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Gluing Seiberg–Witten Monopoles

Pedram Safari

We establish a canonical gluing procedure for Seiberg–Witten
monopoles on the two pieces of a closed, oriented four-manifold
X which is split along a 3-dimensional closed, oriented submani-
fold. We only assume that the (unperturbed) character variety is
Kuranishi-smooth and the limiting maps are transversal — then we
will be able to glue regular monopoles over the irreducible points
of the character variety.

1. Introduction.

The advent of Seiberg–Witten theory in 1994 led not only to a great sim-
plification of the gauge-theoretic results obtained earlier by Donaldson, but
also to new advances such as proofs for the Thom conjecture [6]. One of
the advantages of the Seiberg–Witten theory is that the bubbling phenom-
enon does not occur, thus resulting in a compact moduli space for closed
four-manifolds.

Naturally, finding methods to compute these invariants would be de-
sirable. For symplectic manifolds, Taubes settled this question by relating
the invariants to those of Gromov–Witten [14, 13]. Fintushel and Stern de-
scribed how the Seiberg–Witten invariants change under certain surgeries
over a knot [4]. In yet another direction, one could ask if it is possible to
compute the Seiberg–Witten invariants of a four-manifold which is decom-
posed into two parts, given the relevant information on the pieces.

To make this more precise, let X be a closed, oriented four-manifold, Y a
closed, oriented, embedded, dividing submanifold, and X+ and X−, the two
components of X \ Y. X± could be considered as cylindrical-end manifolds
with ends isometric to I×Y, where I is an interval. If X± are equipped with
Spinc-structures agreeing on Y, then these structures give rise to a unique
Spinc-structure on X. We are interested in the Seiberg–Witten moduli space
of X in terms of those of X+, X− and Y.

There have already been several partial results around this question; see
[10, 11, 5, 1, 2, 3]. The main concern in those works is to explicitly find
the solutions to the Seiberg–Witten equations by analytical means, mostly
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dealing with some particular type of the boundary manifold Y, such as circle
bundles over Riemann surfaces or Seifert fibered spaces.

Here, we develop a more general gluing scheme for Seiberg–Witten
monopoles, thus setting the ground for a Mayer–Vietoris type theorem for
Seiberg–Witten moduli spaces; this would be the subject of a forthcoming
paper. Our approach is essentially based on Taubes’ method for construct-
ing glued-up ASD connections on connected sums, and is an adaptation of
the work of Morgan and Mrowka in gluing ASD SU(2)-connections ([9]) in
the context of Seiberg–Witten theory.

We will assume that the three-manifold Y has no reducible point in its
Seiberg–Witten moduli space. Otherwise, we would simply confine ourselves
to the open set of irreducible points. This could also be achieved by a
small perturbation in the Seiberg–Witten equations, which would relieve us
from singular points as well, producing a zero-dimensional moduli space,
but we are not heeding much this way. Instead, we would allow a positive-
dimensional, “smooth” (in the sense of Kuranishi) moduli space, which is
free from reducibles, while the obstruction spaces can be non-trivial. On
X±, we would require the stronger condition of regularity for monopoles.

There are practical motives for this unperturbative approach — in many
concrete examples, such as the case of Seifert fibered spaces, we explicitly
know the solutions to the unperturbed equations on the three-manifold. How-
ever, our method should well work in the perturbative setup as well.

Below is a quick survey of the gluing procedure. We put complete metrics
on the two pieces X±, thus taking them with infinite ends isometric to
[0,∞) × Y. There is a limiting map which smoothly assigns a monopole
on Y to each finite-energy monopole on the the cylindrical-end manifold.
We cut each infinite piece at place � and glue the truncated manifolds X±

�

along Y . The resulting manifolds X� are diffeomorphic to X and we try to
successfully glue the monopoles on X± as the neck is elongated. We start
naively by pasting together the monopoles using a partition of unity. Of
course, we need to add a correction term to obtain an exact monopole; it
would be the unique fixed point of a contraction mapping on a Hilbert space.
In fact, if ξ̃� is the approximate glued monopole and ξ̂ is the correction term,
then we want the left-hand side of the expansion

SW(ξ̃� + ξ̂) = SW(ξ̃�) + D1(ξ̂) +Q(ξ̂)

to be zero. Here, D1 is the linearization of the SW map and Q is its second
order approximation, both depending on ξ̃�, of course. The equation can be
re-written as

D1(ξ̂) = −SW(ξ̃�) −Q(ξ̂).
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Thus, if we can find a right inverse R for D1 and set ξ̂ = R(ζ̂), then ζ̂ would
be the fixed point of the map

F(ζ) = −SW(ξ̃�) −Q(R(ζ)).

In the construction of a right inverse for D1, we are led to consider
two complementary subspaces — one being finite-dimensional — and work
on each one separately. The main difficulty lies in right-inverting D1 on
the finite-dimensional subspace; this is essentially due to the existence of
obstruction spaces in the first place. We will make estimates on the norms
of certain operators, obtained through Hodge theory, to eventually conclude
that the desired full right inverse can be constructed for � sufficiently large.
The norm of this operator could grow exponentially in �; nevertheless, the
perturbation term will decline exponentially and this conforms with the
intuition that the approximate gluing is increasingly “better” as � becomes
larger.

The hard analysis culminates in the main theorem of this paper, whose
proof is completed in Section 3.5. Use M to denote the Seiberg–Witten
moduli space and let ∂± : M(X±) → M(Y ) be the limiting map. Assume
that M(Y ) is Kuranishi-smooth and consider Mirr(Y ), the (smooth) irre-
ducible part of the moduli space of Y. Let M∗(X±) consist of the regular
points of the inverse image of Mirr(Y ) under the limiting map. Note that
this implies that M∗(X±) is free from reducible points, too. We continue
to use the same notation for the restriction of ∂± to M∗(X±).

Theorem. Under the preceding assumptions on X±, Y, and their moduli
spaces, if the limiting maps ∂± : M∗(X±) → Mirr(Y ) are transversal, then
there is an L0 such that for each � ≥ 4L0, the following holds. To any two
regular monopoles ξ+ and ξ−, respectively on X+ and X−, with the same
limiting value η ∈ Mirr(Y ), one can smoothly assign a monopole ξ� on X�

obtained through a canonical gluing scheme.

2. Rudiments.

Let us first review some basic facts of Seiberg–Witten theory and meanwhile
set our notations along the way.

Let X be a smooth, connected, oriented, riemannian four-manifold. We
equip X with a Spinc-structure s, that is a lifting of its principal tangent
SO(4)-bundle P to a principal Spinc(4)-bundle P̃ . Such liftings always exist
and correspond (non-canonically) to classes in H2(M,Z) — in fact, one can
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twist P̃ with any given U(1)-bundle. Corresponding to Clifford representa-
tions of Spinc(4) = SU(2) × SU(2) × U(1)/{±1}, we obtain the associated
plus- and minus-spinor bundles S+ and S−, which are 2-dimensional com-
plex vector bundles with bundle group U(2), as well as the determinant line
bundle L = det P̃ = detS+ = detS−.

Any unitary connection A on the U(1)-bundle L, in conjunction with the
Levi–Cività connection on X, will induce connections on the lifting P̃ , as well
as on S±. Thus, a Dirac operator /∂A : Γ(S±) → Γ(S∓) can be defined by

/∂A(Ψ) =
n∑

j=1

ej .∇ej (Ψ),

where {ej}n
j=1 is an orthonormal frame for TxX and . denotes Clifford mul-

tiplication. The definition is frame-invariant.
The Seiberg–Witten equations, in two unknowns A and Ψ, can now be

written as {
F+

A = {Ψ ⊗ Ψ∗}
/∂A(Ψ) = 0,

(SW)

where Ψ is a plus-spinor and the brackets denote the trace-less part of an
endomorphism. In other words, {Ψ ⊗ Ψ∗} denotes the quadratic q(Ψ) =
Ψ ⊗ Ψ∗ − 1

2 |Ψ|2I. In the same equation, F+
A denotes the self-dual part of

the curvature tensor under the Hodge ∗-operator. It defines a trace-free
representation of the Clifford bundle Cl+0 on S+ via Clifford multiplication,
thus both sides of the first equation should be identified as trace-less sections
of the bundle of endomorphisms of plus-spinors, End(S+).

One can also consider the perturbed variant of the Seiberg–Witten equa-
tions {

F+
A = {Ψ ⊗ Ψ∗} + ih
/∂A(Ψ) = 0,

(SWh)

where h is a real self-dual 2-form on X.
Sometimes, it is convenient to consider the Seiberg–Witten map on the

configuration space C(X, s) = A(L)×Γ(S+) consisting of a connection on the
determinant line bundle and a plus-spinor. The map SW : A(L)×Γ(S+) →
Ω2

+(X) × Γ(S−) is defined by

SW(A,Ψ) = (F+
A − q(Ψ), /∂A(Ψ)).

SWh is defined similarly.
We will feel free to make various assumptions on the configuration spaces,

for example by taking completions with respect to an appropriate norm, or
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by considering only finite-energy configurations. That should be clear from
the context and we would invariably use the same notation SW or SWh.

The gauge group G, i.e. the group of bundle-automorphisms of P̃ , cor-
responds to maps X → S1. It right-acts on the configuration space C(X, s),
as well as on the solutions to the Seiberg–Witten equations S(X, s), by

(A,Ψ).g = (A+ 2g−1dg, S+(g−1)(Ψ)).

The stabilizer of (A,Ψ) is trivial iff Ψ �= 0, in which case the point is called
irreducible. Reducible solutions have the stabilizer = S1. Dividing out the
solution set by the action of the gauge group produces the Seiberg–Witten
moduli space M(X, s) = S(X, s)/G.

A cohomological discussion of regularity is in order. To each point ξ ∈
C(X, s) of the configuration space of a four-manifold X, one can assign the
following diagram E|ξ

0 −→ Ω0
3(X; iR) D0−→ Ω1

2(X; iR) ⊕ Γ2(S+) D1−→ Ω2
+,1(X; iR) ⊕ Γ1(S−) −→ 0,

(E|ξ)
where Ωm

k (X; iR) means the L2
k-completion (or a completion in another ap-

propriate Sobolev norm, for that matter) of purely imaginary m-forms with
compact support and Γk(S±) denotes the L2

k-completion of the compactly
supported sections of the corresponding spinor bundles. D0 is the lineariza-
tion of the action of the gauge group and D1 is the derivative of SW, both
at the point ξ = (A,Ψ), i.e.

D0 = (2d,−.Ψ);

D1 =
(

d+ −Dq|Ψ
.12Ψ /∂A

)
.

Note that SW and SWh are non-linear maps with the same derivative D1,
so E|ξ remains unaltered with a perturbation of the equations.

Now, if ξ happened to be a solution of SW or SWh, then the diagram
E|ξ would be a complex; moreover, it would even be an elliptic complex if X
were closed, or had appropriate boundary conditions, so it would have finite-
dimensional cohomologies. H0 of such a complex turns out to be the tangent
space to the stabilizer of the gauge group action, H1 is the Zariski tangent
space to the moduli space at ξ and H2 is its obstruction space. By general
Hodge theory, these groups can be identified with the ‘harmonic forms’.

Recall that a solution ξ = (A,Ψ) is called irreducible if Ψ is not iden-
tically zero; this is equivalent to H0(E|ξ) = 0. We call a solution regular
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(in an algebraic sense) if the obstruction space at that point is trivial, i.e.
H2(E|ξ) = 0. Note that according to the Kuranishi picture, an irreducible
solution is a smooth point (in a geometric sense) if and only if the Kuranishi
map vanishes, although the obstruction space may not be trivial.

We will use superscripts to denote the terms of E . Depending on the
emphasis, when all else is clear from the context, we might use combinations
such as E(X), E(X, s)|ξ and so on. Thus, for example,

E0(X) = Ω0
3(X; iR), E1(X) = Ω1

2(X; iR) ⊕ Γ2(S+),

E2(X) = Ω2
+,1(X; iR) ⊕ Γ1(S−)

We will also use boldface Greek letters (corresponding to the base manifold)
for points of the configuration space (for example, ξ is a point of C(X))
while the same Greek letters are used for the vectors of the corresponding
Zariski tangent spaces (ξ belongs to H1(E|ξ)).

It would be nice to review the setup for the case of a closed four-manifold
X. If we complete the configuration space and the gauge group using the L2

2

and L2
3 Sobolev norms, respectively, then we obtain an affine Hilbert space on

which a Hilbert Lie group is acting. The moduli space M(X, s) happens to
be Hausdorff, but it might have singularities, for example when the action is
not free. It can be shown though that the solutions of a generic perturbation
of the Seiberg–Witten equations are all irreducible and regular, therefore,
resulting in a smooth moduli space Mh(X, s). Using the Atiyah–Singer index
theorem and Bochner’s formula, we conclude that Mh is a finite-dimensional
compact manifold of formal dimension 1

4 (c1(L)2 − 2χ(M) − 3σ(M)), where
χ is the Euler characteristic and σ is the signature.

The basic reference for the material so far is [7].
One can mimic the preceding constructions on a three-manifold Y with

a Spinc(3)-structure t to obtain analogs, where there is only one spinor
bundle S and no self-duality. Thus, for instance, one can define a map
SW3 : A(L) × Γ(S) → Ω2(Y ) × Γ(S) by

SW3(B,Φ) = (FB − q(Φ), /∂B(Φ)).

The moduli space for a closed three-manifold would generically be of formal
dimension zero, as the index of an elliptic operator on an odd-dimensional
closed manifold is zero.

Another case of particular interest is when X = R × Y is a cylinder on
a closed three-manifold Y and ξ = π∗(η) is a translation-invariant solution.
Then, the cohomologies of E(X)|ξ can be identified in an obvious way with
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the cohomologies of E(Y )|η below. (This is not the elliptic complex that
is officially associated to three-manifolds — it is not even elliptic — but it
would be more fitting to our discussion here.)

0 −→ Ω0
3(Y ; iR) D0−→ Ω1

2(Y ; iR) ⊕ Γ2(S) D1−→ Ω2
1(Y ; iR) ⊕ Γ1(S) −→ 0,

(E(Y )|η)
where

η = (B,Φ);

D0 = (2d,−.Φ);

D1 =
(

d −Dq|Φ
.12Φ /∂B

)
.

The situation is in general more complicated if X is not closed, as we
need controlling conditions near the boundary or infinity, so as to keep the
ellipticity. Therefore, we work with configurations with finite energy when
we deal with manifolds with cylindrical ends. So, we continue to consider a
cylinder I × Y, where I = [c, d] is an interval. The solutions to the Seiberg-
Witten equations on this four-manifold turn out to be the gradient flow lines
of the so-called “Chern–Simons–Dirac” functional on C(Y, t):

CSD(B,Φ) =
∫

Y
FB0 ∧ b+

1
2

∫
Y
b ∧ db+

∫
Y
〈Φ, /∂BΦ〉dvol,

where b = B−B0 and B0 is a fixed background connection [10]. The singular
points of this vector field, i.e. the static solutions, correspond to solutions
of SW3. There are analogs for perturbed equations, too.

The energy of a solution (A,Ψ) on a cylinder is defined by any of the
following equivalent formulas. We assume that A is in temporal gauge and
we write (A,Ψ) = (B(t),Φ(t)), where B(t) and Φ(t) are connections and
spinors on the three-manifold.

E(A,Ψ) =
∫
I ‖Ḃ‖2 + ‖Φ̇‖2

=
∫
I ‖∇CSD(B(t),Φ(t))‖2

= CSD(B(d),Φ(d)) − CSD(B(c),Φ(c)).

The end of a manifold is, formally, the inverse limit of its co-compact
subsets, ordered by inclusion. Intuitively, this is the place where the mani-
fold extends to infinity. We call a riemannian manifold Z a cylindrical-end
manifold if its end is orientation-preserving isometric to [0,∞) × Y, where
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Y is an oriented, riemannian three-manifold. We fix a smooth “time coor-
dinate” function τ : Z → [−1,∞) which agrees with the first coordinate of
[0,∞) × Y on the end and is negative on the complement. Given a positive
real number � > 0, let Z� = τ−1((−∞, �]). For a pair of positive real numbers
0 < � < �′, let Z[�,�′] = τ−1([�, �′]).

On cylindrical-end manifolds, we will exclusively work with solutions
with finite energy on the ends for the sake of ellipticity.

3. The Gluing Theorem.

3.1. Gluing Cylindrical-End Manifolds.

Let us fix two connected, oriented, cylindrical-end riemannian four-
manifolds X±, each with a single end which is modeled on [0,∞) × Y. We
will also consider the cylinder Xo = R × Y. The notation X# will then be
used to denote any of these three manifolds.

We will also introduce “time” coordinates τ on these manifolds as follows.
On X±, take the first coordinate map on the end [0,∞)×Y and choose any
extension τ± : X± → [−1,∞) which is identically −1 outside a collar (the
collar being identified with (−1, 0]×Y ). On Xo = R×Y, τo is essentially the
absolute value function on the first coordinate, smoothed out at the origin.
This will be made more precise further below.

We now form a family of four-manifolds X�, � > 0, as follows. First,
truncate the manifolds X± at τ± = � to produce X±

� consisting of points
with τ±(x) ≤ �. We then obtain X� by gluing X+

� and X−
� along their

boundaries (see Figures 1 and 2). We are interested in X� for � large and
we would eventually assume � > 4L0, where L0 is a large, but fixed, positive
number. The manifolds X� are just diffeomorphic versions of one and the
same manifoldX, being elongated along a tube. We will also re-parameterize
the long cylinder C� = End(X+

� ) ∪ End(X−
� ) inside X�, identifying it with

[−�, �] × Y as in Figure 2. C�′ is then the chunk of C� parameterized as
[−�′, �′] × Y.

Now, we get back to our discussion of the time coordinate and, in the
mean time, we also introduce a time-coordinate function τ� on the mani-
fold X�. It is identical to τ+ on X+

�−1 and to τ− on X−
�−1, and smoothly

interpolates between the two such that its value on C1 is in the interval
[� − 1, �]. This choice of interpolation can be made independently of � and
therefore, the function � − τ� converges, uniformly on compact subsets of
Xo, to the function τo alluded to earlier. Outside of C1 = [−1, 1] × Y , we
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X+
�

0 τ+ = �

Y

End(X+)

Y

τ− = � 0

X−
�

Figure 1: Two cylindrical-end manifolds X+
� and X−

�

X+
�

X−
�

C�′

0 L0−L0 �′−�′ �−�

Figure 2: X+
� and X−

� glued together to form X�

have τo(t, y) = |t|.
We are also able to patch Spinc-structures s± (on X±) which agree on the

ends. More precisely, there is a principal Spinc(3)-lifting Q̃ of the principal
orthonormal tangent bundle of Y such that P̃±|End(X±)

∼= R × π∗Q̃, where
π : I×Y → Y is the projection. Indeed, on End(X±), there is an embedding
π∗Q̃ ↪→ P̃±, induced from the lift of the obvious embedding SO(3) ↪→ SO(4).



706 P. Safari

See [10] for details. By fixing the isomorphism above, we can form a Spinc-
structure s� on X� which is compatible with the original Spinc-structures.

3.2. Approximate Gluing of Monopoles.

Let ξ± = (A±,Ψ±) be finite-energy solutions to the Seiberg–Witten equa-
tions SW on X±. Based on our earlier assumptions, ξ± will be regular and
irreducible.

By a result of Simon [8], “finite energy implies finite length” for the solu-
tion, which is now viewed as a gradient flow line for CSD on the cylindrical
end. It further implies “exponential decay” to a solution (B,Φ) of SW3 on
Y. See [8]. The exponent κ in this exponential decay is less than half the
minimum of the absolute value of the eigenvalues of the Hessian

Hess(CSD) =
( ∗d Dq|Ψ

0 /∂A

)
,

which is the linearization of the gradient flow at a critical point. Therefore,
κ has a bound which simply depends on the eigenvalues of ∆ and /∂A.

We also assume that ξ± converge to the same irreducible solution η on
Y. This is tantamount to considering (ξ+, ξ−) as a point in the fiber product
M∗(X+) ×U M∗(X−), defined as the pull-back of the diagram

M∗(X+) ×U M∗(X−) ��

��

M∗(X−)|U
∂−

��
M∗(X+)|U

∂+ �� U ⊂ Mirr(Y ),

where ∂± : M∗(X±) → Mirr(Y ) are the limiting maps for the flow lines, U
an arbitrary (smooth) neighborhood of η in Mirr(Y ) and M∗(X±)|U =
(∂±)−1(U). M’s may denote any variant of the Seiberg–Witten moduli
spaces, depending on the context.

We will later also need to assume a transversality condition at η.

While passing from X± to X±
� , we truncate ξ± to ξ±� as well. Then, we

glue X+
� and X−

� together to form X� and our goal is to “glue” ξ+
� and ξ−�

to construct a solution ξ� to SW on the glued-up manifold X�, for large �.
To this end, our first step would be to construct an approximate solution
ξ̃� = (Ã�, Ψ̃�) of SW on X�, using a partition of unity {λ, 1 − λ} which is
constant outside of C2L0 . Thus, we can define an “approximate gluing map”

γ̃ = γ̃� : S(X+, s+) × S(X−, s−) → C(X�, s�)
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by ξ̃� := γ̃�(ξ+, ξ−) = λξ+
� + (1 − λ)ξ−� .

Due to technical problems arising from the presence of an obstruction
space H2, we shall use weighted Sobolev norms to allow some small expo-
nential growth on forms and spinors. Let α be a C∞, compact supported
m-form on a cylindrical-end manifold Z, τ the time coordinate on Z, ∇ the
Levi–Cività connection and δ a real number. Define the L2

k,−δ-norm of α as

‖α‖k,−δ =


 k∑

j=0

∫
Z
e−δτ |∇jα|2




1/2

.

We will denote the L2
k,−δ-completion of the space of C∞, compact supported

m-forms on Z by Ωm
k,−δ(Z). Analogous terminology will also be used for

spinor fields, except that a hermitian connection on the spinor bundle must
be used instead of the Levi–Cività connection. On X�, we can define the
weighted norms similarly; τ� is to be used instead of τ. However, note that
Sobolev norms with different weights are equivalent on a closed manifold.

We have the following estimate.

Proposition 3.1. For any δ ≥ 0 and any � > 4L0,

‖SW(ξ̃�)‖1,−δ ≤ C̃e−(κ+ δ
2
)(�−2L0),

for some constant C̃ which is independent of � and L0.

Proof. SW(ξ̃�) is zero when λ is constant. So, we only need to estimate it
on C2L0 . Using the fact that SW(ξ+) and SW(ξ−) are both zero, we get

SW(ξ̃�) = (−d+(λa) − λ2q(ψ) −Dq(Ψ−, λψ),−∇(λ)ψ),

where a = A+−A− and ψ = Ψ+−Ψ− on C2L0 . An easy computation shows
that |q(ψ)| = 1

2 |ψ|2 and that |Dq(ψ,ψ′)| ≤ 2|ψ||ψ′|. Now, the fact that
the solutions decay exponentially fast with exponent κ gives the desired
estimate. �

Next, we deform ξ̃� to a solution of SW(ξ�) = 0. For this, as was pointed
out in Section 1, we will need a right inverse R for D1 in the following
diagram at the point ξ̃� = (Ã�, Ψ̃�).

0 −→ Ω0
3,−δ(X�; iR) D0−→ Ω1

2,−δ(X�; iR) ⊕ Γ2,−δ(S+)
D1−→ Ω2

+,1,−δ(X�; iR) ⊕ Γ1,−δ(S−) −→ 0
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This diagram is not even a complex, since /∂Ã�
(Ψ̃�) �= 0.

We will construct such an inverse using the chain homotopies that al-
ready exist between the complexes of each piece of our manifold and their
cohomologies. Let 0 < δ < κ/2 and consider the following diagram of two
copies of the complex E−δ(X±) at ξ±.

0 �� E0
−δ(X

±) D0
�� E1

−δ(X
±) D1

��

L±
������������

Π1
±

��

E2
−δ(X

±) ��

R±
������������

0

0 �� E0
−δ(X

±) D0
�� E1

−δ(X
±) D1

�� E2
−δ(X

±) �� 0,

where
E0
−δ(X

±) = Ω0
3,−δ(X

±; iR),
E1
−δ(X

±) = Ω1
2,−δ(X

±; iR) ⊕ Γ2,−δ(S+),
E2
−δ(X

±) = Ω2
+,1,−δ(X

±; iR) ⊕ Γ1,−δ(S−),

using weighted Sobolev completions. These are the complexes associated to
solutions ξ± of SW on X±. As ξ± are regular and irreducible, the complexes
above have no cohomology except possibly in degree one. Π1± is the pro-
jection onto this cohomology, represented by the harmonic ‘one-forms’, and
the parametrices L± and R± are constructed using Hodge theory, so that


L± ◦ D0 = I
D0 ◦ L± + R± ◦ D1 = I − Π1±
D1 ◦ R± = I.

Note that R± are right inverses for D1 on the respective pieces.
Now, recall that the solutions ξ±, considered now as gradient flow lines,

both converge to the same static solution η. Thus, similarly as above, con-
sider the corresponding complex Eδ(Xo) on the cylinder Xo = R× Y at the
constant solution (i.e. the pull-back of η to Xo), still denoted by η.

0 �� E0
δ (Xo) D0

�� E1
δ (Xo) D1

��

Lo

�����������
Π1

o

��

E2
δ (Xo) ��

Ro

�����������
Π2

o

��

0

0 �� E0
δ (Xo) D0

�� E1
δ (Xo) D1

�� E2
δ (Xo) �� 0,

where, similarly,

E0
δ (Xo) = Ω0

3,δ(X
o; iR),

E1
δ (Xo) = Ω1

2,δ(X
o; iR) ⊕ Γ2,δ(S+),

E2
δ (Xo) = Ω2

+,1,δ(X
o; iR) ⊕ Γ1,δ(S−),
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and, 


Lo ◦ D0 = I
D0 ◦ Lo + Ro ◦ D1 = I − Π1

o

D1 ◦ Ro = I − Π2
o.

Note here that Π2
o is an obstruction for Ro to be a right inverse to D1.

Once again, we will be using partitions of unity to splice these paramet-
rices and projections together. We will pick a partition {µ2

+, µ
2
o, µ

2−} on X�

such that each µ satisfies |∇nµ| ≤ ( 2
L0

)n. µ+ is supported on X+
� and is con-

stant outside X[−2L0,−L0]. (See Figure 3.) Symmetrically, µ− is supported
on X−

� and is constant outside X[L0,2L0]. µo is, therefore, supported on C2L0 .

1

0

µ+

X+
�

X−
�

0 L0 2L0−L0−2L0

Figure 3: Graph of µ+. That of µ− (not drawn) is the mirror image of µ+

on the right.

Now, we paste the parametrices R#’s, L#’s and the projections Π#’s on
the pieces, using this partition of unity, to produce R̃, L̃, Π̃1 and Π̃2. As we
will be more interested in R̃ and Π̃2, we will give their explicit definitions
below — of course, L̃ and Π̃1 are defined in a similar way. For ζ ∈ E2

−δ(X�),

R̃ζ = µ+R+(µ+ζ) + µoRo(µoζ) + µ−R−(µ−ζ),
Π̃2ζ = µoΠ2

o(µoζ).
(3.1)

These glued operators approximately serve as their counterparts on each
piece, in the sense of the following lemma. R̃ = R̃�(ξ+, ξ−) : E2

−δ(X�) →
E1
−δ(X�) is supposed to be our first approximation of a right inverse for

D1 : E1
−δ(X�) → E2

−δ(X�).
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Lemma 3.2. There is a constant K̃ such that




‖L̃ ◦ D0 − I‖ ≤ K̃
L0

‖D0 ◦ L̃ + R̃ ◦ D1 − I + Π̃1‖ ≤ K̃
L0

‖D1 ◦ R̃ − I + Π̃2‖ ≤ K̃
L0
.

Proof. We prove the last estimate; the others are proved similarly. Using the
fact that D1 ◦ R± = I and D1 ◦ Ro = I − Π2

o, we can write, using operator
commutators,

D1 ◦ R̃(ζ) = [D1, µ+]R+(µ+ζ) + [D1, µo]Ro(µoζ) + [D1, µ−]R−(µ−ζ)
+µ2

+ζ + µ2
oζ + µ2−ζ − µoΠ2

oµoζ

for ζ ∈ E2
−δ(X�). Therefore,

D1◦R̃(ζ)−ζ+Π̃2(ζ) = [D1, µ+]R+(µ+ζ)+[D1, µo]Ro(µoζ)+[D1, µ−]R−(µ−ζ).

Thus, to estimate ‖D1 ◦ R̃ − I + Π̃2‖, we should estimate the commutator
norms. Note that D1(fξ) = fD1(ξ)+df ∧̇ ξ, where f is a scalar function and
for a one-form ω on X�, ω ∧̇ (a, ψ) = ((ω ∧ a)+, ω . ψ), where in the second
component dot denotes Clifford multiplication. As a result, the commutator
[D1, µ#]R#(µ#ζ) is just dµ# ∧̇R#(µ#ζ) and, using |∇µ| ≤ 2

L0
, we obtain

‖[D1, µ#]R#(µ#ζ)‖ = ‖dµ# ∧̇R#(µ#ζ)‖
≤ K̃ ′

L0
‖R#(µ#ζ)‖

≤ K̃ ′
L0

‖R#‖.‖µ#ζ‖
≤ K̃ ′′

L0
‖R#‖.‖ζ‖,

where we have everywhere used the L2
1,−δ weighted Sobolev norm. The last

inequality is justified by the Sobolev embedding L2
3,0⊗L2

1,−δ ↪→ L2
1,−δ. Now,

take K̃ = K̃ ′′
L0

‖R#‖. �

Unfortunately, Π̃2 is not a projection; however, it gets closer to one as
L0 → ∞ and it has a right inverse.

Lemma 3.3. The operator Π̃2 satisfies ‖Π̃2 − Π̃2 ◦ Π̃2‖1,−δ ≤ K2e
−δL0 and

has a right-inverse, defined on Im(Π̃2), whose operator norm is at most K2.
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Proof. We are going to calculate Π̃2 ◦ Π̃2. For this, we first find an expres-
sion for Π2

o, which is the projection E2
δ (R × Y ) → H2

δ(R × Y ) onto the
harmonic forms. Let h1, · · · , hn be an orthonormal base for H1(E(Y )). Us-
ing our notation ∧̇ from the previous lemma, we construct an isometry
H1(E(Y )) �−→H2

δ(R× Y ) given by η �→ ce−δτo(dt ∧̇ η), where c is a constant
satisfying

(3.2) c2
∫ ∞

−∞
e−δτodt = 2.

(Recall that we identified spinors on Y with plus-spinors on the cylinder
R × Y. Clifford multiplication by dt is just an isometry between plus- and
minus-spinors on the cylinder.) Using this isomorphism, we can express

Π2
o(ζ) = c2

n∑
i=1

e−δτo(dt ∧̇ hi)
∫
R× Y

〈ζ, dt ∧̇ hi〉

for ζ ∈ E2
δ (R × Y ). Using the facts above, a calculation shows that

Π̃2 ◦ Π̃2ζ =
c2

2

(∫
R
µ2

oe
−δτo

)
Π̃2ζ.

Now, this formula, Equation 3.2 and the fact that µo = 1 on CL0 give the
desired estimate. Finally, the right inverse can be constructed as follows.
Choose a cut-off function β, depending only on t and supported in C1, such
that

∫
R β(t)dt = 2. Then, define the right-inverse F by F (ζ) = β

c2
eδτoζ.

Since µo = 1 on the support of β, it is easy to see that Π̃2(Fζ) = ζ for all
ζ. Clearly, ‖F‖ is independent of � and L0. �

As a result, for L0 large enough, Im(Π̃2) ∩ Ker(Π̃2) = 0 and we obtain a
decomposition E2

−δ(X�) = Im(Π̃2) ⊕ Ker(Π̃2). To see this, fix L0 to satisfy
K2

2e
−δL0 < 1

2 (or any other number less than one, for that matter). Then,
if z ∈ Im(Π̃2) ∩ Ker(Π̃2), then one can express z as z = Π̃2(Fz). Thus,

‖z‖ = ‖z − Π̃2z‖ = ‖Π̃2(Fz) − Π̃2(Π̃2(Fz))‖ ≤ K2e
−δL0‖(Fz)‖

≤ K2
2e

−δL0‖z‖ < 1
2
‖z‖,

which cannot happen unless z = 0.
By the way, the above argument also shows that if z ∈ Im(Π̃2), then ‖z −
Π̃2z‖ ≤ 1

2‖z‖. Therefore, for such a z, ‖z‖ ≤ 2‖Π̃2z‖. This will be used below
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in the proof of Lemma 3.4. Finally, the decomposition results from the fact
that Im(Π̃2) is finite-dimensional, being identified with Im(Π2

o) = H2
δ(R×Y ).

Define a projection Π2 : E2
−δ(X�) −→ E2

−δ(X�) onto Im(Π̃2) correspond-
ing to this decomposition. Thus, Im(Π2) = Im(Π̃2) and Ker(Π2) = Ker(Π̃2).

Lemma 3.4. ‖Π2 − Π̃2‖1,−δ ≤ K ′
2e

−δL0 .

Proof. Decompose ζ = z + z0, where z ∈ Im(Π̃2) and z0 ∈ Ker(Π̃2). Then,

Π2ζ − Π̃2ζ = z − Π̃2z = Π̃2(Fz) − Π̃2(Π̃2(Fz)).

Therefore, using Lemma 3.3,

‖Π2ζ − Π̃2ζ‖ ≤ K2e
−δL0‖Fz‖ ≤ K2

2e
−δL0‖z‖ ≤ K2

2K3e
−δL0‖ζ‖,

where in the last inequality, we have used the following remark (3.5). �

Remark 3.5. If ζ = z + z0 is a decomposition of ζ, where z ∈ Im(Π̃2) and
z0 ∈ Ker(Π̃2), then there is a constant K3 such that ‖z‖ + ‖z0‖ ≤ K3‖ζ‖.

Proof. This is a subsequence of the fact alluded to earlier. Namely, we have

‖z‖ ≤ 2‖Π̃2z‖ = 2‖Π̃2ζ‖ ≤ 2‖Π̃2‖.‖ζ‖,
‖z0‖ ≤ ‖ζ‖ + ‖z‖ ≤ (1 + 2‖Π̃2‖)‖ζ‖.

�

We will explicitly identify Im(Π̃2) = Im(Π2) with the Zariski tangent
space of M3(Y ) (at [η]), which is a finite-dimensional vector space.

Lemma 3.6. The linear map

ı : H1(E(Y )|η) −→ Im(Π2) ⊂ E2
−δ(X�)

given by
ı(η) = cµoe

−δ(τo−�/2)(dt ∧̇ η)
is an isomorphism. It approaches an isometry as L0 → ∞. More precisely,
we have the following estimate. For some constant Kı,

(1 −Kıe
−δL0/2) ≤ ‖ı‖ ≤ (1 +Kıe

−δL0/2).
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We will later re-scale ı to fit it into an “almost-commutative” diagram.
The last statement in the lemma will be used for estimating ‖ı‖ in ‖R2‖
(see Proposition 3.10).

Proof. This is a straightforward estimate. Only note that on C� ⊂ X�, we are
using τ�, while τo = �−τ� is used on Xo = R×Y. Comparing the two norms,
therefore, we have ‖η‖−δ = e−δ�/2‖η‖δ , where the first norm is measured on
X� and the second on Xo. We will also use the fact that µo = 1 on CL0 . �

Now, we head for constructing a right inverse for D1. This will be done
in three steps. In the next subsection, we will construct a right inverse
R1 for D1 on the finite-codimensional subspace Ker(Π2). In Section 3.4, we
construct a right inverse R2 for D1 on the transversal subspace Im(Π2).
There, we use a stronger assumption that the fiber product of the moduli
spaces of the cylindrical end manifolds is smooth in (a neighborhood of) the
point under consideration. This will be explained in more detail. Finally,
We show how to deform R1 + R2 to get a right inverse R for D1 on all of
E2
−δ(X�) = Im(Π2) ⊕ Ker(Π2).

3.3. Right-Inverting D1 on Finite-Codimensional Ker(Π2).

Recall that we glued the three operators R+, R− and Ro to obtain R̃. We
will be slightly modifying this operator to establish the existence of a right
inverse R1 for D1 on Ker(Π2). We extend R1 by 0 on the complementary
subspace Im(Π2).

Proposition 3.7. If L0 is chosen sufficiently large, there is a constant C1

such that the following holds. For all � > 4L0, there is an operator

R1 = R1(ξ+, ξ−, �) : E2
−δ(X�) → E1

−δ(X�),

such that

1. For all ζ ∈ Ker(Π2) ⊂ E2
−δ(X�),

(I − Π2)D1R1(ζ) = ζ.

2. For all ζ ∈ Im(Π2), we have

R1(ζ) = 0.
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3. The operator norm of R1 is bounded by C1, independent of � and L0.

4. Define N1 = N1(ξ+, ξ−, �) by setting N1 = Π2D1R1. Then, N2
1 = 0

and the norm of this operator satisfies

‖N1‖ ≤ C1

L0
.

5. Moreover, R1 is asymptotically close to R̃ :

‖R1 − R̃‖ ≤ C1

L0
.

Proof. We are going to estimate the norm of the following operator, restricted
to Ker(Π2),

(I − Π2)D1R̃ : Ker(Π2) → Ker(Π2).

Let ζ ∈ Ker(Π2) and decompose

(D1R̃ − I)(ζ) = (I − Π2)(D1R̃ζ − ζ) + Π2(D1R̃ζ),
where the terms on the right-hand side belong to Ker(Π2) and Im(Π2),
respectively. Thus, according to Remark 3.5, we have

‖(I − Π2)(D1R̃ζ − ζ)‖ ≤ K3‖(D1R̃ − I)(ζ)‖.
Now, in this norm comparison inequality, the element on the left side is
(I−Π2)D1R̃ζ−ζ and the one on the right is (D1R̃−I+Π̃2)(ζ), whose norm,
by Lemma 3.2, is bounded by K̃

L0
‖ζ‖. Thus, we obtain ‖(I−Π2)D1R̃ζ−ζ‖ ≤

K3K̃
L0

‖ζ‖ and

‖(I − Π2)D1R̃ − I‖ ≤ K3K̃

L0
.

Choose L0 such that K3K̃
L0

< 1
2 . Then, the operator introduced at the

beginning of the proof has an inverse of the form J1 = I + j1, where
j1 : Ker(Π2) → Ker(Π2) satisfies

‖j1‖ ≤ 2K3K̃

L0
.

Now, set R1 = R̃ ◦ J1 and extend R1 by zero on Im(Π2). The first three
items are now immediate. To prove the fourth, notice that we only need to
work on Ker(Π2), since R1 vanishes on Im(Π2). For ζ ∈ Ker(Π2), we have

N1ζ = Π2D1R1(ζ) = D1R1(ζ) − ζ = D1R̃J1ζ − J1ζ + j1ζ.



Gluing Seiberg–Witten Monopoles 715

The last term already satisfies the desired estimate. On Ker(Π2), we also
have

‖D1R̃J1 − J1‖ ≤ ‖D1R̃ − I + Π̃2‖.‖J1‖ ≤ K̃
L0

(1 + 2K3K̃
L0

)
≤ 2K̃

L0
,

which establishes the fourth estimate.
Finally, R1 − R̃ = R̃J1 − R̃ = R̃j1 has the desired decay. �

3.4. Right-Inverting D1 on Finite-Dimensional Im(Π2).

Consider the following diagram (D).

H1(E−δ(X+)|ξ+) ⊕H1(E−δ(X−)|ξ−) r ��



��

H1(E(Y )|η)
ρ

��

ı

��
E1
−δ(X�)

D1
�� E2

−δ(X�).

(D)

In this diagram,
r(ξ+, ξ−) = r+(ξ+) − r−(ξ−),

(ξ+, ξ−) = ν+ξ+ + ν−ξ−,

where ν+ and ν− are certain cut-off functions, to be defined below. First,
define

ν =
∫ 2L0

−2L0

e−δτo(s)µo(s)ds.

Then, for (t, y) ∈ R × Y,

ν−(t, y) =
1
ν

∫ t

−2L0

e−δτo(s)µo(s)ds,

ν+(t, y) =
1
ν

∫ 2L0

t
e−δτo(s)µo(s)ds.

We have ν+ + ν− = 1 and these cut-off functions are constant outside C2L0 .
We will show shortly (in Lemma 3.9) that  is a quasi-isometry. Also recall
that the embedding ı, whose image identified with Im(Π2), was defined in
Lemma 3.6 by

ı(η) = cµoe
−δ(τo−�/2)(dt ∧̇ η)
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and D1 : E1
−δ(X�) → E2

−δ(X�) is the differential of SW at ξ̃� = (Ã�, Ψ̃�) given
by the matrix

D1 =

(
d+ −Dq|Ψ̃�

.12 Ψ̃� /∂Ã�

)
.

ρ is a right inverse for r and is essential in our construction. Of course,
to ensure the existence of such a right inverse, we need the following

Transversality Assumption. The limiting maps ∂+ : M∗(X+) →
Mirr(Y ) and ∂− : M∗(X−) → Mirr(Y ) are transversal at ξ+ and ξ−,
where ∂+(ξ+) = ∂−(ξ−) = η. In other words, the fiber product M∗(X+)×U

M∗(X−) is smooth. Equivalently, the linear map

r : H1(E−δ(X+)|ξ+) ⊕H1(E−δ(X−)|ξ−) → H1(E(Y )|η)

r(ξ+, ξ−) = r+(ξ+) − r−(ξ−)

is onto. r+ and r− are the linearized versions of ∂+ and ∂−, respectively.
Unfortunately, the diagram (D) is not commutative; fortunately, it is

close to one, in the sense of the following lemma.

Lemma 3.8. In diagram (D), if L0 is chosen large enough, there is a con-
stant KD such that for all � ≥ 4L0 we have

‖(D1 ◦ ) − c�.(ı ◦ r)‖1,−δ ≤ KDe
−(κ+δ

2
)(�−2L0),

where c� = − 1
cν e

−δ�/2 is a re-scaling factor.

Proof. We start by computing D1 ◦ (ξ+, ξ−), where ξ± = (a±, ψ±). Note
that this is supported on C2L0 . A component-wise calculation shows

D1(ν+ξ+) = dν+ ∧̇ ξ+ + ν+D1ξ+

and the same equation holds for D1(ν−ξ−) with all the +’s and −’s reversed.
Now,

D1(ν+ξ+) = −1
ν e

−δτoµodt ∧̇ ξ+ + ν+D1ξ+
= −1

ν e
−δτoµodt ∧̇ r+(ξ+) + −1

ν e
−δτoµodt ∧̇ (ξ+ − r+(ξ+)) + ν+D1ξ+.

We also get a similar formula for D1(ν−ξ−), except for the sign of the first
two terms. Therefore,

(D1 ◦ )(ξ+, ξ−) = −1
ν e

−δτoµodt ∧̇ r(ξ+, ξ−)
+−1

ν e
−δτoµo

(
dt ∧̇ (ξ+ − r+(ξ+)) − dt ∧̇ (ξ− − r−(ξ−))

)
+ν+D1ξ+ + ν−D1ξ−,
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in which the first term on the right-hand side is just c�.(ı ◦ r)(ξ+, ξ−). Thus,
we have obtained(

(D1 ◦ ) − c�.(ı ◦ r)
)
(ξ+, ξ−)

=
−1
ν
e−δτoµo

(
dt ∧̇ (ξ+ − r+(ξ+)) − dt ∧̇ (ξ+ − r+(ξ+))

)
+ ν+D1ξ+ + ν−D1ξ−

Now, the result follows from the exponential decay of solutions on X±
�

‖ξ± − r+(ξ±)‖ ≤ e−
κ
2
(�−2L0)‖ξ±‖

and the fact that D1ξ± can be expressed in terms of the partition of unity
λ, the components of ξ±, ξ±, and their derivatives. �

Here is the analog of Lemma 3.6.

Lemma 3.9. The linear map

 : H1(E−δ(X+)|ξ+) ⊕H1(E−δ(X−)|ξ−) → E1
−δ(X�)

in diagram (D) defined by (ξ+, ξ−) = ν+ξ+ + ν−ξ− is a quasi-isometry,
satisfies

(1 −Ke
−δL0) ≤ ‖‖ ≤ (1 +Ke

−δl0)

and approaches an isometry as L0 → ∞. Here, ξ+ and ξ− are harmonic
representatives of the corresponding cohomologies.

Proof. Let us first define

1 : H1(E−δ(X+)|ξ+) ⊕H1(E−δ(X−)|ξ−) → E1
−δ(X�)

by 1(ξ+, ξ−) = µ+ξ+ + µ−ξ−. It is straightforward to see that 1 is an iso-
morphism onto Im(Π̃1) and satisfies 1−K1e

−δL0/2 ≤ ‖1‖ ≤ 1+K1e
−δL0/2.

Moreover, a calculation shows that there is a constant K such that for all
L0 � 0 and all � > 4L0, we have ‖ − 1‖ ≤ Ke

−δL0 . Thus, we get the
desired estimate on ‖‖. �

We are now in a position to state the main result of this section, which
is the counterpart of Proposition 3.7.
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Proposition 3.10. Suppose that the transversality assumption holds for
ξ+ and ξ−. Then, if L0 is chosen large enough, there is a constant C2 such
that the following holds. For all � > 4L0, there is an operator

R2 = R2(ξ+, ξ−, �) : E2
−δ(X�) → E1

−δ(X�),

such that

1. For all ζ ∈ Im(Π2) ⊂ E2
−δ(X�),

Π2D1R2(ζ) = ζ.

2. For all ζ ∈ Ker(Π2) we have

R2(ζ) = 0.

3. The operator norm of R2 satisfies

‖R2‖ ≤ C2e
δ�/2.

4. Define N2 = N2(ξ+, ξ−, �) by setting N2 = (I−Π2)D1R2. Then, N2
2 =

0 and the norm of this operator satisfies

‖N2‖ ≤ C2e
−(κ−δ)L0 .

Proof. First, using the almost-commutative diagram (D), define

R̃2 :=
1
c�

( ◦ ρ ◦ ı−1) : Im(ı) = Im(Π2) → Im().

Then, it is easy to see that ‖R̃2‖ ≤ C̃2e
δ�/2 for some constant C̃2 and that

‖Π2 ◦ D1 ◦ R̃2 − I‖ ≤ KDe
−(κ+δ

2
)(�−2L0)eδ�/2‖ρ‖.‖ı−1‖.

Thus, one can choose L0 sufficiently large so that for all � > 4L0, we have

‖Π2 ◦ D1 ◦ R̃2 − I‖ ≤ 1
2

and therefore, Π2 ◦ D1 ◦ R̃2 has an inverse J2 of norm at most 2. Setting
R2 = R̃2 ◦ J2 (and extending by zero to the complement of Im(Π2) in
E2
−δ(X�)) gives the desired right inverse. �

Notice that the proposition above implies that D1 ◦ R2 = I + N2 on
Im(Π2), where N2 is a nilpotent operator. Proposition 3.7 implied a similar
statement, that D1 ◦R1 = I+N1 on Ker(Π2), with a nilpotent N1. Both N1

and N2 depend on �, as well as on ξ+ and ξ−, since R1 and R2 do.
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3.5. Gluing Monopoles.

It is easy now to construct a full right inverse for D1. To begin with, set
R0 := R1 +R2. For a sufficiently large L0, both of the Propositions 3.7 and
3.10 hold and we have

D1 ◦ R0 = I +N1 +N2.

(To check this identity, verify it on elements of Ker(Π2) and Im(Π2).)
Since N2

1 = N2
2 = 0,

(I +N1 +N2)(I −N1 −N2) = I −N1N2 −N2N1

and I +N1 +N2 has an inverse J whenever 2‖N1‖.‖N2‖ < 1. Moreover,

‖J‖ ≤ 1 + ‖N1‖ + ‖N2‖
1 − 2‖N1‖.‖N2‖ .

But ‖N1‖.‖N2‖ is bounded by C1C2
L0

e−(κ−δ)L0 , which can be made arbitrarily
small by choosing L0 large enough, since we chose δ < κ. So, an inverse J
with ‖J‖ < 2 exists and we define R := R0 ◦ J. Then, R is a right inverse
for D1 and we have

Proposition 3.11. Suppose that the transversality assumption holds for
ξ+ and ξ−. Then, the operator D1 = D(SW) : E1

−δ(X�) → E2
−δ(X�) has a

right inverse
R = R�(ξ+, ξ−) : E2

−δ(X�) → E1
−δ(X�),

for each � > 4L0, L0 � 1, whose norm satisfies ‖R‖ ≤ Ceδ�/2. �

Remark. A review of the statements of this section shows that if U ⊂
M(Y ) is an open set whose closure contains no reducible points, then, in
each statement, we can replace κ by an exponent κ(U) which works for all
η ∈ U. This includes, in particular, Propositions 3.1, 3.7, 3.10 and 3.11.
Therefore, it makes sense to consider the derivatives of the operators in
question and estimate their norms. It is not hard to see that, in each case,
the derivatives decay (or grow) exponentially with the same exponent as the
operators themselves.

It is time to introduce our contraction mapping, whose fixed point would
be the correcting perturbation term for our approximately-glued monopole.
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Lemma 3.12. The following self-map F = F�(ξ+, ξ−) of the Hilbert space
E2
−δ(X�) is a contraction on a ball for � > 4L0, L0 � 1, and therefore, has

a unique fixed point ζ̂ = ζ̂�(ξ+, ξ−).

F : E2
−δ(X�) → E2

−δ(X�) = Ω2
+,1,−δ(X�; iR) ⊕ Γ1,−δ(S−)

F(ζ) = −SW(ξ̃�) + (q(ψ),−1
2
a.ψ),

where (a, ψ) = R(ζ) and

R : Ω2
+,1,−δ(X�; iR) ⊕ Γ1,−δ(S−) → Ω1

2,−δ(X�; iR) ⊕ Γ2,−δ(S+)

is a right inverse of D1 as constructed before.
Moreover, we have the following estimates on the norm of the fixed point
and its image.

‖ζ̂‖1,−δ ≤ C ′e−κ(�−2L0),

‖R(ζ̂)‖2,−δ ≤ C ′e−κ(�−2L0)eδL0 .

Furthermore, ζ̂ varies smoothly with ξ+ and ξ−, so that if ξ±(t) are smooth,
one-parameter families in C(X±) with the same irreducible limiting value,
then ζ̂(t) = ζ̂�(ξ+(t), ξ−(t)) is also a smooth one-parameter family and if ζ̂ ′

denotes d
dt ζ̂(t)|t=0, then we have

‖R(ζ̂)′‖2,−δ ≤ C ′e−κ(�−2L0)eδL0

(
‖(ξ+)′‖ + ‖(ξ−)′‖

)
.

Note. The fact that the norm of R(ζ̂)′ is exponentially decreasing despite
the possible exponential growth of the operator norm of R is due to the
quadratic nature of F(ζ) in ζ. This can be seen during the proof.

Proof. Let B(0, R) denote the ball of radius R around the origin in the
Hilbert Space E2

−δ(X�) = Ω2
+,1,−δ(X�; iR)⊕Γ1,−δ(S−). We are going to show

that there is a constant G such that for all � ≥ 4L0, the restriction F| :
B(0, Ge−2δ�) → B(0, Ge−2δ�) to the ball of radius Ge−2δ� is a 1

2 -contraction.
First, we consider the norm of F(0) = −SW(ξ̃�). By Proposition 3.1, there
is a constant C̃ such that

‖F(0)‖1,−δ = ‖SW(ξ̃�)‖1,−δ ≤ C̃e−(κ+ δ
2
)(�−2L0).

Now, let us estimate each of the components of

(3.3) F(ζ1) −F(ζ2) = (q(ψ1) − q(ψ2),−1
2
(a1.ψ1 − a2.ψ2)).
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For the first component, we have

q(ψ1) − q(ψ2) = �(ψ1 + ψ2, ψ1 − ψ2),

where � denotes the symmetric bilinear form associated to q and its point-
wise norm is bounded above by |�(ψ1 + ψ2, ψ1 − ψ2)| ≤ 2|ψ1 + ψ2||ψ1 − ψ2|.
Therefore,

‖q(ψ1) − q(ψ2)‖1,−δ ≤ 2 ‖ψ1 + ψ2‖L4
1,−δ

‖ψ1 − ψ2‖L4
1,−δ

≤ 2 e2
δ
4
�‖ψ1 + ψ2‖L4

1,−2δ
‖ψ1 − ψ2‖L4

1,−2δ

≤ c̃1e
δ�‖ψ1 + ψ2‖2,−δ‖ψ1 − ψ2‖2,−δ.(3.4)

For the second component, we similarly write

‖a1.ψ1 − a2.ψ2‖1,−δ = ‖a1(ψ1 − ψ2) + (a1 − a2)ψ2‖1,−δ

≤ ‖a1‖L4
1,−δ

‖ψ1 − ψ2‖L4
1,−δ

+ ‖ψ2‖L4
1,−δ

‖a1 − a2‖L4
1,−δ

≤ e2
δ
4
�
(‖a1‖L4

1,−2δ
‖ψ1 − ψ2‖L4

1,−2δ
+ ‖ψ2‖L4

1,−2δ
‖a1 − a2‖L4

1,−2δ

)
≤ c̃2e

δ�
(‖a1‖2,−δ‖ψ1 − ψ2‖2,−δ + ‖ψ2‖2,−δ‖a1 − a2‖2,−δ

)
.(3.5)

So, to finish the estimates on the components, we need estimates on the
L2

2,−δ-norms of ai and ψi, for i = 1, 2, as well as the differences a1 − a2 and
ψ1−ψ2. First, note that (ai, ψi) = R(ζi) for i = 1, 2, so that each of ‖ai‖2,−δ

and ‖ψi‖2,−δ is bounded above by

(3.6) ‖R(ζi)‖2,−δ ≤ Ceδ�/2‖ζi‖1,−δ.

Similarly, a1 − a2 and ψ1 −ψ2 are the two components of R(ζ1)−R(ζ2), so
that both of ‖a1 − a2‖2,−δ and ‖ψ1 − ψ2‖2,−δ are bounded above by

(3.7) ‖R(ζ1) −R(ζ2)‖2,−δ ≤ ‖DζR‖.‖ζ1 − ζ2‖1,−δ ≤ Ceδ�/2‖ζ1 − ζ2‖1,−δ.

These inequalities, in conjunction with estimates 3.4 and 3.5, show that for
ζ1, ζ2 in a ball B(0, R) of radius R, we have

‖q(ψ1) − q(ψ2)‖1,−δ ≤ 2c̃1C2Re2δ�‖ζ1 − ζ2‖1,−δ

‖a1.ψ1 − a2.ψ2‖1,−δ ≤ 2c̃2C2Re2δ�‖ζ1 − ζ2‖1,−δ.

Combining with Equation 3.3, we obtain

‖F(ζ1) −F(ζ2)‖1,−δ ≤ c̃Re2δ�‖ζ1 − ζ2‖1,−δ
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for some constant c̃ and F will be a 1
2 -contraction for R = 1

2c̃e
−2δ�.

Now, the unique fixed point of F can be obtained by finding the limit of
the iterations of any point in the ball. Therefore, the sequence of iterations
{F◦n(0)} converges to the fixed point ζ̂ and we have

(3.8) ‖ζ̂‖1,−δ ≤ 2‖F(0)‖1,−δ ≤ 2C̃e−(κ+ δ
2
)(�−2L0).

From here, the estimates claimed in the theorem on ‖ζ̂‖ and ‖R(ζ̂)‖ follow.
Finally, to estimate the norm of R(ζ̂)′ = R′(ζ̂)+R(ζ̂ ′), we need to estimate
‖ζ̂ ′‖1,−δ first. To avoid complicated notation, we will write ζ̂ for ζ̂(t)|t=0 and
ζ̂ ′ for d

dt ζ̂(t)|t=0. We will also consider the one-parameter family of operators
Ft = F(ξ+(t), ξ−(t)) and write F for F(0) and F ′ for the t-derivative of Ft

at t = 0. Similar notation was already used in the case of R and R′ at the
beginning of this paragraph.
By t-differentiating the fixed point equation Ft(ζ̂(t)) = ζ̂(t) at t = 0, we
obtain

DζF(ζ̂ ′) + F ′(ζ̂) = ζ̂ ′.

(To see this, write Ft = F + tF ′ + o(t2) and ζ̂(t) = ζ̂ + tζ̂ ′ + o(t2), then
substitute in the fixed point equation and find the coefficient of t. Note that
F is not a linear map, so the coefficient of t in F(tζ̂ ′) is DζF(ζ̂ ′).)
We can rewrite the last equation as (I − DζF)(ζ̂ ′) = F ′(ζ̂). Since F is a
contraction, ‖DζF‖ ≤ 1

2 , so I −DζF is invertible and ‖(I −DζF)−1‖ ≤ 2.
Therefore,

(3.9) ‖ζ̂ ′‖1,−δ ≤ 2‖F ′(ζ̂)‖1,−δ.

On the other hand, as in the preceding arguments, we find

‖F ′(ζ̂)‖1,−δ ≤ C ′eδ�‖R′(ζ̂)‖2,−δ‖R(ζ̂)‖2,−δ + ‖SW(ξ̃�)
′‖1,−δ.

We, moreover, have

‖R′(ζ̂)‖2,−δ‖R(ζ̂)‖2,−δ ≤ C ′eδ�
(
‖(ξ+)′‖ + ‖(ξ−)′‖

)
‖ζ̂‖2

1,−δ.

Combining the last two inequalities and using the estimate on ‖SW(ξ̃�)′‖1,−δ

(cf. Proposition 3.1) and the facts δ < κ and � > 4L0, we see that, for some
constant C ′,

‖F ′(ζ̂)‖1,−δ ≤ C ′e−(κ+δ/2)(�−2L0)
(
‖(ξ+)′‖ + ‖(ξ−)′‖

)
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and, using (3.9), we get, for some C ′,

(3.10) ‖ζ̂ ′‖1,−δ ≤ C ′e−(κ+δ/2)(�−2L0)
(
‖(ξ+)′‖ + ‖(ξ−)′‖

)
.

Now, using the equation R(ζ̂)′ = R′(ζ̂) +R(ζ̂ ′), the estimates on the norms
of ζ̂ and ζ̂ ′ (Equations 3.8 and 3.10) and the estimates on the operator norms
‖R‖ and ‖R′‖ (Proposition 3.11 and its following remark) gives the desired
estimate on ‖R(ζ̂)′‖2,−δ. �

We are now in the final stage of gluing. Recall that we started with a couple
of solutions ξ+ and ξ− on X+ and X−, respectively. They solved SW(ξ±) =
0. Then, we truncated and glued these solutions, using a partition of unity, to
obtain an approximate solution ξ̃�. Set ξ� = ξ̃� +R(ζ̂), where R : E2(X�) →
E1(X�) is the right inverse of D1 constructed before (Proposition 3.11) and
ζ̂ = (α̂, ŝ) ∈ E2(X�) = Ω2

+,1(X�; iR) ⊕ Γ1(S−) is the unique fixed point of F
of Proposition 3.12. As we have

SW(ξ + ξ) = SW(ξ) + D1(ξ) + (−q(ψ),
1
2
a.ψ),

where ξ = (a, ψ), we obtain SW(ξ̃� + R(ζ̂)) = 0, so ξ� is a solution of SW.
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