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The main purpose of this paper is to develop a connectedness prin-
ciple in the geometry of positive curvature. In the form, this is a
surprising analog of the classical connectedness principle in com-
plex algebraic geometry. The connectedness principle, when ap-
plied to totally geodesic immersions, provides not only a uniform
formulation for the classical Synge theorem, the Frankel theorem
and a recent theorem of Wilking for totally geodesic submanifolds,
but also new connectedness theorems for totally geodesic immer-
sions in the geometry of positive curvature. However, the connect-
edness principle may apply in certain cases which do not require
the existence of totally geodesic immersions.

0. Introduction.

In algebraic geometry, the connectedness principle is a theme that may
be stated as follows (cf. [14]): Given a suitably “positive” embedding of
manifold of codimension d, D ↪→ P , and a proper morphism, f : Nn → P ,

f−1(D) −−−−→ Nn

f

� �f

D −−−−→ P,

the homotopy groups should satisfy that πi(Nn, f−1(D)) ∼= πi(P,D) for
i ≤ n − d− “defect”, where the defect can be measured by the lack of
positivity of N in P , the singularities of N and the dimension of the fibers
of f . The most basic case is when P = P

m × P
m, the product of the

projective space, D = ∆, the diagonal submanifold P , and N is the product
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of subvarieties. In this case, the connectedness principle easily yields several
classical connectedness theorems; see [12] for details.

In this paper, we develop a surprisingly “similar” connectedness principle
in the geometry of positive (sectional or k-th Ricci) curvature (cf. [34, 31]),
where P

m is replaced by a closed manifold of positive curvature, and the
“subvarieties” and “morphism” are replaced by an embedded, or a minimal
immersed closed submanifold with large asymptotic index (see below). Note
that all manifolds considered in the paper are connected. The asymptotic
index of an immersion f : N → M is defined by νf = minx∈Nνf (x), where
νf (x) is the maximal dimension of a subspace of TxN on which the second
fundamental form vanishes (cf. p 188 of [8]). Clearly, f is a totally geodesic
immersion if and only if νf = dim(N). However, an isometric immersion
with non-degenerate second fundamental form may satisfy that νf > 0 (e.g.,
any minimal immersion satisfies that νf ≥ 1, and any isoparametric mini-
mal hypersurface with two distinct principle curvature has a non-degenerate
second fundamental form and νf ≥ 1

2 dim(N)).
The connectedness principle of positive curvature, when applied to to-

tally geodesic immersions, provides with not only a uniform formulation
for the classical Synge theorem, the Frankel theorem and a recent theorem
of Wilking for totally geodesic submanifolds, but also new connectedness
theorems for totally geodesic immersions.

Substantial applications of the connectedness principle have been ob-
tained in the classifications for the positively curved manifolds with large
isometry groups (cf. [6, 7, 33]). In all these works, the existence of ‘a to-
tally geodesic submanifold of small codimension’ is being proved and plays
a crucial role.

However, the connectedness principle may apply in a more general situa-
tion which may not guarantee the existence of a totally geodesic immersion.
This is important to note because the requirement of ‘a totally geodesic
submanifold of small codimension’ may be quite restrictive. The following
is a typical example of such an application (see Theorems 0.1–0.3).

A map from N to M is called (i + 1)-connected if it induces an isomor-
phism up to the i-th homotopy group and a surjective homomorphism on
the (i + 1)-th homotopy group.

The following result is a consequence of Theorems 0.5 and 0.8 (see below).

Theorem 0.1 (Connectedness – Isometric immersion). Let Mm be
a closed simply connected manifold of positive sectional curvature. If
f : Nn → Mm is an isometric immersion of a closed manifold with as-
ymptotic index νf , then f is (2νf − m + 1)-connected.
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Note that Theorem 0.1 is false if one removes the restriction on simply
connectedness (e.g. take N to be the universal Riemannian covering of M);
see Theorem 4.1 for the non-simply connected case.

For an isometric immersion, f : N → M , the asymptotic index may be
estimated in terms of the extrinsic curvature of f ([5, 8]). For any two plane
σ in Tx(N), x ∈ N , the extrinsic curvature of f is defined by

excurf (σ) = secN (σ) − secM (f∗(σ)) = 〈α(X,X), α(Y, Y )〉 − ‖α(X,Y )‖2,

where α is the second fundamental form and {X,Y } denotes any ortho-
normal basis for σ. If excurf (σ) ≤ 0 for all σ, then we say that f has
non-positive extrinsic curvature. A non-trivial simple example is the unit
normal bundle of the Veronesse surface in the unit sphere S4. Obviously,
a totally geodesic immersion has zero extrinsic curvature, but the converse
may not be true.

By [8] (see Theorems 4.2), from Theorem 0.1, we conclude:

Theorem 0.2 (Connectedness – Non-positive extrinsic curvature).
Let Mn+p be a closed simply connected manifold of positive sectional cur-
vature, and let f : Nn → Mn+p be an isometric immersion. If f has
non-positive extrinsic curvature, then f is (n − 3p + 1)-connected.

Note that Theorem 0.2 asserts the connectedness property from an as-
sumption solely on the sectional curvature. Moreover, Theorem 0.2 is false
if one replaces “positive” curvature by “non-negative curvature” (e.g. f is
the inclusion of Sn into Sn × S2 for n ≥ 7).

An interesting consequence of Theorem 0.2 is:

Theorem 0.3 (Rigidity – Non-positive extrinsic curvature). Let
Mn+p be a closed simply connected manifold of positive sectional curva-
ture, and let Nn → Mn+p be an isometric immersion with non-positive
extrinsic curvature. If n ≥ 7p − 2, then Nn is homeomorphic to a sphere if
and only if Mn+p is homeomorphic to a sphere.

Perhaps the first evidence for the analog of the connectedness principle in
the geometry of positive curvature goes back to a Synge type theorem ([9]) on
the intersection of closed totally geodesic submanifolds; whose counterpart
in algebraic geometry is the Bézout Theorem (see [12, page 17]). The latest
evidence, that really caught our attention, is a theorem of Wilking ([33],
comparable to Theorem 0.8), which may be considered as a counterpart of
the Barth–Lefschetz type theorem (cf. [29]).

We now begin to state the connectedness principle of positive curvature.
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Theorem A. (Connectedness principle of positive curvature) Let
Mm be a closed manifold of positive sectional curvature, and let ∆ denote
the diagonal submanifold of Mm × Mm. Let f : Nn → Mm × Mm be an
isometric immersion of a closed manifold with asymptotic index νf . Then,
the following statements hold:

(A1) If νf > m, then f−1(∆) is non-empty.

(A2) If νf > m+1 and Mm is simply connected, then f−1(∆) is connected.

If f is also a minimal immersion, then

(A3) For νf > m + i, there is an exact sequence of homotopy groups

πi(f−1(∆)) → πi(Nn) (p1f)∗−(p2f)∗−−−−−−−−−→ πi(Mm) → πi−1(f−1(∆)) → · · ·
where p1, p2 are the projections of Mm × Mm to the first and second
factors respectively.

Note that the strict inequality condition above may not be improved to
the weak inequality if f is a totally geodesic immersion. For instance, if
M2m admits a free isometric involution φ, then f : M2m → M2m × M2m

defined by f(x) = (x, φ(x)) is totally geodesic and satisfies f−1(∆) = ∅;
compare to (A1).

However, below, in the most interesting cases, Theorem A is sharpened
with all strict inequalities replaced by weak inequalities (see Theorem B).
Moreover, there is an additional property (see B4).

For a map f : Y → X, let Xf = X ∪f (Y × [0, 1]) denote the mapping
cylinder of f . We will use πi(X,Y ) to denote the relative homotopy group
πi(Xf , Y ), called the i-th homotopy group of f .

Theorem B. (Connectedness principle of positive curvature-
submanifolds) Let the assumptions be as in Theorem A. If, in addition,
Nn = N1 × N2 and f = (f1, f2) with asymptotic index νf , then

(B1) If νf ≥ m, then f−1(∆) is non-empty.

(B2) If νf ≥ m+1 and Mm is simply connected, then f−1(∆) is connected.

If f is either a minimal immersion or f = (f1, f1), where f1 is an
embedding, then

(B3) For νf ≥ m + i, there is an exact sequence

πi(f−1(∆)) → πi(Nn) (p1f)∗−(p2f)∗−−−−−−−−−→ πi(Mm) → πi−1(f−1(∆)) → · · ·
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(B4) There are natural isomorphisms

πi(N1, f
−1(∆)) → πi(Mm, N2), πi(N2, f

−1(∆)) → πi(Mm, N1)

for i ≤ νf−m and a surjection for i = νf−m+1, where πi(Nj , f
−1(∆))

is understood as the i-th homotopy group of the composition map
f−1(∆) ⊂ Nn pj−−−−→ Nj .

Some comments on Theorem B are in order.
First, (B1) is a strengthened version of the following Synge type theorem

for embedded totally geodesic submanifolds.

Theorem 0.4 (Generalized Frankel Theorem). Let Mm be a closed
manifold of positive sectional curvature, and let fi : Ni → Mm (i = 1, 2) be
an isometric immersion of a closed submanifold with asymptotic index νfi

.
If νf1 + νf2 ≥ m, then f1(N1) ∩ f2(N2) 
= ∅.

Secondly, (B2) implies a regularity result for isometric immersions; whose
counterpart in algebraic geometry is the Fulton–Hansen regularity theorem
([12]).

Theorem 0.5 (Regularity). Let Mm be a closed simply connected man-
ifold of positive sectional curvature. Let f : Nn → Mm be an isometric
immersion of a closed manifold. Then, f must be an embedding, provided
that the asymptotic index νf > m/2.

Note that the condition ‘νf > m/2’ is optimal for m = 2; on a three-
axial ellipsoids there are many closed geodesics that have self-intersections
(cf. [21, 24]). Moreover, Theorem 0.5 does not hold if Mm is not simply
connected (e.g. the composition of the inclusion with the regular covering f :
S3 → RP 3 ⊂ RP 5 is a totally geodesic immersion, but not an embedding.)

Another consequence of (B2) is:

Theorem 0.6. Let Mm be a closed simply connected manifold of positive
sectional curvature. Let fj : Nj → Mm be a closed isometric immersion with
asymptotic index νfj

, j = 1, 2. If νf1 + νf2 ≥ m + 1, then both f−1
1 (f2(N2))

and f−1
2 (f1(N1)) are connected.

Note that the requirement ‘νf1 + νf2 ≥ m + 1’ is optimal; there are two
totally geodesic embedded spheres S2n in S4n of constant curvature with
intersection set two points.
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Theorem 0.6 may be compared with a Bertini-type theorem which asserts
the same conclusion when one replaces M by P

m and N by an algebraic
subvariety ([12]).

Thirdly, (B3) (resp. (A3)) may be considered as the counterpart of a
connectedness theorem of Deligne, a generalization of a theorem of Fulton–
Hansen (cf. [18, page 27]).

Fourthly, (B4) may be considered as an analog of a connectedness theo-
rem of Fulton–Lazarsfeld [14] for local complete intersections. An immediate
consequence of (B4) is an analog of the Barth–Lefschetz type theorem in al-
gebraic geometry (cf. [2, 3, 22]):

Theorem 0.7. Let Mm be a closed manifold of positive sectional curvature,
and let Nj ↪→ Mm be a closed embedded submanifold of asymptotic index νj

(j = 1, 2). If either Nj (j = 1, 2) is minimal or N1 = N2, then the following
natural homomorphisms,

πi(N1, N1 ∩ N2) → πi(Mm, N2), πi(N2, N1 ∩ N2) → πi(Mm, N1),

are isomorphisms for i ≤ ν1+ν2−m and are surjections for i = ν1+ν2−m+1.

Theorem 0.7 implies the following generalized Wilking’s theorem (the
Wilking’s theorem asserts the connectedness properties for totally geodesic
submanifolds, [33]). As mentioned earlier, the Wilking’s theorem may be
considered as the counterpart of some Barth–Lefschetz type theorem (cf. [2,
29]).

Theorem 0.8 (Generalized Wilking Theorem). Let Mm be a closed
manifold of positive sectional curvature, and let Nj be a closed embedded
submanifold of asymptotic index νj , j = 1, 2. Then,

(0.8.1) the inclusion i2 : N2 ↪→ Mm is (2ν2 − m + 1)-connected.

(0.8.2) If N1 and N2 are both minimal, then N1 ∩N2 ↪→ N1 is (ν1 + ν2 −m)-
connected.

As mentioned earlier, Theorem 0.1 follows from Theorems 0.5 and 0.8.
Another case where (A1) is sharpened is indeed a reformulation of the

classical Synge theorem ([32]). This was pointed out to us by Karsten Grove.

Theorem 0.9 (Weinstein). Let M be a closed orientable even-
dimensional manifold of positive sectional curvature. For any orientation
preserving isometry φ, the totally geodesic embedding f : M → M × M by
f(x) = (x, φ(x)) satisfies f−1(∆) 
= ∅. In particular, M is simply connected.
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The connectedness principle also extends to closed manifolds of positive
k-th Ricci curvature conditions (cf. [34, 31]). Here, it is only in the form
found in Theorem B. For an m-manifold and 1 ≤ k ≤ m − 1, we say that
the kth Ricci curvature is positive if for any orthonormal (k + 1) vectors,
v1, . . . , vk+1, we have (R(· · · ) is the curvature tensor):

k+1∑
j=1

R(vi, v, v, vi) > 0, for all v spanned by v1, . . . , vk+1.

The 1-st Ricci is the sectional curvature and (m−1)-th Ricci is the Ricci
curvature.

The following connectedness principle can be viewed as a generalization
of Theorem B.

Theorem C. (Connectedness principle of positive k-th Ricci cur-
vature) Let Mm be a closed manifold of positive k-th Ricci curvature, and
let f = (f1, f2) : N1×N2 → Mm×Mm, where fj : Nj → Mm is an isometric
immersion of a closed manifold with asymptotic index νfj

, j = 1, 2. Then,
the following properties hold true (νf = νf1 + νf2):

(C1) If νf ≥ m + k − 1, then f−1(∆) is non-empty.

(C2) If νf ≥ m+k and Mm is simply connected, then f−1(∆) is connected.

If f is either a minimal immersion or f = (f1, f1), where f1 is an
embedding, then

(C3) For νf ≥ m + k + i − 1, there is an exact sequence

πi(f−1(∆)) → πi(N) (p1f)∗−(p2f)∗−−−−−−−−−→ πi(Mm) → πi−1(f−1(∆)) → · · ·

(C4) For i ≤ νf − m − k + 1, there are natural isomorphisms
πi(N1, f

−1(∆)) → πi(Mm, N2) and πi(N2, f
−1(∆)) → πi(Mm, N1),

and a surjection for i = ν − m − k + 2.

Note that from (C1)–(C4), one may conclude results similar to Theo-
rems 0.3–0.8 (see comments following Theorem B). Because this may be
done in a relatively straightforward manner, we omit it here.

In the case of positive Ricci curvature, following the proof of (C1), we
obtain

Corollary 0.10. Let M be a closed manifold of positive Ricci curvature.
If N is a closed embedded minimal hypersurface, then the inclusion map
induces a surjection on the fundamental groups.
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Note that Corollary 0.10 recovers the case of a theorem of Frankel (cf.
[10], see [27] for a generalization).

Some remarks on the above results are in order.

Remark 0.11. It may be worthwhile to emphasize that the consideration
of a closed isometric immersion with asymptotic index in Theorems A–C
(instead of a totally geodesic submanifold) is essential for new applications
of (B2) (e.g., Theorems 0.1–0.3 and 0.5). The motivation for an “immer-
sion” is from the uniform formulation of connectedness theorems in algebraic
geometry seen at the beginning of this paper ([12, 14]). As a by-product,
we obtain strengthened versions of some known connectedness theorems.

Remark 0.12. Theorems A–C may hold under some partially positive cur-
vature conditions (e.g. almost everywhere positive curvature). For instance,
Theorems 0.5 and 0.6 hold if M has positive sectional curvature outside N
or if M has positive sectional curvature at points in N .

Remark 0.13. Theorem B may be optimal in the sense that the weak in-
equality conditions cannot be improved in most general situations. How-
ever, with additional assumptions, the weak inequality conditions may be
improved. For instance, in Theorems 0.4–0.8, if one assumes in addition
that Mm admits an isometric compact Lie group G-action and Nn is fixed
pointwisely by G, then the dimension restriction may be improved (cf. [33]).

Remark 0.14. Let M = G/H be a compact type homogeneous space with
normal metric. Let r(G) denote the rank of the compact Lie group G. Then,
the kth Ricci curvature of G/H is positive for all k ≥ r(G)+1, showing that
Theorem C may be applied to immersions in homogeneous spaces.

Remark 0.15. The connectedness principle may be extended (with iden-
tical proofs) to Finsler manifolds whose flag curvatures are bounded from
below uniformly by a positive constant (cf. [1, page 221–223]).

We now give an indication for the proofs of Theorems A–C. First, we
apply the Morse theory to the energy function on the twisted path space
which is the pullback from the path space P (M) on M via an immersion
f : N → M × M , and estimate a lower bound for the indices of non-trivial
critical points, see Lemma 2.1. Then, we derive the desired connectedness
properties from the various lower bounds, see Theorem 1.1.

We would like to mention that in [15], Karsten Grove applied the Morse
theory to the energy function on the subspace of P (M) consisting of paths
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whose ends are in a closed submanifold of M and derived, under the as-
sumption that the energy function has no non-trivial critical point, an exact
sequence similar to (B3) (compare to Remark 0.11).

This paper was partially inspired by Theorem 0.8 for totally geodesic
submanifolds due to Wilking ([33]). Its origin stems from the recent works
of [6, 7] that used Theorem 0.8 for totally geodesic submanifolds. Since
[33] had not yet been available to us, we wrote a proof of Theorem 0.8 for
ourselves; that was the starting point of the present paper.

The rest of the paper is organized as follows:
In Section 1, we apply Morse theory to the twisted path space P (M,f).
In Section 2, we estimate the lower index bound for energy function on
P (M,f).
In Section 3, we prove Theorems A–C.
In Section 4, we prove Theorems 0.1–0.9.
In Section 5, we provide an application of the connectedness theorems.

1. Morse Theory on Path Spaces.

The Morse theory on path space P (M) with various boundary conditions has
been well-developed (cf. [25]). In this section, we will apply the Morse theory
to the twisted path space i.e. the pullback from P (M) via an isometric
immersion in M × M . We use the word ‘twisted’ to mean that it may not
be a subspace of P (M) (compare to [15]).

The main result of this section is Theorem 1.1 which concerns with rela-
tions between connectedness properties and various lower index bounds on
the non-trivial critical points of the energy function. Theorem 1.1 will be
used in the proof of Theorems A, B and C.

1.1. The path space P (M,f).

For a connected complete Riemannian manifold M , let P (M) denote the
space of piecewise smooth paths in M equipped with the metric topology
with the metric given by

d(γ0, γ1) =
(∫ 1

0
(|γ̇0(t)| − |γ̇1(t)|)2dt

) 1
2

+ max
0≤t≤1

dM (γ0(t), γ1(t)), γ0, γ1 ∈ P (M).

Note that the integral is well-defined even though γ̇i (i = 1, 2) may not be
defined on finitely many points in [0, 1]. The projection map, p : P (M) →
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M×M by p(γ) = (γ(0), γ(1)), defines the Serre fibration, Ω(M) → P (M) →
M × M , with fiber Ω(M), the loop space of M with a fixed base point.

Let N be a manifold, and let f : N → M × M be any smooth map.
Let Ω(M) → P (M,f) → N denote the pullback fibration by f . Clearly,
P (M,f) ⊂ N ×P (M) consists of (x, γ) such that f(x) = (γ(0), γ(1)) and is
equipped with the induced topology.

In the rest of this section, we assume that M and N are closed manifolds.

1.2. The Morse theory on P (M,f).

We will study P (M,f) via the Morse theory for the energy function
E(x, γ) = 1

2

∫ 1
0 |γ̇|2dt. From the standard first variation formula, one sees

that (cf. [15])

(1.1) Any critical point (x, γ) of E is a geodesic with (γ̇(0),−γ̇(1)) ⊥
f∗(Tx(N)).

Theorem 1.1. Let M and N be closed manifolds, and f : N → M ×M an
isometric immersion. Let ∆ ⊂ M × M be the diagonal. Assume that every
non-trivial critical point (x, γ) (i.e. γ is not a point) of E has index Iγ ≥ λ0.
Then

(1.2.1) If λ0 ≥ 1, then f−1(∆) 
= ∅.
(1.2.2) If λ0 ≥ 2 and M is simply connected, then f−1(∆) is connected.

If f is, in addition, either a minimal immersion or f = f1 × f1 : N =
N1 × N1 → M × M where f1 is an embedding, then

(1.2.3) πi(P (M,f), f−1(∆)) = 0 for all i < λ0.

(1.2.4) If λ0 ≥ i, then there is an exact sequence of homotopy groups,

πi(f−1(∆)) → πi(N) (p1f)∗−(p2f)∗−−−−−−−−−→ πi(M) → πi−1(f−1(∆)) → · · ·
where p1, p2 are the projections of M × M to the first and second
factors respectively.

Proof.

(1.2.1) If f−1(∆) = E−1(0) = ∅, then E has a positive absolute minimal value
at some non-trivial critical point (x, γ) and thus its index is zero; a
contradiction.
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(1.2.2) We use the standard technique of a finite dimensional approximation
by Morse (cf. [25, 29]). Because of this, we may omit some details.

For fixed c > 0, put Pc(M,f) = E−1([0, c)), an open subset of P (M,f).
Let Bc(M,f) ⊂ Pc(M,f) consist of piecewise smooth geodesics with k-
broken points (each piece with length less than the injectivity radius). Then,
Bc(M,f) has the same homotopy type as Pc(M,f) for k sufficiently large.
Note that Bc(M,f) may be identified with an open submanifold of product
N × M × · · · × M (with k copies of M). Moreover, E is a proper function
when restricted to Bc(M,f), and E|Bc(M,f) and E|Pc(M,f) have the same
critical points with identical indices (cf. [25, Sec. 14 and 16]).

Suppose that f−1(∆) is not connected. By definition, there exist disjoint
non-empty compact subsets A and B such that A ∪ B = f−1(∆). Identify
f−1(∆) with constant paths in P (M,f). Fix a point p ∈ A and q ∈ B.

Since M is simply connected, it follows that the loop space ΩM is path
connected. Therefore, P (M,f) is also path connected. Thus, there is a
path γ0 in P (M,f) joining p and q. By the above, we may assume a path
γ̄0 ∈ Bc0(M,f) joining p and q for some constant c0 > 0.

For the sake of simplicity, let X = Bc0(M,f) with the induced metric
from the product N×M×· · ·×M and let g = E|Bc0 (M,f). Note that f−1(∆)
may be naturally identified with g−1(0). We claim that there is a sequence
of connected paths γ̄k : [0, 1] → g−1[0, 1/k] (k ≥ 1) in X such that γ̄k(0) = p
and γ̄k(1) = q in the homotopy class of [γ̄0] (keeping ends fixed).

We now prove (1.2.2) assuming this claim.
Note that the distance dX(A,B) > 0. Consider the function µ : X → R

defined by µ(x) = dX(x,A) − dX(x,B). Note that the restriction of µ on
γ̄k satisfies that µ(p) < 0 and µ(q) > 0. Therefore, there is a point xk ∈ γ̄k

so that µ(xk) = 0. By passing to a subsequence, we may assume that xk

converges to a point x. Note that g(xk) converges to zero. Thus, we have x ∈
g−1(0) and µ(x) = 0. This is clearly a contradiction, since A ∩ B is empty.

By [25], Corollary 6.8 and the assumption λ0 ≥ 2, we may choose a
Morse function h on X such that |g − h| < 1

10k on the compact sublevel set
X≤c0+

1
2 = {x ∈ X : h(x) ≤ c0 + 1

2} so that all critical points of h in the
set h−1([ 1

2k , c0 + 1
2 ]) have Morse indices greater than 1. By Morse theory,

we know that h−1(−∞, c0 + 1
2 ] is homotopy equivalent to h−1(−∞, 1

2k ] by
gluing cells of dimensions at least 2. Therefore, the relative homotopy group
π1(h−1(−∞, c0 + 1

2 ], h−1(−∞, 1
2k ]) = 0. This implies that γ̄0 is homotopic to

a path γ̄k in h−1(−∞, 1
2k ] with the same end points p, q fixed. This proves

(1.2.2).
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(1.2.3) By Morse theory (cf. [25, 29]), it suffices to show that E−1(0) =
f−1(∆) ⊂ Bc(M,f) has an open neighborhood U ⊂ Bc(M,f) that
deformation retracts to f−1(∆). Observe that, under the identification
of Bc(M,f) with N×M×· · ·×M with k even, f−1(∆) is identified with
a subset S = {(x, f(x), · · · , f(x)) ∈ N ×(M ×M)×· · ·×(M ×M)|x ∈
f−1(∆)}. So, the existence of such a neighborhood U follows from
Proposition 1.2 below.

(1.2.4) Note that πi(ΩM) ∼= πi+1(M). Since Ω(M) → P (M,f) → N is the
pullback of Ω(M) → P (M) → M × M via f : N → M × M , there is
a commutative diagram of homotopy exact sequences

· · · → πi(P (M, f)) −−−−→ πi(N)
φ−−−−→ πi(M) −−−−→ πi−1(P (M, f))→ · · ·

f̃∗

� f∗

� =

� f̃∗

�
· · · → πi(P (M))

p∗−−−−→ πi(M × M) ∂∗−−−−→ πi(M) −−−−→ πi−1(P (M)) → · · ·
Since P (M) is homotopic to M , it is easy to see that p : P (M) → M × M
is homotopic to the diagonal map. If pi is the projection of M × M to the
i-th factor, then ∂∗ = (p1)∗ − (p2)∗. By the above diagram, we get the
homomorphism φ = (p1f)∗ − (p2f)∗ (compare to [15]). �

Let X be a complete manifold, and let f : N → X × X be an isometric
immersion, where N is a closed manifold. Consider the subset

S = {(x, f(x), · · · , f(x)) ∈ N × (X × X) × · · · × (X × X)|x ∈ f−1(∆)}.

Proposition 1.2. Let X be a complete manifold, and let f : N → X × X
be an isometric immersion as above. Then, the subset S in N × (X ×X)×
· · · × (X ×X) is a deformation retraction of an open neighborhood U if one
of following conditions holds:

(1.3.1) f is minimal;

(1.3.2) N = N1 × N1 and f = f1 × f1, where f1 is an embedding;

(1.3.3) f is totally geodesic.

Proof. If f is minimal, then f is harmonic and therefore, real analytic with
respect to any harmonic coordinates in N and X × X (cf. [21]). Therefore,
the set S considered is a real analytic variety. By [23], any compact real
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analytic variety is triangulable, as a subcomplex of the real analytic manifold
N × (X ×X)× · · · × (X ×X). Therefore, an open regular neighborhood of
this subcomplex is a desired open neighborhood U .

In cases (1.3.2) and (1.3.3), we claim that S is a closed manifold. We
then take U , a smooth open tubular neighborhood of S, in N×(X×X) · · ·×
(X×X). In case (1.3.2), S is clearly diffeomorphic to N . Note that (1.3.3) is
a special case of (1.3.1), but we prefer to give a more geometric proof. First,
note that S is diffeomorphic to f−1(∆). For any smooth open disk D ⊂ N
such that f(D) is embedded in X×X, the intersection f(D)∩∆ is a totally
geodesic submanifold, since locally it is given by the image expp(Tpf(D) ∩
Tp∆), where expp is the exponential map at p ∈ f(D) ∩ ∆, and Tpf(D),
Tp∆ the tangent spaces at p. Observe that f : f−1(∆) ∩ D → ∆ ∩ f(D) is
a diffeomorphism, proving that f−1(∆) is a manifold. �

2. Positive Curvature and Indices Estimates.

As in Section 1, consider the energy function E on P (M,f). Note that
the tangent space of P (M ; f) at point (x, γ) consists of (v,W ) where v ∈
TxN and W is a piecewise smooth vector field along γ such that f∗(v) =
(W (0),W (1)). Since f is an immersion, the tangent space can be identified
as the space of vectors (W (0),W (1)). If W is a parallel vector field along γ,
then by the standard second variation formula, it follows that the Hessian
of E satisfies:

E∗∗(W,W ) =
∫ 1

0
−〈R(γ̇,W )W, γ̇〉 dt + 〈α(f∗(v), f∗(v)), (−γ̇(0), γ̇(1))〉,

where α(−,−) is the second fundamental form of f .
By definition, the index of E at (x, γ) is the maximal dimension of a

subspace on which E∗∗ is negative definite. Recall that the asymptotic
index νf (x) is the maximal dimension of a subspace of TxN on which the
second fundamental form α vanishes.

Lemma 2.1. Let M be a complete m-manifold of positive k-th Ricci curva-
ture, and let f : N → M ×M be a complete immersion with asymptotic in-
dex νf . Let (x, γ) be any non-trivial critical point of E, with Morse index Iγ .

(2.1.1) Iγ ≥ νf − m − k + 1.

(2.1.2) If f = (f1, f2) : N = N1 × N2 → M × M such that each fj : Nj → M
is an immersion, then Iγ ≥ νf − m − k + 2.
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Proof. (2.1.1) Let V1 denote the set of parallel vector fields along and or-
thogonal to γ. Then, dim V1 = m − 1. Clearly, V1 can be identified with
{(v(0), v(1)), v ∈ V1}. We now consider a symmetric quadratic form on V1

defined by

〈A(v), v〉 =
∫ 1

0
−〈R(γ̇,W )W, γ̇〉 dt,

where v = (W (0),W (1)) and 〈·, ·〉 is the metric induced from Tf(x)(M ×M).
Let V be some linear subspace of V1 with maximal dimension such that

the quadratic form is negative definite on V . Regard V as a subspace of
Tf(x)(M × M) with f(x) = (γ(0), γ(1)). Let Nx ⊂ TxN denote the max-
imal subspace of TxN such that the restriction of the second fundamental
form α|Nx = 0. Since both V and f∗(Nx) are normal to (γ̇(0),−γ̇(1)), the
intersection f∗(Nx) ∩ V has dimension

dim(f∗(Nx) ∩ V ) ≥ νf + dim V − 2m + 1

Note that,

(2.1) E∗∗(W,W ) = 〈A(v), v〉 < 0

for any non-zero v ∈ f∗(Nx) ∩ V . We complete the proof by showing that
dim V ≥ m − k.

Take an orthonormal basis for V1 which are eigen vectors of A,
v1, . . . , vm−1. By the curvature assumption,

k∑
i=1

〈A(vi), vi〉 =
k∑

i=1

∫ 1

0
[−〈R(γ̇, vi)vi, γ̇〉] dt

= −
∫ 1

0

(
k∑

i=1

〈R(γ̇, vi)vi, γ̇〉
)

dt < 0.

This implies that for some i, 〈A(vi), vi〉 < 0. Without loss of generality, we
can assume i = 1. Similarly, from

k+1∑
i=2

〈A(vi), vi〉 = −
∫ 1

0

(
k+1∑
k=2

〈R(γ̇, vi)vi, γ̇〉
)

dt < 0

we pick up, say v2, such that 〈A(v2), v2〉 < 0. We repeat this operation until
we pick up (after a suitable rearrangement of subindices) v1, . . . , vm−k, with
〈A(vi), vi〉 < 0, 1 ≤ i ≤ m− k. Then, 〈A(v), v〉 < 0 for all v in the subspace
spanned by v1, . . . , vm−k and thus, the desired result follows.
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(2.1.2) Note that γ is a geodesic in M such that γ̇(0) ⊥ (f1)∗(Tx1N1) and
γ̇(1) ⊥ (f2)∗(Tx2N2), where x = (x1, x2). Since both (γ̇(0), 0) and (0, γ̇(1))
are normal to f∗(TxN) and V , the intersection f∗(TxN) ∩ V has dimen-
sion,

dim(f∗(TxN) ∩ V ) ≥ νf − m − k + 2

and thus, we obtain the desired result. �

Remark 2.2. Let f1 : N1 → M be a minimal immersed hypersurface.
Assume that M has positive Ricci curvature. Let f = (f1, f1) : N = N1 ×
N1 → M × M . Consider a non-trivial critical point for the energy function
(x, y, γ), with x, y ∈ N1, and γ being a geodesic joining x and y, with
γ̇(0) ⊥ f1∗(TxN1) and γ̇(1) ⊥ f1∗(TyN1). Given a parallel orthonormal
frame v1, · · · , vn1−1 along γ with vi ⊥ γ̇, the sum of the second variation
formulas gives us (α is the second fundamental form)

∑
i

E∗∗(vi, vi) =−
∫ 1

0
Ric(γ̇) dt +

〈∑
i

α(vi, vi), γ̇

〉
(1)−

〈∑
i

α(vi, vi), γ̇

〉
(0)

= −
∫ 1

0
Ric(γ̇) dt < 0.

Since N1 is a hypersurface, vi(1) and vi(0) are tangent to N1 for all i. Like
above, we find that in this case, that the index of γ is at least one.

3. Proofs of Theorems A, B, C.

Proof of Theorem A. (A1)–(A3) follow from (1.2.1)–(1.2.4), (2.1.1) for
k = 1. �

Proof of Theorem B. (B1)–(B3) follows from (1.2.1)–(1.2.4), (2.1.2) for
k = 1.

One may derive (B4) from (B3). Here, we will present a direct approach.

Let p1 : P (M,f) → N1 × N2 → N1 denote the composition of the two
projections. Note that p1 is a fibration with fiber V , the pullback fibration
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fitting into the commutative diagram below

ΩM = ΩM� �
V −−−−→ P (M, ∗)

p2

� π

�
N2

f2−−−−→ M

where the right-side is the principal path fibration. Since P (M, ∗) is con-
tractible, from the above diagram V is the homotopy fiber of the map
f2 : N2 → M . By the fibration homotopy exact sequence, it follows that

πi(V ) ≈ πi+1(M,N2)

for all i. This, together with the homotopy exact sequence for the fibration
V → P (M,f)

p1→ N1 and the long exact sequence for the map i1 : f−1(∆) →
N1 give the commutative diagram:

πi+1(N1)→πi+1(N1, f
−1(∆))→ πi(f−1(∆))→πi(N1)→πi(N1, f

−1(∆))

=

� (f1)∗
� surj

� =

� (f1)∗
�

πi+1(N1)→ πi+1(M,N2) →πi(P (M,f))→πi(N1)→ πi(M,N2)

The middle homomorphism is surjective for i ≤ νf−m, since by Theorem 1.1
and Lemma 2.1, we obtain πi(P (M,f), f−1(∆)) = 0. From the 5-lemma and
the commutative diagram above, we have

(f1)∗ : πi(N1, f
−1(∆)) → πi(M,N2)

is an isomorphism for all i ≤ νf − m and a surjection for i = νf − m + 1.
This proves the desired result. �

Proof of Theorem C.
(C1)–(C3) follow from Theorem 1.1 and Lemma 2.1, and (C4) follows

from the proof of (B4). �
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4. Proofs of Theorems 0.1–0.9.

Proof of Theorem 0.5.
Since f : N → M is an immersion, we will show that f is a one-to-one

map. Note that f−1(∆) = {(x, x), x ∈ N} ∪ {(x, y) : f(x) = f(y), x 
= y}.
Hence, if f is not injective, then f−1(∆) is not connected; a contradiction
to (B2). �

Proof of Theorem 0.6.
Consider the immersion (f1, f2) : N1 × N2 → M × M . By (B2),

(f1, f2)−1(∆) is connected and thus f−1
1 (f2(N2)) = p1((f1, f2)−1(∆)) and

f−1
2 (f1(N1)) = p2((f1, f2)−1(∆)) are connected. �

Proof of Theorem 0.7.
In (B4), consider f1 = i1 : N1 ⊂ M and f2 = i2 : N2 ⊂ M . It is clear

that f−1(∆) = N1 ∩ N2 and then, the desired result follows. �

Proof of Theorem 0.8.
If N2 is minimal, then we apply Theorem 0.7 to N2, N2. Note that

πi(N2, N2) = 0 for all i.
By Theorem 0.7 and (0.8.1), we arrive at (0.8.2). �

Proof of Theorem 0.1.
Since Theorem 0.1 is trivial for 2νf − m + 1 = 0 and 1, we may assume

that 2νf − m + 1 > 1 i.e. 2νf > m. By Theorem 0.5, f is an embedding,
allowing us to apply Theorem 0.8 to complete the proof. �

The following is a generalization of Theorem 0.1, where the assumption
on the simply connectedness of Mm is dropped.

Theorem 4.1. Let Mm be a closed manifold of positive sectional curvature,
and let f : Nn → Mm be an isometric immersion of a closed manifold with
asymptotic index νf .

(4.1.1) f∗ : πq(Nn) → πq(Mm) is an isomorphism (resp. a surjection) for
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q = 0, 2, . . . , (2νf − m) (resp. 2νf − m + 1).

(4.1.2) If 2νf > m, then f∗ : π1(Nn) → π1(Mm) is an injection.

Proof. (4.1.1) Let πM : M̃m → Mm denote the Riemannian universal
covering map, and let π̂ : N̂n → N denote the pullback covering map
by f . Then, N̂n is a finite covering space over Nn. Consider the iso-
metric immersion: f̂ : N̂n → M̃m, where f̂ : N̂n → M̃m be lifting of
f : Nn → Mm. Since Ñn is closed, we may apply Theorem 0.1 to conclude
that f̂ is (2νf − m + 1)-connected. The proof is then complete by observ-
ing that (π̂)∗ : πq(N̂n) → πq(Nn) (resp. (πM )∗ : πq(M̃m) → πq(Mm)) are
isomorphisms for q 
= 1.

(4.1.2) By Theorem 0.5, f̂ : N̂n → M̃m is an embedding. Hence, we may
apply Theorem 0.8 to conclude that N̂n is simply connected and thus the
desired result. �

In the proof of Theorem 0.2, we use the following theorem ([8] Prop. 6,
compare [5]):

Theorem 4.2 ([8]). Let f : Nn → Mn+p be an isometric immersion of a
closed manifold with non-positive extrinsic curvature. Then, the asymptotic
index νf ≥ n − p.

Proof of Theorem 0.2.
By Theorem 4.2, the asymptotic index νf ≥ n − p. By Theorem 0.1, f

is [2(n − p) − (n + p) + 1] = (n − 3p + 1)-connected. �

Proof of Theorem 0.3.
We first consider the non-positive extrinsic curvature case. By Theorem

0.2, f is (n − 3p + 1)-connected. Since n ≥ 7p − 2, n − 3p + 1 ≥ n+p
2 . By

the Poincaré duality and Hurewicz theorem, it is easy to see that Nn is a
homotopy sphere if and only if Mn+p is a homotopy sphere. The desired
result follows since by Smale ([30]) a homotopy sphere of dimension at least
5 is homeomorphic to a sphere. �
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Proof of Theorem 0.9.
If f−1(∆) = ∅, then I(x, γ) = 0, where (x, γ) is a critical point at which

E achieves the absolute minimal value. Let V1 be as in the proof of (2.1.1).
Then, the standard Synge type argument implies that V1 ∩ f∗(Tx(M)) 
= 0,
making I(x, γ) ≥ 1; which is not possible. �

Proof of Corollary 0.10.
Set N1 = N2 = N , and let i : N → M be the inclusion. Set f =

i × i : N × N → M × M . Since f−1(∆) = ∆N and p1 : ∆N → N is a
diffeomorphism, we have π1(N, f−1(∆)) = 0. By Remark 2.2, the index of
each critical point is at least 1. Thus, the same proof as Theorem B leads
to the conclusion that

π1(N, f−1(∆)) → π1(M,N)

is surjective. This proves that π1(M,N) = 0. The desired result follows. �

5. Positively Curved Manifolds With Maximal p-Symmetry
Rank.

The symmetry rank of a Riemannian manifold M is defined as the rank
of a maximal torus of the isometry group Isom(M). For any prime p, the
p-symmetry rank of M is the maximal rank of elementary p-subgroups of
Isom(M).

Recently, the classification of positively curved manifolds with large sym-
metry rank has received a lot of attention (cf. [16, 17, 19, 27, 7, 33]). It
seems that in these works, the connectedness theorems for totally geodesic
submanifolds plays an important role.

The classification of positively curved manifolds with large p-symmetry
rank was considered in [6] and the connectedness theorems, among others,
were applied to obtain the homeomorphic classification in even-dimensions
for p greater than a constant depending only on the dimension.

The purpose of this section is to partially extend, using the connectedness
theorems, the above classification result of [6] to one that includes all primes.

Theorem 5.1 (Maximal p-rank). Let Mm be a closed simply connected
manifold of positive sectional curvature. Assume that Mm admits an effec-
tive isometric Z

k
p-action with a non-empty fixed point set.

(5.1.1) If p = 2, then k ≤ m and “=” implies that Mm is homeomorphic to a
sphere.
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(5.1.2) If p > 2, then k ≤ m/2 and ‘=’ implies that Mm is homeomorphic to
a sphere or a complex projective space.

Note that (5.1.1) provides a partial solution to a problem of Petersen’s
(p. 108, [26]): Is a topological m-sphere the only positively curved manifold
which admits an isometric Z

m
2 -action?

Theorem 5.1 may apply in the following situations.

Theorem 5.2. Let M2n be a closed simply connected manifold of positive
sectional curvature. Assume that Mn admits an effective isometric Z

k
p-

action. Then, the fixed point set is not empty under any of the following
conditions:

(5.2.1) The Euler characteristic χ(M2n) 
= 0 mod (p).

(5.2.2) p ≥ p(n), where p(n) is a constant depending only on m.

Note that (5.2.2) and (5.1.2) imply the maximal p-rank theorem of [6].
The proof of (5.1.1) requires the following.

Theorem 5.3 (Totally geodesic hypersurface rigidity). Let M be a
closed manifold of positive sectional curvature. If M has a closed totally
geodesic hypersurface, then either M (resp. N) or its double covering is
homeomorphic to a sphere simultaneously.

The natural isometric embedding of RPn ↪→ RPn+1 shows that Theorem
5.3 is optimal. Note that Theorem 5.3 was obtained by [34] for the following
case: M is simply connected and N is orientable. One can easily extend it
to Theorem 5.3 via using Synge theorem and Theorem 0.8.

Proof of Theorem 5.3. If n is even, then dim(N) is odd and thus, N is ori-
entable (Synge theorem). By [34], we may assume that M is not orientable,
and thus π1(M) ∼= Z2. Let M̃ denote the double covering of M , and let Ñ
denote the inverse image of N in M̃ . Because the inclusion N ↪→ M is at
least 2-connected (Theorem 0.8), Ñ → N is a double covering. By [34], we
conclude that both M̃ and Ñ are homeomorphic to spheres.

If n is odd, then M̃ is orientable. Because dim(N) is even, either N
is orientable and thus M is simply connected (Theorem 0.8), or π1(N) ∼=
π1(M) ∼= Z2. As in the above, we conclude that a double covering of M and
a double covering space of N are homeomorphic to spheres. �
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Proof of Theorem 5.1.
Consider the orthogonal representation of Z

k
p in O(m) at any fixed point.

Then, k ≤ m for p = 2 and k ≤ m/2 for p > 2.
Case 1. Assume that p = 2. From the orthogonal representation, it is

easy to see that there is a Z2 subgroup whose fixed point component has
codimension one. This implies a closed totally geodesic hypersurface. By
now, the desired result follows from Theorem 5.3.

Case 2. If assuming Proposition 1.3 in [6], then the proof below is almost
identical to that of the maximal p-rank Theorem in [6]. Hence, we will only
give an outline of the proof; see [6] for details.

a. Assume that m = 2n. From the isotropy representation at a fixed
point, we conclude that a sequence of closed totally geodesic submanifolds

M4 ⊂ M6 ⊂ · · · ⊂ M2n = Mm

where M2i is a fixed point component of a Zp-rank (n − i) subgroup in Z
n
p .

By (0.8.1) M2i → M2i+2 is (2i − 1)-connected. Therefore, all M2i (i ≥ 2)
are simply connected.

As shown in [6], Mm is homeomorphic to a sphere or a complex projective
space if M4 is homeomorphic to S4 or CP 2; the proof of the later in [6]
requires that p ≥ p(4). Since we allow all prime p to exist, we give the
following proof.

By the isotropy representation, it is easy to see that there is another
4-manifold M4

1 ⊂ M6 fixed by some Zp-subgroup of Z
n
p with intersection

M4
1 ∩ M4 = M2. By (0.8.2), it follows that i : M2 = M4

1 ∩ M4 → M4 is a
2-equivalence. Thus, M2 is simply connected and so M2 = S2. This implies
that M4 is simply connected and the second Betti number b2(M4) ≤ 1. By
[11], M4 is either homeomorphic to S4 or CP 2.

b. Assume that m = 2n+1. From the isotropy representation at a fixed
point, we conclude that a sequence of closed totally geodesic submanifolds

M3 ⊂ M5 ⊂ · · · ⊂ M2n+1 = Mm

where M2i+1 is a fixed point component of a Zp-rank (n − i) subgroup in
Z

n
p . By (0.8.1), M2i−1 → M2i+1 is (2i− 1)-connected. Therefore, all M2i+1

(i ≥ 2) are simply connected. By Hamilton ([19]), M3 is homeomorphic to
a sphere. Like the above, by (0.8.1), we then conclude that Mm is homeo-
morphic to a sphere. �
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Proof of Theorem 5.2.
Recall that the Euler characteristic χ(M) = χ(MZ

k
p) mod (p) ([4]). This

implies that the fixed point set MZ
k
p 
= ∅. The proof of (5.2.2) may be found

in [6]. �
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