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In this paper we relate the ergodic action of a Kleinian group on the
space of line elements to the conformal action of the group on the
sphere at infinity. In particular, we show that for a pair of geomet-
rically isomorphic convex co-compact Kleinian groups, the ratio of
the length of the Patterson–Sullivan measure on line element space
to the length of its push-forward is bounded below by the ratio of
the Hausdorff dimensions of the limit sets. Our primary techniques
come from ergodic theory and Patterson–Sullivan theory.

1. Basics and Statement of Results.

Let Isom+(Hn) n ≥ 2 be the space of orientation-preserving isometries of
Hn. As is well known, this space of isometries can be given the topology
induced by uniform convergence on compact sets. A Kleinian group Γ is a
discrete subgroup of Isom+(Hn). As such, Γ acts discontinuously on Hn,
and because we make a standing assumption that the action is torsion-free,
the quotient manifold N = Hn/Γ is a complete Riemannian manifold of
constant curvature −1.

A Kleinian group Γ also acts as a discrete subgroup of conformal auto-
morphisms of the sphere at infinity Sn−1∞ ; this action partitions Sn−1∞ into
two disjoint sets. The regular set ΩΓ is the largest open set in Sn−1∞ on which
Γ acts properly discontinuously, and the limit set LΓ is its complement. In
the case that LΓ contains more than 2 points, the limit set is characterized
as being the smallest closed Γ-invariant subset of Sn−1∞ . Define the convex
hull CH(LΓ) of the limit set LΓ to be the smallest convex subset of Hn, so
that all geodesics with both limit points in LΓ are contained in CH(LΓ).
We can take the quotient of CH(LΓ) by Γ (denoted by C(Γ)); this is the
convex core. It is the smallest convex submanifold of N = Hn/Γ, so that

1Research supported in part by NSF grant DMS 0305634
2Research supported in part by NSF grant DMS 0305704

561



562 M. Bridgeman & E. Taylor

the inclusion map is a homotopy equivalence. A Kleinian group is convex
co-compact if its associated convex core is compact, and it is geometrically
finite if the volume of the unit neighborhood of the convex core is finite
(see Bowditch [4]). The content of this paper deals almost exclusively with
convex co-compact Kleinian groups.

One can view the property of Γ being geometrically finite as being a
restriction on how the limit set is formed from an orbit Γ(0), 0 ∈ Hn. The
conical limit set CLΓ is the set of points x ∈ LΓ so that for each such point,
there exists a Euclidean cone Cx based at x in Hn, and an infinite sub-orbit
{γj(0)} ⊂ Γ(0), so that γj(0) ∈ Cx �= ∅ and limj→∞ γj(0) = x. Given
the isometric action of Γ on Hn, it is an observation that Γ being convex
co-compact implies that LΓ is purely conical, i.e. that LΓ = CLΓ. We will
not consider Kleinian groups containing parabolic elements, and thus, we do
not detail the dynamical restrictions on the approximation of parabolic fixed
points imposed by the assumption of geometric finiteness. We also note that
this paper deals exclusively with Kleinian groups having the property that
vol Hn/Γ is unbounded (the so-called co-infinite Kleinian groups), so as
to avoid situations where the Mostow Rigidity Theorem makes our results
automatic. For the basics in the theory of Kleinian groups, we refer the
reader to Maskit [9].

Let Γ be a geometrically finite Kleinian group, and suppose there exists
a quasi-conformal homeomorphism of Sn−1∞ to itself, so that conjugation by
this map results in another Kleinian group Γ̂. The Kleinian group Γ̂ is said to
be quasi-conformally conjugate to Γ; note that the conjugacy induces a type-
preserving isomorphism between the groups. We call such an isomorphism a
geometric isomorphism. Quasi-conformal deformations extend equivariantly
to quasi-isometries of Hn, see [15], [12], and [8].

We now give a brief description of the parts of the Patterson–Sullivan
theory needed to state the Main Theorem. For further background in the
basics of Patterson–Sullivan theory, see Nicholls [10]. Let x ∈ Hn and give
Sn−1∞ the spherical metric obtained by taking the Poincaré model for Hn

with x as the origin. Define µx,s, the s-dimensional Hausdorff measure on
Sn−1∞ , as follows. If E is a Borel set in Sn−1∞ and ε > 0, then let

µε
x,s(E) = inf


∞∑

j=1

cs
j : E ⊂

⋃
B(xj , cj); cj ≤ ε


where B(xj, cj) denotes an open ball centered at xj ∈ Sn−1∞ of radius cj in
the spherical metric on Sn−1∞ . As µε

x,s is clearly non-decreasing as ε decreases,
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we can take the (possibly infinite) limit

µx,s(E) = lim
ε→0

µε
x,s(E).

Given x, y ∈ Hn, the measures µx, µy satisfy,

dµx,s

dµy,s
(ξ) =

(
P (x, ξ)
P (y, ξ)

)s

where P (x, ξ) = 1−|x|2
|x−ξ|2 is the Poisson kernel (see Section 1 of [13]). Therefore,

it follows that

e−sd(x,y)µx,s(E) ≤ µy,s(E) ≤ esd(x,y)µx,s(E)

where d(x, y) is the hyperbolic distance from x to y. Therefore, we say a set
E has s-dimensional Hausdorf measure zero if µx,s(E) = 0 for any choice
of x. Furthermore, the Hausdorff dimension D(E) of a set E ⊂ Sn−1∞ is
well-defined by

D(E) = inf{s : µx,s(E) = 0} = sup{s : µx,s(E) = ∞}.

Again fix s ∈ R+ ∪ {0}, and let x, y ∈ Hn be two fixed (chosen) points.
In all that follows, we will denote the hyperbolic metric on Hn by d. We
define the Poincaré series of a Kleinian group Γ to be

(1.1) gs(x, y) =
∑
γ∈Γ

e−sd(x,γy)

It is an easy calculation to show, for every discontinuous group acting isomet-
rically on Hn, that if s > n− 1, then gs(x, y) < ∞ for all (x, y) ∈ Hn ×Hn.
Let

(1.2) δ(Γ) = inf{s : gs(x, y) < ∞};

then δ(Γ) is called the exponent of convergence of the Poincaré series. We
say a group is of convergence type if its Poincaré series converges at the
critical exponent and of divergence type otherwise. It is a result of Sullivan
[14] and Tukia [16] that if Γ is a geometrically finite Kleinian group having
non-empty regular set, then δ(Γ) < n − 1.

Following the work of Patterson and Sullivan, a measure can be con-
structed on Sn−1∞ which is supported on LΓ – one that is descriptive of the
geometric and conformal actions of Γ. For x, y ∈ Hn and s > δ(Γ), we
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consider the measure σx,s to have Dirac point mass of weight e−sd(x,γy)

gs(y,y) at
each point γy. A Patterson–Sullivan measure σx is constructed by taking
the limit as s → δ+(Γ) of these measures in the weak* topology. If Γ is as-
sumed to be geometrically finite, as will always be the case in the context of
this paper, then this construction of Patterson and Sullivan yields a unique
measure class (independent of the choice of x and y.) Amongst its many
properties, perhaps the most basic is that the Patterson–Sullivan measure
is a finite and positive measure which is supported on the limit set (being
of divergence type guarantees that the support of the Patterson–Sullivan
measure is supported only on the limit set).

Patterson–Sullivan theory provides a remarkable description of the con-
formal action of a geometrically finite Kleinian group in terms of its
Patterson–Sullivan measure. One facet of this description, restricted to the
setting of interest to us, is given below.

Theorem 1.1 (Patterson [11], Sullivan [14] and Tukia [16]). Let Γ
be a non-elementary, geometrically finite Kleinian group acting on Hn.
Then, δ(Γ) = D(LΓ) and each Patterson–Sullivan measure is supported
on the limit set LΓ.
Further, if Γ is convex co-compact, then each Patterson–Sullivan measure σx

is non-atomic, and is equal to the Hausdorff measure µx,δ(Γ) (up to scaling)
of dimension δ(Γ) restricted to the limit set LΓ.

Remark 1.2. One can find a complete presentation of these results, from
first principles, in chapters 3 and 4 of Nicholls [10]. For instance, the most
important of the results listed above, that the Patterson–Sullivan measure
is a constant multiple of the Hausdorff measure, is Theorem 4.6.4 of [10].

We will relate the distortion of a convex co-compact hyperbolic structure
by a quasi-isometry via the distortion of a canonical measure built from the
Patterson–Sullivan measure acting on a portion of the unit tangent bundle.
We now describe this canonical measure. The space of oriented geodes-
ics G(Hn) in Hn can be identified with their endpoints in Sn−1∞ . Therefore,
G(Hn) ∼= (Sn−1∞ ×Sn−1∞ )−diagonal. A measure on G(Hn) which is supported
on (LΓ×LΓ−diagonal) and that is invariant under Γ is called a geodesic cur-
rent (see [3]). One such geodesic current is the Patterson–Sullivan geodesic
current m, which is given differentially by

(1.3) dm(a, b) =
dσ0(a)dσ0(b)
|b − a|2δ(Γ)

.
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Here, σ0 is the Patterson–Sullivan measure based at the origin in the
Poincaré model of Hn, and |·| is the chordal distance on Sn−1∞ calculated with
respect to the standard metric on Rn. We again consider the Poincaré model
for hyperbolic space, and let Ω(n) = Hn × Sn−1∞ . This space is the space
of line elements of Hn, with a pair (x, ξ) representing a directed geodesic
through x and in the direction of ξ. We write ν− and ν+ for the endpoints
of this geodesic (with + and − specified by the orientation.) Let z be the
Euclidean midpoint of this geodesic, and let s be the signed hyperbolic dis-
tance of z to x. Then, we have a natural correspondence between Ω(n) and
G(Hn) × R given by (x, ξ) → (ν−, ν+, s). The geodesic flow is a family of
diffeomorphisms gt : Ω(n) → Ω(n) defined by gt(ν−, ν+, s) → (ν−, ν+, s + t).
There is of course a natural extension of the action of Isom+(Hn) on Hn

to an action on Ω(n). Let Γ be a Kleinian group, then the geodesic flow
on Ω(n) descends to the geodesic flow on the quotient line element space
Ω(n)/Γ by virtue of the fact that it commutes with any element of γ ∈ Γ.

We will need more structure in order to define a quantity that measures
the distortion of the Patterson–Sullivan geodesic current under deformation.
Using the above notation, it is clear that there is a fiber map

π : Ω(n) → G(Hn)

defined by π(ν−, ν+, s) = (ν−, ν+), with the fiber over the geodesic (ν−, ν+)
being all line elements in Ω(n) belonging to the geodesic. Using the fiber
map π (see Lemma 4.2), we can lift any geodesic current µ to a line element
measure µ∗ on Ω(n) by taking the product of µ with the hyperbolic length
measure λ, i.e.

(1.4) dµ∗ = dµ dλ.

Clearly, µ∗ is also invariant under the action of Γ on Ω(n), and so naturally
descends to a measure on Ω(n)/Γ. In particular, the Patterson–Sullivan
geodesic current m lifts to a measure on Ω(n), which we denote by M = m∗.
(This discussion is partially reprised in Section 4.) By abuse of notation, we
will also refer to the measure M generated by dm∗ as the Patterson–Sullivan
measure. We define the length of a geodesic current µ by L(µ) = µ∗(Ω(n)/Γ).
We compile the crucial facts in the following theorem, as used in this paper,
concerning this Patterson–Sullivan measure:

Theorem 1.3 (See Theorem 3 in [14]). Let Γ be a convex co-compact
Kleinian group. Then, geodesic flow acts ergodically on Ω(n) with respect
to the measure M , induced from the Patterson–Sullivan geodesic current
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m. Furthermore, the length of the Patterson–Sullivan geodesic current m is
finite, i.e. M(Ω(n)/Γ) < ∞.

Remark 1.4. A detailed discussion of both the Patterson–Sullivan geodesic
current and the measure, in the context of dynamical systems, is also pro-
vided in [13], Section 4.

Let Γ1,Γ2 be quasi-conformally conjugate Kleinian groups. It is clear
that a quasi-conformal deformation preserves the regular set and the limit
set. Thus, we have a homeomorphism f : LΓ1 → LΓ2 of the limit sets induced
by the quasi-conformal deformation, with inverse g. Let m1,m2 be the
corresponding Patterson–Sullivan geodesic currents for Γ1,Γ2 respectively.
We can push forward m1,m2 by the maps f, g to define the distortion ratios
R12,R21 as follows:

R12 =
L2(f∗m1)
L1(m1)

R21 =
L1(g∗m2)
L2(m2)

,

where L1, L2 are the length functions on the spaces of geodesic currents
C(Γ1), C(Γ2) respectively.

Theorem 1.5 (Main). Suppose Γi=1,2 are geometrically isomorphic, con-
vex co-compact, co-infinite Kleinian groups. Let Γ1 and Γ2 have critical
exponents δ(Γ1) and δ(Γ2) respectively. Then,

1
R12

≤ δ(Γ2)
δ(Γ1)

≤ R21.

As an immediate corollary of our main result, we observe that the distortion
ratio detects geometrically when a quasi-conformal deformation increases
Hausdorff dimension.

Corollary 1.6. Let Γi=1,2 be as in the Main Theorem. If R12 < 1, then
δ(Γ1) < δ(Γ2).

Remark 1.7. In the case where Γ1,Γ2 are quasi-conformally conjugate
Fuchsian groups, the Main Theorem implies R12 ≥ 1. Bonahon [3], proved
this inequality using the language of Liouville geodesic currents and then
used it to realize the Weil–Petersson metric on Teichmüller space. (See [17]
for a comprehensive discussion of the Weil–Petersson metric on Teichmüller
space.) This paper is part of a larger project to investigate whether a met-
ric on the deformation space of a convex co-compact Kleinian group can be
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formed from the distortion ratio. Indeed, in [6], we have been able to show
that there is a natural symmetric bilinear two form on quasi-Fuchsian space
which extends the Weil-Petersson metric on Teichmüller space. We also note
that the Main Theorem is trivially true for convex co-compact groups uni-
formizing finite volume hyperbolic (i.e. closed) manifolds. By the Mostow
Rigidity Theorem, the only deformations of such groups are isometric de-
formations. Thus, the resulting ratios are identically equal to one. It is also
well known that the limit set of any such group is the whole sphere Sn−1∞ .

Plan of Paper: In the next two sections, we continue to develop the tech-
nical definitions and results we need to both define the length distortion
function and to characterize it in terms of the associated Poincaré series.
Section 4 culminates in a proof of the Main Theorem (Theorem 4.14); here,
we also prove the necessary geometric and analytic relationships between the
associated spaces of geodesic currents defined by the two Kleinian groups.
Ergodic theory, in the guise of the Birkhoff Ergodic Theorem and the er-
godicity of geodesic flow, is central to the arguments in this section. We
now wish to comment briefly on the connection between this paper and
the contents of our previous work. In [5], we restrict ourselves to convex
co-compact quasi-Fuchsian hyperbolic manifolds; in this setting, there is a
natural geometric isomorphism between the Fuchsian holonomy of the hy-
perbolic structure on a boundary component of the convex core and the
hyperbolic action of the quasi-Fuchsian group. By expanding our repertoire
of techniques, we enlarge our focus from the first paper to the consideration
of any two geometrically isomorphic convex co-compact Kleinian groups.

2. Poincaré series and limit sets.

The purpose of this section is to prove a technical result concerning the
relationship between the exponent of convergence of the Poincaré series and
the Hausdorff dimension of the conical limit set. Though the result and proof
techniques are standard, we include a proof for completeness. Let (Hn, d)
be the ball model of hyperbolic space, and let K be a countable collection
of Möbius transformations acting discontinuously on Hn. An equivalent
formulation of the usual Poincaré series has a more Euclidean presentation.
Fix the origin 0 ∈ Hn and let s ∈ R+∪{0}, define the Euclidean s-Poincaré
series to be

Σ(s, 0) =
∑
k∈K

(1 − |k(0)|)s;
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here, |k(0)| is the Euclidean distance of the point k(0) to the origin. (As
with the familiar form of the Poincaré series, the convergence properties of
Σ(s, x) does not depend on the choice of x ∈ Hn; see Section 1.6 of [10] for
an introduction to the Euclidean s-Poincaré series.) Note, via the hyperbolic
distance formula for a point to the origin in the ball model, we can observe
that

(1 − |k(0)|)s
2s

≤ e−sd(0, k(0)) ≤ (1 − |k(0)|)s.
Define

δeuc(K) = inf{s : Σ(s, 0) < ∞};
it is thus an observation, using the inequality above, that δ(K) = δeuc(K).
We thus denote the exponent of convergence by δ regardless of the choice of
a hyperbolic or Euclidean presentation of the Poincaré series.

Let CLK be the collection of conical limit points of K; we assume that
K is such that CLK �= ∅ to avoid the trivial case. We will show:

Lemma 2.1. Let K be a countable collection of Möbius transformations
acting discontinously on Hn. Then, D(CLK) ≤ δ(K); in particular, if
s > δ(K), then the s-dimensional Hausdorff measure of CLK is zero.

Proof. Fix M > 0. For k ∈ K − {id}, denote by Bk(M) the Euclidean ball
in Sn−1∞ with radius M(1 − |k(0)|) and center k(0)

|k(0)| . Define

EM = {x ∈ Sn−1
∞ : x ∈ Bk(M) for infinitely many k ∈ K}.

It is well-known that

CLK =
∞⋃

M=1

EM .

The proof proceeds by a covering argument that estimates, from above, the
Hausdorff dimension of each EM . Let r > 0 be an arbitrarily chosen radial
length. We have, for each fixed M , that

# {k ∈ K : diam(Bk(M)) ≥ r} = #
{

k ∈ K : |k(0)| ≤ 1 − r

2M

}
;

because K acts discontinuously on Hn, we observe that {Bk(M) :
diam(Bk(M)) < r} is a cover of EM . Denote by K(r) the subset of K
such that diam (Bk(M)) < r.
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Let δ = δ(K), and fix an arbitrary ε > 0. Recalling our definition of the
Hausdorff measure, let µr

δ+ε = µr
0,δ+ε. Thus,

µr
δ+ε(EM ) = inf

∑
j

(diam Uj)δ+ε : EM ⊂
⋃
j

Uj , diam Uj ≤ r

 .

Thus,

µr
δ+ε(EM ) ≤

∑
k∈K(r)

(diam Bk(M))δ+ε ≤
∑
k∈K

(diam Bk(M))δ+ε.

Since
∑

k∈K(diam Bk(M))δ+ε = (2M)δ+ε
∑

k∈K(1 − |k(0)|)δ+ε < ∞ via the
definition of EM and the definition of δ, we have that

µr
δ+ε(EM ) < ∞

independent of r. Since ε > 0 was chosen arbitrarily, this shows that
D(EM ) ≤ δ(K) for any choice of M . The conclusion follows by not-
ing that because EM ⊂ EM+1 and CL(K) =

⋃∞
M=1 EM , we have that

D(CLK) ≤ lim supM→∞ D(EM ) ≤ δ(K). �

Remark 2.2. This is a standard argument, see [2] for instance. We remark
that a much stronger fact is proven in [2], using in part the above argument:
If Γ is a non-elementary Kleinian group, then the exponent of convergence
of the group is the Hausdorff dimension of the conical limit set.

3. Length Distortion Facts.

In all that follows, we will be keeping track of the distortion, under quasi-
isometry, of two convex co-compact hyperbolic structures. Suppose Γ is a
Kleinian group acting on Hn; define a(γ) = e(−d(x,γx)), where d is again the
hyperbolic metric on the ball model of Hn and x ∈ Hn is a fixed choice of
basepoint. These are the terms of the 1-Poincaré series g1(x, x) of Γ.

Let i : Γ1 → Γ2 be an isomorphism of Kleinian groups Γi, i = 1, 2, with
inverse j : Γ2 → Γ1. We define R12 : Γ1 − {id} → R by

(3.1) R12(γ) =
d(x2, i(γ)x2)
d(x1, γx1)

,
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where x1, x2 ∈ Hn are fixed base points for the Poincarè series of Γ1,Γ2

respectively. Similarly, we define R21 : Γ2 − {id} → R by

R21(γ) =
d(x1, j(γ)x1)
d(x2, γx2)

.

Therefore, if a1, a2 are the terms of the 1-Poincarè series of Γ1,Γ2 respec-
tively, we have that

[a1(γ)]R12(γ) = a2(i(γ)) and [a2(γ)]R21(γ) = a1(j(γ)).

Let δ(Γ1), δ(Γ2) be the critical exponents of Γ1,Γ2, and fix ε > 0. We
define the set Γε

12 ⊂ Γ1 by

Γε
12 =

{
γ ∈ Γ1 : R12(γ) ≤ δ(Γ1) − ε

δ(Γ2)

}
.

Proposition 3.1. Let Γ1,Γ2 be isomorphic Kleinian groups, and fix ε > 0.
Then, ∑

γ∈Γε
12

[a1(γ)]s < ∞ for s > δ(Γ1) − ε.

Proof. If k > δ(Γ2), then by definition∑
γ∈Γ2

[a2(γ)]k < ∞.

As a2(γ) = [a1(j(γ))]1/R21(γ), we observe that∑
γ∈Γ2

[a1(j(γ))]k/R21(γ) < ∞.

Letting γ′ = j(γ), we can change the sum to being over Γ1 to get∑
γ′∈Γ1

[a1(γ′)]kR12(γ′) < ∞.

Because Γε
12 ⊆ Γ1, we immediately see that∑

γ′∈Γε
12

[a1(γ′)]kR12(γ′) ≤
∑

γ′∈Γ1

[a1(γ′)]kR12(γ′) < ∞.
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Fix ε > 0. If γ′ ∈ Γε
12, then by definition R12(γ′) ≤ δ(Γ1)−ε

δ(Γ2) , and therefore,

kR12(γ′) ≤ k(δ(Γ1) − ε)
δ(Γ2)

for any k > 0. Thus, if s > δ(Γ1) − ε, then∑
γ∈Γε

12

[a1(γ)]s < ∞.

�

By applying Lemma 2.1, we immediately obtain:

Proposition 3.2. Let K = Γε
12 then D(CLK) ≤ δ(Γ1) − ε.

Define
CL12 =

⋃
n∈Z+

CL
Γ

1
n
12

.

Via Proposition 3.1, and Lemma 2.1, we have that CL(Γ
1
n
12) has δ(Γ1)-

Hausdorff measure zero for all n ∈ Z+. Thus, we have

Corollary 3.3. The set CL12 is of δ(Γ1)-Hausdorff measure zero.

For the remainder of this section, we assume that Γ1 is both convex
co-compact and is geometrically isomorphic to a (necessarily) convex co-
compact Kleinian group Γ2. By Theorem 1.1, the Patterson–Sullivan mea-
sure σx associated to Γ1, is equal to (up to scaling) the δ(Γ1)-dimensional
Hausdorff measure µx,δ(Γ1). Therefore, as CL12 is of δ(Γ1)-Hausdorff di-
mension zero, CL12 is of σx measure zero (Corollary 3.3.) As Γ1 is convex
co-compact, every point ν ∈ LΓ1 is a conical limit point [1]. We define the
length distortion function R12 : Hn × Hn × Sn−1∞ → R by

R̃12(x1, x2, ν) = inf
{

lim inf
i→∞

R12(γi) | γix1 → ν conically
}

,

where x1 and x2 are the chosen base points in the definition of R12(γ) (see
equation 3.1.) We can of course define an analogous function R̃21 for Γ2.
In the next lemma, we will see that the function R̃12 is independent of the
choice of base points x1, x2 and bounded below by the ratio of the exponents
of convergence.
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Lemma 3.4. Let Γ1,Γ2 be convex co-compact and quasi-conformally con-
jugate and let σx be the Patterson–Sullivan measure of Γ1 based at x. Then,
for any choice of x1, x2, y1, y2 ∈ Hn,

R̃12(x1, x2, ν) = R̃12(y1, y2, ν).

Defining R̃12 : Sn−1∞ → R, by R̃12(ν) = R̃12(x1, x2, ν), then

R̃12(ν) ≥ δ(Γ1)
δ(Γ2)

a.e. with respect to (σx).

Proof. Suppose that (y1, y2) is another pair of base points, with d(x1, y1) =
d1 and d(x2, y2) = d2. By the triangle inequality, we observe that

d(x1, γx1) − 2d1 ≤ d(y1, γy1) ≤ d(x1, γx1) + 2d1,

and
d(x2, i(γ)x2) − 2d2 ≤ d(y2, i(γ)y2) ≤ d(x2, i(γ)x2) + 2d2.

Since d(γx1, γy1) = d(x1, y1) = d1 for all γ ∈ Γ1, if {γi} is a sequence in Γ1,
then γix1 tends to ν ∈ Sn−1∞ conically if and only if γiy1 tends to ν ∈ Sn−1∞
conically. Also, as N1 = Hn/Γ1 and N2 = Hn/Γ2 are quasi-isometric, then
d(x1, γix1) and d(x2, i(γi)x2) both tend to infinity as γix1 tends to ν ∈ Sn−1∞
conically. Therefore, by the above inequalities, we have that

lim inf
i→∞

d(x2, i(γi)x2)
d(x1, γix1)

= lim inf
i→∞

d(y2, i(γi)y2)
d(y1, γiy1)

.

Thus, taking the infimum over all such sequences gives R̃12(x1, x2, ν) =
R̃12(y1, y2, ν). Thus, we can define R̃12(ν) = R̃12(x1, x2, ν). Now, let
R̃12(ν) = k < δ(Γ1)/δ(Γ2). Then, there exists a sequence of group elements

{γi ∈ Γ1}, such that γix1
conically→ ν with k ≤ limi→∞ R12(γi) < δ(Γ1)/δ(Γ2).

Therefore, ν ∈ CL12, which has σx measure zero (see Corollary 3.3.) There-
fore,

R̃12(ν) ≥ δ(Γ1)
δ(Γ2)

a.e. with respect to (σx).

�

Remark 3.5. We now extend R̃12 to the line element space Ω(n). Let
p ∈ Ω(n) and ν+ ∈ Sn−1∞ be the endpoint of the associated ray. Then, we
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define R̃12(p) = R̃12(ν+); this function is a geodesic flow invariant function.
By the definition of the measure M1 of Γ1 on Ω(n) in terms of σ0, any set
A = Hn × O ⊂ Ω(n) with O having σ0 measure zero, has M1 measure zero.
Therefore, it follows that

R̃12(p) ≥ δ(Γ1)
δ(Γ2)

a.e. with respect to (M1).

4. Geodesic Currents.

Geodesic currents arise in the study of the collection of homotopy classes of
closed geodesics. To illustrate the naturalness of geodesic currents, we start
with the simplest possible construction of such an object. If N = Hn/Γ
is a hyperbolic n-manifold, then consider a non-trivial and non-peripheral
homotopy class [α] of closed curves so that the geodesic representative of α
is a closed primitive oriented geodesic in N . Let γ ∈ Γ be a representative
of α, and let fix (γ) be its fixed point pair. Orbit fix (γ) under the action
of Γ to produce a Γ-invariant discrete subset A of G(Hn) = Sn−1∞ × Sn−1∞ −
diagonal. Place the Dirac measure on the orbit A. In this way, we identify
this homotopy class of closed curves on Hn/Γ with a Γ-invariant measure
on G(Hn); this is the simplest example of a geodesic current. We call a
line element measure that is so associated to a closed geodesic a simple line
element measure. It is clear that the length of a simple line element measure
is simply the length of the associated closed geodesic.

Let Cc(X) be the space of real-valued continuous functions with compact
support in the topological space X. The measure µ acts on φ ∈ Cc(X) by
µ(φ) =

∫
φdµ. Recall the definition of the weak∗ topology on a space of

measures C defined on X: we say that µi → µ in the weak∗ topology on C if
and only if for every φ ∈ Cc(X), then µi(φ) → µ(φ).

Definition 4.1. A geodesic current is a positive locally finite Borel measure
on G(Hn) that is both invariant under the action of Γ and supported on the
set of geodesics with endpoints belonging to LΓ. The set C(Γ) of geodesic
currents of Γ is endowed with the weak∗ topology.

We provide a detailed description of the line element space Ω(n) in the
introduction. Let M(Ω(n)) be the space of measures on Ω(n) endowed with
the weak∗ topology. If µ is a geodesic current, recall that the line element
measure µ∗ ∈ M(Ω(n)) (see equation 1.4) is locally the product measure on
G(Hn) × R given by µ × λ, where λ is the Lebesgue measure on R. We
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thus, have a well-defined map

π∗ : C(Γ) → M(Ω(n))

given by π∗(µ) = µ∗. Let M(Γ) be the image of C(Γ) under π∗; we endow it
with the subspace topology from M(Ω(n)). A flow box in Ω(n) = G(Hn)×R
is a closed set B = D × [a, b], where D is a closed ball in G(Hn) and [a, b]
is a closed interval in R. Therefore, the product x × [a, b] ⊂ B projects to
a geodesic segment in Hn of length b− a. Furthermore, by definition of the
product measure, we have µ∗(B) = µ(D) · (b−a). Thus, M(Γ) consists of Γ-
invariant measures on Ω(n) having the following two properties: first, each
line element in the support of a line element measure defines a hyperbolic
geodesic with both endpoints in LΓ, and secondly, each measure in M(Γ) is
locally the product of the hyperbolic length measure along geodesics with a
measure on the space of geodesics. We will show in the next lemma that the
function π∗ is a homeomorphism between C(Γ) and M(Γ). Note also that
each measure µ∗ ∈ M(Γ) (necessarily Γ-invariant) descends to a measure on
the quotient space Ω(n)/Γ which, by abuse of notation, we label by µ∗ as
well. We recall that the length of a geodesic current µ is L(µ) = µ∗(Ω(n)/Γ).
It is an easy observation, in the case of a geodesic current induced by a
closed geodesic, that the length of such a geodesic current is the length of
the geodesic as one would expect.

Recall the fiber bundle map π : Ω(n) → G(Hn) defined in the introduc-
tion. The following lemma equates the space of geodesic currents with the
space of line element measures.

Lemma 4.2. Let Γ be a Kleinian group. Then, the map π∗ : C(Γ) → M(Γ)
is a homeomorphism.

Proof. We observe that π∗ is onto by the definition of M(Γ). We will show in
the following order continuity, injectivity, and the existence of a continuous
inverse.

Let µj → µ in C(Γ), and let φ : Ω(n) → R be a continuous function
with compact support K ⊂ Ω(n). We choose a partition of unity {ρi}n

i=1

for a neighborhood of K with support(ρi) ⊂ Bi, where each Bi is a flowbox.
Then,

µ∗
j (φ) =

∫
Ω(n)

φ dµ∗
j =

n∑
i=1

∫
Bi

ρiφ dµ∗
j .

As Bi
∼= Di × [0, 1], we break the integral into a double integral
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∫
Ω(n)

φ dµ∗
j =

n∑
i=1

∫
Di

(∫
x×[0,1]

ρiφ dλ

)
dµj.

We define φ̂ : G(Hn) → R by

φ̂i(x) =
∫

x×[0,1]
ρiφ dλ.

Thus,

µ∗
j(φ) =

n∑
i=1

µj(φ̂i).

Note that φ̂i ∈ Cc(G(Hn)). As µj → µ, then µj(φ̂i) → µ(φ̂i) and by
the above sum, we have µ∗

j → µ∗. Thus, π∗ is continuous. It remains to
show that π∗ is injective and has a continuous inverse. Let φ ∈ Cc(G(Hn))
be a continuous function with compact support. Also let f ∈ Cc(R) be
a bump function on the real line with total integral one. Then, we define
φ̂(g, x) = φ(g)f(x). Thus, by definition of the product measure, we have that
µ∗(φ̂) = µ(φ)(

∫
fdx) = µ(φ). To show that π∗ is injective, we let µi be two

geodesic currents so that µ1 �= µ2. Thus, there exists a φ ∈ Cc(G(Hn)) such
that µ1(φ) �= µ2(φ). As µ∗

i (φ̂) = µ(φ), we therefore have that µ∗
1(φ̂) �= µ∗

2(φ̂).
Thus, µ∗ is injective. Now, let µ∗

i → µ∗, and let φ ∈ Cc(G(Hn)). Thus,
µ∗

i (φ̂) → µ∗(φ̂). As µ∗(φ̂) = µ(φ), we have that µi(φ) → µ(φ), thus by the
definition of the weak* topology, we observe that µi → µ, and therefore, π∗

has a continuous inverse. �

Using Lemma 4.2, we can show that the length function is a continuous
map.

Proposition 4.3. Let Γ be convex co-compact, then the length function
L : C(Γ) → R is continuous.

Proof. As the map π∗ is continuous, we need only show that the map µ∗ →
µ∗(Ω(n)/Γ) is continuous. Recall, given the definition of a geodesic current
and from the assumption that Γ is convex co-compact, that the subset of
Ω(n)/Γ on which any line element measure has support is compact. The
result follows immediately from the definition of weak* convergence. �
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Recall the definition (equation 1.3) of the Patterson–Sullivan geodesic
current m, and of the induced Patterson–Sullivan line element measure M =
m∗. We now give a construction of a family of simple line element measures
that converge to the measure M .

We describe the natural metric D on Ω(n) given by parallel translation.
Let d be the hyperbolic distance function on Hn and dx be the spherical
metric on the unit tangent space at x ∈ Hn. Then, for p, q ∈ Ω(n), with
basepoints x, y ∈ Hn, we define D(p, q) = d(x, y) + dy(gy(p), q) where gy(p)
is the line element obtained by parallel translating p to y. In particular, we
note that d(x, y) ≤ D(p, q). Also, D naturally descends to a metric on the
quotient Ω(n)/Γ.

Let p ∈ Ω(n)/Γ, with base point xp and in the direction of the tangent
vector vp. We define the ray in the direction of p to be the geodesic pa-
rameterized by length given by r : [0,∞) → Hn/Γ so that r(0) = xp and
r′(0) = vp. We fix an embedded ball neighborhood B of xp. If, after a
distance t, the geodesic ray r returns to B, we obtain a closed curve rt in
Hn/Γ by joining the point r(t) to xp = r(0). We let at : [0, lt] → Hn/Γ be
the geodesic (parameterized by arclength) of length lt that is homotopic to
rt with at(0) = at(lt) = xp. Then, at is a closed curve through xp that is
geodesic except at xp.

We define R(s) = (r(s), r′(s)) and At(s) = (at(s), a′t(s)), and thus, obtain
parameterized curves R : [0,∞) → Ω(n)/Γ and At : [0,∞) → Ω(n)/Γ. As
at is a closed curve, the distance D(At(0), At(lt)) is just the angle of at at
xp. The lemma below says that if the ray r returns to a small neighborhood
of the initial line element in the D metric on Ω(n)/Γ, then D(At(0), At(lt))
is small. The proof is an elementary exercise in hyperbolic geometry that
we omit for the sake of brevity.

Lemma 4.4. Given ε > 0, there exist constants δ > 0 and K > 0,
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each depending on ε, such that if t > K and D(R(0), R(t)) < δ, then
D(At(0), At(lt)) < ε.

The next lemma shows that for sufficiently large t, if the angle of at is
small, then at is homotopic to a closed geodesic by a bounded homotopy.
Recall the definition of a bounded homotopy: let X be a Riemannian man-
ifold, then a homotopy H : [0, 1] × [0, 1] → X has bounded height if there
exists a K such that for each s ∈ [0, 1] the curve ps(t) = H(s, t) have length
less than or equal to K. The minimum value of K is the height of the
homotopy, a homotopy for which a height can be found is called a bounded
homotopy.

Lemma 4.5. Assume that Γ is a purely loxodromic Kleinian group. Given
any ε < π, the following is true: There exists a constant K so that if
α : [0, t] → Hn/Γ is a geodesic parameterized by arc length with t > K, and
if

1. α(0) = α(t) = x,

2. dx(α
′
(0), α

′
(t)) < ε,

then α is homotopic to a closed geodesic by a bounded homotopy of height
less than or equal to K

2 .

Proof. We will show that K = 2cosh−1( π
π−ε) works.

Let π : Hn → Hn/Γ be the covering map, and let x0 ∈ Hn belong to
π−1(x). Let α̃ : [0, t] → Hn be the unique lift of α starting at x0. Denote
by xt ∈ π−1(x) the point xt = α̃(t). Let θ be the angle between the tangent
vectors α′(0) and α′(t) at x. We let γ ∈ Γ be the (loxodromic) element
such that xt = γ(x0), and let β̃ be the axis of γ. We denote by < γ > the
cyclic group generated by γ. We orthogonally project (x0, xt) to the points
(y0, yt) ∈ β̃, and denote by D the distance d(x0, y0) = d(xt, yt). Thus,
γ(y0) = yt and therefore, the geodesic segment [y0, yt] ⊂ β̃ projects to a
closed geodesic β in Hn/ < γ >. The convexity of the length function in
hyperbolic space implies that the geodesic arc segment [x0, xt] ⊂ ND([y0, yt])
(here, the symbol ND refers to the radius D neighborhood). Therefore, by
taking orthogonal projection, we obtain a homotopy of the geodesic arc
[x0, xt] to [y0, yt] by a homotopy of height at most D. Descending to the
quotient space Hn/Γ, we obtain a homotopy of α to β of height at most D.

Our goal is to show that D is less than or equal to K
2 , and to do so,

we use the simplicial surface techniques of Thurston. We now describe
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a simplicial annulus A with boundary components α and β. We form a
simplicial quadrilateral Q in Hn with vertices x0, xt, y0, yt which is the union
of two triangles T1, T2. The triangle T1 has sides x0y0, x0xt, xty0 and T2 has
sides y0yt, ytxt, xty0. Let Q = T1 ∪ T2. Then, Q is a quadrilateral and Q
projects to an annulus A in Hn/ < γ > with boundary components α and
β. At the vertex x ∈ A, the exterior angle is θ. Therefore, the interior angle
θx in A at x satisfies θx ≥ π − θ > π − ε.

If D > t/2, we let S be the set of points within a distance t/2 of x in
A. As D > t/2, then S is an embedded hyperbolic sector of angle θx and
radius t/2. Thus,

Area(A) ≥ Area(S) ≥ θx

2π
(4π sinh2(t/4)) = 2θx sinh2(t/4).

As the interior angles of Q at y0 and yt are at least π/2, we have Area(A) ≤
π − θx. Therefore, 2θx sinh2(t/4) ≤ π − θx giving θx(1 + 2 sinh2(t/4)) ≤ π.
As cosh(2x) = 1 + 2 sinh2(x), we get

cosh(t/2) ≤ π

θx
≤ π

π − ε
.

Thus, t ≤ K, which gives us a contradiction. Therefore, D ≤ t/2. We now
let S be the set of points within a distance D of x in A. Then, S is an
embedded hyperbolic sector of angle θx and radius D. Thus, as above, we
have

D ≤ cosh−1

(
π

π − ε

)
=

K

2

and therefore, α is homotopic to β via a homotopy of height at most K/2. �

Remark 4.6. In fact, the above proof shows more: the height of the ho-
motopy tends to zero as the angle of deflection tends to zero.

A direct corollary of the above facts is:



Patterson–Sullivan measures and quasi-conformal deformations 579

Corollary 4.7. There exist constants δ,K1, and K2, all greater than zero,
so that if t > K1 and D(R(0), R(t)) ≤ δ, then at is homotopic to a closed
geodesic α(t,p) via a homotopy with height bounded by K2.

Proof. Fix ε ∈ (0, π). By Lemma 4.4, there are constants δ and k1 such that
if D(R(0), R(t)) ≤ δ and t > k1, then at has angle at most ε at xp. Let
lt be the length of at; then, applying Lemma 4.5 insures that there exists
a constant k2 (depending only on ε) such that for lt > k2, the geodesic
curve at is boundedly homotopic to its geodesic representative α(t,p). We let
K2 = k2/2. To finish the proof, we need to choose a constant K1 such that
if t > K1, then both t > k1 and lt > k2. By the triangle inequality, we have
that |lt − t| ≤ δ, thus the quantity K1 = max{k1, k2 + δ} works. �

We now use the geodesics α(ti,p) to approximate the Patterson–Sullivan
geodesic current m.

Theorem 4.8. Let Γ be convex co-compact, and denote by M the
Patterson–Sullivan measure on Ω(n)/Γ. Then, for almost every p ∈ Ω(n)
with respect to M , there exists a sequence ti such that

lim
ti→∞

α∗
(ti,p)

L(α∗
(ti,p))

=
M

M(Ω(n)/Γ)

Proof. Recall the statement of Theorem 1.3, in particular, that the
Patterson–Sullivan line element measure M assigns finite mass to Ω(n)/Γ
and that the geodesic flow on Ω(n)/Γ is ergodic with respect to the
measure M (see [14].) Thus, by the Birkhoff Ergodic Theorem, given
φ ∈ Cc(Ω(n)/Γ), there exists a set Aφ ⊂ Ω(n)/Γ of full M -measure such
that for all p ∈ Aφ

(4.1) lim
t→∞

1
t

∫ t

0
φ(gs(p))ds =

M(φ)
M(Ω(n)/Γ)

.

To prove that there is a set A of full M -measure in Ω(n)/Γ for which the
above holds for every continuous function with compact support, we choose
a countable dense subset {φi} of the space of continuous functions with
compact support on Ω(n)/Γ (with the || · ||∞ normed topology). Therefore,
as the countable union of measure zero sets is of measure zero, we have that
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there is a set A ⊂ Ω(n)/Γ of full M -measure, such that for all p ∈ A

lim
t→∞

1
t

∫ t

0
φi(gs(p))ds =

M(φi)
M(Ω(n)/Γ)

.

Let φ be any continuous function with compact support in Ω(n)/Γ, then
there exists a subsequence {φj} ⊂ {φi} such that φj → φ in the || · ||∞
norm. An elementary bit of analysis shows that

lim
t→∞

1
t

∫ t

0
φ(gs(p))ds =

M(φi)
M(Ω(n)/Γ)

for all p ∈ A. Note that as M is supported on those line elements associated
to the convex core of Hn/Γ, we can assume that the points of A are line
elements of this type. Define the ray R : [0,∞) → Ω(n) by R(t) = gt(p) for
p ∈ A.

As the geodesic flow is ergodic with respect to M , the geodesic flow is
recurrent for almost every p ∈ A. We fix a flow box about R(0) so that the
diameter of the flow box is smaller than the minimum value of the injectivity
radius function on Hn/Γ. Using the recurrence property of the geodesic flow,
we can form a sequence of homotopically non-trivial curves by “closing up”
the ray R(s) each time it returns to the flow box (recurrence insures that
there is an infinite sequence of distances s for which return of the ray to
the flow box is achieved.) From Corollary 4.7, there exist constants δ, K1

and K2 such that if t > K1 and D(R(0), R(t)) ≤ δ, then at is homotopic
via a bounded homotopy of height K2 to the closed geodesic α(t,p) in its
homotopy class, (we can without loss of generality assume that δ is less
than the diameter of the flow box.) By the recurrence property, there exists
a sequence of distances {ti} from R(0), with ti → ∞, such that ti > K1

and D(R(0), R(ti)) ≤ δ for all index i. We therefore obtain a sequence
{ai = ati} of geodesics, along with the associated sequence {αi = α(ti,p)} of
closed geodesics (here, of course, ati is homotopic to α(ti,p)). We let Li be
the length of αi, and we let Ai : [0, Li] → Ω(n)/Γ be the closed curve given
by taking line elements along the geodesic αi. We consider the covering
map p : Ω(n) → Ω(n)/Γ, and let φ̃ be the pullback of φ ∈ Cc(Ω(n)/Γ) given
by φ̃ = φ ◦ p. Similarly, choose R̃ : [0,∞) → Ω(n) to be a lift of R and let
Ãi : [0, Li] → Ω(n) be the lift of Ai corresponding to the choice of R̃ via
the homotopy between ai and αi. Lifting the integral with respect to the
covering map p, we get both

1
t

∫ t

0
φ (R(s)) ds =

1
t

∫ t

0
φ̃
(
R̃(s)

)
ds
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and
α∗

i

Li
(φ) =

1
Li

∫ Li

0
φ̃
(
Ãi(s)

)
ds

(recall that α∗
i is the line element measure induced by the simple geodesic

current defined by αi.) We will now show that

lim
i→∞

1
ti

∫ ti

0
φ̃
(
R̃(s)

)
ds = lim

i→∞
1
Li

∫ Li

0
φ̃
(
Ãi(s)

)
ds.

We start with the elementary observation that if f is a bounded function,
K a non-negative constant, and for each t ∈ R, let ct, dt be a pair of of real
numbers so that |ct| and |dt| are both less than or equal to K for all t ∈ R,
then

lim
t→∞

1
t

∫ t

0
f(s)ds = lim

t→∞
1
t

∫ t+dt

ct

f(s)ds.

Under the fiber bundle map π : Ω(n) → Hn, the curve Ãi is mapped to a
geodesic arc α̃i : [0, Li] → Hn and the ray R̃ is mapped to a geodesic ray that
we label by r̃ : [0,∞) → Hn. We orthogonally project r̃ onto the axis α̃i. By
the description of the homotopy from ai to αi, it follows that the point x =
r̃(0) projects to the point x′

i = α̃i(0). We let yi = r̃(ti), and let the projection
of this point to α̃i be denoted by y′i. For each s, let f(s) be the distance
from x′

i on α̃i to the projection of the point r̃(s). Therefore, the point r̃(s)
is projected to the point α̃i(f(s)), and as orthogonal projection is distance
decreasing, then f is a continuous distance decreasing homeomorphism onto
its image. As yi is within a distance δ of a point that projects to α̃i(Li), we
have that |f(ti) − Li| ≤ δ. Using the fact that ai is homotopic to αi via a
homotopy whose height is bounded by K2 then by the triangle inequality, we
have that d(x, x′

i) ≤ C and d(yi, y
′
i) ≤ C, where C = K2 + δ. In particular,

we have that |L− ti| ≤ 2C, and thus, we have asymptotically two relatively
long geodesic arcs having endpoints within a bounded distance from each
other.

It follows from elementary hyperbolic geometry (see Theorem 2.4.6 in [7])
that, given any δ1 > 0, there exists a k1 > 0 so that d(r̃(s), α̃(f(s))) ≤ δ1 for
k1 ≤ s ≤ s − k1. It follows similarly that the tangent vectors are close, and
we get that there exists a constant k2 > 0 so that D(R̃(s), Ãi(f(s))) ≤ δ1

for k2 ≤ s ≤ t − k2.
The function f is obviously differentiable, and it has the following prop-

erties. As f is distance decreasing, then f(s) ≤ s and f ′(s) ≤ 1. Letting
D(s) = D(R̃(s), Ã(f(s))), then we observe that as D(s) tends to zero the
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function f ′(s) tends uniformly to one. Therefore, there is a monotonically
increasing function g satisfying g(x) → 1 as x → 0 such that

1
g(D(s))

≤ f ′(s) ≤ 1.

Fix ε > 0. As φ has compact support in Ω(n)/Γ, it is uniformly continuous.
Therefore, φ̃ is uniformly continuous, and thus, there exists a δ1 > 0 so that
|φ̃(p)− φ̃(q)| ≤ ε whenever D(p, q) ≤ δ1, where p and q are in the support of
φ̃. We can, without loss of generality, further assume that δ1 ≤ ε. Compiling
the information above, we thus have that∣∣∣φ̃(R̃(s)

)
− φ̃

(
Ãi(f(s))

)∣∣∣ ≤ ε for k2 ≤ s ≤ ti − k2,

and thus,

(4.2)
∣∣∣∣∫ ti−k2

k2

φ̃
(
R̃(s)

)
ds −

∫ ti−k2

k2

φ̃
(
Ãi(f(s))

)
ds

∣∣∣∣ ≤ εti.

Letting u = f(s), and as D(R̃(s), Ãi(f(s))) ≤ δ1 and using the monotonicity
of g, we obtain for k2 ≤ s ≤ t − k2 that

1
g(δ1)

≤ du

ds
≤ 1.

Thus: ∫ f(ti−k2)

f(k2)
φ̃
(
Ãi(u)

)
du ≤

∫ ti−k2

k2

φ̃
(
Ãi(f(s))

)
ds(4.3)

≤ g(δ1)
∫ f(ti−k2)

f(k2)
φ̃
(
Ãi(u)

)
du.

Combining inequalities 4.2 and 4.3, we have that∣∣∣∣∣
∫ ti−k2

k2

φ̃
(
R̃(s)

)
ds −

∫ f(ti−k2)

f(k2)
φ̃
(
Ãi(s)

)
ds

∣∣∣∣∣
≤ εti + (g(δ1) − 1)

∣∣∣∣∣
∫ f(ti−k2)

f(k2)
φ̃
(
Ãi(s)

)
ds

∣∣∣∣∣ .
As φ ∈ Cc(Ω(n)/Γ) has compact support, there exists a constant k3 so
that |φ̃(p)| ≤ k3 for all p ∈ Ω(n). Also, as f is distance non-increasing, i.e.
0 ≤ f(x) ≤ x, then∣∣∣∣∣

∫ ti−k2

k2

φ̃
(
R̃(s)

)
ds −

∫ f(ti−k2)

f(k2)
φ̃
(
Ãi(s)

)
ds

∣∣∣∣∣ ≤ εti + (g(δ1) − 1)tik3.
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Observe that 0 ≤ f(k2) ≤ k2; also, by the triangle inequality, |f(ti − k2) −
Li| ≤ |f(ti − k2) − f(ti)| + |f(ti) − Li| ≤ k2 + δ. Thus, there are constants
ci and di such that max{|ci|, |di|} ≤ k2 + δ, and so∣∣∣∣∫ ti−k2

k2

φ̃
(
R̃(s)

)
ds −

∫ Li−di

ci

φ̃
(
Ãi(s)

)
ds

∣∣∣∣ ≤ εti + (g(δ1) − 1)tik3.

As |Li − ti| ≤ 2C, it follows that limi→∞ Li
ti

= 1, and therefore,

lim
i→∞

∣∣∣∣ 1ti
∫ ti

0
φ̃
(
R̃(s)

)
ds − 1

Li

∫ Li

0
φ̃
(
Ãi(s)

)
ds

∣∣∣∣ ≤ ε + (g(δ1) − 1)k3.

As ε is arbitrary, we can let ε → 0, and thus, as δ1 ≤ ε, we have δ1 → 0. As
δ1 → 0, we have g(δ1) → 1, and thus:

lim
i→∞

1
ti

∫ ti

0
φ̃
(
R̃(s)

)
ds = lim

i→∞
1
Li

∫ Li

0
φ̃
(
Ãi(s)

)
ds,

and therefore,

lim
i→∞

1
Li

∫ Li

0
φ(Ai(s))ds =

M(φ)
M(Ω(n)/Γ)

.

Thus,

lim
i→∞

α∗
i

Li
=

M

M(Ω(n)/Γ)
.

Therefore, for almost every p ∈ Ω(n) with respect to M , there exist a
sequence ti such that

lim
i→∞

α∗
(ti,p)

L(ti,p)
=

M

M(Ω(n)/Γ)
.

�

We can immediately reformulate the theorem above in terms of geodesic
currents using Lemma 4.2.

Corollary 4.9. Let Γ be a convex co-compact group. Then, for almost
every p ∈ Ω(n) with respect to M, there exists a sequence ti → ∞ such that
the resulting sequence {α(ti,p)} of simple geodesic currents satisfies

lim
i→∞

α(ti,p)

L(α(ti,p))
=

m

M(Ω(n)/Γ)
.
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Recall that Γ1 and Γ2 are two quasi-conformally conjugate convex co-
compact Kleinian groups. Define the push-forward f∗ : C(Γ1) → C(Γ2) of
µ ∈ C(Γ1) by the induced homeomorphism f : LΓ1 → LΓ2 by (f∗µ)(φ) =
µ(φ ◦ f); φ ∈ Cc(G(Hn)). The map f extends to a quasi-isometric (i.e.
biLipschitz) map f : Hn → Hn conjugating Γ1 to Γ2 (see [8] and [12]).
Observe that if α is a geodesic current corresponding to a closed geodesic γ,
then f∗α is the geodesic current corresponding to the unique closed geodesic
in the homotopy class of the closed curve f(γ).

Lemma 4.10. The map f∗ : C(Γ1) → C(Γ2) is a homeomorphism.

Proof. We first observe that because f∗ is functorial, we have that f∗ is one
to one and onto. Let µi → µ in C(Γ1) and φ : G(Hn) → R be a continuous
function with compact support K. Then, f∗µ(φ) = µ(φ◦f). The support of
φ ◦ f is f−1(K) which is compact as f is a homeomorphism. As µi → µ and
φ ◦ f is continuous with compact support, we have that µi(φ ◦ f) → µ(φ ◦ f)
and therefore, f∗µi → f∗µ. Therefore, f∗ is continuous and similarly g∗ is
continuous, where g = f−1. Composing f∗, g∗, we see that f∗ has g∗ as its
inverse and is therefore, a homeomorphism. �

We define the distortion of a current µ ∈ C(Γ1) by

R12(µ) =
L2(f∗µ)
L1(µ)

,

where L1, L2 are the length functions on C(Γ1), C(Γ2) respectively and f
is a quasi-conformal deformation inducing an isomorphism taking a convex
co-compact Kleinian group Γ1 to Γ2. The distortion R21(µ) of a current
µ ∈ C(Γ2) is defined analogously.

In terms of the induced line element measures, the distortion is given by

R12(µ) =
(f∗µ)∗(Ω(n)/Γ2)

µ∗(Ω(n)/Γ1)
.

Because geodesic flow acting on Ω(n) is ergodic with respect to M1 for convex
co-compact Kleinian groups, and since R̃12(p) is a measurable, geodesic flow
invariant function (Remark 3.5), we know that R̃12 is constant on Ω(n)
almost everywhere (M1). The following lemma uses the compactness of the
convex core to relate this constant to the distortion of the Patterson–Sullivan
geodesic current m1.
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Lemma 4.11. Let Γi, i = 1, 2 be convex co-compact, quasi-conformally
conjugate Kleinian groups. Then,

R̃12(p) ≤ R12(m1) a.e. (M1).

Proof. By Corollary 4.9, there is a set of full measure A ⊂ Ω(n) with respect
to M1, such that for each p ∈ A, there exists a sequence ti such that the
Patterson–Sullivan geodesic current can be approximated using α(ti,p). By
definition, we have, if p ∈ Ω(n) with endpoint ν+, that

R̃12(p) = inf lim inf
γx1

conical→ ν+

R12(γ) = inf lim inf
γx1

conical→ ν+

d(x2, i(γ)x2)
d(x1, γx1)

,

where x1, x2 are any choice of basepoints for the 1-Poincaré series of Γ1 and
Γ2 respectively. For any γ ∈ Γ1−{id}, we join the point x1 to the point γ(x1).
In the manifold Hn/Γ1, this curve projects to a homotopically non-trivial
closed curve aγ ; we let αγ be the unique closed geodesic (Γ1 is convex co-
compact) in its homotopy class. Let p have basepoint x, and choose x1 = x.
Hence, by the bounded homotopy argument in Lemma 4.5, there exists a
constant C and a sequence {ti} tending to infinity so that the geodesic curves
ati are homotopic to the closed geodesics αγti

by a homotopy of bounded
height C. Taking the corresponding sequence {γi = γti} of elements in Γ1,
we see that for each index i, the axis of γi is within a C-neighborhood of
the geodesic joining x1 to γi(x1). Thus, we have, by the triangle inequality,
that

|L1(αγi) − d(x1, γi(x1))| ≤ 2C,

where L1 is the length function on the geodesic current space C(Γ1). Let f :
Hn → Hn be a quasi-isometric (i.e. biLipschitz) extension of f conjugating
Γ1 to Γ2. By the definition of the map f∗ : C(Γ1) → C(Γ2), if αγi is induced
by a closed geodesic in Hn/Γ1, then the geodesic current f∗(αγi) is induced
by a closed geodesic in Hn/Γ2 homotopic to the image under f of the closed
geodesic inducing αγi .

We let x2 = f(x1), then f(γ(x1)) = i(γ)(f (x1)) = i(γ)(x2). Therefore,
the geodesic segment joining x2 to i(γi)(x2) projects under the covering
map to a curve that is homotopic to f∗(αγi) (here, we regard f∗(αγi) as the
geodesic that induces the simple geodesic current), and because f is biLip-
schitz, there is a constant C1 so that the resulting homotopy is a bounded
homotopy of height C1. Thus, the geodesic joining x2 and i(γi)(x2) is in the
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C1-neighborhood of the axis of i(γi), and we have by another application of
the triangle inequality that

|L2(f∗(αγi)) − d(x2, i(γi(x2)))| ≤ 2C1.

(Here, as before, L2 represents the length function on the space of geodesic
currents C(Γ2).)

Using the definition of R̃, and the above two inequalities, we have

R̃12(p) ≤ lim inf
i→∞

d(x2, i(γi)(x2))
d(x1, γi(x1))

= lim inf
i→∞

L2(f∗(αγi))
L1(αγi)

.

By Corollary 4.9, we have that

lim
i→∞

αγi

L1(αγi)
=

m1

M1(Ω(n)/Γ1)
.

(Note that here m1 is the Patterson–Sullivan geodesic current for Γ1, and
M1 is the Patterson–Sullivan line element measure for Γ1.) Therefore, by
the continuity of f∗ (see Lemma 4.10), we have that

lim
i→∞

f∗(αγi)
L1(αγi)

=
f∗(m1)

M1(Ω(n)/Γ1)
.

By the continuity of the map α → α∗ (see Lemma 4.2), we have that

lim
i→∞

[f∗(αγi)]
∗

L1(αγi)
=

[f∗(m1)]∗

M1(Ω(n)/Γ1)
.

Because Γ is convex co-compact, there exists a compact subset of Ω(n)/Γ
that contains the support of every line element measure. Therefore, by the
definition of the weak* topology, we have that

lim
i→∞

[f∗(αγi)]
∗(Ω(n)/Γ2)

L1(αγi)
=

[f∗(m1)]∗(Ω(n)/Γ2)
M1(Ω(n)/Γ1)

.

Recall that, by definition, the length function L2 acts on C(Γ2) by
L2(α) = α∗(Ω(n)/Γ2). Thus, via Proposition 4.3, we have

R12(m1) = lim
i→∞

L2(f∗(αγi))
L1(αγi)

.

�

An immediate corollary of Theorem 4.8 is:
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Corollary 4.12. If N1 and N2 are isometric, then R12(m1) = R21(m2) = 1.

We conjecture:

Conjecture 4.13. If Ni=1,2 are convex co-compact quasi-isometric infinite
volume hyperbolic manifolds with the property that R12(m1) = R21(m2) =
1, then the Ni are isometric.

The Main Theorem is now an immediate consequence of Lemma 4.11 and
Theorem 4.8.

Theorem 4.14 (Main Theorem). Let Γi; i = 1, 2 be convex co-compact,
quasi-conformally conjugate Kleinian groups. Then,

R12 = R12(m1) ≥ δ(Γ1)
δ(Γ2)

.

Proof. By the above lemma we have that R̃12(p) ≤ R12(m1) a.e. (M1). Also
Lemma 3.4 shows that R̃12(p) ≥ δ(Γ1)/δ(Γ2) a.e. (M1). Therefore,

R12 = R12(m1) ≥ δ(Γ1)
δ(Γ2)

almost everywhere with respect to M1, as desired. We can relate R12 and
R21 through the following inequality: switching the roles of Γ1,Γ2, we obtain

1
R12

≤ δ(Γ2)
δ(Γ1)

≤ R21.

�
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