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Isoperimetric Estimate for the Ricci Flow on

S2 × S1

Xiaodong Cao

In this paper, we study the dilation limit of S2×S1 with a warped
product metric under the Ricci flow. We first prove that the
isoperimetric ratio on the base manifold S2 has a lower bound,
which excludes the Σ2 × R as the dilation limit. We also prove a
monotonicity result under a certain condition.

1. Introduction.

Suppose, we have a solution to the Ricci flow

∂

∂t
gij = −2Rij

on a compact Riemannian 3-manifold N with Riemannian metric g(t), and
suppose R becomes unbounded in some finite time T0. In the paper [2],
Hamilton proves that under the Ricci flow, the dilation limit converges to
S3, S2 × R, Σ2 × R or their quotients, where the Σ2 is the cigar soliton on
the surface. Hamilton also conjectured that Σ2×R cannot occur as dilation
limit.

If the 3-manifold N is S2 × S1 topologically, and the metric is a warped
product metric. It is well known that this condition is preserved by the Ricci
flow. Here, the base manifold S2 is also denoted as M .

The metric can be written as:

g = π∗(gS2) + π∗(f2)dθ2

where π is the standard projection from S2×S1 to S2, gS2 is the corresponds
metric on the sphere and f is a positive function on the sphere S2.

The Ricci curvature is

π∗
(

R̃ij − f,ij

f 0
0 −f∆f

)
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where the R̃ij and ∆ denote the Ricci curvature and the Laplacian on the
base manifold (S2, gS2) respectively.

Now, the Ricci flow equation can be written as

∂

∂t
(gS2)ij = −2R̃ij + 2

f,ij

f
(1.1)

∂

∂t
f = ∆f(1.2)

The rest of this paper is organized as follows. In Section 2, we analyze
the geometry on S2 × S1, and state the isoperimetric ratio estimate and
the technical lemma. In Section 3, we prove the isoperimetric estimate.
In Section 4, we prove the technical lemma. In the last section, we prove
a monotonicity result which shows that the isoperimetric ratio is strictly
increasing.

2. Isoperimetric Estimate.

In this section, we shall establish an isoperimetric estimate on the base
manifold M .

First, we shall compute the evolution equation for |∇f
f |2.

Lemma 2.1.

(2.1)
∂

∂t

∣∣∣∣∇f

f

∣∣∣∣
2

= ∆
∣∣∣∣∇f

f

∣∣∣∣
2

− 2
∣∣∣∣∇2f

f

∣∣∣∣
2

+ 3∇
(∣∣∣∣∇f

f

∣∣∣∣
2
)

· ∇f

f

Corollary 2.2. There exists a constant C1, which only depends on the
initial metric and f at time 0, such that under the Ricci flow, we have∣∣∣∣∇f

f

∣∣∣∣
2

≤ C2
1

Now, we define the isoperimetric ratio on S2 (also see [3]).

CH(γ) = l(γ)2
A

A1A2

for all smooth closed curves γ and

CH(S2, g) = inf
γ

CH(γ)
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where the infimum is taken over all smooth closed curves γ, which divides
M into two open surfaces M1 and M2 with ∂M1 = ∂M2 = γ and areas
A = Area(S2), A1 = Area(M1) and A2 = Area(M2). This definition is
equivalent to:

CI(γ) =
l(γ)2

min{A1, A2}
and

CI(S2, g) = inf
γ

CI(γ).

Because
CI ≤ CH ≤ 2CI ,

we know that under Ricci flow, the dilation limit is a product of a surface
with R. By using this isoperimetric estimate, we shall prove that this surface
cannot be Σ2. Our claim is

Theorem 2.3. Under the Ricci flow, there exists an η > 0, such that

CH(S2, g)(t) > η > 0

for all t < T0, where T0 is the maximum existence time for the solution of
the Ricci flow.

Remark 2.4. 1) The existence and smoothness of the optimal curve γ such
that CH(γ) = CH(S2, g) are proved in [3] by Hamilton. This does not
depend on the flow.

2) Since CH is a dilation invariant, the estimate holds on any dilation
solution, but the cigar soliton has isoperimetric constant 0. So, we have the
following corollary.

Corollary 2.5. Under the Ricci flow, Σ2 × R can not occur as a limit of
dilation for S2 × S1 with warped product metric.

3. Proof of Theorem.

Let g(t) be a solution to the Ricci flow, given some time t0. Let γ0 be any
smooth embedded closed curve, which divides M into two open surfaces
M1 and M2 with ∂M1 = ∂M2 = γ0. Let γr denote the parallel curve
of signed distance r from γ0 (with respect to the metric g(t0)), where the
signed distance is positive for the curves in M2 and negative for the curves
in M1, as shown in Figure 1. For r which is sufficiently small, γr is a smooth
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embedded closed curve which separates M into two open surface M1,r and
M2,r (see [3] or [1]). We can consider the following as the functions of r and t.

1) l = l(γr, g(t))

2) A1 = Area(M1,r, g(t))

3) A2 = Area(M2,r, g(t))

4) CH = CH(γr, g(t))

Our computation shows that:

∂A1

∂r
= l

∂A2

∂r
= −l

∂l

∂r
=
∫

γr

k ds

where k is the geodesic curvature of γr with respect to the metric g(t).

∂2A1

∂r2
=
∫

γr

kds

∂2A2

∂r2
= −

∫
γr

kds

1
M

2
M

r−γ 0γ r
γ

T

ν

r

Figure 1: Isoperimetric ratio
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By Gauss–Bonnet formula, we get

2π =
∫

M1,r

KdA +
∫

γr

kds

Differentiating the above with respect to r, we have∫
γr

Kds +
∂

∂r

∫
γr

kds = 0

and then
∂2l

∂r2
= −

∫
γr

K ds.

For time t, we can show

(3.1)
d

dt
A = −2

∫
M

KdA +
∫

M

∆f

f
dA = −8π +

∫
M

∆f

f
dA = −8π +

∫
M

|∇f |2
f2

dA

Since
|∇f |2

f2
≤ C2

1

we have
d

dt
A ≤ C2

1A

and it follows,
A(t) ≤ A(0)eC2

1 t,

Therefore, we have the following:

Corollary 3.1. A(t) is bounded above at any finite time t.

We also have

(3.2)
∂

∂t
A1 = −2

∫
M1

KdA +
∫

M1

∆f

f
dA

(3.3)
∂

∂t
A2 = −2

∫
M2

KdA +
∫

M2

∆f

f
dA

(3.4)
∂

∂t
l = −

∫
γr

Kds +
∫

γr

|Tf |2
f2

ds
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where T is the unit tangent vector along γr. Since

(3.5) CH = l2
A

A1A2

so,

(3.6) ln CH = 2 ln l + ln A − lnA1 − ln A2

Differentiating twice with respect to r, we get

∂2

∂r2
lnCH

=
2
l

∂2l

∂r2
− 2

l2

(
∂l

∂r

)2

− 1
A1

(
∂2A1

∂r2

)
+

1
A2

1

(
∂A1

∂r

)2

− 1
A2

(
∂2A2

∂r2

)
+

1
A2

2

(
∂A2

∂r

)2

= −2
l

∫
γr

Kds − 2
l2

(∫
γr

kds

)2

− 1
A1

∫
γr

kds

+
l2

A2
1

+
1

A2

∫
γr

kds +
l2

A2
2

= −2
l

∫
γr

Kds − 2
l2

(∫
γr

kds

)2

+
(

1
A2

− 1
A1

)∫
γr

kds

+ l2
(

1
A2

1

+
1

A2
2

)

and

∂

∂t
ln CH =

2
l

∂l

∂t
+

1
A

(
dA

dt

)
− 1

A1

∂A1

∂t
− 1

A2

∂A2

∂t

=
2
l

∂l

∂t
− A2

A1A

∂A1

∂t
− A1

A2A

∂A2

∂t

= − 2
l

∫
γr

Kds +
2
l

∫
γr

|Tf |2
f2

ds

− A2

A1A

(
2
∫

γr

kds − 4π +
∫

M1

∆f

f
dA

)

− A1

A2A

(
−2
∫

γr

kds − 4π +
∫

M2

∆f

f
dA

)
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Therefore, we get

∂

∂t
ln CH =

∂2

∂r2
ln CH + 4π

(
A2

A1A
+

A1

A2A

)
+

2
l2

(∫
γr

kds

)2

−
(

1
A2

− 1
A1

)∫
γr

kds − l2
(

1
A2

1

+
1

A2
2

)

+
2
l

∫
γr

|Tf |2
f2

ds − 2
(

A2

A1A
− A1

A2A

)∫
γr

kds − A2

A1A

∫
M1

∆f

f
dA

− A1

A2A

∫
M2

∆f

f
dA

=
∂2

∂r2
ln CH + 4π

(
A2

A1A
+

A1

A2A

)
+

2
l2

(∫
γr

kds

)2

+
(

1
A2

− 1
A1

)∫
γr

kds

− l2
(

1
A2

1

+
1

A2
2

)
+

2
l

∫
γr

|Tf |2
f2

ds − A2

A1A

∫
M1

|∇f |2
f2

dA

− A1

A2A

∫
M2

|∇f |2
f2

dA − A2

A1A

∫
γr

∇f

f
· νds − A1

A2A

∫
γr

∇f

f
· (−ν)ds

=
∂2

∂r2
ln CH + (4π − CH)

(
A2

A1A
+

A1

A2A

)

+
2
l2

∫
γr

kds

[∫
γr

kds +
l2

2

(
1

A2
− 1

A1

)]

+
2
l

∫
γr

|Tf |2
f2

ds − A2

A1A

∫
M1

|∇f |2
f2

dA − A1

A2A

∫
M2

|∇f |2
f2

dA

− A2

A1A

∫
γr

∇f

f
· νds − A1

A2A

∫
γr

∇f

f
· (−ν)ds

We can simplify the above as

∂

∂t
lnCH =

∂2

∂r2
ln CH + (4π − CH)

(
A2

A1A
+

A1

A2A

)(3.7)

+
1
l

(∫
γr

kds

)(
∂

∂r
ln CH

)

+
2
l

∫
γr

|Tf |2
f2

ds − A2

A1A

∫
M1

|∇f |2
f2

dA − A1

A2A

∫
M2

|∇f |2
f2

dA

− A2

A1A

∫
γr

∇f

f
· νds − A1

A2A

∫
γr

∇f

f
· (−ν)ds
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where ν is the unit normal vector of γr towards M2. We used the following
identities in the above:

CH = l2
A

A1A2

CH

(
A2

A1A
+

A1

A2A

)
= l2

(
1

A2
1

+
1

A2
2

)
∂

∂r
ln CH =

2
l

∫
γr

kds − l

(
1

A1
− 1

A2

)
and

A2

A1A
− A1

A2A
=

A2
2 − A2

1

A1A2A
=

1
A1

− 1
A2

because
A1 + A2 = A

We shall prove that CH(M,g) has a positive lower bound. It suffices to
show that when CH attains its minimum, the right hand side of Eq. (3.7) has
a fixed lower bound. Without loss of generality, we assume that A2 ≥ A1,
then
(3.8)∣∣∣∣ A2

A1A

∫
γr

∇f

f
· νds +

A1

A2A

∫
γr

∇f

f
· (−ν)ds

∣∣∣∣ =
(

A2

A1A
− A1

A2A

) ∣∣∣∣
∫

γr

∇f

f
· νds

∣∣∣∣
Since |∇f

f | ≤ C1, ∀t, we have(
A2

A1A
− A1

A2A

) ∣∣∣∣
∫

γr

∇f

f
· νds

∣∣∣∣ ≤
(

A2

A1A
− A1

A2A

)
C1l(3.9)

=
(

1
A1

− 1
A2

)
C1l <

C1l

A1

and

A2

A1A

∫
M1

|∇f |2
f2

dA +
A1

A2A

∫
M2

|∇f |2
f2

dA ≤ C2
1

(
A2

A1A
A1 +

A1

A2A
A2

)
= C2

1

We then have the following lemma,

Lemma 3.2.

∂

∂t
ln CH ≥ ∂2

∂r2
ln CH + (4π − CH)

(
A2

A1A
+

A1

A2A

)
(3.10)

+
1
l

(∫
γr

kds

)(
∂

∂r
ln CH

)
+

2
l

∫
γr

|Tf |2
f2

ds − C2
1 − C1l

A1
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When CH(γ) reaches its minimum, i.e.,

CH(γ) = CH(M,g) ≥ l2

min(A1, A2)

it suffices to show that C1l
A1

is bounded by δ A2
A1A for some δ > 0.

For any fixed δ > 0 (for example, we can take δ = 2π), we consider two
cases:

(I) If l ≥ δ
2C1

, then

CH(γ) =
l2A

A1A2
≥ l2

A
≥ δ2e−C2

1T0

4C2
1A(0)

> 0

i.e, we already have a positive lower bound.
(II) If l ≤ δ

2C1
, then

δ
A2

A1A
− C1l

A1
≥ (

δ

2
− C1l)

1
A1

> 0

hence,

∂

∂t
ln CH ≥ ∂2

∂r2
ln CH + (4π − δ − CH)

(
A2

A1A
+

A1

A2A

)
(3.11)

+
1
l

(∫
γr

kds

)(
∂

∂r
ln CH

)
+

2
l

∫
γr

|Tf |2
f2

ds − C2
1

So, for any finite time t < T0, CH has a positive lower bound.
Now, we have proved that there exists η > 0, such that

CH > η > 0

∀t ∈ [0, T0).
Since CH > 0 on a compact manifold is a dilation invariant, we have

lim
t→T0

CH > η

on any dilation. This is also true on the limit, and the dilation limit cannot
be Σ2 × R

1. This finishes the proof of Theorem 2.3.
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4. Proof of Lemma.

Proof. The left-hand side of Eq. (2.1) is:

∂

∂t

|∇f |2
f2

=
R̃|∇f |2 − 2f,ij

f f,if,j

f2
− 2|∇f |2fft

f4
+

2gij
S2ft,if,j

f2

=
R̃|∇f |2 − 2f,ij

f f,if,j + 2gij
S2 (∆f),i f,j

f2
− 2|∇f |2∆f

f3

On the other hand,

∆
( |∇f |2

f2

)
=∇

(∇(|∇f |2)f2 − |∇f |2 · 2f∇f

f4

)

=∇∇(|∇f |2)
f2

− 2|∇f |2 · ∇f

f3

=
∆(|∇f |2)f2 −∇(|∇f |2) · 2f∇f

f4

− 2∇(|∇f |2) · (∇f)f3 + 2|∇f |2(∆f)f3 − 2|∇f |2∇f · 3f2∇f

f6

=
∆|∇f |2

f2
− 4∇(|∇f |2) · ∇f

f3
− 2|∇f |2∆f

f3
+

6|∇f |4
f4

Hence, we have

∂

∂t

|∇f |2
f2

− ∆
( |∇f |2

f2

)

= − ∆|∇f |2
f2

+
4∇(|∇f |2) · ∇f

f3
− 6|∇f |4

f4

+
R̃|∇f |2

f2
− 2f,ijf,if,j

f3
+

2f,jjif,i

f2

Since

∆|∇f |2 = 2f2
,ij + 2(∆f)if,i + 2R̃ijf,if j,
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we can show

∂

∂t

|∇f |2
f2

− ∆
( |∇f |2

f2

)

= −2f2
,ij + 2R̃ijf,if j

f2
+

4∇(|∇f |2) · ∇f

f3

− 6|∇f |4
f4

+
R̃|∇f |2

f2
− 2f,ijf,if,j

f3

= −2|∇2f |2
f2

+
4∇(|∇f |2) · ∇f

f3
− 6|∇f |4

f4
− 2f,ijf,if,j

f3

= −2|∇2f |2
f2

+ 4∇(
|∇f |2

f2
) · ∇f

f
+

2|∇f |4
f4

− 2f,ijf,if,j

f3

where we used

∇
( |∇f |2

f2

)
=

∇(|∇f |2)
f2

− |∇f |2 · 2f∇f

f3

�

The Corollary 2.2 follows from Lemma 2.1 and maximum principle.

5. Monotonicity Result.

In the above, we exclude Σ2 × R1 as a dilation limit, but we still need to
prove the base manifold converges to the round sphere S2. We actually have
a partial monotonicity result about isoperimetric ratio by using that CH is
bounded from below and proceed our proof more carefully. In fact, we need
to assume that when γ attains the minimum of CH(γ), l(γ, t) → 0 as t → T0.
Our claim is:

Theorem 5.1. Under Ricci flow, if l(γ, t) → 0 as t → T0 for the γ satisfies
CH(γ) = CH(S2), then the isoperimetric ratio will strictly increase unless
CH = 4π.

In order to prove this, we need to show that whenever CH < 4π, the
right-hand side of Eq. (3.7) is non-negative.

Proof. Since l → 0 and

η < CH ≤ l2

A1
≤ 8π,
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so as t → T0, A1 → 0 (we still assume A1 ≤ A2).
For any fixed small δ > 0, if t is close to T0 enough, we shall have

l <
δ

4C1

and

A1 <
δ

4C2
1

Hence,
δ

2

(
A2

A1A
+

A1

A2A

)
− C1l

A1
>

1
A1

(
δ

4
− C1l

)
> 0

and
δ

2

(
A2

A1A
+

A1

A2A

)
− C2

1 ≥ δ

4A1
− C2

1 > 0,

then

∂

∂t
ln CH ≥ ∂2

∂r2
ln CH + (4π − δ − CH)(

A2

A1A
(5.1)

+
A1

A2A
) +

1
l
(
∫

γr

kds)(
∂

∂r
lnCH) +

2
l

∫
γr

|Tf |2
f2

ds

Therefore, whenever CH < 4π, CH will increase. �

Remark 5.2. The more general result to exclude Σ2×R has been proved by
Perelman in [4] recently via an entropy estimate. In that paper, he confirms
Hamilton’s conjecture. Our work was done during 2001.
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