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Foliations by constant mean curvature tubes

Rafe Mazzeo1 and Frank Pacard

1. Introduction.

Constant mean curvature hypersurfaces constitute a very important class of
submanifolds in a compact Riemannian manifold (Mn+1, g). In this paper,
we are interested in families of such submanifolds, with mean curvature
varying from one member of the family to another, which form (partial)
foliations and which ‘condense’ to a submanifold Γ ⊂ M of codimension
greater than 1. Our main results concern the existence of such families
and, conversely, the geometric nature of the submanifolds Γ to which such
families can condense.

The simplest case, where Γ is a point, was considered by Ye a decade
ago, [12], [13]. He proved that if p ∈ M is a non-degenerate critical point
of the scalar curvature function Rg, then there exists a neighborhood U � p
such that U \ {p} is foliated by constant mean curvature (for short CMC)
spheres; in fact, the members of this family are small perturbations of the
geodesic spheres of radius ρ, 0 < ρ < ρ0, and they have mean curvatures
H = 1/ρ → ∞. Moreover, this foliation is essentially unique. Conversely, if
a neighbourhood of p admits such a foliation, then necessarily, ∇Rg|p = 0.
In very closely related work, Ye [14], and by quite different methods (using
inverse mean curvature flow) Huisken and Yau [4], proved the existence of
a unique foliation by CMC spheres near infinity in an asymptotically flat
manifold (of non-negative scalar curvature); this is of interest in general
relativity.

In this paper, we study the existence of families of CMC hypersurfaces
which converge to a (closed, embedded) submanifold Γ� ⊂ Mn+1, particu-
larly in the case � = 1. Define the geodesic tube

Tρ(Γ) := {q ∈Mn+1 : distg(q,Γ) = ρ};

this is a smooth hypersurface provided ρ is smaller than the radius of cur-
vature of Γ, and we henceforth always tacitly assume that this is the case.

1Supported in part by NSF under grant #DMS-0204730

633



634 R. Mazzeo & F. Pacard

The mean curvature of this tube satisfies

(1.1) HTρ(Γ) =
n− �

nρ
+ O(1) as ρ↘ 0,

and hence, it is plausible that we might be able to perturb this tube to a
CMC hypersurface with H ≡ (n − �)/(nρ). It turns out that this may not
be possible for every (small) ρ > 0, but we prove the:

Theorem 1.1. Suppose that Γ is a simple closed embedded geodesic with
non-degenerate Jacobi operator. Then, there exist k0 ∈ N and sequences
ρ′k < ρ′′k → 0, for k ≥ k0 such that when ρ ∈ Ik := (ρ′k, ρ

′′
k), the geodesic

tube Tρ(Γ) may be perturbed to a CMC hypersurface Σρ with H = n−1
nρ .

The Σρ are non-intersecting and foliate the open set equal to their union,
hence, they form a partial foliation of some neighborhood of Γ.

The hypersurface Σρ is a small perturbation of Tρ(Γ) in the sense that it
is the normal graph (for some function whose L∞ norm is bounded by a
constant times ρ3) over a small translate of Γ (by some translation whose
L∞ norm is bounded by a constant times ρ2), cf. Section 4 for the precise
formulation. In addition, we have rather precise information on the location
and width of the intervals Ik:

(1.2)
ρ′k −

√
n−1Λ

2 π (k+1) = O(k(9−α)/4),

ρ′′k −
√

n−1Λ
2 π k = O(k(9−α)/4),

for all α ∈ (0, 1) where Λ equals the length of Γ. Note that the non-
degeneracy condition on Γ is a mild and generic one, and that there are
no stringent conditions on the curvature along Γ, as is the case in Ye’s
theorem when Γ is a point.

The existence of gaps in this foliation stems from the fact that at certain
radii, the Jacobi operators on the geodesic tubes Tρ(Γ) become degenerate,
and this substantially complicates certain analytic steps in the construc-
tion. However, this gap behaviour is genuine, and is linked to a bifurcation
phenomenon, as we explain more carefully in Section 5.

Recall that the index of a compact CMC or minimal submanifold is the
number of negative eigenvalues of (the negative of) its Jacobi operator. We
estimate the index of the leaves of the partial foliation we construct :

Proposition 1.2. If ρ ∈ Ik, then for k sufficiently large,

Index (Σρ) = Index (Γ) + 2 k + 1.
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In particular, Index(Σρ) → ∞ as ρ→ 0. It is easy to show that for a generic
metric on M , the moduli space of CMC hypersurfaces condensing to Γ is a
smooth one-dimensional set, i.e. a (possibly infinite) union of curves, and
that the index is constant on each component. Thus, Proposition 1.2 shows
that the leaves Σρ for ρ ∈ Ik lie in different components of this moduli space.

The final part of this paper concerns necessary conditions on Γ in order
that a sequence of CMC surfaces condensing to Γ exists. We show that
if there exists a sequence of CMC hypersurfaces Σj, each of which can be
written (in an appropriate sense) as a normal graph over the geodesic tube
Tρj(Γ) where ρj → 0, then Γ must be minimal. We defer to Section 5.2
for the precise statement of this result. We have proved this converse only
under rather stringent conditions, but posit the following:
Conjecture: Let Γ be a closed embedded �-dimensional submanifold of M
and that there exist sequences ρ′k < ρ′′k → 0 and a partial foliation by CMC
hypersurfaces Σρ, ρ ∈ Ik := (ρ′k, ρ

′′
k) (with ρ′′k < ρ′k−1), satisfying:

(i) The mean curvature of Σρ equals n−1
nρ ;

(ii) There exists a constant c > 0, independent of k and ρ ∈ Ik such that

Σρ ⊂ {q ∈Mn+1 : distg(q,Γ) ≤ c ρ};

(iii) The norm of the second fundamental form of these hypersurfaces sat-
isfy |AΣρ | ≤ c 1

ρ for some constant c > 0, again independent of k and
ρ ∈ Ik.

Then, Γ is a minimal submanifold.
One might even be able to weaken hypotheses (ii) and (iii) substantially,

but even with these hypotheses, the proof is already probably difficult. We
have chosen to prove this converse only under much stronger hypotheses in
order to include one main calculation which explains why the minimality of
Γ is the natural conclusion.

On the other hand, the method of proof in this paper encounters serious
analytic difficulties when dim Γ > 1; these complications are ultimately due
to the fact that (−∆Γ − λ)−1 is not uniformly bounded when λ→ ∞ and λ
lies in a spectral gap, precisely because these spectral gaps typically decrease
in size in this higher dimensional setting. Since this paper was written, we
have been able to overcome this and extend our result to the case when Γ is
a non-degenerate minimal submanifold of arbitrary dimension, see [9]; one
of the main new ideas in this extension is an iteration method for improving
the initial approximate solution.
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There are some parallels between our Theorem 1 and some recent results
concerning solutions of the equation

ε2 ∆u+ f(u) = 0

with vanishing Neumann data on a smooth, bounded domain Ω ⊂ R
n. For

example, the second author and Ritoré [10] prove the existence of positive
solutions to

ε2 ∆u− u3 + u = 0

which concentrate along a minimal submanifold Σ as ε ↘ 0. On the other
hand, Malchiodi and Montenegro [7] construct positive solutions of

ε2 ∆u+ u3 − u = 0

which concentrate along ∂Ω as ε ↘ 0. As in the present paper, the same
‘spectral gap’ phenomenon arises to domains Ω ⊂ R

2.

2. Geometry of tubes.

In this section, we derive expansions as ρ↘ 0 for the metric, second funda-
mental form and mean curvature of the tubes Tρ(Γ) and their perturbations.
There is a famous and beautiful formula for the volume of these tubes, due
originally to Herman Weyl, whenM has constant curvature, which has found
applications in fields as diverse as geometric measure theory and statistics.
We refer to Gray’s monograph [3] for Weyl’s formula and references to later
work.

2.1. Fermi coordinates and Taylor expansion of the metric near Γ.

We first consider the asymptotic development of the metric g in Fermi coor-
dinates around Γ. This leads to an asymptotic formula for the metric on the
geodesic tubes Tρ(Γ). These computations are standard, and are described
more systematically in [3].

Fix an arclength parametrization γ(t) of Γ, t ∈ [a, b] := I, and denote
by SNΓ the sphere bundle in NΓ. Then,

SNΓ � (t, v) �−→ expγ(t)(ρv) ∈ Tρ(Γ)

is a diffeomorphism when ρ is small enough. Choose a parallel orthonormal
frame E1, · · · , En for NΓ (along (a, b), say). This determines a coordinate
system

x := (x0, x1 . . . , xn) �−→ expγ(x0)(x1E1 + . . .+ xnEn) := F (x),
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and the corresponding coordinate vector fieldsXα := F∗(∂xα). We write x′ =
(x1, . . . , xn), and adopt the convention that indices i, j, k, . . . ∈ {1, . . . , n},
whereas α, β, . . . ∈ {0, . . . , n}.

Remark 2.1. For simplicity, we identify the metric g on M and its pullback
F ∗g on some neighbourhood in R × R

n. This allows us to use the linear
operations on the latter space. With slight abuse of notations, we identify
F (x0, x

′) with (x0, x
′) and Xα with ∂xα .

We also use cylindrical Fermi coordinates. Thus, let r =
√
x2

1 + . . .+ x2
n,

which by Gauss’ lemma is the geodesic distance from x to Γ. The vector

(2.1) ∂r =
1
r

n∑
i=1

xiXi

is the unit normal to the geodesic tubes.
We have arranged that the metric coefficients gαβ = 〈Xα,Xβ〉 equal

δαβ along Γ. We now compute higher terms in the Taylor expansions of
these functions. In the following, the notation O(rm) indicates a function
f such that it and its partial derivatives of any order, with respect to the
vector fields X0 and xiXj , are bounded by C rm in some fixed tubular
neighborhood of Γ. Also, we shall compute the metric coefficients at a point
q := F (x0, x

′) in terms of geometric data at p := F (x0, 0) and the radius
r = d(p, q).

We begin with the expansion of the covariant derivative:

Lemma 2.2. For α, β = 0, . . . , n,

(2.2) ∇Xα Xβ =
n∑

γ=0

O(r)Xγ ,

and for α = β = 0, we record the more precise expansion

(2.3) ∇X0 X0 = −
n∑

i,j=1

〈R(Xj ,X0)Xi,X0〉p xiXj +
n∑

γ=0

O(r2)Xγ .

Proof. Anywhere on Γ,

∇X0X0 = ∇X0Xj = ∇XjX0 = ∇XiXj = 0.



638 R. Mazzeo & F. Pacard

The vanishing of the first two terms is obvious since Γ is a geodesic and
the Xi are parallel along it. Because we are using coordinate vector fields,
∇XαXβ = ∇Xβ

Xα for any α, β, even away from Γ, and this implies the
vanishing of the third term. Since any X ∈ NpΓ is tangent to the geodesic
expp(sX), and so ∇Xi+Xj(Xi + Xj) = 0 at p, hence ∇XiXj + ∇XjXi = 0
there. Combined with the symmetry statement, we obtain that the final
term also vanishes. This now gives (2.2).

Next, using (2.2), we get along Γ

Xi〈∇X0X0,Xj〉 = 〈∇Xi∇X0X0,Xj〉 + 〈∇X0X0,∇XiXj〉
= 〈∇Xi∇X0X0,Xj〉
= 〈R(Xi,X0)X0,Xj〉 + 〈∇X0∇XiX0,Xj〉
= 〈R(Xi,X0)X0,Xj〉

This implies (2.3). �

Our next result gives the expansion of the metric coefficients in Fermi
coordinates. The expansion of the gij , i, j = 1, . . . , n, agrees with the well
known expansion for the metric in normal coordinates, cf. [11], [6] or [16],
but we briefly recall the proof here for completeness.

Proposition 2.3. In the same notation as above, we have

(2.4)

gij(q) = δij + 1
3 〈R(Xk,Xi)X�,Xj〉p xk x� + O(r3)

g0i(q) = O(r2)

g00(q) = 1 + 〈R(Xk,X0)X�,X0〉p xk x� + O(r3).

Proof. The function

Xk gαβ = 〈∇Xk
Xα,Xβ〉 + 〈Xα,∇Xk

Xβ〉

vanishes on Γ, and thus, the first order terms vanish in all of these Taylor
expansions.

To compute the second order terms, it suffices to compute

Xk Xk gαβ(p) = Xk Xk 〈Xα,Xβ〉

= 〈∇2
Xk
Xα,Xβ〉 + 〈Xα,∇2

Xk
Xβ〉 + 2〈∇Xk

Xα,∇Xk
Xβ〉
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and then polarize (i.e. replace Xk by Xk +X�, etc.). By (2.2), the final term
vanishes along Γ. Also,

∇2
Xk
Xα = ∇Xk

∇XαXk = ∇Xα∇Xk
Xk +R(Xk,Xα)Xk.

First let α = j ≥ 1 and compute the first term on the right. Since
∇X∇XX = 0 on Γ for any X which is a constant linear combination of the
Xi, we have

0 = ∇Xk+εXj∇Xk+εXj(Xk + εXj);

equating the coefficient of ε to 0 gives ∇Xj∇Xk
Xk = −2∇Xk

∇Xk
Xj , and

hence,
3∇2

Xk
Xj = R(Xk,Xj)Xk,

so finally, along Γ

Xk Xk gij =
2
3
〈R(Xk,Xi)Xk.Xj〉.

The formula for the second order Taylor coefficient for gij now follows at
once.

When α = 0, ∇X0∇Xk
Xk ≡ 0 on Γ, so

∇2
Xk
X0 = R(Xk,X0)Xk.

from which it follows that

Xk Xk g00 = 2 〈R(Xk,X0)Xk,X0〉

and this gives the formula for g00.
The second order Taylor coefficient for g0i has not been given because it

is not needed later. �

2.2. Perturbed tubes and their mean curvature.

We now describe a suitable class of deformations of the geodesic tubes Tρ(Γ),
depending on a section Φ of NΓ and a scalar function w on the spherical
normal bundle SNΓ. One of the main technical parts of this paper, which
occupies the rest of Section 2, is the computation of the mean curvature of
these hypersurfaces, at least asymptotically in ρ and for sufficiently small Φ
and w.

The spherical normal bundle is locally trivialized by the map

(a, b) × Sn−1 � (x0, θ) �−→ (γ(x0),
∑

θjEj) ∈ SNΓ.
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Fix ρ > 0, and define

G(x0, θ) := F
(
x0, ρ (1 + w(x0, θ)) θ + Φ(x0)

)
;

the image of this map will be called Tρ(w,Φ). Thus, Tρ(w,Φ) is obtained
by first taking the normal graph of the function ρw over the tube of radius
ρ in NΓ and then translating by Φ. In particular,

Tρ(0, 0) = Tρ(Γ).

It will sometimes be useful to calculate using a coordinate system

R
n−1 � y �→ Υ(y) ∈ Sn−1,

with associated coordinates vector fields Yj = ∂yjΥ. In particular, we regard
G as a function of (x0, y) and write

G(x0, y) := F
(
x0, ρ (1 + w(x0, y))Υ(y) + Φ(x0)

)
.

Two different types of Hölder spaces will be used to measure regularity
of functions on SNΓ and sections of NΓ: first, we use the ordinary Hölder
spaces Cm,α(SNΓ), Cm,α(Γ, NΓ), but we shall also use modified Hölder
spaces Cm,α

ρ (SNΓ), Cm,α
ρ (Γ, NΓ) which are based on differentiations with

respect to the vector fields ρ ∂x0 and ∂yj (where y is any local coordinate
system on Sn−1, see above). Note that this is tantamount to using the
rescaled variable s = x0/ρ since ∂s = ρ ∂x0 . We shall assume that

Φ(x0) =
n∑

j=1

φj(x0)Xj ∈ C2,α(Γ, NΓ), w ∈ C2,α
ρ (SNΓ).

For p ∈ Γ, let Sp denote the spherical fibre of SNΓ over p. Any function
w on SNΓ decomposes into a sum of three terms

w = w0 + ŵ + w̃,

where the restriction to any Sp of each of these terms lies in the span of
the eigenfunctions ϕj(θ) on Sn−1 with j = 0, j = 1, . . . , n, and j > n,
respectively. The first component, w0, is a function on Γ itself. Next, the
eigenfunctions ϕj , 1 ≤ j ≤ n, are the restrictions to Sn−1 of linear functions
on R

n, so any linear combination of them can be identified with a translation
in R

n (the linear function x → a · x being identified with the translation
x → x+ a). Correspondingly, the summand ŵ is canonically associated to
a section Φ of the normal bundle NΓ.
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We shall typically assume that the functions w has ‘linear component’
ŵ ≡ 0, and shall regard the linear part of the perturbation as a section of
NΓ, as just described.

It will be fundamental in the analysis below to regard w as a function of
s = x0/ρ and yj, but Φ and γ as functions of x0 (in particular, whenever we
write Φ′, we mean ∂x0Φ :=

∑
∂x0φj(x0)Xj). However, we sometimes also

write G = G(s, y). For example, the tangent space to Tρ(w,Φ) is spanned
by the vector fields

(2.5)
Z0 = G∗(∂s) = ρ (X0 + ∂swΥ + Φ′),

Zj = G∗(∂yj ) = ρ ((1 + w)Yj + ∂yjwΥ), j = 1, . . . , n.

Definition 2.4. In the following, L(w,Φ) denotes any expression which is
a linear differential operator (of order at most 2) in w and Φ which satisfies

(2.6) ‖L(w,Φ)‖C0,α
ρ

≤ c
(
‖w‖C2,α

ρ (SNΓ) + ‖Φ‖C2,α(Γ,NΓ)

)
,

where c is independent of ρ. Similarly, Q(w,Φ) denotes any non-linear
differential operator (of order less than or equal to 2) in w and Φ which
vanishes quadratically in the pair (w,Φ) and such that

‖Q(w2,Φ2) −Q(w1,Φ1)‖C0,α
ρ

≤ c sup
i=1,2

(
‖wi‖C2,α

ρ (SNΓ) + ‖Φi‖C2,α(Γ,NΓ)

)

×
(
‖w2 − w1‖C2,α

ρ (SNΓ) + ‖Φ2 − Φ1‖C2,α(Γ,NΓ)

)
(2.7)

Here, the spaces C0,α
ρ are either equal to C0,α

ρ (SNΓ) or C0,α
ρ (Γ, NΓ) according

to the range of L and Q. Finally, terms denoted O(ρk) are bounded in
Cm,α(SNΓ) or Cm,α(Γ, NΓ) by C ρk, where the constant C does not depend
on (w,Φ) or ρ.

2.3. The first fundamental form.

The next step is the computation of the coefficients of the first fundamental
form of Tρ(w,Φ) with respect to the coordinates (s, y). At the point

q = F (ρ s, ρ(1 + w(s, y))Υ(y) + Φ(ρs))
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(where p = F (ρs, 0)), we obtain directly from (2.4) that

(2.8)

〈X0,X0〉q = 1 + O(ρ2) + ρL(w,Φ) +Q(w,Φ)

〈Xi,Xj〉q = 〈Xi,Xj〉p + ρ2

3 〈R(Υ,Xi)Υ,Xj〉p + O(ρ3)

+ ρ
3 [〈R(Υ,Xi)Φ,Xj〉p + 〈R(Φ,Xi)Υ,Xj〉p]

+ ρ2 L(w,Φ) +Q(w,Φ)

〈Xi,X0〉q = O(ρ2) + ρL(w,Φ) +Q(w,Φ).

We use these expansions to obtain the expansion of the first fundamental
form of Tρ(Φ, w).

Proposition 2.5. We have
(2.9)
ρ−2 〈Z0, Z0〉q = 1 + O(ρ2) + ρL(w,Φ) +Q(w,Φ)

ρ−2 〈Z0, Zj〉q = O(ρ2) + L(w,Φ) +Q(w,Φ)

ρ−2 〈Zi, Zj〉q = 〈Yi, Yj〉p + ρ2

3 〈R(Υ, Yi)Υ, Yj〉p + O(ρ3)

+ 2w 〈Yi, Yj〉p + ρ
3 [〈R(Υ, Yi)Φ, Yj〉p + 〈R(Υ, Yj)Φ, Yi〉p]

ρ2 L(w,Φ) +Q(w,Φ).

Proof. The first two equations are clear. We give more details about how to
derive the third estimate since the same argument will be used frequently.
First, it follows from (2.8) that

〈Υ, Yj〉q = 〈Υ, Yj〉p + ρ2

3 〈R(Υ,Υ)Υ, Yj〉p + O(ρ3)

+ ρ
3 [〈R(Υ,Υ)Φ, Yj〉p + 〈R(Φ,Υ)Υ, Yj〉p]

+ ρ2 L(w,Φ) +Q(w,Φ).

However, when w = Φ = 0, 〈Υ, Yj〉q = 0 since Υ is normal and Yj is tangent
to Tρ(0, 0) then, so that the sum of the first three terms on the right, which
is independent of w and Φ, must also vanish. This, together with the fact
that R(Υ,Υ) = 0 implies that

(2.10) 〈Υ, Yj〉q =
ρ

3
〈R(Φ,Υ)Υ, Yj〉p + ρ2 L(w,Φ) +Q(w,Φ))
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In particular, we get 〈Υ, Yj〉q = ρL(w,Φ) + Q(w,Φ). The third equation
follows directly from this. �

2.4. The normal vector field.

The next task is to find expansions for the unit normal to Tρ(w,Φ). We
begin with the preparatory

Lemma 2.6. The following expansions hold

〈Υ,Υ〉q = 1 + ρ2 L(w,Φ) +Q(w,Φ)

〈Υ, Z0〉q = ρL(w,Φ) + ρQ(w,Φ)

〈Υ, Zj〉q = ρ ∂yjw + ρ2

3 〈R(Φ,Υ)Υ, Yj〉p + ρ3 L(w,Φ) + ρQ(w,Φ)

Proof. These follow from (2.8). As at the end of the last subsection, we are
using that 〈Υ,Υ〉q = 1 when w = Φ = 0 and R(Υ,Υ) = 0 to obtain the first
two expansions. The second expansion follows from the fact that 〈Υ, Z0〉q =
0 when w = Φ = 0. Finally, to obtain the last expansion, we use that
〈Υ, Zj〉q = 0 when w = Φ = 0 as well as the first expansion and (2.10). �

We can now proceed with the expansion of the unit normal vector field
to Tρ(w,Φ).

Proposition 2.7. The normal vector field N to Tρ(w,Φ) has the expansion

(2.11)
N := −Υ +

∑n−1
j=1 αj Yj + (L(w,Φ) +Q(w,Φ)) X0

+
∑n−1

j=1

(
ρ2 L(w,Φ) +Q(w,Φ)

)
Xj

where the coefficients αj are solutions of the system

n−1∑
j=1

αj 〈Yj , Yi〉p = ∂yiw +
ρ

3
〈R(Φ,Υ)Υ, Yi〉p.

Proof. Define the vector field

Ñ := −Υ + a0 Z0 +
n−1∑
j=1

aj Zj,
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by choosing the coefficients aα so that that Ñ is orthogonal to all of the Zα.
It follows at once from Lemma 2.6 and (2.9) that ρ aα = L(w,Φ) +

Q(w,Φ) for every α. Plugging this back into each of the equations 〈N,Zi〉q =
0 (thus neglecting the orthogonality condition when α = 0 now), we find that
the aj are solutions of the system

n−1∑
j=1

aj 〈Yj , Yi〉p =
1
ρ
∂yiw +

1
3
〈R(Φ,Υ)Υ, Yi〉p + ρL(w,Φ) +

1
ρ
Q(w,Φ).

Recall also that Zj = ρYj + ρL(w,Φ) so that aiZi = αiYi + ρ2L(w,Φ) +
Q(w,Φ). Finally, we have

|Ñ |q = 1 + ρ2 L(w,Φ) +Q(w,Φ).

This gives (2.11), since N = Ñ/|Ñ |. �

2.5. The second fundamental form.

The most arduous step is the computation of the second fundamental form.
To simplify the computations below, we henceforth assume that, at the point
Υ(y) ∈ Sn−1,

(2.12) 〈Yi, Yj〉p = δij and ∇YiYj = 0, i, j = 1, . . . , n− 1

(where ∇ is the connection on TSn−1).

Proposition 2.8. The following expansions hold

(2.13)

ρ−2 〈N,∇Z0Z0〉q = ρ 〈R(Υ,X0)Υ,X0〉p + O(ρ2)

− 1
ρ ∂

2
sw − 〈Φ′′,Υ〉p + 〈R(Υ,X0)Φ,X0〉p

+ ρL(w,Φ) + 1
ρ Q(w,Φ),

(2.14) ρ−2 〈N,∇Z0Zj〉q = O(ρ) +
1
ρ
L(w,Φ) +

1
ρ
Q(w,Φ),

(2.15)

ρ−2 〈N,∇ZjZj〉q = 1
ρ + 2

3 ρ 〈R(Υ, Yj)Υ, Yj〉p + O(ρ2)

− 1
ρ∂

2
yj
w + 1

ρ w + 2
3 〈R(Φ, Yj)Υ, Yj〉p

+ ρL(w,Φ) + 1
ρ Q(w,Φ)
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(2.16) ρ−2 〈N,∇ZiZj〉q = O(ρ) + 1
ρ L(w,Φ) + 1

ρ Q(w,Φ), i �= j.

Proof. First note that by Lemma 2.2

(2.17) ∇Xα Xβ|q =
n∑

γ=0

(O(ρ) + L(w,Φ) +Q(w,Φ)) Xγ ,

since the coordinates of q depend on w and Φ. Hence, as

(2.18) ∇ZαXβ =
n∑

γ=0

(
O(ρ2) + ρL(w,Φ) + ρQ(w,Φ)

)
Xγ ,

which follows from (2.17) and the fact that Zα = ρ
∑

γ(1 + L(w,Φ))Xγ .
We will also use that

(2.19) N + Υ =
n∑

α=0

(L(w,Φ) +Q(w,Φ)) Xα,

which follows from (2.11). Finally, we will need the expansions

(2.20)
〈Υ,X0〉q = ρL(w,Φ) +Q(w,Φ)

〈Υ, Yj〉q = ρL(w,Φ) +Q(w,Φ)

whose proof can be obtained, as in Lemma 2.6, starting from (2.8).
Estimate (2.13): We must expand

ρ−2 〈N,∇Z0Z0〉q = ρ−1
(
〈N,∇Z0X0〉q + 〈N,∇Z0(∂swΥ)〉q + 〈N,∇Z0Φ

′〉q
)
.

The estimate is broken into three steps:
Step 1. From (2.11) and Lemma 2.6, we get

〈N,Υ〉q = −〈Υ,Υ〉q +
∑n

j=1 αj 〈Yj,Υ〉q + (L(w,Φ) +Q(w,Φ)) 〈X0,Υ〉q

+
∑n

j=1 (ρ2 L(w,Φ) +Q(w,Φ)) 〈Xj ,Υ〉q

= −1 + ρ2 L(w,Φ) +Q(w,Φ)

Substituting N = −Υ +N + Υ gives

〈N,∇Z0Υ〉q = −1
2
∂s〈Υ,Υ〉q + 〈N + Υ,∇Z0Υ〉q;
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by Lemma 2.6
∂s〈Υ,Υ〉q = ρ2 L(w,Φ) +Q(w,Φ),

and (2.19) and (2.18) imply

〈N + Υ,∇Z0Υ〉q = ρ2 L(w,Φ) + ρQ(w,Φ).

Collecting these estimates, we get

〈N,∇Z0Υ〉q = ρ2 L(w,Φ) +Q(w,Φ).

Hence, we conclude that

〈N,∇Z0(∂swΥ)〉q = ∂2
sw 〈N,Υ〉q + ∂sw 〈N,∇Z0Υ〉q

= −∂2
s w +Q(w,Φ)

Step 2. Next,

〈N,∇Z0Φ
′〉q = ρ 〈N,Φ′′〉q +

n∑
j=1

∂x0φj 〈N,∇Z0 Xj〉q

where Φ′′(x0) :=
∑
∂2

x0
φj(x0)Xj . From (2.18), we have

(∂x0φj) 〈N,∇Z0Xj〉q = ρ2 L(w,Φ) + ρQ(w,Φ).

Also, using the same decomposition of N , and employing (2.19) and (2.8),

〈N,Φ′′〉q = −〈Υ,Φ′′〉q + 〈N + Υ,Φ′′〉q

= −〈Υ,Φ′′〉q +Q(w,Φ)

= −〈Υ,Φ′′〉p + ρ2 L(w,Φ) +Q(w,Φ)

Collecting these gives

〈N,∇Z0Φ
′〉q = −ρ 〈Υ,Φ′′〉p + ρ2 L(w,Φ) + ρQ(w,Φ).

Step 3. Expanding Z0 gives
(2.21)

〈N,∇Z0X0〉q = ρ 〈N,∇X0X0〉q+ρ ∂sw 〈N,∇ΥX0〉q+ρ
n∑

j=1

∂x0φj 〈N,∇XjX0〉q
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With the help of (2.17) and (2.19), we evaluate

〈N,∇ΥX0〉q = O(ρ) + L(w,Φ) +Q(w,Φ)

〈N,∇XjX0〉q = O(ρ) + L(w,Φ) +Q(w,Φ)

〈N + Υ,∇X0X0〉q = ρL(w,Φ) +Q(w,Φ),

and plugging these into (2.21) already gives

〈N,∇Z0X0〉q = −ρ 〈Υ,∇X0X0〉q + ρ2 L(w,Φ) + ρQ(w,Φ)

Using (2.3) in Lemma 2.2, we get the expansion

∇X0X0|q = −
∑n

j=1 ρ 〈R(Xj ,X0)Υ,X0〉pXj + O(ρ2)

−
∑n

j=1〈R(Xj ,X0)Φ,X0〉pXj + ρL(w,Φ) +Q(w,Φ),

and so,

〈N,∇Z0X0〉q = ρ2
∑n

j=1〈R(Xj ,X0)Υ,X0〉p 〈Υ,Xj〉q + O(ρ3)

+ ρ
∑n

j=1〈R(Xj ,X0)Φ,X0〉p 〈Υ,Xj〉q

+ ρ2 L(w,Φ) + ρQ(w,Φ).

Finally, using (2.8) again, we conclude that

〈N,∇Z0X0〉q = ρ2 〈R(Υ,X0)Υ,X0〉p + O(ρ3) + ρ 〈R(Υ,X0)Φ,X0〉p

+ ρ2 L(w,Φ) + ρQ(w,Φ),

which, together with the results of Step 1 and Step 2, completes the proof
of the first estimate.
Estimate (2.14): Decompose

〈N,∇Z0Zj〉q = ρ 〈N,Yj〉q ∂sw + ρ 〈N,Υ〉q ∂s∂yjw

+ ρ (1 + w) 〈N,∇Z0Yj〉q + ρ 〈N,∇Z0Υ〉q ∂yjw.

As above, we use (2.19) and (2.20) to estimate

〈N,Yj〉q = −〈Υ, Yj〉q + 〈N + Υ, Yj〉q = L(w,Φ) +Q(w,Φ)

Similarly, by Lemma 2.6 and (2.19),

〈N,Υ〉q = −1 + L(w,Φ) +Q(w,Φ)
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But now, by (2.19) and (2.18), we have

〈N,∇Z0 Yj〉q = O(ρ2) + ρL(w,Φ) + ρQ(w,Φ)

and, as already seen in the estimate of (2.17)

〈N,∇Z0 Υ〉q = ρ2 L(w,Φ) + ρQ(w,Φ),

and the proof of the estimate follows directly.

Estimates (2.15) and (2.16): Observe that, by Proposition 2.5, we can
also write

N = −Υ +
1
ρ

n∑
j=1

αj Zj + N̂ ,

where

(2.22) N̂ = (L(w,Φ) +Q(w,Φ))X0 +
n∑

j=1

(ρ2 L(w,Φ) +Q(w,Φ))Xj .

Now, write

〈N,∇ZjZj′〉q = 〈N,∇Zj′Zj〉q

= −1
2

(
〈∇ZjN,Zj′〉q + 〈∇Zj′N,Zj〉q

)
= 1

2

(
〈∇ZjΥ, Zj′〉q + 〈∇Zj′Υ, Zj〉q

)
− 1

2ρ

∑n
i=1

(
〈∇Zj(αi Zi), Zj′〉q + 〈∇Zj′ (αi Zi), Zj〉q

)
+ 1

2

(
〈N̂ ,∇ZjZj′〉q + 〈N̂ ,∇Zj′Zj〉q

)
− 1

2

(
∂yj 〈N̂ , Zj′〉|q + ∂yj′ 〈N̂ , Zj〉|q

)

Step 1. By (2.17), we can estimate

∇ZjZj′ = ρ ∂yjw Yj′ + ρ ∂yj∂yj′wΥ

+ ρ (1 + w)∇ZjYj′ + ρ ∂yj′w∇ZjΥ

= (O(ρ3) + ρ2 L(w,Φ) + ρ2Q(w,Φ))X0

+
∑n

k=1(O(ρ3) + ρL(w,Φ) + ρ2Q(w,Φ))Xk ,
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Observe that the coefficient of X0 is slightly better than the coefficient of the
other Xk since the first two terms only involve the Xk. Using this together
with (2.22), we conclude that

〈N̂ ,∇ZjZj′〉q + 〈N̂ ,∇Zj′Zj〉q = ρ3 L(w,Φ) + ρQ(w,Φ)

Step 2. Next, using (2.22) together with (2.8), we find that

∂yj 〈N̂ , Zj′〉|q + ∂yj′ 〈N̂ , Zj〉|q = ρ3 L(w,Φ) + ρQ(w,Φ)

Step 3. We now estimate

Ajj′ := 〈∇ZjΥ, Zj′〉q + 〈∇Zj′Υ, Zj〉q.

It is convenient to define

A′
jj′ :=

1
1 +w

(
〈∇Zj(1 + w)Υ, Zj′〉q + 〈∇Zj′ (1 + w)Υ, Zj〉q

)
,

It follows from Lemma 2.6 that

Ajj′ = A′
jj′ + ρQ(w,Φ).

Hence, it is enough to focus on the estimate of A′
jj′ . To analyze this term, let

us revert for the moment and regard w and Φ as functions of the coordinates
(t, y) (rather than (s, y)), and also consider ρ as a variable instead of just a
parameter. Thus, we consider

F̃ (ρ, t, y) = F
(
t, ρ(1 + w(t, y))Υ(y) + Φ(t)

)
.

The coordinate vector fields Zj are still equal to F̃∗(∂yj ), but now, we also
have (1 + w)Υ = F̃∗(∂ρ), which is the identity we wish to use below. Now,
from (2.9), we write

A′
jj′ =

1
1 +w

(
〈∇∂ρZj , Zj′〉q + 〈∇∂ρZj′ , Zj〉q

)
=

1
1 + w

∂ρ〈Zj , Zj′〉|q
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Therefore, it follows from (2.9) in Proposition 2.5 that

Ajj′ = 1
1+w ∂ρ [ρ2 〈Yj , Yj′〉p + ρ4

3 〈R(Υ, Yj)Υ, Yj′〉p + O(ρ5)

+ 2 ρ2 w 〈Yj, Yj′〉p + ρ3

3 (〈R(Υ, Yj)Φ, Yj′〉p + 〈R(Υ, Yj′)Φ, Yj〉p)

+ ρ4 L(w,Φ) + ρ2Q(w,Φ)] + ρQ(w,Φ)

= 1
1+w [2 ρ 〈Yj , Yj′〉p + 4

3 ρ
3 〈R(Υ, Yj)Υ, Yj′〉p + O(ρ4)

+ 4 ρw 〈Yj , Yj′〉p + ρ2
(
〈R(Υ, Yj)Φ, Yj′〉p + 〈R(Υ, Yj′)Φ, Yj〉p

)
+ ρ3 L(w,Φ)] + ρQ(w,Φ)

= 2 ρ 〈Yj , Yj′〉p + 4
3 ρ

3 〈R(Υ, Yj)Υ, Yj′〉p + O(ρ4)

+ 2 ρw 〈Yj , Yj′〉p + ρ2 (〈R(Υ, Yj)Φ, Yj′〉p + 〈R(Υ, Yj′)Φ, Yj〉p)

+ ρ3 L(w,Φ) + ρQ(w,Φ)

Step 4. Finally, we must compute

Bjj′ := 〈∇Zj (αi Zi), Zj′〉q + 〈∇Zj′ (αi Zi), Zj〉q

= 〈Zi, Zj′〉q ∂yjαi + 〈Zi, Zj〉q ∂yj′αi

+αi (〈∇ZjZi, Z
′
j〉q + 〈∇Zj′Zi, Zj〉q)

= 〈Zi, Zj′〉q ∂yjαi + 〈Zi, Zj〉q ∂yj′αi

+αi (〈∇ZiZj, Z
′
j〉q + 〈∇ZiZj′ , Zj〉q)

= 〈Zi, Zj′〉q ∂yjαi + 〈Zi, Zj〉q ∂yj′αi + αi ∂yi 〈Zj , Zj′〉q

Observe that (2.12) implies

∂yj 〈Yi, Yj′〉p = 0.

Using this together with (2.9) and the expression for the αi given in Propo-
sition 2.7, we get

αi ∂yi 〈Zj , Z
′
j〉q = ρ4 L(w,Φ) + ρ2Q(w,Φ)

It follows from (2.9) and the definition of αi again that

〈Zi, Zj′〉q ∂yjαi = ρ2 〈Yi, Yj′〉p ∂yjαi + ρ4 L(w,Φ) + ρ2Q(w,Φ)
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Therefore, it remains to estimate 〈Yi, Yj′〉p ∂yjαi. By definition, we have

n∑
i=1

αi 〈Yi, Yj′〉p = ∂yj′w +
ρ

3
〈R(Φ,Υ)Υ, Yj′〉p

Differentiating with respect to yj, we get
(2.23)

n∑
i=1

(
〈Yi, Yj′〉p ∂yjαi + αi ∂yj 〈Yi, Yj′〉p

)
= ∂yj∂yj′w +

ρ

3
∂yj〈R(Φ,Υ)Υ, Yj′〉p

Again, it follows from (2.12) that ∂yj 〈Yi, Yj′〉p = 0.
Moreover, we have

∇ZjΥ = Yj and ∇ZjYj′ = aΥ

for some a ∈ R. Reinserting this in (2.23) yields∑n
i=1〈Yi, Yj′〉p ∂yjαi = ∂yj∂yj′w + ρ

3 〈R(Φ, Yj)Υ, Yj′〉p

+ ρ
3 〈R(Φ,Υ)Yj , Yj′〉p,

since R(Υ,Υ) = 0.
Collecting these estimates, we conclude that

Bjj = ρ2 ∂2
yj
w +

ρ3

3
〈R(Φ, Yj)Υ, Yj〉p + ρ4 L(w,Φ) + ρ2Q(w,Φ)

since 〈R(Φ,Υ)Yj , Yj〉p = 0 and also that

Bjj′ = ρ2 L(w,Φ) + ρ2Q(w,Φ)

when j �= j′. With the estimates of the previous steps, this finishes the proof
of the last two estimates! �

2.6. The mean curvature.

Collecting the estimates of the last subsection and taking the trace, we have
now proved that the mean curvature H(w,Φ) of the hypersurface Tρ(w,Φ)
satisfies

nρH(w,Φ) − (n− 1) =(
2
3 〈R(Υ, X0)Υ,X0〉p − 1

3 Ric(Υ,Υ)
)
ρ2 + O(ρ3)

−
(
∂2

sw + ∆Sn−1w + (n− 1)w
)
− ρ 〈Φ′′ +R(Φ,X0)X0,Υ〉p(2.24)

+ρ2 L(w,Φ) +Q(w,Φ).
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(We recall that if Eα is an orthonormal basis of TpM , then

Ric(Υ,Υ) := −
n∑

α=0

〈R(Υ, Eα)Υ, Eα〉p.)

Denote by (λj , ϕj) the eigendata of ∆Sn−1, where the eigenfunctions are
orthonormal and counted with multiplicity.

A most important observation is that the second and third terms in
the expansion of nρH are quadratic in the coordinates xj . Hence, when
Φ = w = 0, we have

(2.25)
(nρH − (n− 1), ϕj)L2(Sn−1) = O(ρ3), j = 1, . . . , n,

(nρH − (n− 1), ϕj)L2(Sn−1) = O(ρ2), j �= 1, . . . , n,

or in other words, writing f = nρH − (n − 1), then f = O(ρ2), but its
L2(Sn−1) projection over ϕ1, . . . , ϕn satisfies f̂ = O(ρ3).

3. Jacobi operators.

In this section, we examine the mapping properties of some linear operators
which appear in the expression of the mean curvature of Tρ(w,Φ) given in
(2.24).

3.1. Definitions.

The two linear operators appearing in the third line of (2.24) are

(3.1)
w �−→ LSNΓw := ∂2

s w + ∆θ w + (n− 1)w,

Φ �−→ JΦ := ∇2
X0

Φ +R(Φ,X0)X0.

The latter is the Jacobi operator on Γ corresponding to the second variation
of the length functional on curves, while (up to a multiplicative factor)
the former appears in the second variation of the area functional about a
Euclidean cylinder R × Sn−1(ρ).

Recall that the geodesic Γ is said to be non-degenerate when J is in-
vertible, i.e. if the equation JΦ = 0 has no non-trivial solutions on all of
Γ. For a generic metric on M , it is well known that all closed geodesics are
non-degenerate.

On the other hand, since it is already naturally expressed in terms of
the scaled coordinate s,

LSNΓ : C2,α
ρ (SNΓ) −→ C0,α

ρ (SNΓ)
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is bounded uniformly in ρ. We can analyze this operator using the eigende-
composition for ∆θ on Sn−1. As in Section 2.2, if the eigenfunction decom-
position of w is given by

w(s, θ) =
∑
j≥0

wj(s)ϕj(θ),

then w decomposes as w0 + ŵ + w̃, where

ŵ :=
n∑

j=1

wj ϕj and w̃ :=
∑
j>n

wj ϕj .

We denote by Π0, Π̂ and Π̃ the projections on to these three components,
respectively. From now on, we assume that we are working with functions
w such that Π̂w = 0, and thus, we only need to be concerned with the
operators (LSNΓ)0 and L̃SNΓ induced on the two other components. Note
in particular, that

(LSNΓ)0 := ∂2
s + n− 1.

3.2. Mapping properties.

We now study the mapping properties of J and (the components of) LSNΓ.
We first note that

J : C2,α(Γ, NΓ) −→ C0,α(Γ, NΓ)

is an isomorphism when Γ is a non-degenerate geodesic.
Next, we also assert that

L̃SNΓ : Π̃ C2,α
ρ (SNΓ) −→ Π̃ C0,α

ρ (SNΓ)

is an isomorphism with inverse uniformly bounded as ρ → 0; this follows
from the fact that ∆θ + (n− 1) ≤ −C < 0 on this subspace. Details are left
to the reader.

Finally, it is clear that

(LSNΓ)0 : Π0 C2,α
ρ (SNΓ) −→ Π0 C0,α

ρ (SNΓ)

is bounded for every ρ > 0, but is only invertible when

√
n− 1

Λ
ρ
/∈ 2πN;
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in the exceptional cases, there is a two-dimensional nullspace spanned by

cos(
√
n− 1 s), sin(

√
n− 1 s),

and hence, a two-dimensional cokernel. To determine the norm of its inverse
when

√
n− 1 Λ/ρ /∈ 2π Z, suppose that (LSNΓ)0 v = f . Then,

√
n− 1 v(s) = sin(

√
n− 1 s)

(
α+

∫ s

0
cos(

√
n− 1σ) f(σ) dσ

)

− cos(
√
n− 1 s)

(
β +

∫ s

0
sin(

√
n− 1σ) f(σ) dσ

)

where the constants α, β are chosen so that v is Λ/ρ-periodic. We find

|α| + |β| ≤ c

ρ (1 − cos(
√
n− 1Λ/ρ))

||f ||L∞(SNΓ)

for some constant c > 0, independent of ρ, and from this, we have
(3.2)

||v||C2,α
ρ (SNΓ) ≤ c

(
||f ||C0,α

ρ (SNΓ) +
1

ρ (1 − cos(
√
n− 1Λ/ρ))

||f ||L∞(SNΓ)

)
,

again for some constant c > 0 independent of ρ. Note that when f ∈ C1,
there is an equivalent formula

(n− 1) v(s) − f(s) = sin(
√
n− 1 s)

(
α−

∫ s

0
sin(

√
n− 1σ) ∂sf(σ) dσ

)

+ cos(
√
n− 1 s)

(
β −

∫ s

0
cos(

√
n− 1σ) ∂sf(σ) dσ

)
,

where again α, β are chosen so that v is Λ/ρ-periodic. We now obtain

|α| + |β| ≤ c

ρ (1 − cos(
√
n− 1Λ/ρ))

||∂sf ||L∞(SNΓ)

for some constant c > 0 independent of ρ, so that
(3.3)

||v||C2,α
ρ (SNΓ)

≤ c

(
||f ||C0,α

ρ (SNΓ)
+

1
ρ (1 − cos(

√
n− 1Λ/ρ))

||∂sf ||L∞(SNΓ))
)
.
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4. The constant mean curvature foliation.

We now use the results of Sections 2 and 3 to perturb Tρ(Γ) to a constant
mean curvature hypersurface, at least for ρ sufficiently far from values where
(LSNΓ)0 is degenerate.

According to the analysis of Section 2, we must find w ∈ C2,α
ρ (SNΓ) and

Φ ∈ C2,α(Γ, NΓ) such that

(4.1) nρH(w,Φ) = n− 1

Let us denote by

f :=
2
3
〈R(Υ, X0)Υ,X0〉p ρ2 − 1

3
Ric(Υ,Υ) ρ2 + O(ρ3),

the inhomogeneous term appearing in (2.24) which corresponds to the mean
curvature when w = Φ = 0. As usual, this decomposes into three compo-
nents, f0 + f̂ + f̃ , where f̂ corresponds to a section of the normal bundle
which we write as ρΨ. We are searching for w = w0 + w̃ and Φ which satisfy
the coupled system

(4.2)




(LSNΓ)0 w0 = f0 + ρ2 L(w,Φ) +Q(w,Φ)

JΦ = Ψ + ρL(w,Φ) + 1
ρ Q(w,Φ)

L̃SNΓw̃ = f̃ + ρ2 L(w,Φ) +Q(w,Φ)

We use the function space

E2,α
ρ := Π0 C2,α

ρ (SNΓ) ⊕ C2,α(Γ, NΓ) ⊕ Π̃ C2,α
ρ (SNΓ),

where, for Ξ = (w0,Φ, w̃),

‖Ξ‖E2,α
ρ

:= (1−cos(
√
n− 1Λ/ρ)) ‖w0‖C2,α

ρ (SNΓ)+‖Φ‖C2,α(Γ,NΓ)+‖w̃‖C2,α
ρ (SNΓ).

The linear operators appearing on the left in (4.2) are all invertible pro-
vided

√
n− 1Λ/ρ /∈ 2πZ. Thus, multiplying by their inverses, we rewrite

this system as
Ξ = N(Ξ),

and so, we solve our problem by finding a fixed point of N in E2,α
ρ .

Lemma 4.1. Write Ξ0 := N(0). Then, for
√
n− 1Λ/ρ /∈ 2πZ, we have

‖Ξ0‖E2,α
ρ

≤ c0
2
ρ2

for some c0 > 0.
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Proof. Clearly,

‖f0‖C0,α
ρ (SNΓ)

+ ρ−1 ||∂sf0||L∞(SNΓ) ≤ c ρ2;

moreover

||f̃ ||C0,α
ρ (SNΓ) ≤ c ρ2 and ||Ψ||C0,α(Γ,NΓ) ≤ c ρ2.

Since by definition,

Ξ0 = ((LSNΓ)−1
0 f0,J

−1 Ψ0, (L̃SNΓ)−1 f̃),

the result follows from (3.3) and the uniform boundedness of the inverses of
the inverses of these linear operators as ρ→ 0. �

Next, from the properties of the operators L and Q, we deduce the

Lemma 4.2. There exists a constant c > 0 such that, for the same c0 as in
the previous Lemma, and for any Ξ1,Ξ2 ∈ E2,α

ρ satisfying

‖Ξi‖E2,α
ρ

≤ c0 ρ
2,

we have

‖N(Ξ2) − N(Ξ1)‖E2,α
ρ

≤ c
ρ1−α

(1 − cos(
√
n− 1Λ/ρ))2

‖Ξ2 − Ξ1‖E2,α
ρ
.

Proof. It follows from (2.6) that

‖ρ2 L(w,Φ)‖C0,α
ρ

≤ c
ρ2

1 − cos(
√
n− 1Λ/ρ)

‖Ξ‖E2,α
ρ

if w = w0 + w̃ and Ξ = (w0,Φ, w̃). Moreover, if ‖Ξi‖E2,α
ρ

≤ c0 ρ
2, then, we

have from (2.7)

‖Q(w2,Φ2) −Q(w1,Φ1)‖C0,α
ρ

≤ c
ρ2

(1 − cos(
√
n− 1Λ/ρ))2

‖Ξ2 − Ξ1‖E2,α
ρ
.

where wi = w0,i + w̃i and Ξ = (w0,i,Φi, w̃i). Now, the result follows at once
from the inequality

‖Φ‖C0,α(Γ,NΓ) ≤ c ρ−α ‖Φ‖C0,α
ρ (Γ,NΓ)

.

together with the uniform bounds on L̃−1
SNΓ and J−1, and the bound on

(LSNΓ)−1
0 given in (3.2). Details are left to the reader. �

Collecting these results, we now have the
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Proposition 4.3. Fix α ∈ (0, 1). Then, there exists a c1 > 0 such that if k
is sufficiently large and ρ satisfies

1
k + 1

+
c1

k(9−α)/4
≤ 2π√

n− 1Λ
ρ ≤ 1

k
− c1

k(9−α)/4
,

then there exists a solution (w0, w̃,Φ) of (4.2) in E2,α
ρ . This solution satisfies

‖(w0, w̃,Φ)‖E2,α
ρ

≤ c0 ρ
2

Proof. It is easy to check that

ρ1−α

(1 − cos(
√
n− 1Λ/ρ))2

is as small as we want, provided c1 is chosen large enough. It is then easy
to check that, when k is large enough, N is a contraction from the ball of
radius c0 ρ2 into itself. �

This proposition yields the existence of CMC perturbations of the tubes
Tρ(Γ) for all radii ρ ∈ Ik, when k is large. We shall denote the perturbation
functions as wρ and Φρ to emphasize their dependence on ρ. We shall
now revert to thinking of these as depending on x0 rather than s, and in
particular, we write

wρ(x0, θ) := w0(x0/ρ) + w̃(x0/ρ, θ).

Following through the proof, it is not hard to see that these functions depend
smoothly on ρ. Furthermore, since the tubes Tρ(Γ) already foliate, it suffices
to verify that the mapping

(4.3) (ρ, x0, θ) �−→ G(x0, ρ(1 + wρ)θ + Φρ)

is a local diffeomorphism.
First,

||wρ||L∞(SNΓ) + ||Φ||L∞(Γ,NΓ) ≤ c ρ2.

Also, from the construction itself, we have

||∂ρwρ||L∞(SNΓ) + ||∂ρΦ||L∞(Γ,NΓ) ≤ c ρ.

These certainly imply that (4.3) is a local diffeomorphism, and hence, our
CMC surfaces form a local foliation. �
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5. Explaining the gaps.

In special cases, such as when Γ is a circle in the flat torus T n+1 = S1 ×
R

n/aZn, all of the geodesic tubes about Γ, of any radius, have constant
mean curvature, and thus there are no gaps in the local foliation. On the
other hand, Theorem 1 only provides for a local foliation with gaps. As
indicated in the introduction, there are good reasons why this construction
does not work at all radii. We explain this in greater detail now. We first
show that for generic metrics, the moduli space of CMC surfaces isotopic to
a geodesic tubes Tρ(Γ) in M \ Γ is smooth and one-dimensional. The index
of the Jacobi operator is constant along components, and by estimating the
index for the surfaces close to Tρ(Γ), ρ ∈ Ik, we show that there are infinitely
many components of this moduli space. We conclude by examining in more
detail a very degenerate case, where all of the geodesic tubes Tρ(Γ) are CMC
(when smooth), so there are no gaps, but we prove that, in this situation,
there are infinitely many bifurcating branches.

5.1. The moduli space.

Denote by H(M,Γ, g) the moduli space of all CMC surfaces Σ ↪→M which
are isotopic to any one of the geodesic tubes Tρ(Γ), for ρ small, in M \ Γ,
with respect to the metric g.

Proposition 5.1. There is an open dense set U of metrics (in the Cm,α

topology for any m ≥ 3) on M such that for g ∈ U , H(M,Γ, g) is a smooth
one-dimensional manifold.

Fix a surface Σ0 in the correct isotopy class, which has CMC with respect
to some metric g0. Nearby surfaces may be written as normal graphs over
Σ0, and hence are parametrized by (small) scalar functions on Σ0. Now,
consider the mapping

G : Cm,α(M,S2T ∗M) × Cm,α(Σ0) −→ Cm−2,α(Σ0)

which assigns to a metric g and a scalar function w on Σ0 the mean curvature
function of the submanifold Σw = {x + w(x)ν(x) : x ∈ Σ0}, regarded as
a function on Σ0, with respect to g. It is not hard to show [15] (and also
[8]) that the differential of this mapping is always surjective, and moreover,
the restriction of this differential to the tangent space of the second factor
(which is simply the Jacobi operator) is Fredholm of index zero, and is an
isomorphism except when there exist non-trivial Jacobi fields. The result
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is then a straightforward application of the Sard–Smale theorem, since G is
transverse to the one-dimensional curve of constant functions in the range
space.

On the other hand, applying the construction of Theorem 1 when the
metric g ∈ U , we obtain a set of smooth one-dimensional families CMC sur-
faces in H(M,Γ, g). Let Gg(w) = G(g,w); an implication of this proposition
is that when Gg is regular at w and the mean curvature of Σw is equal to
H, then some interval (H − ε,H + ε) parameterizes H(M,Γ, g) locally near
Σw, or in other words, the mean curvatures of the CMC surfaces near to
Σw assume all values near to H. Although in this case the corresponding
surfaces form a local foliation, this need not be true in general.

5.2. The index.

We now claim that for generic g, H(M,Γ, g) has infinitely many components.
In the following, for ρ ∈ Ik, let Σρ denote the CMC hypersurface constructed
in Theorem 1.

Proposition 5.2. Let g be a metric for which H(M,Γ, g) is a smooth one-
dimensional manifold. Then, for each sufficiently large value of k, the sur-
faces Σρ, ρ ∈ Ik, lie in different components of H(M,Γ, g) and have index
equal to Index (Γ) + 2 k + 1.

We prove this theorem by computing the index of Σρ; by definition,
this is the number of negative eigenvalues of the Jacobi operator Lρ on Σρ.
This index is locally constant in H(M,Γ, g) when this moduli space is non-
degenerate, but since we shall show that the index increases with k, this will
imply the result.

It follows from (2.24) and the properties of solution (w0, w̃,Φ) given in
Proposition 4.3 that the Jacobi operator about Σρ, i.e. the linearization of
the operator (w0, w̃,Φ) �→ nρH, has the form
(5.1)
Lρ(v,Ψ) = −

(
∂2

sv + ∆Sn−1 v + (n− 1) v
)
− ρ 〈Ψ′′ +R(X0,Ψ)X0, θ〉p

+ ρ2L(v,Ψ),

where the (linear operator) L satisfies the usual assumptions.
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Lemma 5.3. The quadratic form associated to Lρ has the expansion

Bρ(v,Ψ) :=
∫

SNΓ
(|∂sv|2 + |∇θv|2 − (n− 1) v2)

+ ωn

∫
Γ
(|∂tΨ|2 − 〈R(Ψ,X0)Ψ,X0〉p)

+ ρ3/2 C(v,Ψ)

where v ∈ Π0H
1
ρ (SNΓ) ⊕ Π̃H1

ρ(SNΓ) (i.e. the Sobolev space H1(SNΓ)
defined with respect to the vector fields ∂s and ∂yj ), Ψ ∈ H1(Γ, NΓ), ωn

is a positive constant depending only on the dimension, and where C is a
quadratic form satisfying

|C(v,Ψ)| ≤ c

(∫
SNΓ

(|∂sv|2 + |∇θv|2 + v2) +
1
ρ

∫
Γ
(|∂tΨ|2 + |Ψ|2)

)

for some constant c > 0 independent of ρ.

Proof. For v and Ψ =
∑
ψjEj as in this statement, the fibrewise linear

function on SNΓ corresponding to Ψ is v̂ =
∑
ψjθj. We can either regard

Bρ as a quadratic form in the variables (v,Ψ) or in v + 1
ρ v̂. Then, by

definition
Bρ(v + v̂) =

∫
SNΓ

(Lρ(v,Ψ))(v +
1
ρ
v̂).

Inserting the expression (5.1) and integrating over Σρ, we obtain the
first summand in the expression for Bρ, involving only v, without difficulty.
Next, integrating over the spherical fibres of SNΓ, we have

−
∫

SNΓ
〈Ψ′′, θ〉〈Ψ, θ〉 =

n∑
j,k=1

∫
SNΓ

ψ′
jψ

′
kθjθk = ωn

n∑
j=1

∫
Γ
(ψ′

j)
2;

there is a similar reduction for the term in J of order 0 to an integral over
Γ. The error term leading to C arises from the error term in Lρ, as well as
the discrepancy in this last calculation caused by using the volume form on
SNΓ rather than the one on Σρ. The first of these error terms,∫

L(v,Ψ) (v +
1
ρ
v̂),

is almost of the correct form. However, since Lρ involves Ψ′′, this error
might include terms of the form vΨ′′, which are at first glance too big,
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since, integrating by parts, they equal ρ−1 ∂svΨ′. However, examining the
computations leading up to (2.24), one can check that Φ′′ only enters through
the term

ρ 〈N,Φ′′〉p(1 + O(ρ2) + L(w,Φ) +Q(w,Φ))

(recall that we compute ρ times the mean curvature), which has linearization

ρ 〈N,Ψ′′〉p(1 + O(ρ2) + L(w,Φ) +Q(w,Φ)) = ρ〈Ψ′′, θ〉p + O(ρ3)L(Ψ).

Hence, this gives, at worst, terms like ρ2 ∂svΨ′. It is much more straight-
forward to check that all the other terms in C satisfy the correct bounds. �

As usual, write v(s, y) = v0(s) + ṽ(s, y), where both summands are
orthogonal to the linear eigenfunctions ϕj , 1 ≤ j ≤ n; we also identify
v̂(t, y) := 〈Ψ, θ〉p. Thus, for v = v0 + 1

ρ v̂+ ṽ ∈ Π0H
1
ρ(SNΓ)⊕ Π̂H1(SNΓ)⊕

Π̃H1
ρ(SNΓ), we have the quadratic form

Bρ(v) = B0(v0) + B̂(v̂) + B̃(ṽ) + ρ2C(v),

where

B0(v0) := ωn

∫
Γ
(|∂sv0|2 − (n− 1) v2

0)

B̂(v̂) := ωn

∫
Γ
(|∂tΨ|2 − 〈R(Ψ,X0)Ψ,X0〉p)

B̃(ṽ) :=
∫

SNΓ
(|∂sṽ|2 + |∇θṽ|2 − (n− 1) ṽ2)

Assuming that ρ ∈ Ik = (ρ′k, ρ
′′
k), let us now compute the index of B.

Since this index is locally constant in ρ, we shall choose

ρ =
√
n− 1
4π

Λ
(

1
k

+
1

k + 1

)
,

which is directly in the middle of Ik.
Clearly, ∫

|∂sṽ|2 + |∇ṽ|2 + ṽ2 ≤ c B̃(ṽ).

Next, decompose v̂ = v̂++v̂−, where v̂± lies in the sum of the eigenspaces
of J with positive or negative eigenvalues, respectively. (Recall that this
operator is assumed to be non-degenerate, hence has no zero eigenspace.)
We then have ∫

|∂tv̂
+|2 + |v̂+|2 ≤ c B̂(v̂+)
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and ∫
|∂tv̂

−|2 + |v̂−|2 ≤ −c B̂(v̂−).

We can similarly decompose the remaining component v0 as v+
0 + v−0 ,

where v±0 lie in the eigenspaces corresponding to the positive or negative
eigenvalues of (LSNΓ)0 = ∂2

s + (n− 1). Using that ρ lies in the middle of Ik,
we can estimate ∫

|∂sv
+
0 |2 + |v+

0 |2 ≤ c ρ−1B0(v+
0 )

and ∫
|∂sv

−
0 |2 + |v−0 |2 ≤ −c ρ−1B0(v−0 ).

Using all of these estimates, we now obtain that

|C(v)| ≤ c ρ−1
(
B0(v+

0 ) −B0(v−0 )
)

+ c ρ−1
(
B̂(v̂+) − B̂(v̂−)

)
+ c B̃(ṽ)

for some constant c > 0 independent of ρ. This gives, in turn,

B′(v) ≤ Bρ(v) ≤ B′′(v)

where
B′′(v) = (1 + c ρ)

(
B0(v+

0 ) + ρ B̂(v̂+)
)

+ (1 − c ρ)
(
B(v−0 ) + ρ B̂(v̂−)

)
+ (1 + c ρ2) B̃(ṽ)

and
B′(v) = (1 − c ρ1/2)

(
B0(v+

0 ) + B̂(v̂+)
)

+ (1 + c ρ1/2)
(
B(v−0 ) + B̂(v̂−)

)
+ (1 + c ρ3/2) B̃(ṽ).

These upper and lower bounds on B imply that

Index (B′′) ≤ Index (Bρ) ≤ Index (B′).

The proof is completed by the following:

Lemma 5.4. When ρ is small enough, the index of B′ and B′′ are both
equal to Index (Γ) + 2 k + 1.
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Proof. If ρ is chosen so that 1−c ρ > 1/2, then the index of B′ and B′′ equals
the sum of the dimensions of the spaces on which B0 and B̂ are negative.
But these equal 2k + 1 and Index (Γ), respectively. �

5.3. Bifurcations in a degenerate case.

We consider in more detail the (very) degenerate case where (M,g) is the
flat torus T n+1 = S1 × R

n/aZn, a > 0 and Γ = S1 × {0}. After moding out
by all the continuous symmetries, the moduli space is still one-dimensional,
but has infinitely many singularities.

Each of the geodesic tubes Tρ(Γ) := Σρ = S1 × Sn−1(ρ) is CMC, with
mean curvature Hρ = (n − 1)/ρ. We only consider the case where Σρ is
embedded, i.e. when ρ < a/2. The Jacobi operator for Σρ is

Lρ = ∆Σρ + |AΣρ |2.

In terms of our standard cylindrical coordinates, t ∈ S1, θ ∈ Sn−1,

Lρ = ∂2
t +

1
ρ2

(∆θ + (n− 1)) .

Introducing eigendata {φk(t), k2} and {ψ�(θ), λ2
�} in each component, we see

that Lρ reduces to multiplication by B(k, �, ρ) = −k2 + ρ−2(n− 1 − λ2
�) on

the (k, �) eigenspace. Since λ2
� is always of the form j(n − 2 + j) for some

non-negative integer j, we have n− 1 − λ2
� ≤ 0 unless � = 0. This gives the

Proposition 5.5. The surface Σρ is always degenerate; its nullspace con-
sists of the span of the eigenmodes φ0(t)ψ�(θ), � = 1, . . . , n and, in case
ρ2 = (n − 1)/k2 for some k ∈ N, also φk(t)ψ0(θ).

The ‘trivial degeneracies’ are those comprised by the first set of elements,
which exist for all ρ. These correspond to the obvious geometric fact that
translating Σρ parallel to itself in any direction normal to Γ gives a family
of CMC surfaces with the same mean curvature. These can be eliminated
if we mod out by these symmetries. Namely, using linear coordinates x =
(x0, x1, . . . , xn) in T n+1, let G be the finite group generated by reflections
in the xj = 0 plane, j = 1, . . . , n.

Corollary 5.6. Acting on the space of G-invariant functions on SNΓ, the
Jacobi operator Lρ is degenerate if and only if ρ2 = (n− 1)/k2, k ∈ N.
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These degeneracies have a direct geometric explanation too, for it is precisely
at these radii where the family of ‘k-bump’ Delaunay surfaces begins to
develop.

We now have the picture that H(T n+1, S1, g0) consists of the union of
the interval (0, a/2)ρ and infinitely many other intervals (0, (n − 1)/k2]εk

,
where the variable εk is the Delaunay necksize in the kth bifurcating branch.
In other words, the moduli space looks like an open interval with infinitely
many spines sticking out of it. When the metric on T n+1 is perturbed gener-
ically, this moduli space smooths out; the singularity at each degenerate
radius disappears, and this ‘spiny interval’ breaks into infinitely many com-
ponents. The CMC surfaces for these slightly perturbed metrics are small
perturbations either of the geodesic tubes or else of the Delaunay surfaces,
except near the turning points. The gaps encountered in our construction
correspond exactly to the small regions around these degenerate radii where
the moduli space is curving away from the interval (0, a/2)ρ.

6. Limits of constant mean curvature foliations.

There is a sort of converse to Theorem 1.1 which we can prove regardless of
the dimension of Γ. Let Γ be a closed �-dimensional submanifold of Mn+1,
1 ≤ � ≤ n, and suppose that there exists a sequence of hypersurfaces Σj

such that

a) Σj has constant mean curvature (n−�)/nρj, where {ρj} is a decreasing
sequence with ρj ↘ 0;

b) Σj is isotopic in M \ Γ to the tube Tρj(Γ);

c) There exists a c > 0 such that Σj is contained inside Tcρj(Γ) for all j.

Item c) implies that Σj → Γ in Hausdorff distance; note also that we are
not requiring the existence of any sort of local foliation, just a sequence
of CMC hypersurfaces converging to Γ. We conjecture that some set of
hypotheses very near to these (for example, assuming also a bound on the
second fundamental form, as in the introduction, or that Σj is trapped
between the tubes of radius c′ρj and cρj for fixed constants 0 < c′ < c.)
should be enough to ensure that Γ is minimal. Unfortunately, this seems to
be quite difficult to prove, and so we shall restrict ourselves to a very special
situation by making a fourth, quite restrictive, hypothesis:

d) There exist functions wj ∈ C2,α(SNΓ), Φj ∈ C2,α(Γ, NΓ) satisfying

||wj ||C2,α + ||Φj ||C2,α ≤ cρ2
j



Foliations by constant mean curvature tubes 665

for some c > 0, independent of ρj , such that

Σj = Tρj (wj ,Φj).

Quite important (and potentially restrictive) here is that the norms of wj

and Φj are bounded in C2,α, not C2,α
ρ .

Theorem 6.1. Let Γ be a C2 compact embedded �-dimensional submanifold
of M for some 1 ≤ � ≤ n, and suppose that Σj is a sequence of CMC
hypersurfaces converging to Γ and satisfying the hypotheses a) – d). Then,
Γ is minimal.

The proof is based on an argument from geometric measure theory which
is now fairly standard in the analysis of such ‘condensation problems’, cf.
[1], [2].

We drop the subscript j and consider a functional for which each Σρ is
critical. The argument proceeds by writing the formula which expresses the
fact that the first variation of this functional vanishes, and then taking the
limit of this formula (in a very weak sense) as ρ → 0. The limiting first
variation equation implies the minimality of Γ.

Any one of the CMC hypersurfaces Σ = Σρ bound a compact domain
D(Σ), which is the component of M \ Σ containing Γ. Define the measure

dµΣ = dAΣ − nH dVΣ,

where H is the (constant) mean curvature of Σ and where we have set

dAΣ := Hn�Σ and dVΣ := Hn+1�D(Σ)

(Hk is k dimensional Hausdorff measure).
CMC hypersurfaces are critical for the functional Σ →

∫
dµΣ. In other

words, if X is any C2 vector field on M , and φt the associated one-parameter
family of diffeomorphisms, then

(6.1)
∫
dµφ∗

t Σ

∣∣∣∣
t=0

= 0.

We now compute this variation another way. In fact, for any hypersurface
Σ and any continuous function f , we derive that

∂t

∫
f dAφ∗

t Σ

∣∣∣∣
t=0

=
∫
Xf dAΣ +

∫
f (divX − 〈∇NX,N〉) dAΣ,
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where N is the unit normal to Σ, and similarly,

∂t

∫
f dVφ∗

t Σ

∣∣∣∣
t=0

=
∫
Xf dVΣ +

∫
f divX dVΣ.

Hence, setting f ≡ 1 and using (6.1), we obtain

(6.2) 0 = ∂t

∫
dµφ∗

t Σ

∣∣∣∣
t=0

=
∫

divX dµΣ −
∫

〈∇NX,N〉 dAΣ.

Next, let dLΓ = H��Γ and denote by ωn−� the volume of Sn−� with
respect to its standard metric (thus ωn−�/(n + 1 − �) is the volume of the
ball Bn+1−�).

Lemma 6.2. As ρ↘ 0,

ρ�−n dAΣρ ⇀ ωn−� dLΓ, and ρ�−n−1 dVΣρ ⇀
ωn−�

n+ 1 − �
dLΓ

in the sense of measures. In particular,

ρ�−n dµΣρ ⇀
ωn−�

n+ 1 − �
dLΓ

Proof. This follows from Fubini’s theorem and the fact that the functions
w and Φ appearing in the parametrization of Σ are uniformly controlled in
C2,α as ρ→ 0. �

On the other hand, we also have

Lemma 6.3. Let E1, . . . , En+1−� be a local orthonormal frame for NΓ.
Then, as ρ↘ 0,

ρ�−n 〈∇NX,N〉p dAΣρ ⇀
ωn−�

n+ 1 − �

∑
i

〈∇EiX,Ei〉p dLΓ

in the sense of measures.

Proof. As before, using Fubini’s theorem and the uniform control on w and
Φ, it suffices to check that this formula holds for the round sphere of radius
ρ in R

n+1 as ρ→ 0, where again the formula is a standard computation.
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Now, multiply (6.2) by ρ�−n and let ρ→ 0. From these two lemmas, we
conclude that ∫ (

divX −
∑

i

〈∇EiX,Ei〉
)
dLΓ = 0

On the other hand, if F1, . . . , F� is a local orthonormal frame for TΓ, then

divX =
�∑

j=1

〈∇FjX,Fj〉 +
n+1−�∑

i=1

〈∇EiX,Ei〉,

so this last equation is equivalent to∫ ∑
j

〈X,∇FjFj〉 dLΓ = 0.

Since the vector field X is arbitrary, we conclude that the normal component
of
∑

j ∇FjFj is equal to 0. This implies that the mean curvature of Γ
vanishes, i.e. that Γ is minimal. �

As already discussed at the beginning of this section, it would be much
nicer to prove this theorem under less stringent hypotheses. We conclude
by discussing this in more detail.

Suppose that there exist sequences of intervals Ik = (ρ′k, ρ
′′
k) in R

+ with
ρ′k, ρ

′′
k → 0, such that for each k and ρ ∈ Ik, there exists a CMC hypersurface

Σρ isotopic to Tρ(Γ) in M \Γ. Suppose, furthermore, that this hypersurface
satisfies:

a’) the hypersurfaces {Σρ}ρ∈Ik
form a local foliation;

b’) the mean curvature of Σρ equals n−�
n

1
ρ ;

c’) there exists a constant c > 0, independent of k and ρ ∈ Ik, such that

Σρ ⊂ Bρ(Γ) := {q ∈Mn+1 : distg(q,Γ) ≤ c ρ};

d’) there exists a constant c > 0, again independent of k and ρ ∈ Ik, such
that |AΣρ | ≤ c/ρ.

We conjecture that these hypotheses alone are sufficient to conclude that Γ
is minimal. Indeed, it is possible to prove many of the necessary facts, but
a few crucial ones seem much more difficult to obtain.

If we rescale Σρ from a point p ∈ Γ by the factor 1/ρ, we obtain a
family of CMC surfaces which are cylindrically bounded. We can obtain area
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bounds for these rescaled hypersurfaces, just as in [12], and so conclude that
at least along subsequences, this family converges to a complete embedded
cylindrically bounded hypersurface in R

n+1. It is known [5] (and also [8])
that all such hypersurfaces must lie in the family of Delaunay unduloids Dε;
however, using that the Σρ are leaves of a local CMC foliation, we obtain
a global bounded positive Jacobi field on the limiting surface, and it may
be checked directly that in the Delaunay family, only the cylinder admits
such a Jacobi field. Thus far, we have shown that, having fixed p ∈ Γ and
rescaling about this point, then some subsequence of these surfaces, say Σj,
converges to a cylinder with axis parallel to the rescaled limit of Γ. The first
difficulty is a standard one in the subject: if we knew the uniqueness of this
limit, then we could straightaway conclude the existence of functions wj and
Φj such that Σj = Tρj(wj ,Φj). We would also be able to conclude that

‖wj‖C2,α
ρ

+ ‖ρ−1
j Φj‖C2,α

ρ
= o(1).

However, we only obtain these bounds in C2,α
ρ , not C2,α. Because of this, we

are unable to obtain bounds on the volume of Σ of the form∫
Σρ

dAΣ ≤ Cρn−�;

on the other hand, it is quite straightforward to prove that
∫
D(Σρ) dVΣ ≤

Cρn+1−�. In any event, we are only able to show that the second conclusion
of Lemma 6.2 holds, and so, we are unable to take the weak limit of dµΣρ .
The final difficulty arises in proving the analogue of Lemma 6.3, and this is
the case because of the rather weak control we have for the derivatives of w
and Φ in the Γ direction.

Plausibly, the most general theorem of this sort would involve a sequence
of CMC hypersurfaces which are known to converge in Hausdorff distance,
and perhaps satisfying hypotheses a’) – d’). The conclusion should be that
Σρ converge to a minimal submanifold Γ, of some dimension �, away from
a set of Hausdorff measure smaller than �. For example, if � = 1, it is quite
conceivable that such a set of surfaces might converge to a broken geodesic
(satisfying certain constraints at the break points).
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Université Paris XII Val de Marne and Institut Universitaire de
France
Laboratoire d’Analyse et de Mathématiques Appliquées
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