals:

Ym =
∫∫

Ψm

(u− θm)q+dµdτ.

Obviously, the Ym are non-negative and decreasing. With a suitable choice
of θ, we can achieve that limm→∞ Ym = 0: by Lemma 3.2

Ym+1 ≤ abmY
1+ pq

κ+qν
m ,

with

a = C

(
Sqνr θ

−qκ
[(
r−p‖u‖p−2

∞,Ψ0
+ T−1

)]q(ν+p)) 1
κ+qν

,

b = 2
qκ+pq(ν+p)

κ+qν .
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Now, since b > 1, if Y0 ≤ a
− κ+qν

pq b
−

(
κ+qν

pq

)2

then, by a standard result,

lim
m→∞Ym = 0.

To satisfy the condition on Y0, we choose θ so that

θ ≥ CY
p
κ

0 S
ν
κ
r

[(
r−p‖u‖p−2

∞,Ψ0
+ T−1

)] ν+p
κ
.

With this choice of θ, we obtain (u(ξ, τ)−θ)+ = 0 a.e. on Ψ, which completes
the proof of the theorem for q ≥ 2.

Step 2: We now extend the proof to include 1 ≤ q < 2. Consider q, l such
that 1 ≤ q < 2 ≤ l. We will use the notation

κq = pq + ν(p− 2), κl = pl + ν(p− 2).

Following ideas from [17], we use a sequence of growing cylinders. Define

rm =
(

1
2

)m+1

r,(3.16)

tm =
(

1
2

)p(m+1)

T,

and
Ψ̃m = B(x0, r − rm) × [tm, T ).

Note that Ψ̃0 = Ψ and limm→∞ Ψ̃m = Ψ0.
Let (ξ, τ) ∈ Ψ̃m−1. We now introduce two cylinders containing (ξ, τ),

both of them contained in Ψ̃m, in which we can apply the result from step
1 (see Figure 1): choose s such that

τ < s < min(τ +
(

1 −
(

1
2

)p)
tm, T )

and define
ψ0(ξ, τ) := B(ξ, rm) × [s− tm, s).

Since p ≥ 2, ψ0(ξ, τ) ⊂ Ψ̃m. We also define

ψ(ξ, τ) := B(ξ, rm+1) × [s−
(

1 −
(

1
2

)p)
tm, s) ⊂ ψ0(ξ, τ).

Observe that (ξ, τ) ∈ ψ(ξ, τ). Since l ≥ 2, we can apply the result from step
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Ψ̃m−1

Ψ̃m

ψ(ξ, τ)
ψ0(ξ, τ)

(ξ, τ)

Figure 1: Cylinders Ψ̃m+1,Ψ̃m, ψ and ψ0

1 in the cylinders ψ(ξ, τ) and ψ0(ξ, τ) to conclude that for all (ξ, τ) ∈ Ψ̃m−1

‖u‖∞,ψ(ξ,τ) ≤ CS
ν
κl
ξ,rm,U

(∫∫
ψ0(ξ,τ)

uldµds

) p
κl [

r−p
m ‖u‖p−2

∞,ψ0(ξ,τ) + t−1
m

] ν+p
κl

≤ CS
ν
κl
r ‖u‖

p(l−q)
κl

∞,Ψ̃m

(∫∫
Ψ0

uqdµds

) p
κl
(
2pm

[
r−p‖u‖p−2

∞,Ψ0
+ T−1

]) ν+p
κl .

(3.17)

Introducing
Mm = ‖u‖∞,Ψ̃m

,

the fact that (3.17) holds for all (ξ, τ) ∈ Ψ̃m−1 implies

(3.18) Mm−1 ≤ 2
pm(ν+p)

κl AM
p(l−q)

κl
m ,

where the constant A is given by

(3.19) A = CS
ν
κl
r

(∫∫
Ψ0

uqdµds

) p
κl
(
r−p‖u‖p−2

∞,Ψ0
+ T−1

) ν+p
κl .

Repeatedly applying (3.18), we obtain

M0 ≤ A
∑m−1

i=0

(
p(l−q)

κl

)i (
2

p(ν+p)
κl

)∑m−1
i=0 (i+1)

(
p(l−q)

κl

)i

M

(
p(l−q)

κl

)m

m .

Letting m → ∞, we get, since p(l−q)
κl

< 1,

M0 ≤ CA
κl
κq .
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It now follows immediately from the definitions of M0 and A, that

(3.20) ‖u‖∞,Ψ ≤ CS
ν

κq
r

(∫∫
Ψ0

uqdµds

) p
κq
(
r−p‖u‖p−2

∞,Ψ0
+ T−1

) ν+p
κq ,

the statement of the theorem. �

3.1. A second mean value inequality.

In the proof of Lemma 3.2, we introduced a cut-off function η that vanished
on the bottom of the largest of the two cylinders (see (3.11)). If the support
of the solution u at time t = 0 does not intersect the bottom of this cylin-
der, however, this becomes unnecessary, and a different mean value type
inequality holds.

Theorem 3.4. Assume that (M,µ) is a non-compact, complete, weighted
Riemannian manifold. Choose r > 0 and define U = B(x0, r). Let T > 0
and define

Ψ0 = B(x0, r) × IT , Ψ = B(x0,
r

2
) × IT .

If u ∈ Sp(UT ) is a non-negative, bounded, weak sub-solution of (2.1), where
A satisfies (2.2) and (2.3), and u is such that

B(x0, r) ∩ suppu(·, 0) = ∅,
then for q ≥ 1

(3.21) ‖u‖∞,Ψ ≤ CS
ν
κ
r

(
r−p‖u‖p−2

∞,Ψ0

) ν+p
κ

(∫∫
Ψ0

uqdµdτ

) p
κ

,

where C = C(ν, p, q), Sr and ν as in (2.12) and κ given by (3.4).

Proof. The proof is very similar to that of the first mean value inequality.
Again, for q ≥ 2, we consider a sequence of shrinking cylinders, but this
time they all have the same height. Let

rm =
1
2

(
1 +

(
1
2

)m)
r,

Ψm = B(x0, rm) × IT ,

θm =
(

1 −
(

1
2

)m)
θ,

vm = (u− θm)+,

Ym =
∫∫

Ψm

vmdµdτ,
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with θ to be chosen later.
Follow the proof of Lemma 3.2 to obtain, analogous to (3.5) combined

with (3.6), (3.10) and (3.13),

Ym+1 ≤


CSr sup

0≤τ<T

(∫
B(x0,r̃m)

vqm+1dµ

) p
ν




qν
κ+qν

×
(∫ T

0

∫
B(x0,r̃m)

[∣∣∣∣∇v p+q−2
p

m+1

∣∣∣∣
p

+ vp+q−2
m+1

(
2m+3

r

)p]
dµdτ

) qν
κ+qν

×
(

2q(m+1)

θq
Ym

) κ
κ+qν

where
r̃m =

rm + rm+1

2
.

Again, we want to apply Lemma 3.1. In the proof of Lemma 3.2, we
used a time-dependent cut-off function (see (3.11)) to obtain the inequality
(3.12). Since for all m, suppu(·, 0)∩B(x0, rm) ⊂ suppu(·, 0)∩B(x0, r) = ∅,
we can this time use time-independent cut-off functions ηm(x, t) = ηm(x),
supported in B(x0, rm), such that ηm ≡ 1 on B(x0, r̃m), with |∇ηm| ≤ 2m+3

r .
In this case, Lemma 3.1 gives, for all 0 < τ < T ,∫

B(x0,r̃m)
vqm+1(x, τ)dµ(x) +

∫ τ

0

∫
B(x0,r̃m)

∣∣∣∣∇
(
v

p+q−2
p

m (x, t)
)∣∣∣∣

p

dµ(x)dt

≤ C2mpr−p‖vm+1‖p−2
∞,Ψ0

Ym,

which is the analogue of (3.12), and leads to

Ym+1 ≤ 2
m(p2q+pqν+κq)

κ+qν C

(
Sqνr θ

−κq
(
r−p‖vm+1‖p−2

∞,Ψ0

)q(p+ν)) 1
κ+qν

Y
1+ pq

κ+qν
m .

Following the argument in the proof of Theorem 3.3, a sufficient condi-
tion to have limm→∞ Ym = 0 is

θ ≥ CS
ν
κ
r

(
r−p‖u‖p−2

∞,Ψ0

) ν+p
κ
Y

p
κ

0 ,

so

‖u‖∞,Ψ ≤ CS
ν
κ
r

(
r−p‖u‖(p−2)

∞,Ψ0

) ν+p
κ
Y

p
κ

0 .
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This proves the theorem for q ≥ 2. To obtain the result for 1 ≤ q < 2, follow
the same procedure as in Theorem 3.3, with rm as in (3.16),

Ψ̃m = B(x0, r − rm) × IT

ψ̃0(ξ, τ) = B(ξ, rm) × IT ,

ψ̃(ξ, τ) = B(ξ, rm+1) × IT

and replacing r−p
m ‖u‖p−2

∞,Ψ0
+t−1

m in (3.17) with r−p
m ‖u‖p−2

∞,Ψ0
and r−p‖u‖p−2

∞,Ψ0
+

T−1 in (3.17), (3.19) and (3.20) with r−p‖u‖p−2
∞,Ψ0

. �

The mean value inequality for the heat equation (3.1) is, as said before,
a special case of the two preceding theorems. To see this, let M be an n-
dimensional non-compact manifold with non-negative Ricci curvature, n >
2, and let u be a solution of the heat equation in some cylinder B(x0, r) ×
(0, T ). Choose q = 1 and p = 2 and assume r =

√
T as in (3.1). Since we

assume n > 2, the local Sobolev inequality (2.12) holds with ν = n, with
Sobolev constant Sr given by (2.13). In this case, both (3.15) and (3.21)
coincide with (3.1).

4. Finite propagation speed.

In this section, we show that sub-solutions of the non-linear equation (2.1)
in a non-compact manifold M have finite propagation speed, using the mean
value inequality from Theorem 3.4. Furthermore, we obtain a local estimate
for the speed of propagation. This estimate turns out to depend on the
curvature of the manifold M , through the curvature dependence of the con-
stants DU and PU in (2.10) and (2.11). The key ingredient in the proof of
the finite propagation speed property is an estimate for the term r−p‖u‖p−2

∞,Ψ0
in the mean value inequality (3.21).

The results in this section are only valid if p > 2.
The following theorem implies Theorem 1.1 in the introduction:

Theorem 4.1. Assume that (M,µ) is a non-compact, complete, weighted
Riemannian manifold. Let T > 0, and let u ∈ Sp(MT ) be a non-negative,
bounded, weak sub-solution of (2.1), where A satisfies (2.2) and (2.3), and
suppose that there exists a ball B(x0, d) such that

B(x0, d) ∩ suppu(·, 0) = ∅.
For all 0 ≤ t < min(t0, T ), with

(4.1) t0 = C
(
D2
B(x0,d)PB(x0,d)

)−ν
dp‖u(·, 0)‖−(p−2)

∞,M , C = C(p, ν),
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we have ‖u(·, t)‖∞,B(x0,
d
2 ) = 0, that is

B(x0,
d

2
) ∩ suppu(·, t) = ∅.

Proof. Since p > 2, and u is bounded, we can, for r0 > 0, x ∈ M , define
φr0,x : IT → R by

(4.2) φr0,x(t) = sup
0≤τ<t

sup
r≥r0

r
− p

p−2 ‖u(·, τ)‖∞,B(x,r).

We will, for any x ∈ B(x0,
d
2) and for small enough t, give an upper bound

for φr0,x(t), independent of r0.
First, consider r− p

p−2 ‖u(·, t)‖∞,B(x,r) for r small: we assume r < d
4 . In

this case, for all x ∈ B(x0,
d
2), we have B(x, 2r) ⊂ U and

B(x, 2r) ∩ suppu(·, 0) = ∅,

so for all 0 ≤ t < T , we can apply the second version of the mean value
inequality, (3.21), in the cylinders Ψ := B(x, r) × [0, t] ⊂ Ψ0 := B(x, 2r) ×
[0, t]. The mean value inequality (3.21) gives an estimate for ‖u(·, t)‖∞,Ψ,
but since u ∈ C(IT , L2(M)) it follows that, in fact, at all times 0 ≤ τ < t

‖u(·, τ)‖∞,B(x,r) ≤ CS
ν
κ
x,2r,U

(
r−p‖u‖p−2

∞,Ψ0

) ν+p
κ

(∫∫
Ψ0

uqdµdτ

) p
κ

,

where U = B(x0, d).
Taking q = p− 1, we find that for all 0 ≤ τ < t

r
− p

p−2 ‖u(·, τ)‖∞,B(x,r) ≤ CS
ν
κ
x,2r,Ur

− pν
κ

(
r−p‖u‖p−2

∞,Ψ0

) ν+p
κ

×
(∫∫

Ψ0

(
r
− p

p−2u
)p−1

dµdτ

) p
κ

≤ CS
ν
κ
x,2r,U

(
V (x, 2r))

rν

) p
κ

(∫ t

0
φp−1
r0,x(τ)dτ

) p
κ

φr0,x(t)
1− p

κ .

In what follows, the value of the constant C will change several times,
but C = C(p, ν) everywhere.
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Using that the Sobolev constant Sx,2r,U is given by (2.13) together with
Young’s inequality, the last estimate becomes

(4.3) r
− p

p−2 ‖u(·, t)‖∞,B(x,r) ≤ C
(
D2P

)ν ∫ t

0
φp−1
r0,x(τ)dτ +

1
2
φr0,x(t),

for all x ∈ B(x0,
d
2) and r < d

4 .
Now, consider r ≥ d

4 , again with x ∈ B(x0,
d
2): since M is assumed to be

complete, Sp(MT ) =
o
Sp(MT ), (where

o
Sp(MT ) is as defined in (2.8)), see for

example [2, p. 34], so we can apply Lemma 2.4 to obtain that for any t ∈ IT

r
− p

p−2 ‖u(·, t)‖∞,B(x,r) ≤
(

4
d

) p
p−2

‖u(·, 0)‖∞,M .

Combining this with (4.3), we get

φr0,x(t) ≤
(

2ad− p
p−2 ‖u(·, 0)‖∞,M + C

(
D2P

)ν ∫ t

0
φp−1
r0,x(τ)dτ

)
.

Since for all r0 > 0 and for any x ∈ B(x0,
d
2) the function φr0,x(t) is bounded

by r
− p

p−2
0 ‖u(·, 0)‖∞,M , and φr0,x(0) ≤ d

− p
p−2 ‖u(·, 0)‖∞,M , φr0,x is majorised

by the solution to the equation

f ′(t) = C
(
D2P

)ν
fp−1(t), f(0) = 2ad− p

p−2 ‖u(·, 0)‖∞,M .

Solving this equation, we obtain that for t < min(t0, T ), with

t0 = C
(
D2P

)−ν
dp‖u(·, 0)‖−(p−2)

∞,M ,

(observe that t0 is positive)

φr0,x(t) ≤
(
dp‖u(·, 0)‖−(p−2)

∞,M − C
(
D2P

)ν
t
)− 1

p−2

uniformly in x ∈ B(x0,
d
2), independent of r0 > 0, or

‖u(·, t)‖∞,B(x,r) ≤ r
p

p−2

(
dp‖u(·, 0)‖−(p−2)

∞,M − C
(
D2P

)ν
t
)− 1

p−2

for all r > 0, for all x ∈ B(x0,
d
2), implying the statement of the theorem. �
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In the theorem, we require that u is a weak sub-solution in MT . This can
be replaced with the requirement that u is a solution in UT if we redefine
φr0,x (see (4.2)) as

φr0,x(t) = sup
0≤τ<t

sup
r≥r0

r
− p

p−2 ‖u(·, τ)‖∞,B(x,r)∩U ,

and replace all norms ‖u(·, 0)‖∞,M with ‖u‖∞,UT
.

On R
n, an explicit solution of (1.1) is given by the Barenblatt solution

(4.4) Bp(x, t) = t−
n
κ

(
c− κ

1
1−p

p− 2
p

(
|x|
t

1
κ

) p
p−1

) p−1
p−2

+

,

where κ = p + n(p − 2). The estimate (4.1) for the time up to which the
solution remains 0 is not optimal for this solution, which at x �= 0 remains
zero until t0 = C|x|n(p−2)+p, whereas from (4.1), we get t0 = C|x|p.

We conclude this paper with estimates for the growth of the support of
a weak solution of the non-linear equation (2.1) in a non-compact manifold.
The following theorem implies Theorem 1.2.

Theorem 4.2. Let (M,µ) be a non-compact, complete, weighted Rie-
mannian manifold, and let u ∈ Sp(M × R

+) be a non-negative, bounded,
weak sub-solution of (2.1), where A is assumed to satisfy (2.2) and (2.3).
Assume that suppu(·, 0) is compact. For r > 0, define the r-neighbourhood
of suppu(·, 0),

(4.5) Ur = {x ∈ M : dist(x, suppu(·, 0)) ≤ r},

and let

(4.6) T = sup
r>0

C(D2
U3r
PU3r)

−νrp‖u(·, 0)‖−(p−2)
∞,M

where C = C(p, ν) is the constant from (4.1).
There exists an increasing, non-negative function

r : [0, T ) → R

such that for any 0 < t < T ,

suppu(·, t) ⊂ Ur(t).
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Proof. Let r > 0 and define

(4.7) Ar = {x ∈ M : r < dist(x, suppu(·, 0)) < 2r}.

Choose a finite number of points xi ∈ Ar such that

(4.8) Ar ⊂ ∪iB(xi,
r

2
).

For any of the xi, B(xi, r) ∩ suppu(·, 0) = ∅, so by Theorem 4.1

B(xi,
r

2
) ∩ suppu(·, t) = ∅

for all
t < t(xi,r) = C

(
D2
B(xi,r)PB(xi,r)

)−ν
rp‖u(·, 0)‖−(p−2)

∞,M ,

where C is the constant from (4.1). Since B(xi, r) ⊂ U3r for all xi, DB(xi,r) ≤
DU3r , PB(xi,r) ≤ PU3r , and

t(xi,r) ≥ t(r) = C
(
D2
U3r
PU3r

)−ν
rp‖u(·, 0)‖−(p−2)

∞,M

for all xi. By (4.8), this implies that for all t < t(r)

Ar ∩ suppu(·, t) = ∅.

In fact, for t < t(r),
suppu(·, t) ⊂ Ur :

given 1 > ε > 0 and ρ > 0, let η be a smooth, non-negative function on
M \ Ur such that 0 ≤ η ≤ 1, η ≡ 1 on

Vρ = {x ∈ M\Ur : dist(x, Ur) < ρ},

η ≡ 0 on M \ V 2ρ
ε

and |∇η| < ε
ρ . Observe that for h > 0, 0 ≤ t < t(r) − h,

uhη
p ∈ L2(M\Ur) ∩

o
W 1,p(M\Ur), with uh the Steklov average of u, so

proceeding as in the proof of Lemma 3.1 (with t1 = 0), we find that for any
t < t(r) ∫

Vρ

u2(·, t)dµ ≤ εpC‖u(·, 0)‖p−2
∞,M

∫ t

0

∫
M
u2dµdt.

Since ε and ρ are arbitrary, this shows that suppu(·, t) ⊂ Ur for all t < t(r).
If t < T , by Definition (4.6), there exists r > 0 such that t < t(r), and

hence suppu(·, t) ⊂ Ur. Define

r(t) = inf{r : t < t(r)}.
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Then suppu(·, t) ⊂ Ur(t), and the function r(t) satisfies the conditions in
the theorem. �

If
T = sup

r>0
C(D2

U3r
PU3r)

−νrp‖u(·, 0)‖−(p−2)
∞,M

as defined in (4.6) is finite, these estimates are only local in time. However,
under certain conditions on the Ricci curvature of M , global estimates for
the speed of propagation of non-negative solutions of (2.1) can be given:

Corollary 4.3. Let M be a non-compact, complete Riemannian manifold
with metric g and let u ∈ Sp(M × R

+) be a non-negative, bounded, weak
sub-solution of (2.1), where A is assumed to satisfy (2.2) and (2.3).

If suppu(·, 0) is compact, and the Ricci curvature of M satisfies for all
x �∈ suppu(·, 0)

RicM (x) ≥ − c(n− 1)
dist(x, suppu(·, 0))2

g,

then for all t > 0,
suppu(·, t) ⊂ Ur(t),

where Ur(t) was defined in (4.5) and

r(t) = C
(
‖u(·, 0)‖p−2

∞,M t
) 1

p
.

Proof. The proof is similar to that of Theorem 4.2. For r > 0, define Ar as
in (4.7), and choose a finite number of points xi ∈ Ar such that

Ar ⊂ ∪iB
(
xi,

r

4

)
.

By Theorem 4.1,
B
(
xi,

r

4

)
∩ suppu(·, t) = ∅

for all
t < t(xi,r) = C

(
D2
B(xi,

r
2 )PB(xi,

r
2 )

)−ν
rp‖u(·, 0)‖−(p−2)

∞,M .

On each of the B(xi, r2), the Ricci curvature is bounded from below by

−4c(n− 1)
r2

g,
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so by (2.14), there exists C > 0, independent of xi and r, such that

(4.9) DB(xi,
r
2 ), PB(xi,

r
2 ) ≤ C.

This implies
t(xi, r) ≥ τ(r) = Crp‖u(·, 0)‖−(p−2)

∞,M ,

where again the constant C is independent of xi and r. Proceeding as in the
proof of Theorem 4.2, it can be shown that for all t < τ(r), suppu(·, t) ⊂ Ur,
and hence, if we define

(4.10) r(t) = C
(
‖u(·, t)‖p−2

∞,M t
) 1

p
,

then
suppu(·, t) ⊂ Ur(t).

�

In Corollary 4.3, the manifold M is assumed to be an unweighted man-
ifold. However, if M is weighted with weight σ and there exist constants
0 < c,C such that c < σ < C, then the corollary continues to hold in M ,
since it follows immediately from the definition of the constants DU and PU
in (2.10) and (2.11) that the estimate (4.9), from which the corollary follows,
remains valid.

5. Acknowledgement.

The author would like to thank Alexander Grigor’yan for many helpful and
stimulating discussions.

References.

[1] C. Atkinson and J.E. Bouillet. Some qualitative properties of solutions
of a generalised diffusion equation. Math. Proc. Cambridge Philos. Soc.,
86:495–510, 1979.

[2] Th. Aubin. Nonlinear analysis on manifolds. Monge-Ampére Equa-
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