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The equivariant cohomology of hypertoric varieties

and their real loci

Megumi Harada and Tara S. Holm
1

Let M be a Hamiltonian T space with a proper moment map,
bounded below in some component. In this setting, we give a
combinatorial description of the T -equivariant cohomology of M ,
extending results of Goresky, Kottwitz and MacPherson and tech-
niques of Tolman and Weitsman. Moreover, when M is equipped
with an antisymplectic involution σ anticommuting with the ac-
tion of T , we also extend to this non-compact setting the “mod 2”
versions of these results to the real locus Q := Mσ of M . We give
applications of these results to the theory of hypertoric varieties.

1. Introduction.

We present here two main results and demonstrate their use through several
explicit computations. In the first result, we generalize to the non-compact
setting a theorem of Goresky, Kottwitz, and MacPherson that computes
T = T n-equivariant cohomology rings of compact Hamiltonian T spaces
satisfying some technical conditions [8]. Suppose, in addition, that M is
equipped with an antisymplectic involution σ that anticommutes with the
T action. In the second result, we generalize to the non-compact setting
theorems [4, 5, 7, 18] that compute the equivariant cohomology of the real
locus Q := Mσ of a Hamiltonian T space M satisfying similar technical con-
ditions. The motivating examples for this paper are the hypertoric varieties
studied in [3, 14, 15, 12, 11] and their real loci. We present these in detail.

We first recall the basic idea of the theorem of Goresky, Kottwitz, and
MacPherson, which we call the GKM theorem. For a compact Hamiltonian
T space M , Kirwan showed [13] that the inclusion MT ↪→ M induces an
injection H∗

T (M ; Q) ↪→ H∗
T (MT ; Q) in equivariant cohomology. Since T acts

trivially on MT , when MT consists of isolated points, the ring H∗
T (MT ; Q)
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is a direct product of polynomial rings

H∗
T (MT ; Q) ∼=

∏
p∈MT

H∗
T (p; Q) ∼=

∏
p∈MT

Sym(t∗).

Hence, in order to compute the equivariant cohomology ring H∗
T (M ; Q), it

suffices to identify its image in H∗
T (MT ; Q). Suppose, in addition, that the

T -isotropy weights {αp,i} are pairwise linearly independent at each fixed
point p. The GKM theorem then asserts that the image of H∗

T (M ; Q) in
H∗

T (MT ; Q) is the same as that of the one-skeleton of M , which in turn
can be described combinatorially in terms of a graph Γ and the T -isotropy
data. Thus, the computation of H∗

T (M ; Q) is translated into a problem of
combinatorics.

In the setting of compact Hamiltonian T manifolds equipped with an
additional antisymplectic involution σ, we define the real locus Q := Mσ of
M , which is equipped with an action of the discrete subgroup TR := (Z2)n of
T . The mod 2 GKM theorem [4, 18] gives a similar combinatorial description
of the image of the equivariant cohomology of the real locus Q := Mσ as a
subring of the equivariant cohomology (with Z2 coefficients) of QTR .

Examples of Hamiltonian T spaces satisfying the GKM hypotheses in-
clude coadjoint orbits of compact Lie groups and toric varieties. In the
case of coadjoint orbits, the combinatorial description given by the GKM
theorem has proved useful in the theory of equivariant Schubert calculus
(for example, see [16]). These examples also have natural antisymplectic
involutions, and the mod 2 results apply to these examples. The combina-
torial description of the equivariant cohomology of real loci of certain toric
varieties has applications to string theory (see [4]).

Thus far, we have required M to be compact. However, there are many
non-compact examples that nonetheless fit into this framework. For exam-
ple, hypertoric varieties [3, 14, 15, 12, 11] equipped with a T × S1 action
exhibit many of the properties of compact Kähler toric varieties. For in-
stance, like their Kähler counterparts, the T × S1-isotropy weights at each
fixed point are pairwise linearly independent. The hypertoric varieties are
also equipped with a natural antisymplectic involution, and the computa-
tion of the equivariant cohomology of the real loci has applications to the
theory of hyperplane arrangements [11, Section 5]. Moreover, coadjoint or-
bits of affine Kac–Moody algebras equipped with an appropriate T × S1

action satisfy pairwise linear independence properties. Thus, the examples
strongly motivate us to demonstrate GKM and mod 2 GKM theorems in
the non-compact setting.
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The essential observation in this paper is that the Morse theoretic argu-
ments given in [19] work with only slight modifications in the setting when
there is a component of the moment map which is proper and bounded be-
low. These two hypotheses allow us to apply the same local Morse theoretic
arguments: the properness ensures the compactness of critical sets, and the
boundedness allows us to make an inductive argument by providing a base
case. This is the case for some of the examples mentioned above; for smooth
hypertoric varieties, it is indeed true that there exists a component of the
T ×S1 moment map which is proper and bounded below [11]. For the coad-
joint orbits of affine Kac–Moody algebras, however, the methods presented
in this paper do not suffice. Different arguments must be used to give a
GKM description for these examples [10]. The results in [10] are phrased
in the language of cell complexes, but they also achieve a combinatorial de-
scription of equivariant cohomology. We also note that the results in this
paper are stated over Z instead of Q. This changes the statements of some
of the technical hypotheses on the T -isotropy weights.

We now give a brief outline of the contents of this paper. In Section 2,
we state and prove a GKM theorem in the setting of non-compact spaces in
Theorem 2.11. We use this theory in Section 3 to analyze in detail the ex-
ample of smooth hypertoric varieties equipped with a Hamiltonian T d × S1

action. In particular, we give an isomorphism between the quotient descrip-
tion of the T d × S1-equivariant cohomology of a hypertoric variety given
in [11] with the GKM description in Theorem 3.5, and compute several ex-
amples. Further, although the T d action on M does not satisfy the GKM
hypotheses, we use a “GKM in stages” argument to give a computation of
the T d-equivariant cohomology of M by using our GKM description of its
T d × S1-equivariant cohomology. In Section 4, we state and prove a mod 2
GKM theorem in the non-compact setting, stated in Theorem 4.8. We use
this to analyze the real locus of hypertoric varieties in Section 5. In particu-
lar, we explicitly identify the isomorphism between the T d × S1-equivariant
cohomology of a hypertoric variety and the T d

R
×Z2-equivariant cohomology

of its real locus in Proposition 5.1. We also mention an application of these
results that is used in [11].

2. GKM theory for non-compact spaces.

The goal of this section is to extend results about the equivariant topology of
compact symplectic Hamiltonian manifolds to situations where the manifold
is not necessarily compact. We replace the compactness hypothesis by a
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hypothesis on the moment map: we require it to be proper and bounded in
some component. This hypothesis ensures that we can still use components
of the moment map to study the Hamiltonian manifold Morse theoretically.

Our proofs of Theorems 2.6 and 2.7 follow the outline of the arguments
given in [19]. The technical heart of the argument is a lemma due to Atiyah
and Bott. The hypothesis on the moment map ensures that this lemma
still applies to our non-compact setting. We use this lemma, along with the
Morse theory of the moment map, to show that the equivariant cohomology
of M injects into the equivariant cohomology of the fixed point set. We then
show that the image is the same as the image of the equivariant cohomology
of the (equivariant) one-skeleton, N . The main result then follows as a
corollary to this: we give the combinatorial description of H∗

T (M), given
additional hypotheses on MT and on N .

We first present the key lemma of Atiyah and Bott. It is stated in [1,
Proposition 13.4], [2, Proposition 5.3.7].

Lemma 2.1 (Atiyah-Bott). Let E → B be a complex rank � vector bun-
dle over a compact oriented manifold B. Let T be the compact torus
T = (S1)d. Suppose that T acts on E with fixed point set precisely B.
Suppose further that the cohomology of B has no torsion over Z. Choose a
T -invariant Riemannian metric on E , and let D and S be the corresponding
disk and sphere bundles, respectively, of E . Then, the long exact sequence
of the pair (D,S) splits into short exact sequences

0 �� H∗
T (D,S; Z) �� H∗

T (D; Z) �� H∗
T (S; Z) �� 0 .

Remark 2.2. An alternative statement of this lemma is that the T -
equivariant Euler class of the bundle E is not a zero divisor.

Remark 2.3. The hypothesis that the cohomology of B has no torsion over
Z can be relaxed to the hypothesis that it has no 2-torsion when we take the
coefficient ring to be Z2, and can be removed entirely if we take coefficient
ring Q.

We now turn our attention to finite-dimensional Hamiltonian T spaces.
Suppose that a torus T acts on a symplectic manifold M in a Hamiltonian
fashion. Then, components µξ of the moment map µ : M → t∗ are Morse–
Bott functions on M . We call a component generic if the critical set is
precisely the fixed point set. This is true of an open dense set of directions
ξ ∈ t. When we assume that a generic component is proper, then the
connected components of the fixed point set are compact. Thus, we may
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use Lemma 2.1 to study the normal bundles to these fixed point sets to
prove the following proposition.

Proposition 2.4. Let a torus T act on a symplectic manifold M with mo-
ment map µ : M → t∗. Suppose that some generic component f := µξ is
proper and bounded below. Let c be a critical value of f . Let Σc be the com-
ponent of Σ := MT with µξ(Σc) = c, and assume that the cohomology of Σc

has no torsion over Z. For small enough ε > 0, let M±
c := f−1(−∞, c ± ε).

Then, the long exact sequence of the pair (M+
c ,M

−
c ) splits into short exact

sequences

0 �� H∗
T (M+

c ,M
−
c ; Z) �� H∗

T (M+
c ; Z) k∗

�� H∗
T (M−

c ; Z) �� 0 .

Moreover, the restriction from H∗
T (M+

c ; Z) to H∗
T (Σc; Z) induces an isomor-

phism from the kernel of k∗ to the classes of H∗
T (Σc; Z) that are multiples

of τc the equivariant Euler class of the negative normal bundle to Σc.

Remark 2.5. Note that in the proof, we implicitly assume that the com-
ponent Σc of Σ that maps to the critical value c is connected. If this is not
the case, an analogous statement holds, using a virtual equivariant Euler
class. The reason that care is needed in that case is that the negative nor-
mal bundle need not have the same dimension on the different connected
components of Σc.

Proof. This argument appears in [19]. Let Dc and Sc denote the disc and
sphere bundles of the negative normal bundle to the fixed set Σc. Using
the retraction of the pair (M+

c ,M
−
c ) to the pair (Dc, Sc) and the Thom

isomorphism, we get the commutative diagram

�� H∗
T (M+

c ,M
−
c ; Z) ��

∼=
��

H∗
T (M+

c ; Z) k∗
��

��

H∗
T (M−

c ; Z) ��

H∗
T (Dc, Sc; Z) ��

Thom Iso ∼=
��

H∗
T (Dc; Z)

H∗−λ
T (Dc; Z)

∪τc

��������������

.

By the Atiyah–Bott Lemma, the cup product with τc is injective; there-
fore, the top long exact sequence splits into short exact sequences. The
proposition follows by a diagram chase. �
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Using this proposition, we prove by an inductive argument that the
equivariant cohomology of M injects into the equivariant cohomology of
the fixed point set Σ. In order to start the induction, we now add the hy-
pothesis that a generic component of the moment map is not only proper,
but also bounded below.

Theorem 2.6. Let a torus T act on a symplectic manifold M with moment
map µ : M → t∗. Suppose that some generic component f := µξ is proper
and bounded below. Suppose that Σ = MT has only finitely many connected
components. Let ı : Σ → M be the inclusion of the fixed point set into M .
Then, the pullback map

ı∗ : H∗
T (M ; Z) → H∗

T (Σ; Z)

is injective.

Proof. Choose ξ with f = µξ generic, proper, and bounded below. The
critical sets of f are precisely the connected components of Σ. Thus, by
assumption on Σ, there are only finitely many critical values of f . Order
these critical values as c1 < c2 < · · · < cm, and let Σc1, . . . ,Σcm denote
the corresponding critical submanifolds. These critical submanifolds are
compact, since f is proper. Let Σ±

ci
:= M±

ci
∩ Σ. We now proceed by

induction on the critical values.
Let ε > 0 be smaller than any of the values ci − ci−1. The injectivity

result is true for M+
c1, as it is equivariantly homotopic to Σc1. Now assume

by induction that it is true for M−
ci

. We will prove that it is true for M+
ci

.
Note that M−

ci
is homotopy equivalent to M+

ci−1
. We have the long exact

sequence of the pair (M+
ci
,M−

ci
), but by Proposition 2.4, this splits into short

exact sequences. Thus, we have a commutative diagram
(2.1)

0 �� H∗
T (M+

ci
,M−

ci
; Z) ��

��

H∗
T (M+

ci
; Z) ��

ı∗+
��

H∗
T (M−

ci
; Z) ��

ı∗−
��

0

0 �� H∗
T (Σci ; Z) �� H∗

T (Σ+
ci

; Z) �� H∗
T (Σ−

ci
; Z) �� 0

,

where we identify H∗
T (Σ+

ci
,Σ−

ci
; Z) ∼= H∗

T (Σci ; Z). The left vertical arrow is an
injection, induced by the Thom isomorphism, and the right vertical arrow
is an injection by the induction hypothesis. A simple diagram chase shows
that the middle vertical arrow must also be an injection. Since there are
only finitely many critical values, the result now follows by induction. �
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Since T is acting trivially on Σ, the ring H∗
T (Σ; Z) is isomorphic to the

ring H∗(Σ; Z) ⊗H∗
T (pt; Z). In general, H∗

T (Σ; Z) is easier to compute than
H∗

T (M ; Z). Thus, in order to compute H∗
T (M ; Z) as a ring, it now suffices to

describe the image in H∗
T (Σ; Z). We will now show that in fact, the image

of H∗
T (M ; Z) is the same as the image of the equivariant cohomology of a

certain subset of M .
Let N denote the subset of M given by

N := {x ∈M | codim(Stab(x)) = 1}.
Thus, N consists of the points in M whose T orbit is exactly one-
dimensional. We now define the one-skeleton of M to be the closure of
N . That is, it is the set

N := {x ∈M | codim(Stab(x)) ≤ 1}.
We have the diagram of inclusions

(2.2)

Σ � � ı ��� �

 ���
��

��
��

M

N
� �

����������
.

The next theorem states that the image of H∗
T (M ; Z) is the same as the

image of H∗
T (N ; Z) in H∗

T (Σ; Z). It is a non-compact version of a theorem
of Tolman and Weitsman [19, Theorem 1]. As above, the compactness hy-
pothesis is replaced by the hypothesis that some generic component of the
moment map be proper and bounded. Note that our theorem holds with
Z coefficients in contrast to [19, Theorem 1], which is stated for Q coeffi-
cients. To achieve this, we have added an assumption on the T weights on
the negative normal bundle.

Theorem 2.7. Let a torus T act on a symplectic manifold M with mo-
ment map µ : M → t∗. Suppose that some generic component f := µξ is
proper and bounded below. Suppose that Σ := MT has only finitely many
connected components. Suppose further that the distinct weights of the T
action on the negative normal bundle, with respect to f , to any fixed point
component are pairwise relatively prime in H∗

T (pt; Z). Then, in the diagram
in equivariant cohomology, induced by the inclusions (2.2),

H∗
T (M ; Z) ı∗ ��

������������
H∗

T (Σ; Z)

H∗
T (N ; Z)

∗

������������
,
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the image of ı∗ is equal to the image of ∗ in H∗
T (Σ; Z).

Remark 2.8. Note that if T = S1, we have N = M , and the theorem
automatically holds.

Proof. We proceed by induction on the critical values c1 < c2 < · · · < cm of
f := µξ. We first set up our notation. Let c be one of the critical values of
f . Define the sets N±

c := N ∩M±
c . Then, we have inclusions

Σ±
c

� � ı± ��
� �

± ���
��

��
��

�
M±

c

N
±
c

� �

		��������
,

which induce, in equivariant cohomology,

H∗
T (M±

c ; Z)
ı∗± ��



�����������
H∗

T (Σ±
c ; Z)

H∗
T (N±

c ; Z)

∗±

��											
.

The base case consists of analyzing these diagrams for the minimum critical
value c1. In this case, M−

c1 and N−
c1 are empty, and M+

c1 and N+
c1 both

equivariantly retract onto Σc1. Thus, both ı∗+ and ∗+ are isomorphisms, and
therefore have the same image.

Assume now by induction that the statement holds for M+
ci−1

. Let r
denote the natural restriction from im(∗+) ⊆ H∗

T (Σ+
ci

; Z) to H∗
T (Σ−

ci
; Z).

Note that the image of r is contained in im(∗−). By abuse of notation, we
will let ker(r) denote the inverse image inside H∗

T (Σci ; Z) ∼= H∗
T (Σ+

ci
,Σ−

ci
; Z)

of the kernel of r, using the short exact sequence of the pair (Σ+
ci
,Σ−

ci
). Thus,

we have a commutative diagram
(2.3)

0 �� H∗
T (M+

ci
,M−

ci
; Z) ��

��

H∗
T (M+

ci
; Z) ��

ı∗+
��

H∗
T (M−

ci
; Z) ��

ı∗−
��

0

0 �� ker(r) �� im(∗+)
r

�� im(∗−) �� 0

.

The map ı∗− is a surjection, by the inductive hypothesis. To show that ı∗+ is
a surjection, it suffices to show that the dotted vertical arrow is a surjection.
That ı∗+ is a surjection then follows by a diagram chase.
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We first recall a fact about Euler classes. Suppose T acts on a complex
vector bundle E over a manifold Σ, with fixed point set precisely Σ. De-
compose E into the direct sum of bundles Eα, where T acts on Eα by weight
α ∈ t∗

Z
. Assume that weights α are distinct and pairwise relatively prime in

H2
T (pt; Z) ∼= t∗

Z
. Let τα be the equivariant Euler class of the subbundle Eα.

Then, if y ∈ H∗
T (Σ; Z) is a multiple of τα for each α, then y is a multiple of

the product of the τα. This follows from the proof of [19, Lemma 3.2]. Al-
though their Lemma is stated for Q coefficients, the argument goes through
given our assumption of relative primality of the weights.

We now characterize ker(r). Suppose η is a class in H∗
T (N+

ci
; Z) such that

its restriction to H∗
T (Σ−

ci
; Z) is zero; that is, r ◦ ∗+(η) = 0. Let ν = ⊕ανα

be the T -invariant decomposition of the negative normal bundle to Σci,
where the weights {α} are distinct. Let Nα be the component of the one-
skeleton N corresponding to the weight α and such that the closure contains
Σci. The closure Nα is a symplectic manifold, and the restriction of η
to N

+
α := Nα ∩M+

ci
has the property that it vanishes when restricted to

N
−
α := Nα ∩M−

ci
. This is because η vanishes when restricted to Σ−

ci
(by

injectivity for Nα). By Proposition 2.4 applied to the pair (N+
α ,N

−
α ), we

may conclude that η restricted to Σci must be a multiple of each τα. By
assumption, any two distinct T weights occurring in the negative normal
bundle to Σci are relatively prime in H∗

T (pt; Z). Hence, by the fact recalled
in the previous paragraph, the restriction of η to H∗

T (Σci ; Z) has to be a
multiple of the product of the τα, which is the equivariant Euler class of the
negative normal bundle to Σci.

We now show that the left vertical arrow in the diagram (2.3) is a surjec-
tion. We have shown that any element in ker(r) is, when restricted to Σci,
a multiple of the equivariant Euler class τci of the negative normal bundle
to Σci . On the other hand, any class in H∗

T (Σc) which is a multiple of τc
is the image of an element in H∗

T (M+,M−) by Proposition 2.4. Hence, the
left vertical arrow is surjective, and the surjectivity of ı∗− follows by the five
lemma. �

Theorem 2.7 tells us that it suffices to identify the image of ∗ to find a
description of H∗

T (M). We will now place stronger hypotheses on the fixed
point set Σ and the one-skeleton N so that the image of ∗ has a simple
combinatorial description. We make the following definition.

Definition 2.9. Let M be a symplectic manifold equipped with a Hamil-
tonian T action. We say that the action is GKM if MT consists of finitely
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many isolated points, and the T -isotropy weights αi,p at a given fixed point
are pairwise relatively prime in H∗

T (M ; Z).

Henceforth, we assume that our action is GKM. Thus, each component of
Σ is an isolated point, and all equivariant Euler classes are elements of
H∗

T (pt; Z), given as products of the relevant isotropy weights. Moreover,
if the moment map is proper and bounded below in some component, the
one-skeleton is a union of copies of CP 1 and C, intersecting in fixed points.
WhenM is compact, the pairwise relative primality of the isotropy weights is
equivalent to the one-skeleton being two-dimensional [9]. The same holds for
GKM actions in the presence of a moment map that is proper and bounded
below in some component, by a symplectic cutting argument.

We now associate a graph Γ to the GKM action on M that encodes the
information necessary to compute the equivariant cohomology of M . We
call this the GKM graph. The vertices V of Γ are the fixed points MT . The
edges E of Γ correspond to the embedded CP 1’s. That is, we include an
edge between two fixed points precisely when they are the two fixed points
of a CP 1 in the one-skeleton. Each edge e ∈ E is labeled with the weight
αe of the torus action on that copy of CP 1. Notice that the C’s in the
one-skeleton equivariantly retract, and therefore do not contribute to the
cohomology of the one-skeleton. Thus, we do not record this information in
the graph Γ.

The computation of the cohomology of the one-skeleton for a GKM ac-
tion now boils down to the computation of the T -equivariant cohomology of
CP 1. For the proof of the following Lemma, see, for instance, [10].

Lemma 2.10. Suppose T acts linearly and non-trivially on CP 1 with
weight α. Then, the inclusion of the fixed points (CP 1)T = {N,S} into
CP 1 induces an injection ı∗ : H∗

T (CP 1; Z) → H∗
T ({N,S}; Z), with image

ı∗(H∗
T (CP 1); Z) =

{
(f, g) ∈ H∗

T ({N}; Z) ⊕H∗
T ({S}; Z)

∣∣∣ (f − g)

∼= 0 (mod α)
}
.

Motivated by this lemma, we now define the graph cohomology of Γ to
be

H∗(Γ, α) :=
{
f : V → H∗

T (pt; Z)
∣∣∣∣ f(p) − f(q) ≡ 0 (mod αe)

for every edge e = (p, q)

}
⊆ H∗

T (V ; Z).
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Since the one-skeleton consists of CP 1’s (and equivariantly retractable C’s)
intersecting at fixed points, a Mayer–Vietoris type argument shows that
the image of the cohomology of the one-skeleton under ∗ is precisely the
graph cohomology. This, combined with Theorem 2.7, yields the following
theorem.

Theorem 2.11. Let a torus T act on a symplectic manifold M with mo-
ment map µ : M → t∗. Suppose that some generic component f := µξ is
proper and bounded below. Suppose that Σ = MT consists of only finitely
many isolated points, and that the T -isotropy weights at p ∈ Σ are pair-
wise relatively prime in H∗

T (pt; Z). Then, under the map ı∗, the equivariant
cohomology H∗

T (M ; Z) maps isomorphically onto H∗(Γ, α).

3. Examples: hypertoric varieties.

In this section, we present the examples that motivated the work in this
paper. These are the hypertoric varieties studied in [3, 11, 14, 15]. Like
their Kähler counterparts, hypertoric varieties come equipped with natural
T d actions. However, it is important to note that the GKM hypotheses only
hold for the T d × S1 action on hypertoric varieties, where the S1 action is
an extra piece of structure on hypertoric varieties not present in the Kähler
versions. This will be explained in detail below. Throughout this section,
we take the coefficient ring R = Z.

We first set some notation in order to facilitate discussion of the ex-
amples. For details, we refer the reader to [3, 11]. Let T n be the real
n-dimensional torus acting on Cn, with induced action on Hn ∼= T ∗Cn given
by t(z,w) = (tz, t−1w). Let {ai}1≤i≤n be non-zero primitive integer vectors
in td ∼= Rd and let {εi} be the standard basis for tn ∼= Rn, dual to {hi} the
standard basis for (tn)∗. Define the map β : tn −→ td by setting β(εi) = ai,
This map fits into an exact sequence

(3.1) 0 −→ tk
ι−→ tn

β−→ td −→ 0,

where tk := ker(β). Exponentiating yields a subtorus T k of T n.
The action of T n on Hn is hyperhamiltonian, and so the T k action is also

hyperhamiltonian. We denote by M the hyperkähler reduction of Hn by the
subtorus T k at (λ, 0) ∈ (tk)∗ ⊕ (tk

C
)∗, which we assume is a regular value.

This is the hyperkähler analogue of the Kähler toric variety X = Cn//λT
k.

The reduction M has a residual action of T d with hyperkähler moment map,
denoted µ = µR ⊕ µC. Note that the choice of subtorus T k ⊆ T n and a lift
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λ̃ of λ amounts to choosing an arrangement H of cooriented, affine, rational
hyperplanes {Hi}n

i=1, where the i-th hyperplane is

Hi = {x ∈ (td)∗ | 〈x, ai〉 =
〈
−λ̃, εi

〉
}.

The coorientation comes from knowing for which x, we have 〈x, ai〉 > 0. To
record the coorientations, we define the half-spaces

(3.2)
Fi = {x ∈ (td)∗ | 〈x, ai〉 ≥

〈
−λ̃, εi

〉
}

and

Gi = {x ∈ (td)∗ | 〈x, ai〉 ≤
〈
−λ̃, εi

〉
},

which intersect in the hyperplane Hi. In our examples, we assume that the
half-spaces Fi intersect in a non-empty bounded polytope ∆ = ∩n

i=1Fi. See
Figure 1 for an example. This polytope ∆ is exactly the image under µR of
the Kähler toric variety X = Cn//λT

k.

1

2

3

4

Figure 1: A simple example of a hypertoric variety of real dimen-
sion 8 obtained by reducing H4 by T 2. We label the hyperplane
Hi by the index i. The region ∆ is shaded. The corresponding
Kähler toric variety is a Hirzebruch surface.

In the case of hypertoric varieties, there is an additional residual Hamil-
tonian S1 action descending from the action of S1 on the cotangent bundle
T ∗Cn that rotates the fibers with weight 1. Since this restricts to the trivial
action on the zero section Cn, the S1 action is trivial on the Kähler toric
variety. Hence, this action is a new feature of hypertoric varieties, and it
turns out that this new S1 action is essential for the GKM description of
the T d × S1 equivariant cohomology of M . We denote the moment map for
the extra S1 action by ψ.
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We begin by showing that the hypertoric varieties built above by the hy-
perKähler Delzant construction satisfy the hypotheses of Theorem 2.11. We
always assume that the affine, rational, cooriented hyperplane arrangement
H is smooth in the sense of [11], which implies that the hypertoric variety
M associated to H is smooth. (In particular, this means that the arrange-
ment is simple: every subset of m hyperplanes intersect in codimension m.)
Moreover, we also assume that the polytope ∆ is non-empty and bounded
in (td)∗. We first show that there is a component of the moment map which
is proper, bounded, and Morse.

Lemma 3.1. Let M be the hypertoric variety associated to an affine, coori-
ented, rational, smooth hyperplane arrangement H such that ∆ = ∩iFi is
non-empty and bounded. Let (µ,ψ) be the T d × S1 moment map on M .
Then there is a component of (µ,ψ) which is proper, bounded, and Morse.

Proof. Since we assume that ∆ is bounded, by [11, Proposition 1.3], the
residual S1 moment map ψ is proper. Moreover, since the original S1 mo-
ment map ψ̃ on T ∗Cn is given by a norm-square of the cotangent vector, it
is bounded below by 0. Hence, the moment map ψ on the quotient is also
bounded below. Now, consider the T d×S1 moment map (µ,ψ), with values
in (td)∗×R ∼= Rd+1. We have just shown that the component (µ,ψ)ξ = ψ of
this moment map is proper and bounded below. By taking a small enough
perturbation of ξ, we obtain a generic component of the moment map which
is proper, bounded, and also Morse. �

We must now show that the T d×S1 fixed points onM is a finite collection
of isolated points, and that the isotropy weights are relatively prime. We
set the following notation. The hyperplanes {Hi} divide (td)∗ ∼= Rd into a
finite family of closed, convex polyhedra

∆A = (∩i/∈AFi) ∩ (∩i∈AGi),

indexed by subsets A ⊆ {1, . . . , n}. For each A ⊆ {1, . . . , n}, let

MA = µ−1
R

(∆A) ∩ µ−1
C

(0).

This is a Kähler submanifold of M with respect to ωR, and is the (possibly
non-compact) Kähler toric variety associated to ∆A [3, 6.5].

Proposition 3.2. Let M satisfy the hypotheses of Lemma 3.1. Then, the
action of T d × S1 on M is GKM.
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Proof. We will need the following facts, all of which may be found in [11].
Since the C moment map µC is S1-equivariant (where S1 acts on t∗

C
by the

standard rotation action), the S1-fixed points of M must lie in µ−1
C

(0) =⋃
AMA. On each MA, the torus T d acts in a Hamiltonian fashion with

respect to ωR with moment map µR|MA
and image ∆A. Moreover, on each

MA, the extra S1 action acts as a subtorus of T d, determined combinatorially
by A.

Since we are looking for T d×S1-fixed points, the fact that all the S1-fixed
points are contained in µ−1

C
(0) allows us to restrict our attention to the toric

varieties MA. Since the MA are usual toric varieties, we find immediately
that MT d×S1

is a subset of the points in µ−1
C

(0) corresponding to the vertices
v ∈ (td)∗ of the polyhedral complex defined by H. On the other hand, we
know from the description of MS1

in [11] that each such point in µ−1
C

(0)
corresponding to a vertex v is also fixed by S1. Hence, the fixed points
MT d×S1

are isolated, with images under µR exactly the vertices v = ∩i∈IHi

in the hyperplane arrangement. In particular, |MT d×S1| is finite.

1

2

3

4

Figure 2: The T d ×S1-fixed points are mapped to the vertices of
the hyperplane arrangement.

We must now check that the T d×S1 weights at a given fixed point p are
pairwise relatively prime in H∗

T d×S1(pt). Let I ⊂ {1, 2, . . . , n} be a subset
of size d such that ∩i∈IHi �= ∅. Since H is simple, the intersection is a single
vertex v. Let p be the T d×S1-fixed point mapping to the vertex v = µR(p).
We wish to decompose TpM under the T d×S1-isotropy action into a sum of
1-dimensional pieces. Since the arrangement H is simple, there are exactly
2d edges coming out of the vertex v, with two edges for each i ∈ I. See
Figure 3. Each edge e defines part of a polytope ∆A corresponding to a
subvariety MA containing p. Since MA is a standard toric variety, there
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exists a 1-dimensional weight space in TpMA ⊆ TpM with T d weight αe,
where αe is the weight corresponding to that edge in (td)∗. Since all the
weights αe are distinct in (td)∗, we get a T d decomposition

(3.3) TpM ∼= ⊕2d
i=1Cαei

.

This is also a T d × S1 decomposition because the S1 commutes with T d.

1

2

3

4

Figure 3: Each edge coming out of a vertex corresponds to a
1-dimensional subspace in TpM . Here, the dimension of the hy-
pertoric variety M is 4, and there are 4 distinct T d weights.

We must now show that the T d × S1 weights are pairwise linearly inde-
pendent. The hyperplane arrangement H is simple, so for v = ∩i∈IHi as
above, the collection {ai}i∈I form a Z basis of (td)Z. Recall that for each
hyperplane Hi, we have two weights αe corresponding to Hi in the decom-
position (3.3). These are the two edges that do not lie in the hyperplane Hi.
Let {αei} be a collection of T d weights in TpM with |{αei}| = d, where we
have chosen a single weight corresponding to each Hi. Then, the fact that
H is simple implies that the collection of T d weights {αei} is linearly inde-
pendent over Z, so, in particular, pairwise relatively prime over H∗

T d(pt; Z).
We may immediately conclude that for T d × S1 edge weights αei , αej (here,
we abuse notation and use αe to denote both T d and T d × S1 weights) are
pairwise relatively prime over H∗

T d×S1(pt; Z) if ei, ej lie on different hyper-
planes.

It remains to deal with the case when two weights αe, αe′ correspond to
the same hyperplane. In this case, as T d weights, they are negative multiples
of one another. Hence, to get relative primality, we must compare their S1

weights. In order to compute this S1 weight on a given Cαe , we use the
fact that the action of S1 on each MA is that of a subtorus (depending
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combinatorially on A) of T d. It follows from the computation in [11] that
the S1 weight on Cαe is given by

〈
αe,−

∑
i∈A ai

〉 ∈ Z for ∆A containing both
the vertex v and the edge e. Although the choice of A here is not unique,
the weight is well-defined. For if αe is an edge weight for MA and MA′ ,
where A and A′ differ by a single i, then ai is necessarily in the annihilator
of αe. See Figure 4. By a simple inductive argument, we conclude that the
pairing above remains constant for different choices of MA.

aj

Hj

w=− ∑
i∈A ai

w′=w−aj

αe

Figure 4: The computation of the S1 weight for the edge e. The
pairing

〈
αe,−

∑
i∈A ai

〉
is well-defined since for two adjacent re-

gions, the corresponding vectors v and v′ differ by a vector aj

perpendicular to αe.

To see that αe, αe′ are relatively prime, it suffices to check that the S1

weights are not negative multiples of each other. Let A be such that ∆A

contains v and e. Let aj define the (unique) hyperplane Hj , j ∈ I, for which
αe, αe′ do not lie on Hj . Without loss of generality, we assume 〈αe, aj〉 > 0.
Then,

〈
αe′ ,−∑

i∈A ai − aj

〉
= − 〈

αe,−
∑

i∈A ai

〉
+ 〈αe, aj〉 . See Figure 5.

Since 〈αe, aj〉 �= 0, the S1 weights are not negative multiples, and the T d×S1

weights αe, αe′ are relatively prime. �

Remark 3.3. From the proof of Proposition 3.2, it is evident that the T d

action on M is not GKM in the sense of Definition 2.9.

We now give a GKM description of the T d ×S1-equivariant cohomology
of a hypertoric variety M in the sense of Section 2. Let Γ = (V,E) denote
the GKM graph of M , and let H∗(Γ, α) denote its graph cohomology. By
Theorem 2.11, Lemma 3.1, and Proposition 3.2, we may conclude that the
image of the map

ı∗ : H∗
T d×S1(M) −→ H∗

T d×S1(MT d×S1
)

induced by inclusion is an injection, with image H∗(Γ, α).
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aj

Hj

w=− ∑
i∈A ai

w′=w−aj

αe

αe′

Figure 5: Comparison of the S1 weights for two edges on the
same hyperplane.

We now have an explicit description of the T d ×S1-equivariant cohomol-
ogy of M as a subring of the sum of polynomial rings H∗

T d×S1(MT d×S1
; Z).

Another description, in terms of generators and relations, of the T d × S1-
equivariant cohomology ofM was given in [11]. We will now give a set of ring
generators ofH∗(Γ, α) ∼= H∗

T d×S1(M ; Z) by constructing an isomorphism be-
tween the quotient description of the T d ×S1-equivariant cohomology given
in [11] and the GKM description via H∗(Γ, α). We first recall the following
theorem. The Fi, Gi are defined in equation (3.2).

Theorem 3.4. [11, 4.4] Let M be the hypertoric variety satisfying the
hypotheses of Lemma 3.1. Given any minimal set S ⊆ {1, . . . , n} such that
∩i∈SHi = ∅, let S = S1 � S2 be the unique splitting of S such that

(3.4)
( ∩i∈S1 Gi

) ∩ ( ∩j∈S2 Fj

)
= ∅.

Denote

(3.5) I =

〈 ∏
i∈S1

ui ×
∏
j∈S2

(x− uj)
∣∣∣∣ ⋂

i∈S

Hi = ∅
〉
.

Then, the T d × S1-equivariant cohomology of M is given by

(3.6) H∗
T d×S1(M ; Z) ∼= Z[u1, . . . , un, x]

/
I.

The isomorphism between this quotient description and the GKM de-
scription of H∗

T d×S1(M ; Z) which we present below is similar in spirit to the
isomorphism between the corresponding descriptions for the T d-equivariant
cohomology ring of the Kähler toric variety X. The essential geometric
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insight is to recognize the generators ui as the T d × S1-equivariant Chern
classes of certain natural line bundles over M .

We first set some notation. Let v = ∩i∈IHi be a vertex. For each such
v, we define the following subsets of {1, 2, . . . , n}:

Iv := {i | v ∈ Hi},
Jv := {i | v ∈ Fi, v /∈ Hi},
Kv := {i | v ∈ Gi, v /∈ Hi}.

Clearly, Iv = I, the three sets Iv, Jv ,Kv are pairwise disjoint, and the union
Iv ∪ Jv ∪Kv = {1, 2, . . . , n}. For v a vertex and i ∈ Iv, we define ηv,i ∈ (td)∗

Z

to be the element satisfying

(3.7) 〈ηv,i, aj〉 = 0, ∀j ∈ Iv \ {i}, and 〈ηv,i, ai〉 = 1.

This is well-defined since we assume H is simple, so the vectors {ai}i∈Iv form
a Z basis for td

Z
.

We now give a GKM description of the T × S1-equivariant cohomology
of hypertoric varieties. We specify a T d × S1 weight as a pair

(α, c) ∈ (td)∗Z ⊕ Z.

Theorem 3.5. Let M be a hypertoric variety satisfying the hypotheses of
Lemma 3.1, I the ideal given in (3.5), and H∗(Γ) denote the graph co-
homology associated to M . Then, the inclusion MT d×S1

↪→M induces an
isomorphism

H∗
T d×S1(M ; Z) ∼= Z[u1, . . . , un, x]/I ∼= �� H∗(Γ)

ui

 �� ρi,

x 
 �� x,

where ρi is given by

ρi(v) =




(ηv,i,
〈
ηv,i,

∑
j∈Kv

aj

〉
), if i ∈ Iv

(0, 0), if i ∈ Jv

(0, 1), if i ∈ Kv,
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and where x ∈ H∗(Γ) denotes the equivariantly constant class corresponding
to the integral basis element for Lie(S1).

Proof. Let {hi}n
i=1 be the standard basis of (tn)∗

Z
, and L̃i be the topologically

trivial bundle over T ∗Cn with T n×S1-equivariant Chern class hi. Let Li be
the quotient bundle L̃i |µ−1

HK(α,0)

/
T k. Then, the classes ui are the T d × S1-

equivariant Chern classes of Li [11]. In order to compute the images of ui

in H∗(Γ), it suffices to calculate explicitly the T d × S1 action on each fiber
Li,p := Li |p for p ∈MT d×S1

.
Let v = ∩i∈IvHi be the vertex corresponding to the fixed point p. Let

π : Y = µ−1
HK(α, 0) → M denote the quotient by T k, and let (z,w) ∈ Y be

a preimage of the fixed point p. By the moment map conditions and by the
definitions of Iv, Jv ,Kv, we have


zi = wi = 0 i ∈ Iv,

zi �= 0, wi = 0 i ∈ Jv ,

zi = 0, wi �= 0 i ∈ Kv.

For each i ∈ {1, 2, . . . , n}, we wish to compute the restriction of ui = c1(Li)
to the fixed point p corresponding to the vertex v. Let γv,i denote the T d

weight component of ui |p. Since the vectors {aj}j∈Iv form a Z basis for
(td)∗

Z
, in order to completely specify γv,i, it suffices to compute the pairing

〈γv,i, aj〉 for all j ∈ Iv. Since we will do our computations on the preimage
π−1(p), it will be convenient to do computations with β∗(γv,i), where β∗ is
defined by taking the dual of the exact sequence (3.1). Let {εj} denote the
standard basis for tn, and let tj denote the elements in the corresponding
S1’s in T n. Let ((z,w), q) denote an element in the total space of the line
bundle L̃i over the point (z,w). For j ∈ Iv, zj = wj = 0, so the action of tj
on ((z,w), q) is given by

tj · ((z,w), q) =

{
((z,w), q) j �= i

((z,w), tiq) j = i.

Hence, the T n weight β∗(γv,i) satisfies 〈β∗(γv,i), εj〉 = 〈γv,i, aj〉 = 0, for all
j �= i, j ∈ Iv, as well as 〈β∗(γv,i), εi〉 = 〈γv,i, ai〉 = 1. Hence, γv,i = ηv,i, by
definition of ηv,i in (3.7).

We now compute the S1 weight component of ui |p. Recall that the extra
S1 action on Y ⊆ T ∗Cn is given by rotating the cotangent direction. So, for
an element s ∈ S1,

s · (z,w) = (z, sw).
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To compute the S1 action on the fiber of L̃i over (z,w), we must find an
element in T k taking (z, sw) back to (z,w). The subtorus T k is defined by
the exact sequence (3.1). In particular, an element Λ =

∑n
j=1 cjεj ∈ tk if and

only if β(Λ) =
∑n

j=1 cjaj = 0. Observe that wj �= 0 exactly when j ∈ Kv,
and that zj �= 0 exactly when j ∈ Jv. Hence, the appropriate element in T k

will be an exponential of Λ =
∑n

j=1 cjεj ∈ tk with the conditions cj = 1 for
j ∈ Kv and cj = 0 for j ∈ Jv .

2 Since the {aj}j∈Iv are an integral basis for
(td)∗

Z
, there is a unique integral solution {mj}j∈Iv to the equation

(3.8)
∑
j∈Iv

mjaj +
∑
j∈Kv

aj = 0.

The S1 weight on the fiber of Li is then given by mi for i ∈ Iv. Since
ηv,i satisfies the conditions (3.7), the coefficient mi can be computed by the

pairing
〈
ηv,i,−

∑
j∈Kv

aj

〉
, as desired.

Now, we take the case i ∈ Jv. Observe that L̃i has a T n ×S1-equivariant
section s̃i(z,w) = zi, which descends to a T d × S1-equivariant section si of
Li with zero-section

Zi := {[z,w] ∈M | zi = 0}.
This zero-section has (real-)moment image µR(Zi) = Gi. For j ∈ Jv, the
vertex v lies in the interior of Fj , so the section si is non-zero at p. Hence,
the T d × S1 action on the fiber of Lj at p is trivial, and the T d × S1 weight
uj |p is (0, 0), as desired.

Finally, consider the case i ∈ Kv. We first compute the T d weight compo-
nent γv,i of ui |p . By the same argument, as for the case i ∈ Iv, it suffices to
compute the pairings 〈β∗(γv,i), εj〉 for j ∈ Iv. This time, since i �∈ Iv, the T d

action on the fiber is trivial, and 〈β∗(γv,i), εj〉 = 〈γv,i, aj〉 = 0 for all j ∈ Iv.
Hence, the T d weight component of ui |p for i ∈ Kv is 0, as desired. The S1

weight component of ui |p is given by mi for i ∈ Kv in the solution (3.8).
Hence, the S1 weight component is 1 for i ∈ Kv, as desired. �

Remark 3.6. Interpreted geometrically on the moment map image, Theo-
rem 3.5 states that for a vertex v lying on a hyperplane Hi, the T d weight
component ηv,i of the restriction ui |p is specified by the following conditions:

1. the T d weight ηv,i lies on the edge ∩j∈Iv,j �=iHj; and

2We take the convention that the standard action of S1 on C is given by t · z =
t−1z. See [6, Appendix A] for an explanation.
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2. the T d weight ηv,i has positive inner product with the inward-pointing
normal vector ai, so in particular, it always points “towards” ∆.

Remark 3.7. It is possible to prove that the images of the ui in
H∗

T×S1(MT×S1
) given in Theorem 3.5 do indeed satisfy the GKM condi-

tions. The proof is rather tedious and we do not include it here.

To illustrate Theorem 3.5, we consider the hypertoric varieties deter-
mined by the hyperplane arrangements in Figure 6.

11 1
2

2 2

3 33

4 44(a) (b) (c)

Figure 6: Three different hypertoric varieties.

Example 3.8. Let Ma denote the hypertoric variety specified by the hy-
perplane arrangement in Figure 6(a). In [11], the equivariant cohomology
H∗

T d×S1(Ma; Z) is computed to be

H∗
T d×S1(Ma; Z) = Z[u1, . . . , u4, x]

/ 〈u2u3, u1(x− u2)u4, u1u3u4〉 ,

where the ui are Euler classes of T d × S1-equivariant line bundles Li over
Ma.

The images of the ui are given in Figure 7. We choose an integral basis
{e1, e2} for td = t2 as shown in the Figure, and we denote the integral basis
element for Lie(S1) by x. The equivariantly constant class x maps to the
GKM class with weight x at each point.

Example 3.9. Now, let Mb denote the hypertoric variety given by the
arrangement in Figure 6(b). The equivariant cohomology is computed in
[11] to be

H∗
T d×S1(Mb; Z) = Z[u1, . . . , u4, x]

/ 〈(x− u2)u3, u1u2u4, u1u3u4〉 .
We give the GKM descriptions of the ring generators ui in Figure 8 below.
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‘ e1

e1

e1

e1−e2−x

0

0
0

0

00

0 0

0x

−e2 e1−e2

e2
e2 −e1+e2

−e2−x

−e1

−e1

ρ1 ρ2 ρ3 ρ4

Figure 7: Some ring generators for H∗
T d×S1(Ma; Z). The plane

of the figure is spanned by the two vectors e1 and e2. The third
axis x points out of the page.

e1−e2

e1

e1

00

0

0

0

0

0

0
e2

−e1+e2

x x
e2−x −e1+e2−x

−e2

−e1

−e1

ρ1 ρ2 ρ3 ρ4

Figure 8: Some ring generators for H∗
T d×S1(Mb; Z).

Example 3.10. Let Mc be the hypertoric variety given by the arrangement
in Figure 6(c). The equivariant cohomology is computed in [11] to be

H∗
T d×S1(Mc; Z) = Z[u1, . . . , u4, x]

/ 〈u2u3, (x− u1)u2(x− u4), u1u3u4〉 .

We give the GKM image of the ui in Figure 9 below.

We end this section with a discussion of the T d action on a hypertoric
variety, considered as a GKM action. We have already noted in Remark 3.3
that the T d action on M does not satisfy the GKM hypotheses in the sense of
Definition 2.9. It does satisfy the more general GKM conditions considered
in [10], in which the theory is developed in the language of cell complexes
with a compatible T action. Thus, by [10, Theorem 3.4], H∗

T d(M ; Z) does
admit a GKM description in H∗

T d(MT d
; Z). We will now exploit our knowl-

edge of the GKM description of H∗
T d×S1(M ; Z) to give an explicit list of ring

generators for H∗
T d(M ; Z), described as elements of H∗

T d(MT d
; Z).

Remark 3.11. Note that the techniques in [10] do not in general yield ring
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e1+x

e1−e2

e1 00 0

0

00

0

0

e1−e2−x −e2−x

e2 −e1+e2

e1−e2+x xx

−e2

−e1

ρ1 ρ2 ρ3 ρ4

Figure 9: Some ring generators for H∗
T d×S1(Mc; Z).

generators for the T -equivariant cohomology, so this is a new result from
our explicit analysis of M as a T d × S1 space.

We will obtain GKM ring generators forH∗
T d(M ; Z) by “GKM in stages.”

First, recall that in the Borel construction M ×T d ET d for H∗
T d(M ; Z), we

may use instead of ET d any contractible space on which T d acts freely. In
particular, we may use E(T d × S1). Hence, there is a natural map

H∗
T d×S1(M ; Z) → H∗

T d(M ; Z)

induced by the inclusion

M ×T d E(T d × S1)↪→M ×T d×S1 E(T d × S1).

In our situation, we have in addition that MT d
= MT d×S1

, so we obtain a
commutative diagram

M ×T d×S1 E(T d × S1) MT d×S1 ×T d×S1 E(T d × S1)	 
��

M ×T d E(T d × S1)





MT d ×T d E(T d × S1)

Π





	 
��

,

where Π uses the equality MT d
= MT d×S1

. We then have a diagram on
equivariant cohomology

H∗
T d×S1(M ; Z) � � ��

��

H∗
T d×S1(MT d×S1

; Z)

Π∗
��

H∗
T d(M ; Z) � � �� H∗

T d(MT d
; Z)

.
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Since the left vertical arrow is a surjection by formality of H∗
T d×S1(M ; Z)

over H∗
S1(pt; Z) [11], the right vertical arrow Π∗ also gives a surjection on

the images. Moreover, since the images of the ui generate H∗
T d(M), in order

to give generators for the GKM description of H∗
T d(M ; Z) in H∗

T d(MT d
; Z),

it suffices to compute Π∗(ρi), where the ρi are given in Theorem 3.5. Note
that the map Π∗ is the map that sends x to 0. We end the section with an
example of an explicit computation.

Example 3.12. A set of generators of H∗
T d(M ; Z), considered in

H∗
T d(MT d

; Z), are shown in Figure 10 below. They are the π∗(ρi) for the ρi

given in Example 3.8.

‘ e1

e1

e1

e1−e2

0

0
0

0

00

0 0

00

−e2 e1−e2

e2
e2 −e1+e2

−e2

−e1

−e1

π∗(ρ1) π∗(ρ2) π∗(ρ3) π∗(ρ4)

Figure 10: Ring generators for H∗
T d(Ma; Z).

4. The real locus.

We now consider the situation in which we have, in addition to a Hamiltonian
T -action on M , an antisymplectic involution σ on M which anticommutes
with the action of T , i.e.

(4.1) σ(tx) = t−1σ(x), ∀x ∈M, ∀t ∈ T.

The σ-fixed points Q := Mσ in M is a real n-dimensional Lagrangian sub-
manifold of M , which we call the real locus of M . The real locus Q and
its properties (e.g. its image under the T moment map, and its equivari-
ant cohomology) have been extensively studied; see [5], [17], [4], [18]. Most
of the known results use the assumption, in addition to certain technical
conditions about the T action, that M (and therefore Q) is compact. We
will show in this section that many known results generalize to the situation
in which M is not necessarily compact, but a component of the moment
map is proper and bounded below. Again, our motivating example is the
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hypertoric variety with its T × S1 action, which will be discussed in detail
in Section 5.

We begin our story with an extension of a theorem which states that the
image of the real locus under the T moment map coincides with that of the
whole manifold M , i.e. µ(Q) = µ(M). When the manifold M is compact,
this result is due to Duistermaat [5].

Proposition 4.1. Let (M,ω) be a symplectic manifold with a Hamiltonian
T action, T moment map µ, and σ an antisymplectic involution satisfy-
ing (4.1). Denote by Q the real locus of M , i.e. Q := Mσ. Suppose that
there is a component of the moment map µ which is proper and bounded
below. Then, µ(Q) = µ(M).

Proof. Let µξ be a component of a moment map for M which is proper and
bounded below. We may assume ξ is rational. Denote by S1

ξ the subtorus
in T generated by ξ. Since σ(tx) = t−1σ(x) for all x ∈ M, t ∈ T, we may
assume that µξ(σ(x)) = µξ(x), for any x ∈ M [17, 2.2]. Without loss of
generality, we assume 0 is the minimum value of µξ on M . Let M s be the
symplectic cut space of M at the value s > 0 with respect to the action
of S1

ξ . M c+s. Then, M c+s is equipped with an antisymplectic involution
σc+s, descending from the involution σ̃(m, z) = (σ(m), z) on M × C, as
well as a Hamiltonian T action, descending from the action of T on the
first factor. These obey the relation (4.1). Denote by µ the T moment
map on M s, and let Qs := (M s)σc+s be its real locus. Since µξ is proper,
the symplectic cut space M s is compact. Thus, Duistermaat’s theorem
applies, and µ(M s) = µ(Qs). On the other hand, the symplectic cut space
M s contains as an open subset the preimage (µξ)−1((−∞, c + s)) ⊂ M
in the original manifold, and on this open piece, the involution σc+s, the
Hamiltonian T action, and the T moment map µ all agree with those just
defined onM s. Since s was arbitrary, we may conclude that µ(M) = µ(Q).�

Remark 4.2. Note that for the above proposition, we do not need to as-
sume that the T action is GKM. We only need that the T moment map is
proper and a component is bounded below.

We now turn our attention to the mod 2 GKM theory for the real locus
Q. Since the T action on M anticommutes with σ, there is a subgroup
{±1}n = (Z2)n ⊆ T n, denoted TR, which preserves Q. Thus, we can speak
of the TR-equivariant cohomology of Q, and we will show that under certain
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conditions, we have an isomorphism of graded rings

H2∗
T (M ; Z2) ∼= H∗

TR
(Q; Z2)

that halves the grading. (For the compact case, see [4, 18].)
Henceforth, we assume that the T action on M is GKM. In order to get

the isomorphism of graded rings described above, we will need additional
assumptions on the T -isotropy weights at the fixed points. We first set up
the notation. The mod 2 reduction of a weight α ∈ t∗

Z
in the weight lattice

of T is defined to be its image in t∗
Z
/2t∗

Z
. We will denote by αp,i the mod 2

reduction of a T weight αp,i at a T -fixed point p.

Definition 4.3. Let M be a manifold equipped with a T action. Then,
the action is mod 2 GKM if it is GKM and, for every p ∈ MT , the mod 2
reduced weights {αp,i}n

i=1 are all distinct and non-zero.

Remark 4.4. In [18], the term Z2 pure is used; this is equivalent to mod 2
GKM.

In Section 2, we have already shown that the GKM theorem holds for
non-compact GKM actions if certain conditions hold on the moment map.
In order to show the isomorphism of the two cohomology rings H2∗

T (M ; Z2)
and H∗

TR
(Q; Z2), we need now to show that the analogous results hold for

a non-compact real locus Q in the case where the T action is also mod 2
GKM. We will use the Morse theory of the restricted moment map µ|Q on
Q. Let P be the set

P := {x ∈ Q | codimZ2(StabTR
(x)) = 1}.

As before, we define the one-skeleton P of the TR action on Q to be the
closure of P .

We first claim that when the T action is mod 2 GKM, then

(4.2) MT = QTR

and

(4.3) P = N ∩Q.
Thus, the combinatorics of the mod 2 one-skeleton P for the TR action on Q
is the same as that of the one-skeleton N . We give below a sketch of a proof
of the equality (4.2) because there is a gap in its proof in [4, Theorem 5.2].
We outline the argument in [18, Proposition 5.1.6], and we include this here
because Schmid’s thesis is not available in print.



Hypertoric Varieties 553

Proposition 4.5. Let a torus T act on a symplectic manifold M with mo-
ment map µ : M → t∗ that is proper and bounded below in some generic
component. Suppose further that M is equipped with an antisymplectic
involution σ that anticommutes with the T action, and that the T action is
mod 2 GKM. Then, MT = QTR .

Proof. We must first show that QTR ⊆ MT . This is what is shown in the
proof of [4, Theorem 5.2]. The proof of this uses the fact that the isotropy
weights have non-zero mod 2 reductions. The gap in the proof is that the
reverse inclusion MT ⊆ QTR is not addressed. We complete that now.

It suffices to show that MT ⊆ Q. We first show that there is at least one
T -fixed point in Q. Let µξ be a generic component of µ that is proper and
bounded below. Since the fixed points are isolated, there is exactly one fixed
point p ∈MT mapping to the minimum value of µξ. By Proposition 4.1, we
have µξ(Q) = µξ(M), and so, we must have p ∈ Q.

Now, we show that every T -fixed point is in Q. Let (p, q) be an edge in
Γ, corresponding to an embedded CP 1, where p is a vertex known to be in
Q. This CP 1 is fixed by a codimension 1 subtorus T ′ ≤ T . It is a connected
component of MT ′

, and MT ′
is preserved by σ. As p ∈ Q, this copy of

CP 1 must itself be preserved by σ. Applying Proposition 4.1 to this CP 1

allows us to conclude that q is also an element of Q. Finally, because the
one-skeleton is connected, it follows that every T -fixed point is in Q. This
completes the proof. �

Remark 4.6. In the compact setting, (4.3) is proved in [4, Theorem 5.2]
and in [18, Proposition 5.1.5]. In the non-compact setting, this follows by a
cutting argument similar to that given in the proof of Proposition 4.1.

We assume from now on that the T action on our manifold M is mod 2
GKM. In this situation, the moment map µ, restricted to Q, also behaves
quite nicely. By our assumptions on M , there is a component of the moment
map µξ which is proper and bounded below, and (since the action is GKM)
is a Morse function on M . In [5], Duistermaat showed that the restriction of
µξ to Q is also a Morse function on Q, and has critical points exactly MT ∩Q
when M is compact. In our situation, his argument goes through to show
that components of µ are again Morse functions on Q. Thus, this allows us
to compute the equivariant cohomology H∗

TR
(Q; Z2) using an argument very

similar to that given in Section 2.
The statement of the analogous mod 2 GKM theorem for real loci will

require the definition of a mod 2 GKM graph ΓR. The vertices VR of ΓR
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are the fixed points QTR . The edges are given by the components of the
one-skeleton P the closure of which is an S1, and they connect the two fixed
points in QTR contained in this S1. To each edge e, we associate a weight
αe of the TR action on this S1. We then define the graph cohomology
H∗(ΓR, αR) to be

H∗(ΓR, αR) =
{
f : V → H∗

TR
(pt; Z2)

∣∣∣∣ f(p) − f(q) ≡ 0 (mod αe)
for every edge e = (p, q)

}
⊆ H∗

T (V ; Z2).

Note that for TR = (Z2)d, the TR-equivariant cohomology H∗
TR

(pt; Z2) is a
polynomial ring over Z2 with d generators, where the generators are degree
1 instead of degree 2.

We will need the following mod 2 version of the Atiyah–Bott lemma. For
a proof, see [2, Proposition 5.3.7] or [7, Lemma 2.3].

Lemma 4.7 (Atiyah–Bott). Let E → B be a real rank � vector bundle
over a compact manifold B. Let TR be the group TR = (Z2)d. Suppose
that TR acts on E with fixed point set precisely B. Choose a TR-invariant
Riemannian metric on E , and let D and S be the corresponding disk and
sphere bundles, respectively, of E . Then, the long exact sequence of the pair
(D,S) splits into short exact sequences

0 �� H∗
TR

(D,S; Z2) �� H∗
TR

(D; Z2) �� H∗
TR

(S; Z2) �� 0 .

We now prove the real locus version of Theorem 2.11.

Theorem 4.8. Let M be a Hamiltonian T space with moment map µ. As-
sume that there is a generic direction ξ such that µξ is proper and bounded
below. Suppose further that M is equipped with an antisymplectic involu-
tion σ that anticommutes with the T action, and that the T action is mod
2 GKM. Let Q, denote the real locus. Then, the inclusion QTR ↪→Q induces
an injection

H∗
TR

(Q; Z2)↪→H∗
TR

(QTR ; Z2),

in equivariant cohomology, and the image is precisely H∗(ΓR, α).

Proof. The outline of the proof is the same as that given in Section 2. We will
only mention the relevant steps where some additional argument is necessary.

We begin with the mod 2 version of Proposition 2.4. To get the state-
ment, we replace M with the real locus Q, the Morse–Bott function µξ with
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g := µξ|Q, T with TR, and Euler classes with Stiefel–Whitney classes. This
follows from Lemma 4.7 by the same argument as in Proposition 2.4. Thus,
the restriction from H∗

TR
(Q+

c ; Z2) to H∗
TR

(Q−
c ; Z) induces an isomorphism

from the kernel of k∗ to those classes in H∗
TR

(p; Z2) which are multiples of
κp, the equivariant Stiefel–Whitney class of the negative normal bundle to
p with respect to g. We are assuming the action is mod 2 GKM, so the
fixed point components are isolated points. The mod 2 version of the injec-
tivity theorem, Theorem 2.6, now follows by the same argument, using the
TR-equivariant Thom isomorphism theorem with Z2 coefficients.

Before proceeding to the mod 2 analogue of Theorem 2.7, we first take a
moment to analyze the TR-isotropy weights at the fixed points QTR , which
are the critical points of g. Let p be a fixed point in MT = QTR . There exists
a neighborhood of p equivariantly symplectomorphic to a neighborhood of 0
in TpM with the symplectic form ωp. Moreover, since p ∈ Q, the involution
σ acts on TpM , anticommuting with the action of T . The local normal
form theorem in [17, Theorem 7.1] implies that there exists a T -invariant,
σ-anti-invariant compatible complex structure on TpM making it a complex
vector space, and as a TR module, TpM is canonically isomorphic to the
complexification of (TpM)σ. More specifically, we have local coordinates
such that a neighborhood of p in M is of the form ⊕n

i=1Cαi,p , where the
αi,p are the T -isotropy weights at p, and σ is given by complex conjugation
on each factor. Then, a neighborhood of p in Q in these coordinates is of
the form ⊕n

i=1Rαi,p . Thus, the TR-isotropy weights at p of TpQ are exactly
the mod 2 reductions of the T -isotropy weights {αi,p}. In particular, the
TR-equivariant Stiefel–Whitney class of the negative normal bundle in Q
with respect to g is given by the product of the TR weights αi,p for which
〈αi,p, ξ〉 < 0. Since by assumption, all TR weights are non-zero, the product
is also non-zero in H∗

TR
(p; Z2), and therefore, not a zero divisor. Finally, we

note that two elements α,α′ in H∗
TR

(p; Z2) are relatively prime if they are
non-zero and distinct.

Using the above observations, the mod 2 version of Theorem 2.7 follows
from the same argument as in Section 2. �

In order to compute H∗
TR

(Q; Z2), it now suffices to compute the image of
H∗

TR
(P ; Z2) in the ring H∗

TR
(QTR ; Z2). Finally, to observe the isomorphism

between the graded rings H2∗
T (M ; Z2) and H∗

TR
(Q; Z2), it suffices to com-

pare the relevant graphs. Note that since MT = QTR , the vertices of the
graphs Γ and ΓR are the same, and because P = N ∩Q, the graphs are the
same. Moreover, by the argument given in the proof of Theorem 4.8, the
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images mod 2 of the isotropy weights αe on the edges of Γ are exactly the
TR-isotropy weights on the edges of ΓR. Thus, the combinatorial data spec-
ified by the GKM and mod 2 GKM graphs are identical, and the following
corollary is immediate.

Corollary 4.9. Let M be a Hamiltonian T space with moment map µ. As-
sume that there is a generic direction ξ such that µξ is proper and bounded.
Suppose further that M is equipped with an antisymplectic involution σ
that anticommutes with the T action, and that the T action is mod 2 GKM.
Let Q denote the real locus. Then, there is an isomorphism

H2∗
T (M ; Z2) ∼= H∗

TR
(Q; Z2)

that halves degrees.

5. Examples: real loci of hypertoric varieties.

The hypertoric varieties in Section 3 have a natural antisymplectic involution
σ, induced from the antisymplectic involution on T ∗Cn given by (z,w) �→
(z,w). We now analyze the topology of the real locus of M using techniques
of the previous section.

Let M be a hypertoric variety specified by a hyperplane arrangement H
and parameter α. Then, the real locus Q of M is the set

Q := Mσ = {[z,w] ∈M | z,w ∈ R}.
Since the hypertoric variety has an action of T d × S1, the group acting on
Q is now TR = T d

R
× Z2.

In this situation, the isomorphism between the TR×Z2-equivariant coho-
mology of Q and the T ×S1-equivariant cohomology of M (both with Z2 co-
efficients) can be explicitly described in terms of the line bundles Li over M .

Proposition 5.1. Let M be a hypertoric variety specified by H and α.
There are antisymplectic involutions σi on the total spaces of the Li, ex-
tending the natural involution σ on Q, so that the fixed point sets Lσ

i are
real vector bundles over Q. Moreover, under the isomorphism in Corol-
lary 4.9, the Chern class ui of Li is mapped to the Stiefel–Whitney class κi

of the real bundle Lσ
i .

Proof. For each line bundle L̃i over T ∗Cn, define an involution σ̃i in coordi-
nates by

σ̃i · (z,w, q) := (z,w, q).
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This is a lift of the standard antisymplectic involution on T ∗Cn. The σ̃i-
fixed point set in T ∗Cn is a TR-equivariant real line bundle over T ∗Rn, and
its complexification is the restriction of L̃i to T ∗Rn. Since the σ̃i are anti-
T -equivariant, they descend to antisymplectic involutions σi on the Li on
M . The σi-fixed point sets are TR-equivariant real line bundles over the real
locus Q, and their complexifications are Li|Q.

Since the complexification of (Li)σi is isomorphic as a real bundle to
Lσi

i ⊕ Lσi
i , we have κ2(Lσi

i ) = κ1(Lσi
i )2. Under the natural homomorphism

H2(Q; Z) → H2(Q; Z2), the image of the Chern class of a complex line
bundle is the second Stiefel–Whitney class, so we may conclude that the
isomorphism between H∗

T (M ; Z) and H∗
TR

(Q; Z2) takes the mod 2 Chern
class of Li|Q to the Stiefel–Whitney class κ1 of Lσi

i . �

Remark 5.2. The presentation of the T d × S1-equivariant cohomologies
given in Examples 3.8, 3.9, and 3.10 is therefore, identical to that of the T d

R
×

Z2-equivariant cohomologies of their real loci, where we use Z2 coefficients
and divide all degrees of the classes in half.

Remark 5.3. The techniques developed in Section 4, and this description
of H∗

T d
R
×Z2

(Q; Z2) is used in [11] to compute a deformation of the Orlik–
Solomon algebra of a smooth real hyperplane arrangement, depending non-
trivially on the affine structure of the arrangement.
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[18] C. Schmid. Cohomologie équivariante des certaines variétés hamiltoni-
ennes et de leur partie réelle. Thèse à Université de Genève, 2001.
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