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Square numbers, spanning trees and invariants

of achiral knots

A. Stoimenow
1

We give constructions to realize an odd number, which can be
represented as sum of two squares, as determinant of an achiral
knot, thus proving that these are exactly the numbers occurring
as such determinants. Later, we study which numbers occur
as determinants of prime alternating achiral knots, and obtain
a complete result for perfect squares. Using the checkerboard
coloring, then an application is given to the number of spanning
trees in planar self-dual graphs. Another application is some
enumeration results on achiral rational knots.

1. Introduction.

The main problem of knot theory is to distinguish knots (or links), i.e.,
smooth embeddings of S1 (or several copies of it, called components) into
R3 or S3 up to isotopy. A main tool for this is to find invariants of knots, i.e.,
maps of knot diagrams into some algebraic structure, which are invariant
under Reidemeister’s moves. A family of most popular such invariants are
the polynomial invariants, associating to each knot an element in some one-
or two-variable (Laurent) polynomial ring over Z. Given a knot invariant,
beside distinguishing knots with it, one is also interested in which properties
of knots it reflects, and in which way.

One of the most intuitive ways to associate to a knot (or link) L another
one is to consider its obverse, or mirror image !L, obtained by reversing the
orientation of the ambient space. The knot (or link) is called achiral (or
synonymously amphicheiral), if it coincides (up to isotopy) with its mirror
image, and chiral otherwise. When considering orientation of the knot, then
we distinguish among achiral knots between +achiral and −achiral ones,
depending on whether the deformation into the mirror image preserves or
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reverses the orientation of the knot. (For links, one has to attach a sign to
each component, and take into account possible permutations of the com-
ponents. Usually, one calls the link + or −achiral, if the orientation of
all components is preserved or reverted, without regard to their order, i.e.
allowing one component to be mapped to the mirror image of another.)

When the Jones polynomial V [24] appeared in 1984, one of its (at that
time) spectacular features was that it was (in general) able to distinguish
between a knot and its obverse by virtue of having distinct values on both,
and (hence) so were its generalizations, the HOMFLY, or skein, polynomial
P [18] and the Kauffman polynomial F [30]. The V , P and F polynomials of
achiral knots have the special property to be self-conjugate, that is, invari-
ant when one of the variables is replaced by its inverse. Their decades-old
predecessor, the Alexander polynomial ∆ [2], a knot invariant with values in
Z[t, t−1], was known always to take the same value on a knot and its mirror
image. Nevertheless, contrarily to common intuition, ∆ can also be used to
detect chirality (the property of a knot to be distinct from its mirror image)
by considering its value ∆(−1), called determinant.

The aim of this paper is to study invariants of achiral knots and to relate
some properties of their determinants to the classical topic in number theory
of representations of integers as sums of two squares.

After collecting some knot and number theoretic preliminaries in Sec-
tions 2.1 and 2.2 resp., we begin in Section 3 with recalling a criterion for
the Alexander polynomial of an achiral knot via the determinant, which fol-
lows from Murasugi’s work on the signature [41] and the Lickorish–Millett
[36] value of the Jones polynomial. These conditions show that, paradox-
ically formulated, although the Alexander polynomial cannot distinguish
between a knot and its mirror image, it can still sometimes show that they
are distinct.

Then, we show in Section 4.1 that the condition of Section 3 is in fact
a reduction modulo 36 of the exact arithmetic description of numbers, oc-
curring as determinants of achiral knots. Namely, an odd natural number
is the determinant of an achiral knot if and only if it is the sum of two
squares. The ‘only if’ part of this statement was an observation of Hartley
and Kawauchi in [21]. Our aim will be to show the ‘if’ part, that is, given
a sum of two squares, to realize it as the determinant of an achiral knot
(theorem 4.1). The main tool used is the definition of the determinant by
means of Kauffman’s state model for the Jones polynomial [31].

Then, we attempt to refine our construction, by producing achiral knots
(of given determinant) with additional properties: prime and/or alternat-
ing. Although it turns out that one of these properties can always easily be
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achieved, the situation turns harder when requiring them both simultane-
ously. We investigate this problem in Section 4.2. Now, the correspondence
of Section 4.1 does not hold completely, and there are exceptional values
of the determinant, that cannot be realized. To show that 9 and 49 are
such, we use a quadratic improvement of Crowell’s (lower) bound for the
determinant of an alternating knot in terms of its crossing number [9], in
the case the knot is achiral (Proposition 4.18). We obtain then a complete
result about which perfect squares can be realized as determinants of prime
alternating achiral knots (Theorem 4.21).

In Section 4.3, we consider the problem to describe determinants of un-
knotting number one achiral knots. In this case, the description is even less
clear, as we show by several examples.

Then, we give some applications, including enumeration results on ra-
tional knots in Section 5, and a translation of the previously established
properties to the number of spanning trees in planar self-dual graphs in Sec-
tion 6.1. As a different application, using the work of Hartley and Kawauchi
[21], one can construct many linear recurrent sequences, all of whose odd
members are perfect squares, by realizing these numbers as determinants of
strongly +achiral knots. A simple example is a particular family of achiral
3-braid links, called “turks head” links (see [26]). By the correspondence
between links and graphs, our particular sequence is found enumerating
spanning trees in certain “wheel” graphs. (Another, although unrelated,
occurrence of wheels in knot theory is explored in [3].)

Several open problems are suggested during the discussion throughout
the paper. These problems appear to be involved enough already for knots,
so that we waived on an analogous study of links (which are the cases cover-
ing the even natural numbers). For links, the unpleasant issue of component
orientations also becomes relevant.

2. Basic preliminaries.

We briefly clarify most of the basic concepts that will be employed in this
paper. (Further and more detailed definitions are still to follow.)

2.1. Knots and links.

In the following, knots and links will be assumed oriented, but sometimes
orientation will be irrelevant.

Henceforth, DK denotes the double branched cover of S3 over a knot K,
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associated to the canonical homomorphism π1(S3 \ K) → Z2. By H1 =
H1(DK) = H1(DK , Z), we denote its homology group over Z. H1 is a finite
commutative group of odd order. This order is called the determinant of
a knot K, and it will be denoted as det(K). (This generalizes to links L,
by putting det(L) = 0 to stand for infinite H1(DL).) Its name originates
from its expression (up to sign) as the determinant of a Seifert [49, p. 213]
or Goeritz [19] matrix.

The Jones polynomial V (introduced in [24], but now commonly used
with the convention of [25]) is a Laurent polynomial in one variable t of
oriented knots and links, and can be defined by being 1 on the unknot and
the (skein) relation

(2.1) t−1 V (L+) − t V (L−) = −(t−1/2 − t1/2)V (L0) .

Herein L±,0 are three links with diagrams differing only near a crossing.

(2.2)
L+ L− L0

We call the crossings in the first two fragments resp. positive and negative.
Replacing L+ by L− (resp. vice versa) is called switching (or changing)
a positive (resp. negative) crossing. The sum of the signs (±1) of the
crossings of a diagram D is called writhe of D and written w(D). w(D)
is invariant under simultaneous reversal of orientation of all components of
the diagram, so is in particular well-defined for unoriented knot diagrams.
It may, however, change if some (but not all) components of a link diagram
are reverted.

A different interpretation of the Jones polynomial than via skein rules
has been developed by Kauffman [31] (see also [1, Section 6.2]). The Kauff-
man state model is sometimes more useful than the skein approach, and
we shall also consider it below. Recall, that the Kauffman bracket 〈D〉 of
a(n unoriented) link diagram D is a Laurent polynomial in a variable A,
obtained by the sum

(2.3)
∑

stateS

A#A−#B
(−A2 −A−2

)|S|−1
.

Herein a state S is a choice of splittings (or splicings) of type A or B for any
single crossing, #A and #B denote the number of type A (resp. type B)
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splittings and |S| the number of (disjoint) circles obtained after all splittings
in S. Splittings are defined as follows:

AA

B

B

AA

B

B

The corner A (resp. B) or a crossing is the one passed by the overcrossing
strand when rotated counterclockwise (resp. clockwise) towards the under-
crossing strand. A type A (resp. B) splitting is obtained by connecting the
A (resp. B) corners of the crossing.

The Jones polynomial of a link L can be calculated from the Kauffman
bracket, by evaluating it on the (unoriented version of) a diagram D of L,
and then multiplying by a power of t coming from the writhe of D:

(2.4) VL(t) =
(
−t−3/4

)−w(D) 〈D〉 ∣∣∣
A=t−1/4

.

If we modify the skein relation for V by omitting the coefficients t∓1 of
L± on the left of (2.1), we obtain the skein relation for another (and more
classical) polynomial invariant, the Alexander polynomial ∆(t). Sometimes,
one also uses a topological definition of ∆, which is accurate only up to units
in Z[t, t−1] (see [49]). Both the Jones and Alexander polynomial allow to
express the determinant of K, as

det(K) =
∣∣∆K(−1)

∣∣ =
∣∣VK(−1)

∣∣ .
The signature σ is a Z-valued invariant of knots and links. Originally,

defined terms of Seifert matrices [49]. Most of the early work on the signature
was done by Murasugi [41], who showed several properties of this invariant.
In particular, the following property is known: if L± are as in (2.2), then

σ(L+)− σ(L−) ∈ {0, 1, 2} .(2.5)

(Note: In (2.5), one can also have {0,−1,−2} instead of {0, 1, 2}, since other
authors, like Murasugi, take σ to be with opposite sign. Thus, (2.5) not only
defines a property, but also specifies our sign convention for σ.)

It is known that σ(L) has the opposite parity to the number of compo-
nents of a link L, whenever the determinant of L is non-zero (i.e. H1(DL)
is finite). This, in particular, always happens for L being a knot, so that σ
takes only even values on knots. Therefore, for knots in (2.5) only 0 and 2
can occur on the right.
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The unknotting number u(K) of a knot K is defined as the minimal
number of crossing changes in any diagram of K needed to turn K into
the unknot (see e.g. [34, 60]). A consequence of the relation (2.5) is the
inequality u(K) ≥ |σ(K)/2|. This is one of the first, and still very valuable,
lower unknotting number bounds.

2.2. Number theory.

According to a claim of Fermat, written about 1640 on the margins of his
copy of Euclid’s “Elements”, proved in 1754 by Euler, and further simplified
to the length of “one sentence” in [65], any prime of the form 4x + 1 can be
written as the sum of two squares. More generally, any natural number n is
the sum of two squares if and only if any prime of the form 4x + 3 occurs in
the prime decomposition of n with an even power, and it is the sum of the
squares of two coprime numbers if and only if such primes do not occur at
all in the prime decomposition of n.

The number of representations as the sum of two squares is given by the
formula

r2(n) : =
1
4

#{ (m1,m2) ∈ Z2 : m2
1 + m2

2 = n } =
∑
d|n

(−4
d

)
(2.6)

= #{x ∈ N : 4x + 1 | n } −#{x ∈ N : 4x + 3 | n } ,
which has also an interpretation in the theory of modular forms (see [20,
(16.9.2) and theorem 278, p. 275] and [64]).

A number theoretic explanation of (2.6) is as follows: If we denote by χ
the (primitive) character

(−4
·
)
, with −4 being the discriminant of the field

of the Gauß numbers Q[i] and i =
√−1, we have for �(s) > 1, using that

Q[i] has class number 1 and 4 units, that
(2.7)

∞∑
n=1

r2(n)
ns

= ζQ[i](s) = ζ(s)L(s, χ) =
∏

p prime

1
(1− p−s)(1− χ(p)p−s)

,

from which the formula follows by considering the Taylor expansion in p−s

of the different factors in the product. (This series converges for �(s) > 1.)
The ζ-function identities also give a formula for

(2.8) r0
2(n) :=

1
4

#{ (a, b) ∈ Z2 : (a, b) = 1, a2 + b2 = n },

the number of representations of n as the sum of squares of coprime numbers.
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We have

∞∑
n=1

r0
2(n)
ns

=
ζQ[i](s)
ζ(2s)

=
ζ(s)L(s, χ)

ζ(2s)

(2.9)

=
∏

p prime

1− p−2s

(1− p−s)(1 − χ(p)p−s)
= (1 + 2−s)

∏
p ≡ 1 (4)
prime

1 + p−s

1− p−s
.

Thus,
(2.10)

r0
2(n) =

 2k if n = pd1
1 · · · · · pdk

k or 2pd1
1 · · · · · pdk

k
with p1 < p2 < · · · < pk primes ≡ 1 mod 4 and di > 0

0 else
.

Note, that for n > 1,

(2.11) r0
2(n) = #{ (a, b) ∈ N2 : (a, b) = 1, a2 + b2 = n } ,

and for n > 2, we have

(2.12)
r0
2(n)
2

= #{ (a, b) ∈ N2 : (a, b) = 1, a ≤ b, a2 + b2 = n } .

Define the continued fraction for a sequence (a1, . . . , an) of integers:

[[a1, . . . , an]] := a1 +
1

a2 + 1
... an−1+ 1

an

.

Hereby, we use the usual conventions 1
0 = ∞, ∞ + ∗ = ∞, 1

∞ = 0 for the
degenerate cases.

3. Detecting chirality with the determinant.

In this section, some mostly standard knot theoretic observations are col-
lected in a way to explain and motivate our following investigations.

It is well-known that for any knot K the Alexander polynomial ∆K(t),
normalized so that ∆(t) = ∆(1/t) and ∆(1) = 1, satisfies ∆K(t) = ∆!K(t).
This means that the Alexander polynomial does not distinguish a knot from
its mirror image. Its successors (usually) do better. The Jones polynomial
satisfies VK(t) = V!K(t−1).
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The skein polynomial P [18] is a Laurent polynomial in two variables l
and m of oriented knots and links and can be defined by being 1 on the
unknot and the skein relation

(3.1) l−1 P
(
L+

)
+ l P

(
L−
)

= −m P
(
L0

)
,

with L±,0 as in (2.2). (This convention uses the variables of [35], but dif-
fers from theirs by the interchange of l and l−1.) It satisfies PK(l,m) =
P!K(l−1,m). A similar identity holds for Kauffman’s polynomial [30]. Such
relations mean that achiral knots K (i.e. knots with K =!K) have self-
conjugate polynomials (in one of the variables). In contrast to ∆, this prop-
erty is not automatic, and so allows for a chirality test. This test is, however,
not perfect. The popular example of a chiral knot K (i.e. with K �=!K) but
self-conjugate polynomials is 942 in the tables of [49, appendix].

Let us recall a paradox appearing argument showing only using ∆942 =
∆!942 that 942 �=!942. For this (and also for the purpose of the main work in
this paper) we will be concerned with the determinant.

We start first by describing two special cases of the exact property of the
determinant of achiral knots, which we will formulate subsequently, because
they have occurred in independent contexts and deserve mention in their
own right. They allow us to decide about chirality of a knot K, at least for
11/18 of the possible values of the determinant.

Proposition 3.1. For any achiral knot K, we have
∣∣∆K(−1)

∣∣ mod 36 ∈
{1, 5, 9, 13, 17, 25, 29}.

Proof. There is an observation (originally likely, at least implicitly, due to
Murasugi [41], and applied explicitly in [52]), using the sign of ∆(−1) (with
∆ normalized as specified). The information of this sign is equivalent to
the residue σ mod 4. Whenever ∆(−1) < 0, we have σ ≡ 2 mod 4, so in
particular σ �= 0, and the knot cannot be achiral. This argument applies
for example (but not only) for the knot 942. Note that the normalization
∆(1/t) = ∆(t) implies ∆(1) ≡ ∆(−1) mod 4, so that if ∆(1) = 1, the
property ∆(−1) < 0 is also equivalent to det(K) = |∆(−1)| ≡ 3 mod 4
(while det(K) ≡ 1 mod 4 ⇐⇒ ∆(−1) > 0).

Another way to deduce chirality from the determinant is to use the sign
of the Lickorish–Millett value V

(
eπi/3

)
[36]. Attention to it was drawn in

[60], where it was used to calculate unknotting numbers. Using some of
the ideas there, in [54], we observed that this sign implies that if for an
achiral knot 3 | ∆(−1), then already 9 | ∆(−1). Thus, for example, also
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the chirality of 77 can be seen already from its Alexander polynomial, as in
this case ∆(−1) = 21 (although the Murasugi trick does not work here, and
indeed σ = 0).

Combining both criteria, we obtain the claim. �

An easy verification shows that all these residues indeed occur.
In view of these opportunities to extract chirality information out of ∆,

it appears appropriate to introduce a clear distinction between the terms
‘detecting chirality of K’, meant in the sense ‘showing that K and !K are
not the same knot’ (which can be achieved by the above tricks) and ‘dis-
tinguishing between K and !K’, meant in the sense ‘identifying for a given
diagram, known a priori to belong to either K or !K, to which one of both
it belongs’ (what they cannot accomplish, but what is the usually imagined
situation where some of the other polynomials is not self-conjugate).

The following simple arithmetic consequence is included because of its
knot theoretical interpretation, and as it is the starting point of exhibiting
some more interesting phenomena described in the next sections.

Recall, that a knot K is rational (or 2-bridge), if it has an embedding
with a Morse function having only four critical points (2 maxima and 2 min-
ima). Such knots were classified by Schubert [50], and can be alternatively
described by their Conway notation [8]. See for example [1, Section 2.3] for
a detailed description. It is well-known that rational knots are alternating
(see [5, Proposition 12.14, p. 189]).

Corollary 3.2. Let p/q for (p, q) = 1, p odd be expressible as the continued
fraction

[[a1, . . . , an, an, . . . , a1]] := a1 +
1

a2 + 1
... a2+ 1

a1

for a palindromic sequence (a1, . . . , an, an, . . . , a1) of even length. Then,
|p| ≡ 1 or 5 mod 12.

Proof. Observe that |p| is the determinant of the achiral rational knot with
Conway notation (a1 . . . anan . . . a1). The above proposition 3.1 leaves us
only with explaining why 9 � p. The implication 3 | det(K) =⇒ 9 | det(K)
for K achiral uses V

(
eπi/3

)
, counting the number t3(K) of torsion coefficients

of the Z-module H1(DK) divisible by 3 (see [36]). Since self-conjugate poly-
nomials have real values on the complex unit circle, it follows that t3(K)
is even. However, for a rational knot K, H1(DK) is cyclic and non-trivial
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(DK is a lens space), so that there is only one torsion number at all. Thus,
H1(DK) for any achiral rational knot K cannot have any 3-torsion. �

4. Sums of two squares and determinants of achiral knots.

4.1. Realizing sums of two squares as determinants.

The aim of this section is to establish a partially conjectural correspondence
between sums of two squares and the determinant of achiral links. The study
of this relation was first initiated in [21], where it was observed that a result
of Goeritz [19] implies that the determinant of an achiral knot is the sum of
two squares. We shall show here the converse. In fact, we have

Theorem 4.1. An odd natural number n occurs as determinant of an achi-
ral knot K if and only if n is the sum of two squares a2+b2. More specifically,
K can be chosen to be alternating or prime, and if one can choose a and b
to be coprime, then we can even take K to be rational (or 2-bridge).

Note, that we have given an argument different from that of Hartley
and Kawauchi for the reverse implication “modulo 36”. The congruences
in Proposition 3.1 are exactly those which odd sums of two squares leave
modulo 36. Clearly, not every number satisfying these congruences is the
sum of two squares. The simplest example is 77.

Additionally to the general case, we also have a complete statement for
rational knots.

Theorem 4.2. An odd natural number n is the determinant of an achiral
rational knot if and only if it is the sum of the squares of two coprime
numbers.

The coprimality condition is clearly restrictive – for example, 49 and
121 are not sums of the squares of two coprime numbers. Moreover, it also
implies the congruence modulo 12 proved in corollary 3.2.

Fermat’s theorem (see the beginning of Section 2.2) can now be knot-
theoretically reformulated for example as

Corollary 4.3. If n = 4x + 1 is a prime, then there is a rational achiral
knot with determinant n.

Proof. We have n = a2 + b2 and as n is prime, a and b must be coprime. �



Square numbers, spanning trees and invariants of achiral knots 601

We start by a Proof of Theorem 4.2. For this, recall Krebes’s invariant
defined in [33]. Any tangle T can be expressed by its coefficients in the
Kauffman bracket skein module of the room with four in/outputs (see [57]):

(4.1) T = A + B .

Definition 4.4. For a tangle T , we call T the numerator closure

of T and T the denominator closure of T .

When specializing the bracket variable to
√

i (i denotes henceforth
√−1),

A and B in (4.1) become scalars.
Then, Krebes’s invariant can be defined by

Kr(T ) :=
A

B
= (A,B) ∈ Z× Z/(p, q) ∼ (−p,−q) .

The denominator and numerator of this “fraction” give the determinants of
the two closures of T . If T is a rational tangle with Kr(T ) = p/q with p odd,
then the denominator closure of T is a rational knot denoted by Schubert
[50] as S(p, q).

Proof of Theorem 4.2. A rational achiral knot (a1 . . . anan . . . a1) is of the
form

(4.2) K =

T

T ,

where T = (a1 . . . an) is a rational tangle and T its mirror image. Because
of connectivity reasons, T must be of homotopy type or , i.e.
Kr(T ) = [[a1, . . . , an]] = p

q with (p, q) = 1, and exactly one of p and q is

odd. Thus, K is the numerator closure of the tangle sum T + T
T , where . T

denotes transposition. By the calculus introduced by Krebes, his invariant
is additive under tangle sum, and invertive under transposition, and so, we
have

det(K)
∗ = Kr(T + T

T ) = Kr(T ) +
1

Kr(T )
=

p

q
+

q

p
=

p2 + q2

pq
.
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To justify our choice of sign in this calculation, that is, that the determinant
is p2 + q2 rather than p2 − q2, it suffices to keep in mind that the diagram
(4.2) is alternating and in calculating the bracket of alternating diagrams
no cancellations occur, as explained also in [33]. Thus, we have the ‘only if’
part.

For the ‘if’ part, note that if a and b are coprime, then a
b can be expressed

by a continued fraction, and hence, as Kr(T ) for some rational tangle T .
Then, a2 + b2 (with the above remark on signs) is the determinant of the
achiral knot shown in (4.2). �

Now, we modify the second part of the proof to deduce Theorem 4.1. In
the following, we use Conway’s notation for tangle sum and product. (See,
for example, again [1, Section 2.3] for a detailed description.)

Proof of Theorem 4.1. Let n = p2+q2. If q = 0, then K = T (2, p)#T (2,−p)
(with T (2, p) denoting the (2, p)-torus knot) is an easy example, so let q �= 0.
Krebes shows that for any pair (p, q) with at least one of p and q odd, there
is a(n arborescent) tangle T with Kr(T ) = p

q . In fact, T can be chosen to be
the connected sum of a rational tangle and a knot of the type T (2, p) (which
can be done in a way the tangle remains alternating). Then, again consider
the knot in (4.2) (it is a knot because of the parities of p and q), and from
the proof of Theorem 4.2 one sees that it has the desired determinant n.

The knots constructed in (4.2) then are all alternating. It remains to
show that they can be made prime (possibly sacrificing alternation). If
(p, q) = 1, then K is rational, and hence prime. Thus, let n = (p, q) > 1.
Then, we can choose T to be of the form

(4.3)
T ′

︸ ︷︷ ︸
n half−twists

,

that is, in Conway’s notation, T = (n · ∞) · T ′ with a tangle T ′ being a
rational tangle a/b with a = p/n, b = q/n.

Now, replace the ∞-tangle in (4.3) by the “KT-grabber” tangle KT in
[4, 17]. By the same argument as in [17] (or see also [32, 47]), the tangle T1 =
(n ·KT ) · T ′ becomes prime, and hence so is then the knot K1 = T1 · T1 by
proposition 1.3 of [4] (bar denotes tangle closure). As in [4], K1 and K have
the same Alexander polynomial, so in particular, the same determinant. �
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Example 4.5. To demonstrate the elegance of theorem 4.1 as a chirality
criterion, we remark that among the prime knots of ≤ 10 crossings (denoted
henceforth according to Rolfsen’s tables [49, appendix]) there are 6 chiral
knots with self-conjugate HOMFLY polynomial – 942, 1048, 1071, 1091, 10104

and 10125, and this method shows chirality of four of them – 942, 1071, 10104

and 10125, including the two examples (942 and 1071) where additionally,
even the Kauffman polynomial is self-conjugate. (For 942 and 10125, the
congruence modulo 4 is violated, so that, as remarked on several other places,
the signature works as well.)

Remark 4.6. Since slice knots have square determinant, it also follows that
if there exists a rational knot S(p, q) which is at the same time achiral and
slice, then it will correspond to a Pythagorean triple, that is, be of the
Schubert form S

(
(m2 + n2)2, 2mn(m2 − n2)

)
with m and n coprime.

With regard to theorem 4.1, we conjecture an analogous statement to
hold for links.

Conjecture 4.7. An even natural number n occurs as determinant of an
achiral link if and only if n is the sum of two squares.

Note that by the above description of (both even or odd) numbers which
are sums of two squares, the set of such numbers is closed under multi-
plication, corresponding to the level of determinants to taking connected
sums.

More theoretic results on the square representations (which as said above
can also be transcribed knot-theoretically) may be found in [29, 61].

4.2. Determinants of prime alternating achiral knots.

Theorem 4.1 naturally suggests the question of how far the properties alter-
nation and primeness can be combined when realizing a sum of two squares
as determinant of achiral knots.

In this case, the situation is much more difficult, though. It is easy to see
that not every (odd) sum of 2 squares can be realized. The first (and trivial)
example is 1, since the only alternating knot with such determinant is the
unknot [9], and it is by definition not prime. However, there are further
examples.

Proposition 4.8. Let n = 9 or n = 49. Then, there is no prime alternating
achiral knot of determinant n.
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For its understanding and proof, we recall some standard terminology
and results on knot diagrams.

Definition 4.9. The diagram on the left of Figure 1 is called connected sum
A#B of the diagrams A and B. If a diagram D can be represented as the
connected sum of diagrams A and B such that both A and B have at least
one crossing, then D is called disconnected (or composite), else it is called
connected (or prime). Equivalently, a diagram is prime if any closed curve
intersecting it in exactly two points does not contain a crossing in one of its
interior or exterior.

If a diagram D can be written as D1#D2# · · · #Dn, and all Di are
prime, then they are called the prime (or connected) components/factors of
D.

Definition 4.10. The diagram is split, if there is a closed curve not inter-
secting it, but which contains parts of the diagram in both its interior and
exterior.

A # B = A B

Figure 1.

Definition 4.11. A crossing q in a link diagram D is called nugatory, if
there is a closed (smooth) plane curve γ intersecting D transversely in q and
nowhere else. A diagram is called reduced if it has no nugatory crossings.

Theorem 4.12. ([38]) An alternating reduced diagram of a link L is prime
iff L is prime.

Definition 4.13. Let c(D) be the crossing number of a link diagram D.
Let c(L) be the crossing number of a link L, which is the minimal crossing
number of all diagrams D of L.

By Kauffman–Murasugi–Thistlethwaite, we have

Theorem 4.14. ([31, 43, 58]) Each alternating reduced diagram is of min-
imal crossing number (for the link it represents).
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p
PQ −→

p P
Q

Figure 2: A flype near the crossing p

Definition 4.15. A flype is a move on a diagram shown in Figure 2.

By the fundamental work of Menasco–Thistlethwaite, we have

Theorem 4.16. ([39]) For two alternating diagrams of the same prime al-
ternating link, there is a sequence of flypes (and S2-moves) taking the one
diagram into the other.

In [9], Crowell proved a lower bound on the determinant of alternating
links. (A more modern proof can be given for example by the Kauffman
bracket.)

Theorem 4.17. (Crowell) If L is a non-split alternating link of crossing
number c(L) = n, then det(L) ≥ n, and if L is not the (2, n)-torus link,
then det(L) ≥ 2n− 3.

By this theorem, one has a bound on the crossing number of an alter-
nating knot of given determinant, so could check for any n in finite time
whether it is realized or not. This renders the check for n = 9 easy. How-
ever, the estimate we obtain from Crowell’s inequality is intractable in any
practical sense for n = 49. We require an improvement of Crowell’s result
for achiral alternating links, which relies on his work.

Proposition 4.18. If L is an alternating non-split achiral link of 2n cross-
ings, then det(L) ≥ n(n− 3).

Since, we use the checkerboard colorings for the proof, this property
holds for the most general notion of achirality for links – we allow the isotopy
taking a link to its mirror image to interchange components and/or preserve
or reverse their orientations in an arbitrary way. We will define, however,
checkerboard colorings later, in Section 6.1, so that we defer the proof of
Proposition 4.18 to that later stage.

Remark 4.19. The condition the crossing number of L to be even is no
restriction. The crossing number of any alternating achiral (in the most
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general sense, as remarked after Proposition 4.18) link diagram D is even
by [39], since flypes preserve the writhe of the alternating diagram, and
reversal of any single component alters the writhe by a multiple of 4. (Any
two components have an even number of common crossings by the Jordan
curve theorem.) Thus, w(D) ≡ −w(D) mod 4, and the writhe must be even,
and hence so must be the crossing number.

Proof of Proposition 4.8. This is now feasible. Check all the alternating
achiral knots in the tables of [23] up to 16 crossings. �

There is some possibility that the values of proposition 4.8 are indeed
the only exceptions.

Conjecture 4.20. Let n be an odd natural number. Then, n is the deter-
minant of a prime alternating achiral knot if and only if n is the sum of two
squares and n �∈ {1, 9, 49}.

At least this is true up to n ≤ 2000. A full confirmation of this conjecture
is so far not possible, but, we obtain a complete statement for n being a
square.

Theorem 4.21. Let n be an odd square. Then, n is the determinant of a
prime alternating achiral knot if and only if n �∈ {1, 9, 49}.

Definition 4.22. Let L = Q[t, t−1] be the Laurent polynomial ring in one
variable. For X,Y ∈ L write X ∼ Y if X and Y differ by a multiplicative
unit in Z[t±1], that is, X(t) = ±tnY (t) for some n ∈ Z. For Y ∈ L and
a ∈ Z, let [Y ]ta = [Y ]a be the coefficient of ta in Y .

Recall, that a knot K is called strongly achiral, if it admits an em-
bedding into S3 pointwise fixed by the (orientation-reversing) involution
(x, y, z) �→ (−x,−y,−z). Again, depending on the effect of this involution
on the orientation of the knot, we distinguish between strongly +achiral and
strongly −achiral knots. In [21], properties of the Alexander polynomial of
strongly achiral knots are proved.

Theorem 4.23. ([21]) If K is strongly negative amphicheiral, then ∆(t2) ∼
F (t)F (−t) for some F ∈ L with F (−t) ∼ F (t−1). If K is strongly positive
amphicheiral, then ∆(t) = F (t)2 for some F ∈ L with F (t) ∼ F (t−1).
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For strongly positive amphicheiral knots, Hartley and Kawauchi show
more strongly that the Alexander module is a double A⊕A. The same proof
applies for strongly positive amphicheiral links, except in the case, when the
Alexander module is not (completely) torsion, but then the Alexander poly-
nomial vanishes. Thus, the Alexander polynomial (and in particular, the
determinant) is always a square for strongly positive amphicheiral knots and
links. This provides some heuristics for the proof of Theorem 4.21. There-
fore, although theorem 4.23 is not formally used now, it seems appropriate
to mention it here.

Let SDn be the n-strand Kauffman diagram algebra given in [30, defi-
nition 3.5] with the special parameter A =

√
i (where i =

√−1; so that a
separate loop trivializes). It can be shown (see [30, Theorem 4.3]) that SDn

is linearly generated by the Cn loop-free diagrams connecting a pair of n+n

points on the bottom and on the top by n lines, where Cn =
1

n + 1

(
2n

n

)
is

the n-th Catalan number. For example, for n = 3, we have the following 5
elements:

(4.4) , , , , .

These diagrams also form a basis, as the pairing

〈
T1 , T2

〉
n

=

 1 if the meander T
2

T
1

has one loop ,

0 else .

is non-degenerate (see formula (5.18) of [12]). The dimension of SDn is
therefore Cn. The standard multiplicative generators of SDn are

si =
i i+1

.

The multiplication in SDn is given by stacking up and eventual killing of
the resulting diagram if it has a loop. For example, in SD3, we have

s2
2 =

( )2
= 0 .

Proof of Theorem 4.21. Since n is a square, it is suggestive by the result
of [21] to consider strongly +achiral knots as candidates to realize n as
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T1

T2

0 0 0 1 1

0 1 0 0 0

0 0 1 0 0

1 0 0 0 1

1 0 0 1 0

Table 1.

determinant. We consider diagrams of the type

D(T1) =

T1

T1

and the pairing < T1, T2 > on SD3(A =
√

i) given by Table 1. We have

< T1, T2 > = 〈T2, δ
−1T2δ 〉3 ,

where δ = σ1σ2σ1 is the 3-strand half-twist, and σi are the usual Artin braid
generators.

Then, det(D(T1)) =< T1, T1 >. Let T be a tangle

T1

T2

with T1 = A + B and T2 = X + Y . Then,

T = a + b + c + d + e
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with

a = XA

b = d = BX

c = AX + BY + AY

e = BY ,

and

< T, T > = [(X + Y )(A + B)]2 .

Whenever (X,Y ) and (A,B) are relatively prime, and X,Y,A,B > 0, one
can substitute rational tangles for T1,2 obtaining a prime alternating diagram
of a strongly +achiral knot. Setting X = B = 1 and varying Y and A, we
see that we can cover all cases when n = p2 with p composite.

Since we dealt with p = 1, it remains to consider p prime. If p ≡
1 mod 4, then (2.6) shows that n has a non-trivial representation as sum of
two squares, which then must be coprime. In this case, there is an achiral
rational knot of determinant n.

Thus, assume n = p2 with p ≡ 3 mod 4 prime. We show now that almost
all (not necessarily prime) p ≡ 3 mod 4 can be realized.

Consider diagrams D(T ) for T of the form

T2

T1

T3

with T1 = X + Y , T2 = A + B and T3 = C + D . We
find after multiplying out the polynomial and some manipulation

< T, T > = [X(DA + BC) + Y (BD + AC)]2 .

Set X = 1 and let Y = k vary. The rest is done by choosing small special
values for A,B,C,D.
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D B A C DA + BC BD + AC
√

< T, T > T2 T3

① 2 3 2 1 7 8 7 + 8k

② 2 7 2 1 11 16 11 + 16k

③ 4 3 4 1 19 16 19 + 16k

Examples of the knots thus obtained are given in Figure 3.

①, Y = 4 ②, Y = 3 ③, Y = 3

Figure 3.

All diagrams (and hence knots [38]) are prime for k ≥ 1. Thus, the only
cases remaining to check are for

√
n = p ∈ {3, 7, 11, 19}. For p = 11, we

have 10123, and for p = 19, we check the knots in the tables of [23]. We
obtain the examples 121019 (the closure of the 5-braid (σ1σ

−1
2 σ3σ

−1
4 )3) and

1418362 (the closure of the 3-braid σ2
1σ

−3
2 σ2

1σ
−2
2 σ3

1σ
−2
2 ). The cases p = 3, 7

were dealt with in Proposition 4.8. �

Remark 4.24. We showed that in fact, we can realize any n stated in the
theorem by a strongly +achiral or rational knot, so, in particular, by a
strongly achiral knot, since an achiral rational knot is known to be strongly
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−achiral (see [21]). It may be possible to eliminate the need of rational
knots when allowing the further exception n = 25.

To examine the general case of n (not only perfect squares), one needs
to consider larger series of examples. Because of Theorem 4.23, the knots
should not (only) be strongly +achiral. We just briefly discuss one series to
explain some of the occurring difficulties.

A natural way to modify the examples in the proof of theorem 4.21 to
be −achiral is to consider (braid type) closures of tangles like

(4.5)
T

3

T
2

T
1

!T
3

!T
2

!T
1 .

By choosing arborescent alternating tangle diagrams T1,2,3, this pattern
gives rise to a series of achiral alternating knots. However, we have

Claim 4.25. Infinitely many n, which are sums of two squares, are not
realized as determinants of the alternating closure of (4.5) for arborescent
alternating diagram tangles T1,2,3.

Remark 4.26. Note that an alternating (and) arborescent tangle may not
have an alternating (and) arborescent diagram. Take, for example, the 3-
braids σ3

1σ
2
2σ

−2
1 σ−3

2 or σ3
1σ

3
2σ

−3
1 σ−3

2 , and close up one strand. The braids
can be turned into alternating words whose closure gives the alternating
diagrams of the knots 817 and 1099, and these alternating diagrams are not
arborescent.

Proof. Using the Kauffman bracket skein module coefficients

T
1 = A + B ,

T
2 = C + D ,

T
3 = X + Y ,

one finds, as before, an expression for det(K) as polynomial in
A,B,C,D,X, Y and after some manipulation, arrives at det(K) = f2

1 + f2
2

with

f1(A,B,C,D,X, Y ) = X(AD + BC) + Y (AC + BD) and(4.6)
f2(A,B,C,D,X, Y ) = Y (AD −BC) .
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The correctness of the square decomposition is straightforward to check,
but for finding it, it is helpful to notice that the substitutions Y = 0 and
A = C, B = D turn the knots into strongly +achiral ones. Since we know
that such knots have square determinant, it is suggestive that each of the
above substitutions makes one of f1 or f2 vanish.

Consider a number of the form n = 5p2 with p ≡ 3 mod 4 prime. As-
sume, n can be written as f2

1 +f2
2 with f1,2 as in (4.6) for A,B,C,D,X, Y ∈

N. Then, {f1, f2} = {p, 2p}, since obviously f1, f2 ≥ 0, and for so restricted
f1,2, the representation n = f2

1 + f2
2 is unique up to interchange. Starting

with the product form of f2, and making a slightly lengthy, but straightfor-
ward calculation in cases, one then finds that {A,B}, {C,D} or {X,Y } is
one of {0, p}, {p, p}, or {p, 2p}. However, it is an easy inductive exercise us-
ing Krebes calculus to prove that no alternating arborescent diagram tangle
Ti has such pair of Kauffman bracket skein module coefficients. Therefore,
the above series cannot realize determinants of this form. �

Of course, the template (4.5) is not exhaustive, and indeed, on the other
hand, the small cases of the form n = 5p2 (for p ≤ 11) are realized by knots
with alternating diagrams of Conway polyhedron 8∗.

Then, one can consider more patterns and write down more complicated
polynomials, every time wondering whether each (at least sufficiently large)
number is realized by (at least some of) these polynomials. Presently, such
problems in number theory seem very difficult. (One classic example is the
determination of the numbers G(n) and g(n) in Waring’s problem, see for
example [11, 22, 20].) Therefore, Conjecture 4.20 may be hard to (confir-
matively) approach as of now.

4.3. Determinants of unknotting number one achiral knots.

We conclude our results on sums of two squares by a related, although some-
what auxiliary, consequence of the unknotting number theorem of Lickorish
[34] and its refined version given in [54].

Let u± denote the signed unknotting number, the minimal number of
switches of crossings of a given sign (see (2.2)) to a crossing of the reversed
sign needed to unknot a knot, or infinity if such an unknotting procedure is
not available. (This is somewhat different from the definition of [6].)

Thus, a knot K has u+(K) = 1 (resp. u−(K) = 1) if it can be unknotted
by switching a positive (resp. negative) crossing in some of its diagrams.



Square numbers, spanning trees and invariants of achiral knots 613

Proposition 4.27. Let K be a knot with u+ = u− = 1 (for example,
an achiral unknotting number one knot). Then, det(K) is the sum of two
squares of coprime numbers.

Proof. Clearly, σ(K) = 0, so that any of the relevant crossing changes do not
alter the signature. Now, consider the linking form λ on H1(DK) ([34]). For
g, h ∈ H1(DK) and n = det(K), the pairing λ(g, h) ∈ Q/Z is defined as 1/n
times the algebraic intersection number of g with a surface bounding n · h
(which is homologically trivial). By the refinement of Lickorish’s theorem
given in [54], the properties u+ = u− = 1 imply λ(g±, g±) = ±2/n ∈ Q/Z
for some generators g± of H1(DK). Thus, 2l2 = −2h2 for some l, h ∈ Z∗

n.
The structure of the group Z∗

n of units in Zn = Z/nZ is known; see e.g. [63,
Exercise 1, Section 5, p. 41]. From this structure and (2.10), we see that the
number of square roots of −1 in Z∗

n (for n > 1 odd) is identical to r0
2(n). (D.

Zagier remarked to me that one can in fact give a natural bijection between
the square roots of −1 in Z∗

n and representations of n as sum of coprime
squares.) Now, when 2l2 = −2h2, then Z∗

n possesses square roots of −1. �

There are also several questions opened by proposition 4.27. Setting

S := { a2 + b2 : (a, b) = 1, 2 � a + b } ,

we have the inclusions

Sa : = {det(K) : K achiral, u(K) = 1 }
⊂ S± := {det(K) : u+(K) = u−(K) = 1 } ⊂ S .

It is a natural question whether (and which of) these inclusions are proper.
This seems much more difficult to decide than the proof of Theorems 4.1

and 4.2. There is no such straightforward procedure available to exhaust all
values in S, and to show a proper inclusion, one will face the major problem
of deciding about unknotting number one.

After a computer experiment with the knot tables and tools available to
me, the smallest x ∈ S I could not decide to belong to S± is 349, whereas
the smallest possible x ∈ S with x �∈ Sa is only 17. Contrary to Theorems
4.1 and 4.2, very many entries have been completed only by non-alternating
knots (which have smaller determinant than the alternating ones of the same
crossing number), and in fact, we can use the number 17 to show that for
this problem non-alternating knots definitely need to be considered.
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Example 4.28. From theorem 4.17, we see that except for the (2, 17)-torus
knot, any alternating knot of determinant 17 has ≤ 10 crossings. A direct
check shows that the only such knots of σ = 0 are 83 and 101. However,
u(83) = 2 as shown by Kanenobu–Murakami [28], and that 101 cannot
simultaneously have u+ = u− = 1 follows by refining their method (see [53]).
Thus, there is no alternating knot of determinant 17 with u+ = u− = 1, and
the inclusion

Sa± := {det(K) : K alternating, u+(K) = u−(K) = 1 } ⊂ S

is proper. (Contrarily, there is a simple non-alternating knot, 944, with u+ =
u− = 1 and determinant 17.) Is it infinitely proper, i.e., is |S \ Sa±| =∞ ?

It is suggestive that considering the even more restricted class of ratio-
nal knots, the inclusions are infinitely proper. We confirm this for achiral
unknotting number one rational knots.

Proposition 4.29. S \ {det(K) : K achiral and rational, u(K) = 1 } is
infinite. (In fact, this set contains infinitely many primes.)

Proof. These knots were classified in [55, Corollary 2.2] to be those with
Conway notation (n11n) and (3(12)n14(21)n3). It is easy to see therefore
that the inclusion

{det(K) : K achiral and rational, u(K) = 1 } ⊂ S

is infinitely proper. For example, the determinant of both series grows
quadratically resp. exponentially in n, so that∑

K = S(p, q)
achiral, u(K) = 1

1
p

< ∞ ,

while
∑
p∈S

1
p

= ∞. (Already, by Dirichlet
∑

p ≡ 1 (4)
prime

1
p

= ∞ , see [63,

Korollar, p. 46].) �

It appears feasible to push the method of [55] further to show the same
also for rational knots with u+ = u− = 1 (although I have not carried out a
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proof in detail). By refining Kanenobu–Murakami, we first show that there
is a crossing of the same sign unknotting the alternating diagram of the
rational knot (see [53]). Then, consider alternating rational knot diagrams
with two unknotting crossings (it does not even seem necessary to have them
any more of different sign), and apply the same argument as above, using
[55, corollary 2.3] and the remark after its proof.

5. Enumeration of rational knots by determinant.

The results of Section 3 can be used to enumerate rational knots by deter-
minant. We have for example:

Proposition 5.1. The number cn of achiral rational knots of given deter-
minant n is given by

cn =
{

1/2 r0
2(n) if n > 2 odd,

0 else .

Proof. Use the fact that there is a bijective correspondence between the
rational tangle T in a diagram (4.2) of an achiral rational knot K and its
Krebes invariant p/q (with p ≥ q and (p, q) = 1) giving det(K) = p2 + q2. �

From (2.10), we then obtain

Corollary 5.2. The number of achiral rational knots of given determinant
n is either zero or a power of two. �

As a practical application of the argument proving Proposition 5.1, we
can consider the achiral rational knots (1 . . . 1) and (31 . . . 13) (with the
sequence of numbers having even length) and the tangles T obtained from
the halves of the palindromic sequence. This way, one arrives to a knot
theoretical explanation of the identities

(5.1) F2n+1 = F 2
n + F 2

n+1 and L2n+1 + 2L2n = L2
n + L2

n+1 ,

where Fn is the n-th Fibonacci number (F1 = 1, F2 = 1, Fn = Fn−1 +Fn−2)
and Ln is the n-th Lucas number (L1 = 2, L2 = 1, Ln = Ln−1 + Ln−2).
Thus, we have the property2

2which for F2n+1 I remember from an old issue of the Bulgarian journal “Matem-
atika” and recently found (by electronic search) conjectured in [59] and proved in
[62]
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Proposition 5.3. There are achiral rational knots with determinant F2n+1

and L2n+1 +2L2n for any n, or equivalently, any (prime) number 4x+3 does
not divide F2n+1 and L2n+1 + 2L2n. �

A similar enumeration can be done for arbitrary rational knots of given
(odd) determinant n, and one obtains

Proposition 5.4. The number of rational knots of determinant n (n > 1
odd), counting chiral pairs once, is

(5.2)
1
4

{
φ(n) + r0

2(n) + 2ω(n)
}

,

with r0
2(n) being as in (2.11), ω(n) denoting the number of different prime

divisors of n and φ(n) = |Z∗
n| being Euler’s totient function. Counting chiral

pairs twice one has the somewhat simpler expression

1
2

{
φ(n) + 2ω(n)

}
.

Proof. Consider the first formula. We apply Burnside’s lemma on the action
of Z2 × Z2 on Z∗

n given by additive inversion in the first component and
multiplicative inversion in the second one. In (5.2), the second and third
terms in the braced expression come from counting the square roots of ∓1 in
Z∗

n. These numbers follow from the structure of this group Z∗
n, as remarked

in the proof of Proposition 4.27. The second formula is obtained similarly
and more easily. �

Remark 5.5. The functions ω(n) and φ(n) are hard to calculate for suffi-
ciently large numbers n by virtue of requiring the prime factorization of n,
but the expression in terms of these classical number theoretical functions
should be at least of theoretical interest.

In a similar way, one could attempt the enumeration by up of unknotting
number one rational knots of determinant p using [28], seeking again an
expression in terms of classical number theoretical functions. Obviously
from the result of Kanenobu–Murakami, we have

up ≤ 2ω((p+1)/2)−1 + 2ω((p−1)/2)−1 − 1 ,

with the powers of two counting the representations of (p ± 1)/2 as the
product of two coprime numbers n± and m± up to interchange of factors
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and the final ‘−1’ accounting for the double representation of the twist knot
for m+ = m− = 1. However, to obtain an exact formula, one encounters the
problem that, beside the twist knot, some other knot may arise from different
representations (although this does not occur often and the inequality above
is very often sharp). For example, for p = 985 the knot S(985, 288) =
S(985, 697) occurs for the representations m+ = 29 and m− = 12. D. Zagier
informed me that he has obtained a complete description of the duplications
of the Kanenobu–Murakami forms when considering q in S(p, q) only up to
additive inversion in Z∗

p. According to him, however, considering the (more
relevant) multiplicative inversion renders the picture too complicated and
number theoretically unilluminating.

6. Spanning trees in self-dual graphs.

6.1. Spanning trees in planar graphs and checkerboard colorings.

Here, we discuss an interpretation of our results of Section 4 in graph theo-
retic terms.

Theorem 6.1. Let n be an odd natural number. Then, n is the number of
spanning trees in a planar self-dual graph if and only if n is the sum of two
squares.

The proof of this theorem relies on a construction that links graph and
knot theory, by associating to an alternating knot (or link) diagram D its
checkerboard graph (see e.g. [30]).

The checkerboard coloring of a link diagram is a map

{ regions of D } → { black, white }

s.t. regions sharing an edge are always mapped to different colors. (A region
is called a connected component of the complement of the plane curve of D,
and an edge a part of the plane curve of the diagram between two crossings.)

The checkerboard graph of D is defined to have vertices corresponding
to black regions in the checkerboard coloring of D, and an edge for each
crossing p of D connecting the two black regions opposite at crossing p (so
multiple edges between two vertices are allowed).

This construction defines a bijection

{alternating diagrams up to mirroring} ←→ {planar graphs up to duality} .
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Duality of the planar graph corresponds to switching colors in the
checkerboard coloring and has the effect of mirroring the alternating dia-

gram if we fix the sign of the crossings so that each crossing looks like

rather than . (Note that duality essentially depends on the planar

embedding of the graph.)

Definition 6.2. A graph is 2-connected if the removal of any ≤ 2 edges
does not disconnect it. A loop (edge) is an edge connecting with both ends
the same vertex. A cut vertex is a vertex, which is the endpoint of a loop
edge, or which disconnects the graph, when removed together with all its
incident edges.

Then, we have the following useful observation:

Lemma 6.3. Let D be an alternating diagram and G its checkerboard
graph. Then, D is prime iff G has no cut vertex. D is reduced iff G has no
loop edges and is 2-connected. �

Note that, in our terminology, reducible diagrams are always composite.
(Equivalently, graphs with loop edges, or such that are not 2-connected,
always have a cut vertex.)

Lemma 6.4. det(D) equals the number t(G) of spanning trees in a checker-
board graph G of D for any alternating link diagram D.

Proof. By the Kauffman bracket definition of the Jones polynomial V , for
an alternating diagram D, the determinant det(D) = |∆D(−1)| = |VD(−1)|
can be calculated as follows (see [33]).

Consider D̂ ⊂ R2, the (image of) the associated immersed plane curve(s).
For each crossing (self-intersection) of D̂, there are 2 ways to splice it:

−→ or .

We recall that a choice of splicing for each crossing is called a state. Then,
det(D) is equal to the number of states S, so that the resulting collection
of disjoint circles has only one component (a single circle), i.e. |S| = 1 in
(2.3). We call such states S monocyclic.
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Let Γ be a spanning tree of the checkerboard graph G of D. Define a
state S(Γ) as follows: for any edge v in G, set

v −→


v �∈ Γ

v ∈ Γ

.

Then, S gives a bijection between monocyclic states of D and spanning trees
of G. �

The following relationship is easy and useful.

Proposition 6.5. det(L) is odd if and only if L is a knot.

Proof. Since det(L) = |∆L(−1)| and it is known that for an n-component
link L, (t1/2 − t−1/2)n−1 | ∆L(t), we have that 2n−1 | det(L). Thus, det(L)
is odd only if L is a knot. The converse is also true, since for a knot K, we
have ∆K(1) = 1, and ∆K(−1) ≡ ∆K(1) mod 2. �

Proposition 6.6. Any odd number n is the number of spanning trees in a
planar self-dual graph without cut vertex if and only if n is the determinant
of a prime alternating diagram of an achiral knot.

Proof. That the first side of the equivalence implies the second side is clear
from Proposition 6.5 and Lemma 6.3. For the reverse direction, let K be a
prime amphicheiral knot with reduced alternating diagram D and checker-
board graph G with n spanning trees. (G no cut vertex.) By the result
of [10], there exists a knot K ′ with alternating diagram D′, whose checker-
board graph G′ is isomorphic to G (i.e. differs from G only by the planar
embedding), and G′ is self-dual. Since cut vertices do not depend on the
planar embedding, G′ still does not have a cut vertex, and has n spanning
trees. �

Proof of Theorem 6.1. If n is the number of spanning trees of a planar
self-dual graph G, then its associated alternating diagram D is isotopic by
S2-moves to its mirror image. Since n is assumed odd, D is a knot diagram.
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Thus, the number of spanning trees of G, which by Lemma 6.4 is equal to
det(D), is of the form p2 + q2 by Theorem 4.1.

Contrarily, assume that n = p2 + q2. Take the checkerboard graph G of
the diagram in (4.2) constructed in the proof of Theorem 4.2 with T of the
form (4.3). This diagram has the property of being isotopic to its mirror
image by S2-moves only (and no flypes), so that its (self-dual) checkerboard
graph G is the one we sought. �

Using checkerboard colorings, we will now give an argument for propo-
sition 4.18. It will be useful to have the following terminology set up and
easy observation pointed out.

Definition 6.7. Let D1,2 be alternating diagrams and G1,2 their checker-
board graphs. The checkerboard graph of the connected sum D1#D2 is
called the join (or block sum) of G1,2. (See also [44].)

Note that, in the same way as performing the connected sum depends
on the choice of particular segments of the diagrams, the join depends on
the choice of particular vertices of graphs.

Lemma 6.8. The determinant is multiplicative under connected sum of
diagrams. The number of spanning trees is multiplicative under join of
graphs (no matter in which way these operations are performed). �

Proof of Proposition 4.18. First, assume L is prime. Consider the (planar)
checkerboard graph G of an alternating diagram D of L. White regions of
the checkerboard coloring of D correspond (per convention) to faces of G,
and black regions to vertices of G, and by Lemma 6.3, G has no cut vertex.
Then, use Theorem 2.4 of [9]. Since D has n + 1 black and white regions,
we have t(G) = det(L) ≥ n2 + 1.

Now, assume D is alternating and composite (but reduced). All prime
factors D1, . . . ,Dl of D are (reduced and) alternating. By [31, 43, 58],
we have

∑
c(Di) = c(D) = c(L) = 2n. By the uniqueness of prime factor

decomposition, we can assume that for i = 1, 3, 5, . . . , 2k−1 < l the diagrams
Di and Di+1 are (as unoriented diagrams) mirror images of each other, and
that the Dj for j = 2k +1, . . . , l are transformable (as unoriented diagrams)
by flypes into their own mirror images.

Let Gj be the checkerboard graphs of Dj and Gj have 2qj edges. Then
we know from Crowell’s inequality that det(Dj) = t(Gj) ≥ q2

j + 1. Let
pi ≥ 2 be the number of crossings of Di. Then by Crowell’s inequality for
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general alternating diagrams (Theorem 4.17) and Lemma 6.8, we obtain
det(Di#Di+1) ≥ p2

i . Thus,

(6.1) det(L) ≥
k∏

i=1

p2
2i−1 ·

l∏
j=2k+1

(q2
j + 1) ,

where
∑k

i=1 p2i−1 +
∑l

j=2k+1 qj = n and pi ≥ 2.
It is easy to prove that the minimal value of the r.h.s. of (6.1) is not

smaller than n2 − n + 2.
Use induction on n. The cases n = 1, 2 and l−k = 1 are easy. Otherwise,

choose pi, qj. First, assume some pi exist (i.e. k > 0). Since l − k > 1, we
have p := p1 < n. If p = n − 1, then l = 3 and k = q3 = 1, and we are led
to the inequality n2 − n + 2 ≤ 2(n − 1)2, which is true for n ≥ 3. Then, it
suffices to show

(6.2)
(

n− 1
2

)2

+
7
4
≤ p2

[(
n− p− 1

2

)2

+
7
4

]
,

with 2 ≤ p ≤ n− 2.
Postpone this task for a moment, and turn to the other case. That is,

assume no pi exists (k = 0). Order the qj decreasingly. Since l = l − k > 1,
there are at least two qj, and we have q := q1 < n. If q = n− 1, then l = 2
and q2 = 1. This leads to n2−n+2 ≤ 2(n−1)2 +2, which is true for n ≥ 3.
If q = 1, then l = n and all qj = 1, and we are led to prove n2− n + 2 ≤ 2n,
which is likewise true for n ≥ 3. So, assume we have 2 ≤ q ≤ n− 2. Then,
inductively it is to show

(6.3)
(

n− 1
2

)2

+
7
4
≤ (q2 + 1)

[(
n− q − 1

2

)2

+
7
4

]
.

The inequality (6.2) implies (6.3). Thus, consider only (6.2). Assume
n ≥ 5, since for n = 3, we excluded all possible p, and for n = 4, the only
value in question for p is 2, for which (6.2) is directly checked. Removing in
(6.2) the terms 7/4, we can simplify and strengthen it to

(6.4) n− 1
2
≤
(

n− p− 1
2

)
· p.

The r.h.s. of (6.4) is minimal, when p is as close as possible to 0 or n − 1
2 ,

which happens for p = n − 2. For this p, the inequality (6.4) holds (and
hence (6.2) also does) if n ≥ 5. �
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Remark 6.9. Proposition 4.18 was given in a weaker form than we prove it,
because a previous (and independent from Crowell) proof of this weaker form
was found by myself. Note also that for Proposition 4.8, it suffices to consider
prime diagrams D, for which to prove the inequality det(D) ≥ n2 + 1, only
the initial reference to Crowell suffices. However, Proposition 4.18 was later
used and referred to in this stated form in Theorem 3, Part 14 of [44].
Thus, the formulation and the additional argument in the proof are (now
inconvenient, but) appropriate.

It is useful to remark that we can now amplify the inequality deduced
in [44].

Corollary 6.10. For any planar self-dual 2-connected loop-free (not neces-
sarily even valence) graph G with n edges, we have t(G) ≥ 1/4n

2 − n/2 + 2,
and if G has (additionally) no cut vertex, then t(G) ≥ 1/4n

2 + 1. �

One can also reformulate Theorem 4.21 and Conjecture 4.20 graph-
theoretically, using Proposition 6.6.

Theorem 6.11. Let n be an odd perfect square. Then, n is the number of
spanning trees in a planar self-dual graph without cut vertex if and only if
n �= 9, 49. �

Note that the case n = 1 corresponds to the unknot. While according
to our Definition 4.9, its 0-crossing diagram is prime (and its checkerboard
graph, which is a single isolated vertex, is self-dual and without cut vertex),
the unknot is said not to be prime by convention.

Conjecture 6.12. Let n be an odd natural number. Then, n is the number
of spanning trees in a planar self-dual graph without cut vertex if and only
if n is the sum of two squares and n �= 9, 49.

6.2. Strongly +achiral knots and squares in recurrent sequences.

Consider the wheel graph Wk of k + 1 vertices.

= W10
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The number ck of spanning trees in Wk can be computed by distinguish-
ing the number of edges of the spanning tree incident to the central ver-
tex of the wheel, and counting the spanning forests of the necklace graph
remaining from the spanning tree in Wk after removing the central ver-
tex. This was carried out in [45, p. 469–470]. The resulting sequence is
1, 5, 16, 45, 121, . . . and can be expressed by the Fibonacci and Lucas
numbers given before Proposition 5.3 as

(6.5) ck = L2k − 2 = F2k + 2
k−1∑
i=1

F2i .

(The equivalence of both expressions can be shown by elementary generating
series arguments.) Another occurrence of this sequence is in [48] as the
number of certain unimodular matrices. See also [46] and [51, sequence
004146].

A closer look on the numbers ck reveals that for odd k, ck is a (perfect)
square. Although there have been, in particular recently, many related re-
sults, e. g. [7, 13, 14, 15, 16, 37, 40], I did not find an explicit statement of
this observation. Nonetheless, it is suggestive that this phenomenon should
not be the result of an accidental coincidence, and indeed a combinatorial
explanation of it is possible by writing down the explicit formula for Lk

(6.6) Lk =

(
1 +
√

5
2

)k−1

+

(
1−√5

2

)k−1

.

However, the same phenomenon occurs also with (the odd index members
of) some closely related sequences like

(6.7) c′k = ck + F 2
k + 2F2k and c′′k = ck + 4F 2

k + 4F2k .

We will give here an explanation of such a phenomenon in terms of knot
theory (showing how to find further such sequences and prove their square-
ness in a much easier and more elegant way than via the naive arithmetical
approach). It turns out, that the numbers ck occur as determinants of some
strongly +achiral (alternating 3-braid) knots and links.

Lemma 6.13. det
( ̂(σ1σ

−1
2 )k

)
= ck (where hat denotes braid closure).

Proof. Using the wheel graph description of ck, the claim becomes a special
case of Lemma 6.4. �
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The links of the form ̂(σ1σ
−1
2 )k have been considered for a while, for

example in [26] (at least in the knot case 3 � k). There it was observed that
for odd k (for which the knots are also called “turks head knots”), the braid

̂(σ1σ
−1
2 )k is of the form ββ, where β is obtained from β ∈ Bn by the map

σ±1
i �→ σ∓1

n−i. Hence, ̂(σ1σ
−1
2 )k is strongly +achiral. This, together with

Lemma 6.13 and Theorem 4.23 shows

Proposition 6.14. ck is a square number for k odd. Hence, so is the num-
ber of spanning trees in wheel graphs with an odd number of spokes or the
by 2 decreased Lucas number Lk with k ≡ 2 mod 4. �

The fact that the odd index number knots are still at least achiral (in
the usual sense), shows that ck for k even is at least the sum of two squares.
Unfortunately, contrary to the result obtained for the odd index parity,
there seems no knot theory tool available to examine effectively the even
index number case. However, the test of the prime decomposition of ck

leads to conjecture even more, namely that these numbers are of the form
ck = 5a2

k for k even, and this can be indeed confirmed from the explicit
formula (6.6) for Lk. (This observation seems to fit into a more general
pattern conjecturally described at the end of this subsection.) The knot-
theoretic counterpart of the non-squareness of ck for even k is true also by
different arguments. It was remarked in [56] how the work of Murasugi [42]
on the Alexander polynomial of periodic knots implies that the Alexander
polynomial of any non-trivial knot (and analogously, link), which is the
closure of the square of some braid (here (σ1σ

−1
2 )k/2), is not a square, so that

the knot is not strongly +achiral (although in our situation, it is ordinarily
+achiral).

On the other hand, for odd k, it is clear that now a similar procedure
can be applied to more general braids. For example, applying the argument
to ββ with β = σ1(σ1σ

−1
2 )k and β = σ2

1(σ1σ
−1
2 )k gives the property for c′k

and c′′k in (6.7). Considering ββ = (σl
1σ

−l
2 )k gives a more general version of

Proposition 6.14.

Theorem 6.15. Let b0 = 0, b1 = 1 and bi = bi−2 + l · bi−1. Then,

l
(

2
k−1∑
i=1

b2i + b2k

)
is a square for k odd. �
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Considering 5-braids may give similar, however, less pleasant statements
of this kind.

On the other hand, arithmetic results can have some knot theoretic con-
sequences.

Corollary 6.16. Any rational knot with Conway notation (1, 1, . . . , 1)
(“twist plat knot” [27]) is not algebraically slice.

Proof. Use the result of [7] that no odd Fibonacci number > 1 is a square.
(As well-known, algebraically slice knots have square determinant.) �

Remark 6.17. Of course, the same argument shows that this knot is not
strongly +achiral, but this follows more generally for any rational knot from
the result of Hartley–Kawauchi as the 2-branched cover homology group
H1(DK) is cyclic (and non-trivial), and hence not a double.

We can exploit the result of Hartley–Kawauchi more generally. Let φβ

be the linear operator

SDn � x
φβ�−→ x

k∏
j=1

(1 + sij) ∈ SDn

associated to β =
k∏

j=1

σ
(−1)ij

ij
∈ Bn, with SDn and si as given before the

proof of Theorem 4.21. By writing out the endomorphisms φβ as matrices,
for appropriate β, we obtain squareness properties for some linear combina-
tions of entries of such matrices.

Example 6.18. Consider the matrix

A =


1 18 18 24 12
0 13 0 18 0
0 0 25 0 18
0 18 0 25 0
0 0 18 0 13

 .

Then, writing Ak =
(
a

(k)
i,j

)5
i,j=1

, we have that a
(2k+1)
1,4 + a

(2k+1)
1,5 is always a

square. This follows again from [21], as AT represents the endomorphism
φβ for β = σ1σ

−2
2 σ1σ

−1
2 σ2

1σ
−1
2 in the basis (4.4) of SD3. Interestingly, again



626 A. Stoimenow

a
(2k)
1,4 +a

(2k)
1,5 is always of the form 10x2, although there is no knot-theoretical

explanation of this fact.

The last example, together with some further experiments, leads to the
following conjecture.

Conjecture 6.19. If β′ ∈ B3 is an alternating braid, and β = β′β′, then φβ

Jordan-decomposes over the quadratic number field Q(
√

d), or at least over

Q(
√

d, i), where i =
√−1 and d = det(β̂2). Moreover,

√
det(β̂2k)/d ∈ Z for

all k > 0.

As SDn has an antiautomorphism (turn around by 180◦), for β = β′β′,
φβ is conjugate to its inverse, so that the characteristic polynomial χ(φβ)
of φβ is self-conjugate, i.e., χ(φβ)(x) ∼ χ(φβ)(x−1) (where ∼ denotes, as in
definition 4.22, equality up to units in Z[x, x−1]). However, χ(φβ) turns out
to have (at least in all cases calculated in an experiment) some unexpected
properties.

For 3-braids, the polynomial χ(φβ) had the form (x − 1)P (x)2 with a
quadratic polynomial P , and in fact, φβ decomposes into Id1⊕φ′

β⊕φ′
β (where

Id1 is the 1-dimensional identity map) under a certain, but not plausible,
choice of basis.

For 5-braids χ(φβ) = (x−1)6P1(x)5P2(x)4 with P1,2 being self-conjugate
polynomials of degree 4 with alternating coefficients ([Pi]xj · [Pi]xj+1 < 0 for
0 ≤ j < 4), which additionally seem related, as always [P1]x + [P2]x2 = +2.
For example, for

β′ = σ−1
3 σ4σ

−1
1 σ2σ4σ

−1
1 σ−1

3 σ2σ4σ
−1
3

(and β = β′β′) we have

χ(φβ) = (x− 1)6 (1− 26 166x + 2297 755x2 − 26 166x3 + x4)5

(1− 1533x + 26168x2 − 1533x + x4)4 .

It is interesting to see what phenomena occur for more strands, but for
7-braids the dimension of SD7 is 429, and this renders experiments rather
difficult.

These phenomena motivate and merit some possible further investiga-
tions in the future.
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