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Locally Holomorphic Maps Yield Symplectic

Structures 1

Robert E. Gompf

For a smooth map f : X4 → Σ2 that is locally modeled by holomor-
phic maps, the domain is shown to admit a symplectic structure
that is symplectic on some regular fiber, if and only if f∗[Σ] �= 0.
If so, the space of symplectic forms on X that are symplectic on
all fibers is non-empty and contractible. The cohomology classes
of these forms vary with the maximum possible freedom on the
reducible fibers, subject to the obvious constraints. The above re-
sults are derived via an analogous theorem for locally holomorphic
maps f : X2n → Y 2n−2 with Y symplectic.

1. Introduction.

Research in the past dozen years has uncovered an intimate relationship
between the differential topology of closed 4-manifolds and their symplectic
structures. The latter are closed, non-degenerate 2-forms, and have been
shown to exist on many 4-manifolds (e.g., [3]). Many other 4-manifolds do
not admit such structures [11], [10], [2], even though they may be homeomor-
phic (but not diffeomorphic) to symplectic manifolds. There has been much
recent work aimed at understanding which 4-manifolds admit symplectic
structures, as well as the range of values of the Chern class c1(ω) and coho-
mology class [ω] of symplectic forms ω on a fixed manifold (e.g., [7], [9], [6]).
For example, a closed 4-manifold admits a symplectic structure if and only if
it admits a fibration-like structure called a Lefschetz pencil [1], [4]. In fact, a
Lefschetz pencil (with fibers suitably intersecting the base locus) determines
a symplectic structure up to isotopy, and a dense subset of all symplectic
forms is realized this way up to scale. In this article, we use tools from [4] to
investigate a related problem: We show that any smooth f : X4 → Σ2 that
is locally modeled by holomorphic maps allows us to construct symplectic
forms on X, provided that f∗[Σ] �= 0. We show that the space of symplectic
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forms suitably compatible with f is contractible, but that there is much
freedom in the class [ω] when f is sufficiently singular. We also investigate
the corresponding problem in higher dimensions (Theorem 2.7).

The maps of interest are defined as follows.

Definition 1.1. A map f : X2n → Y 2m between smooth, oriented mani-
folds is locally holomorphic if for each x ∈ X, there are smooth, orientation-
preserving coordinate charts about x and f(x) (into C

n and C
m, respec-

tively) in which f is given by a holomorphic map.

The fibers f−1(y) of a locally holomorphic map f are homeomorphic to CW-
complexes. If each component of a compact fiber has (real) dimension 2,
then the fiber is the image of some closed surface F under a map that is a
smooth embedding outside a finite subset of F whose image we will denote
by Ky ⊂ X. Near Ky, f−1(y) is cone-like. As in algebraic geometry, we will
call the image of each connected component of F an irreducible component
of f−1(y). Note that some irreducible components may have multiplicities
> 1, so that they are contained in the critical set of f . In our case of
primary interest (X compact, n = 2, m = 1), a (non-constant) locally
holomorphic map is locally modeled by f(z,w) = zd where d ≥ 1 is the
(local) multiplicity of the fiber f−1(0), except on the finite set K =

⋃
Ky.

Thus, the tangent spaces to the fibers form a real 2-plane bundle L over X−
K, and this is canonically oriented (by the preimage orientation at regular
points). There are simply connected 4-manifolds that admit no complex
structure, but do admit locally holomorphic maps to S2 (e.g., [5]), even
if we require all critical points to be of the simplest type (quadratic). One
can construct more complicated examples, starting from any finite collection
of (connected) singular fibers of holomorphic maps of a fixed generic fiber
genus, by gluing together their tubular neighborhoods, and extending the
resulting singular fibration fromD2 to S2 by adding quadratic critical points
to cancel the geometric monodromy. Note that each original singular fiber
could have many irreducible components, with differing multiplicities.

We can now begin to state our main results.

Theorem 1.2. Let X be a closed, oriented, connected 4-manifold with a
locally holomorphic map f : X → Σ to a closed, oriented surface. Then,
X admits a symplectic structure that is symplectic on some regular fiber, if
and only if f∗[Σ] �= 0 ∈ H2

dR(X).

The hypothesis f∗[Σ] �= 0 is equivalent to requiring a generic fiber to be non-
trivial in H2(X; R). This is clearly necessary for the existence of symplectic
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structures on X as above, since ω being symplectic on a generic fiber f−1(y)
implies 〈[ω], [f−1(y)]〉 �= 0. (Sufficiency follows from Theorem 1.4 below.)
However, the hypothesis f∗[Σ] �= 0 is automatically satisfied whenever the
generic fiber is not a torus (or disjoint union of tori). To see this, note
that the above bundle L over X −K defines an Euler class e(L) ∈ H2(X −
K) ∼= H2(X). For a generic fiber, 〈e(L), f−1(y)〉 = 〈e(Tf−1(y)), f−1(y)〉 =
χ(f−1(y)) �= 0 unless f−1(y) is a union of tori (since its components must
be diffeomorphic). If we also require each fiber to have a neighborhood on
which f is globally modeled by a holomorphic map, then the classification
of elliptic fibrations implies that f∗[Σ] �= 0 unless f is (up to blowups) a
Seifert fibration (i.e., made from an honest torus bundle by adding smooth
multiple fibers, and possibly composing with a branched covering map of Σ
to allow disconnected fibers).

We would like to study the space of symplectic structures on X that are
symplectic on all fibers of f . However, this condition makes no sense on
the finite set K where the fibers are singular. Instead, we use the following
proposition, which is proved at the end of this section.

Proposition 1.3. A locally holomorphic map f : X4 → Σ2 canonically
determines a complex bundle structure J∗ on TX|K. This is obtained by
restricting the complex structures inherited from any choices of charts as
in Definition 1.1, or more generally, by restricting any C0 almost-complex
structure J , defined on a neighborhood U of K, for which the fibers of
f |U −K are J-holomorphic.

Recall that an almost-complex structure J on U is defined to be a complex
structure on the tangent bundle TU , i.e., a bundle map covering idU with J◦
J = − idTU . We always assume almost-complex and symplectic structures
respect the given orientations. Thus, in the proposition, J determines the
given orientation on U , and the tangent spaces to the regular fibers are J-
complex lines in the preimage orientation. We only need almost-complex
structures for a crude level of directional control in the tangent spaces.
Thus, it is convenient to ignore differentiability and only require continuity
of J , although we indicate where smoothness can be imposed for stronger
conclusions.

Theorem 1.4. For f : X → Σ as in Theorem 1.2 with f∗[Σ] �= 0, let S be
the space of symplectic forms on X that are symplectic on the (canonically
oriented) fibers of f |X −K and tame J∗ on K. Then:

a) S is non-empty and contractible.
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b) S is also characterized as being the space of symplectic forms taming
global C0 (or C∞) almost-complex structures J on X such that each
regular fiber of f (and hence, each fiber of f |X−K) is J-holomorphic.

For taming, see Definition 2.1. There is considerable freedom to choose the
topology on S. For example, we can choose any Ck-topology or Sobolev
topology in between. See [4, Theorem 2.11(b) and subsequent discussion]
for further details. Note that Theorem 1.4 immediately implies Theorem 1.2.

To understand our freedom to choose the cohomology class [ω] ∈
H2

dR(X), first note some obvious constraints: If F1, . . . , Fn are the (canoni-
cally oriented) irreducible components of a single connected component of a
fiber, and Fi has multiplicity mi, then (as we will see)

∑
mi[Fi] ∈ H2(X; R)

must be a rational multiple of the generic fiber class [f−1(y)] (where
the multiplier q is 1 if the fibers are connected). Thus, we must have∑
mi〈ω,Fi〉 = q〈ω, f−1(y)〉. Furthermore, for ω ∈ S, each Fi − K must

be symplectic, so 〈ω,Fi〉 > 0. These turn out to be the only constraints on
the areas 〈ω,Fi〉.

Theorem 1.5. For fixed J as in Theorem 1.4(b), there is a form ω ∈ S
taming J , such that the areas 〈ω,Fi〉 of irreducible components of fibers of
f take any preassigned values subject to the above constraints.

That is, the (suitably weighted) areas of the irreducible components of each
connected component of each fiber can be distributed in any preassigned
manner.

Since S is connected, all ω ∈ S have the same Chern class c1(ω). We can
compute this class using some J as in Theorem 1.4(b) and the J-complex
line bundle L over X −K of tangent planes to fibers. If the critical set of
f in X is finite, then by definition c1(ω) = c1(TX, J) = c1(L ⊕ f∗TΣ) =
e(L)+χ(Σ)f∗[Σ] = e(L)+χ(Σ)PD[f−1(y)] for a generic fiber f−1(y) (where
PD is Poincaré duality). The general case is obtained by adding a term
(1−mi)PD[Fi] for each irreducible component Fi of multiplicity mi in each
singular fiber. (A vector field on Σ which is non-zero near the critical values
of f lifts to one on L⊥ with index 1−mi near Fi, since sources (index 1) at
critical values lift to sources.)

We prove Theorems 1.4 and 1.5 in Section 3, using tools from [4]. Since
these tools are applicable in arbitrary dimensions, we proceed by first prov-
ing a theorem that holds in all dimensions. This theorem says that un-
der suitable hypotheses, a locally holomorphic map to a symplectic mani-
fold, with 2-dimensional fibers, determines a deformation class of symplectic
structures on its domain (a deformation being a smooth family ωt, 0 ≤ t ≤ 1,
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of symplectic forms). The precise statement (Theorem 2.7) requires further
definitions, and is the subject of the next section.

Proof of Proposition 1.3. For a locally holomorphic map f : X4 → Σ2 and
x ∈ K a singular point of a fiber, we must show that all almost-complex
structures defined near K, making the fibers of f J-holomorphic, have the
same restriction J∗ to TxX. Identify a 4-ball neighborhood U of x in X with
a neighborhood of 0 in C

2 as in Definition 1.1. It is not hard to show that a
linear complex structure on R

2n (n �= 1) is determined by its 1-dimensional
(oriented) complex subspaces [4, Lemma 4.4(a)], so it suffices to show that
every complex line at 0 in C

2 can be written as lim ker dfxi for some sequence
of regular points xi → 0. We can assume U ∩ K = {x}, so the bundle L
of tangents to fibers of f is defined on U − {0} ⊂ C

2 and determines a
holomorphic map ϕ : U − {0} → CP

1, whose homogeneous coordinates ϕi,
i = 1, 2, are obtained from ∂f

∂zi
by removing common factors (to remove

the singularities along the critical set). Up to homotopy, continuous maps
U −{0} 
 S3 → CP

1 are classified by π3(S2) ∼= Z, and we can compute this
integer invariant h(ϕ) by the Thom–Pontrjagin construction: The fibers
ϕ−1

i (0) of ϕ each intersect a small S3 ⊂ U − {0} in an oriented link Li

(possibly with multiplicities), and h(ϕ) = �k(L1, L2) is their linking number.
If 0 �∈ ϕ−1

i (0) for some i, then ϕ determines a holomorphic map U−{0} → C

(for U sufficiently small), so L extends holomorphically over 0 by Hartogs’
Theorem. But L|U − {0} is tangential to the fibers of f , so L is integrable
on U (since the Frobenius condition is closed), and f−1(0) is a smooth
leaf of the foliation, contradicting our assumption that x ∈ K. Thus, 0 ∈
ϕ−1

1 (0) ∩ϕ−1
2 (0), so h(ϕ) = �k(L1, L2) = ϕ−1

1 (0) ·ϕ−1
2 (0) > 0. In particular,

ϕ is surjective on arbitrarily small 3-spheres about 0, and so the required
sequence (xi) is easy to construct. �

2. Arbitrary dimensions.

We begin with some terminology for relating symplectic and complex struc-
tures.

Definition 2.1. [4] Let T : V → W be a linear transformation between
finite-dimensional real vector spaces, and let ω be a skew-symmetric bilinear
form on W . A linear complex structure J : V → V will be called (ω, T )-tame
if T ∗ω(v, Jv) > 0 for all v ∈ V − ker T . If, in addition, T ∗ω is J-invariant
(i.e., T ∗ω(Jv, Jw) = T ∗ω(v,w) for all v,w ∈ V ), we will call J (ω, T )-
compatible. For a C1-map f : X → Y between manifolds, with a 2-form ω
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on Y , an almost-complex structure J on X will be called (ω, f)-tame (resp.
(ω, f)-compatible) if it is (ω, dfx)-tame (resp. (ω, dfx)-compatible) for each
x ∈ X. If T = idV or f = idX , we will shorten the terminology to ω-tame
and ω-compatible.

The last sentence of the definition is standard terminology. If ω tames some
J (i.e., T = idV and J is ω-tame), then ω is positive on all J-complex lines,
and it is obviously non-degenerate (that is, every v �= 0 pairs non-trivially
with something), so a closed, taming 2-form ω is automatically symplectic.
Both the taming and compatibility conditions are preserved under taking
convex combinations

∑
tiωi (all ti ≥ 0,

∑
ti = 1) for fixed J . However,

taming is more natural for our purposes than compatibility, since ω-taming
is preserved under small perturbations of ω and J . It is an open question
whether compatibility can be replaced by taming throughout the paper. (It
can be done, for example, if Question 4.3 of [4] has an affirmative answer.) In
the special case where dimRW = 2 and ω respects a preassigned orientation
on W , then ω is determined up to positive scale, so (ω, T )-taming and (ω, T )-
compatibility are equivalent, independent of choice of ω, and equivalent to
the condition that kerT (in the preimage orientation if T �= 0, where J
orients V ) be a J-complex subspace of V . In particular:

Proposition 2.2. For f : X → Σ as in Theorem 1.4, J satisfies the condi-
tion of (b) (every regular fiber is J-holomorphic) if and only if J is (ωΣ, f)-
tame (or (ωΣ, f)-compatible), where ωΣ is any (positive) area form on Σ.

Such structures J are easy to construct: Split T (X −K) as L⊕L′ where L
is tangent to the fibers and L′ is complex near K for some locally defined
complex structure as in Definition 1.1, then declare L and L′ to be complex
line bundles. However, it is more difficult to arrange J to tame a preassigned
ω ∈ S. Thus, while it is easy to see that any ω as in Theorem 1.4(b) lies in
S, the converse takes more work.

In higher dimensions, we need to strengthen our local holomorphicity
condition:

Definition 2.3. For a symplectic form ω on Y , a locally holomorphic map
f : X → Y is called ω-compatibly locally holomorphic if the charts in Defin-
ition 1.1 can be chosen so that ω is compatible with the standard complex
structure on C

m.

This is automatically satisfied when dimR Y = 2, or for holomorphic charts
on a Kähler (Y, ω). It implies that the corresponding local complex struc-
tures on X are (ω, f)-compatible.
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We also need a technical condition from [4] to control the behavior of
fibers near critical points; this is again vacuous for non-constant locally
holomorphic maps f : X4 → Σ2. Suppose E,F → X are real vector bundles
over a metrizable topological space, and T : E → F is a section of the bundle
Hom(E,F ). In our main application, these will be induced by a C1-map
f : X → Y between manifolds, with T = df : TX → f∗TY . Motivated by
this example, we call a point x ∈ X regular if Tx : Ex → Fx is onto and
critical otherwise. Let P ⊂ E be the closure cl(

⋃
ker Tx), where x varies

over all the regular points of T in X, and let Px = P ∩Ex. Thus, Px = ker Tx

if x is regular, and otherwise Px ⊂ ker Tx consists of limits of sequences of
vectors annihilated by T at regular points.

Definition 2.4. [4, Definition 2.2] A point x ∈ X is wrapped if spanPx has
(real) codimension at most 2 in ker Tx.

In our application, this condition automatically holds away from fiber com-
ponents with multiplicities:

Proposition 2.5. [4, Proposition 2.3] Suppose that in a neighborhood of a
critical point x ∈ X, T is given by df , for some holomorphic map f : U →
C

n−1 with U open in C
n. If each fiber f−1(y) intersects the critical set of f

in at most a finite set, then x is wrapped. In fact, Px = ker Tx.

Note that the proposition becomes false without the finiteness hypothesis,
e.g., n = 3, f(x, y, z) = (x2, y2) at (0, 0, 0). For n = 2, Px = ker Tx unless
f is constant or x is a smooth point of a fiber component with multiplicity
> 1, cf. proof of Proposition 1.3, but every point of a non-constant locally
holomorphic map f : X4 → Σ2 will be wrapped (since regular points are
dense, implying dimR spanPx ≥ 2 everywhere).

To state the main theorem, we must first orient the fibers.

Lemma 2.6. Let f : X2n → Y 2n−2 be a locally holomorphic map, all of
whose fibers have real dimension 2. Fix y ∈ Y .

a) For each x ∈ f−1(y)−Ky, there is a sequence xi → x of regular points
in X for which Txf

−1(y) = lim ker dfxi .

b) The surface f−1(y) − Ky is canonically oriented, by sequences as in
(a) and the preimage orientation on each ker dfxi .
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Proof. For (a), it suffices to find such a sequence (xi) for each x in a dense
subset of f−1(y). After restricting to suitable neighborhoods, we may as-
sume f is holomorphic. The critical values of f lie in a local subvariety of
Y with positive codimension, so there is a holomorphic disk D in Y (with
dimCD = 1) centered at y and disjoint from the critical set elsewhere. After
suitably shrinking D, we conclude that D ⊂ f(X). (Otherwise f(X) lies
in a variety of positive codimension, so f has fibers of real dimension > 2.)
Thus, f−1(D) is locally a variety of complex dimension 2. After we resolve
the singularities of f−1(D), the required sequences obviously exist on the
resulting complex surface, since generically f is given locally by f(z,w) = zd

with fibers parallel to the w-axis. The sequences push down to f−1(D) as
required. (This follows a suggestion of S. Keel.)

To prove (b), note that the preimage orientation on each ker dfxi is also
its complex orientation (for the complex structure determined by our choice
of charts in Definition 1.1). These then limit to the complex orientation on
Txf

−1(y), which is independent of the choice of (xi) converging to x. Since
this orientation is now determined by a fixed xi → x, it is also independent
of our choice of charts, and hence global and canonical. �

Theorem 2.7. Let X2n, Y 2n−2 be closed, oriented manifolds with a sym-
plectic form ωY on Y and an ωY -compatibly locally holomorphic map
f : X → Y , all of whose fibers have real dimension 2. Suppose there is
a class c ∈ H2

dR(X) evaluating positively on each irreducible component of
each fiber of f (canonically oriented). If n ≥ 3, assume that all critical
points of f are wrapped. Then:

a) X admits a symplectic structure. In fact, there is a unique deformation
class of symplectic forms on X containing representatives that tame
(ωY , f)-compatible, global C0 almost-complex structures J . This still
holds if we require J to be C∞, with a C∞, ωY -compatible structure
on f∗TY making df J-complex.

b) For any fixed C0, (ωY , f)-tame J on X, the convex open cone in
H2

dR(X) consisting of classes of symplectic forms taming J contains all
classes tc+f∗[ωY ] for c as above and t > 0 sufficiently small (depending
on c).

Remark 1. When n = 3, the condition of wrapped critical points can be
dropped, and existence and (b) still follow. In fact the entire theorem still
holds then, if we also require the structures J in (a) to be (ωY , df)-extendible
as in [4], along preassigned sequences converging to the unwrapped critical
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points. The proof is identical to that of Theorem 2.7, once we augment
Lemma 3.2 by [4, Addendum 3.3] and note that the charts of Definition 2.3
are automatically (ωY , df)-extendible. The resulting deformation class in
(a) is independent of the choice of sequences, since any J satisfying all the
conditions of (a) is (ωY , df)-extendible for all sequences.

3. Proofs.

It remains to prove Theorems 2.7, 1.4 and 1.5. We need two results from [4].
The first allows us to construct symplectic structures on the domain X of a
map to a symplectic manifold, in the presence of a suitable almost-complex
structure J on X. The second allows us to construct J .

Theorem 3.1. [4] Let f : X → Y be a smooth map between closed man-
ifolds. Suppose that ωY is a symplectic form on Y , and J is a continuous,
(ωY , f)-tame almost-complex structure on X. Fix a class c ∈ H2

dR(X). Sup-
pose that for each y ∈ Y , f−1(y) has a neighborhood Wy in X with a closed
2-form ηy such that [ηy] = c|Wy ∈ H2

dR(Wy) and such that ηy tames J on
each of the complex subspaces ker dfx, x ∈ Wy. Then, there is a closed 2-
form η on X with [η] = c ∈ H2

dR(X), and such that for all sufficiently small
t > 0 the form ωt = tη + f∗ωY on X tames J (and hence is symplectic).

This is [4, Theorem 3.1], restricted to the case with C = ∅. The main
idea of the proof goes back to Thurston [12] in the case of surface bundles.
We cannot directly splice the forms ηy by a partition of unity, without losing
closure of the forms. Instead, we subtract off a global representative ζ of c to
obtain exact forms, then splice via the corresponding 1-forms and add ζ back
in. The resulting closed 2-form η is non-degenerate on each ker dfx by con-
vexity of the J-taming condition. (This use of J to control non-degeneracy
is the innovation allowing us to deal with general critical points of f .) The
form f∗ωY provides non-degeneracy for ωt in the remaining directions.

Splicing together local almost-complex structures is harder. Here, we
only state a simplified version of [4, Lemma 3.2] without proof. As pre-
ceding Definition 2.4, we let E,F → X be real vector bundles over a
metrizable space, with fiber dimensions 2n and 2n− 2 respectively, and this
time equipped with fiber orientations. We again fix a section T : E → F
of Hom(E,F ). A 2-form on E or F means a continuous choice of skew-
symmetric bilinear forms on the fibers.

Lemma 3.2. [4] For E,F → X and T as above with X compact, suppose
that the regular points of T are dense in X, and let ωF be a non-degenerate
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2-form on F (inducing the given fiber orientation). Suppose that each x ∈
X has a neighborhood Wx with an (ωF , T )-compatible complex (bundle)
structure on E|Wx.

a) If n ≥ 3, assume each critical point of T is wrapped. Then, the
space J of (ωF , T )-compatible complex structures on E is non-empty
and contractible (in the C0-topology). For any (ωF , T )-compatible
structure JC defined near a closed subset C ⊂ X, there are elements
of J agreeing with JC on E|C.

b) Fix a 2-form ωE on E and a complex structure on F . Then, (a) remains
true if each complex structure on E and its restrictions is required to
be ωE-tame and to make T complex linear.

Proof of Theorem 2.7. For f : X → Y as given, Lemma 3.2(a) (with
T = df : TX → f∗TY ) implies that the space J of (ωY , f)-compatible
almost-complex structures on X is non-empty and contractible. To see this,
note that regular points of f are dense (e.g., by Lemma 2.6(a)), and that the
local complex structures on X given by Definition 2.3 and subsequent text
are automatically (ωY , f)-compatible. The relevant part of the existence
proof of Lemma 3.2(a) is smooth, and automatically produces elements of
J satisfying all the conditions of Theorem 2.7(a). Now, we check that each
(canonically oriented) fiber f−1(y) −Ky is a J-holomorphic curve for each
J ∈ J , or more generally, for any (ωY , f)-tame (positively oriented) C0

almost-complex structure J on X. This follows from Lemma 2.6 once we
verify that each ker dfx, with x regular, is a J-complex line in the preimage
orientation. But Definition 2.1 implies ker dfx is J-invariant, so Tf(x)Y ∼=
TxX/ ker dfx inherits an ωY -tame complex structure f∗J . After homotoping
ωY through taming structures to one that is compatible with f∗J , it is easy
to verify that f∗J induces the same orientation on Tf(x)Y as ωY . Thus, J
induces the preimage orientation on ker dfx.

For any fixed (ωY , f)-tame J on X, such as any J ∈ J , we wish to
apply Theorem 3.1 with c as given. The argument follows the method of [4,
Theorem 2.11(b)], but with complications arising from fibers with irreducible
components lying in the critical set of f . For y ∈ Y , let K ′

y ⊃ Ky be a finite
subset of f−1(y) intersecting each irreducible component non-trivially, and
let σ be a closed 2-form taming J on some neighborhood W of K ′

y in X.
Since f−1(y) − Ky is J-holomorphic, σ|(f−1(y) − Ky) ∩ W is a positive
area form, and we can extend this to an area form on f−1(y) − Ky. We
can easily arrange

∫
Fi
σ = 〈c, Fi〉 > 0 for each irreducible component Fi of
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f−1(y). Let F ∗ ⊂ f−1(y) be a compact surface with boundary, obtained
by deleting a neighborhood of K ′

y whose closure lies in W . Since F ∗ is J-
holomorphic, TF ∗ ⊂ TX|F ∗ has a complementary complex subbundle νF ∗.
This bundle is trivial since F ∗ has no closed components, so we can use it
to identify a tubular neighborhood N of F ∗ with F ∗ ×C

n−1, by a map that
is J-holomorphic on TN |F ∗. After shrinking W , we may assume N ∩W
corresponds to (F ∗∩W )×C

n−1. The product form τ = π∗1(σ|F ∗)+π∗2ωCn−1

on N tames J on TN |F ∗. The form σ−τ on N∩W is closed, and it vanishes
on F ∗ ∩W , so it is exact. Choose a 1-form α on N ∩W with dα = σ − τ .
Subtracting the closed form π∗1(α|F ∗∩W ) from α if necessary, we can arrange
α|F ∗ ∩W = 0. Now, the 1-form α : T (N ∩W ) → R restricts to a fiberwise-
linear map νF ∗|F ∗ ∩ W → R; by our identification of this bundle with
N ∩ W , we obtain a smooth map ϕ : N ∩ W → R with ϕ|F ∗ ∩ W = 0
and dϕ = α on TX|F ∗ ∩W . Subtracting dϕ from α, we arrange α = 0 on
TX|F ∗ ∩W . Choose a map ρ : F ∗ → [0, 1] with ρ = 1 near ∂F ∗ and ρ = 0
outside W , and let ηy = τ + d((ρ ◦ π1)α) on N . Then, the closed form ηy

agrees with τ outside W and extends as σ near f−1(y) − F ∗. Furthermore,
ηy = σ on f−1(y)−Ky. On TX|F ∗ ∩W , d(ρ ◦ π1) ∧ α = 0 so ηy = τ + ρdα
is a convex combination of the J-taming forms τ and σ. Thus, ηy tames
J on TX|f−1(y) and hence, on a regular neighborhood Wy of f−1(y) in
X. Since

∫
Fi
ηy =

∫
Fi
σ = 〈c, Fi〉 for each Fi, so [ηy] = c|Wy, Theorem 3.1

gives us a global closed 2-form η on X with [η] = c and ω = tη + f∗ωY

taming J (hence, symplectic) for any sufficiently small t > 0. As required,
[ω] = tc+ f∗[ωY ], so we have proved (b) and the existence part of (a).

To prove uniqueness in (a), we must find a deformation between any
preassigned pair ωs, s = 0, 1, of forms taming structures Js ∈ J . Since
J is contractible, we can extend to a family Js ∈ J , 0 ≤ s ≤ 1. For each
s ∈ (0, 1), Part (b) (with any convenient choice of c) yields a symplectic form
ωs taming Js (not necessarily continuous in s). Since the taming condition
is open and X is compact, each ωs, s ∈ [0, 1], tames Jt for t in some neigh-
borhood of s. Convexity of the taming and closure conditions now allows
us to smooth the family ωs by a partition of unity on [0, 1], to obtain the
required deformation of symplectic forms. �

Proof of Theorem 1.5. For f : X → Σ and J as in Theorem 1.4, we
wish to construct symplectic structures using Theorem 2.7(b). We have
already observed (following Definition 2.3) that f is ωΣ-compatibly locally
holomorphic for any ωΣ, and (Proposition 2.2) J is (ωΣ, f)-tame. Since
f∗[Σ] �= 0, f is surjective (onto a component of Σ), so local holomorphicity
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implies each fiber is 2-dimensional. To construct a suitable class c, we invoke
the following lemma, whose proof is given at the end of the paper.

Lemma 3.3. For an n×n real, symmetric matrix A = [aij ], let GA denote
the graph with n vertices v1, . . . , vn, and an edge between any two distinct
vertices vi, vj whenever aij �= 0. Suppose that (a) GA is connected, (b)
aij ≥ 0 whenever i �= j, and (c) there are positive real numbers m1, . . . ,mn

such that
∑n

i=1miaij ≤ 0 for all j. Fix a choice of such numbers mi. Then
the hypothesis (d), that the inequality in (c) is strict for some j, implies
rankA = n. If (d) is not satisfied, then rankA = n− 1.

Let F1, . . . , Fn denote the irreducible components comprising a single con-
nected component of a singular fiber f−1(y0). For a disk D about y0 con-
taining no other critical values, and y �= y0 in D, let ϕ ∈ H2(X; R) be the
homology class of the union of all components of f−1(y) lying in the same
component of f−1(D) as

⋃n
i=1 Fi. Then, ϕ =

∑n
i=1mi[Fi], where mi > 0

is the multiplicity of Fi. Furthermore, ϕ is a positive rational multiple of
[f−1(y)] = PDf∗[Σ]. (Since f restricts to a fiber bundle with connected to-
tal space away from the finite set of critical values in Σ, any two components
of generic fibers are isotopic.) If A = [aij ] is the symmetric n×n matrix for
which aij is the intersection number Fi · Fj , then

∑n
i=1miaij = ϕ · Fj = 0

for all j (since f−1(y)∩Fj = ∅). Thus, A satisfies (a)–(c) but not (d) of the
above lemma, so rankA = n − 1. For any s1, . . . , sn ∈ R with

∑
misi = 0,

we can now find constants r1, . . . , rn ∈ R such that ψ =
∑
ri[Fi] satisfies

ψ · Fj = sj for all j. Clearly, ψ pairs trivially with every other irreducible
component of every fiber. Since [f−1(y)] �= 0 by hypothesis, we can find
a class c0 in H2

dR(X) with 〈c0, f−1(y)〉 > 0 (so c0 is positive on each com-
ponent of each generic fiber). After adding the Poincaré dual of a suitable
class ψ for each connected component of each singular fiber, we obtain a
class c realizing any preassigned values on irreducible components of fibers,
subject to the condition that

∑n
i=1mi〈c, Fi〉 = 〈c0, ϕ〉 for each connected

component of each singular fiber. Choosing these values to be positive, we
apply Theorem 2.7(b) to obtain symplectic forms taming J (hence in S as
characterized in Theorem 1.4(b)). Since 〈f∗[ωΣ], Fi〉 = 0 for each Fi, we
obtain the required flexibility of [ω]. �

Proof of Theorem 1.4. By Proposition 2.2 and subsequent text, a struc-
ture J satisfies the condition of Theorem 1.4(b) if and only if it is (ωΣ, f)-
compatible, such structures J are easy to construct, and any ω as in (b) lies
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in S. Thus, S �= ∅ by Theorem 1.5. It remains to show that S is contractible
and any ω ∈ S tames some J as in (b). As in the contractibility proof of
[4, Theorem 2.11(b)], a map of a sphere Sm → S can be interpreted as a
family ω of symplectic forms on the fibers of the trivial bundle Sm ×X. Let
L→ Sm × (X −K) denote the bundle of tangent spaces to fibers of f , and
let L⊥ denote its orthogonal complement in Sm×T (X−K) with respect to
the given family ω. (Then, L⊕L⊥ = Sm × T (X −K) since ω is symplectic
on each fiber of f , and ω is non-degenerate on each subbundle.) Let J0 be a
complex structure near K induced by Definition 1.1, pulled back to the X-
fibers of Sm ×X. Since J0|Sm ×K = J∗ is ω-tame, J0 is ω-tame near some
compact subset X̂ ⊂ Sm × X whose interior contains Sm × K. Since the
fibers of f are J0-holomorphic on X̂, we can obtain a new complex structure
J1 on (Sm×TX)|(X̂−Sm×K) by identifying L⊥ there with Sm×TX/L and
summing the resulting complex structure on L⊥ with the given one on L.
Then, J1 is ω-tame by ω-orthogonality of the line bundle L⊥, and f is both
J0- and J1-holomorphic for the same complex structure on Sm × f∗TΣ|X̂.
Thus, we can interpolate between J0 and J1 on X̂ using Lemma 3.2(b): Set
T = idSm ×df : Sm×TX → Sm×f∗TΣ restricted to X̂ . Let each Wx equal
X̂, with J0 on E|Wx, and let C = Sm ×K ∪ ∂X̂, with JC given by J0 near
Sm ×K and J1 near ∂X̂ . We obtain an ω-tame, (ωΣ, f)-compatible struc-
ture J on X̂ that agrees with J1 on ∂X̂. Since L and L⊥ are J1-complex on
∂X̂ , we can extend J over Sm×X by declaring L and L⊥ to be complex line
bundles outside X̂ as well. Replacing Sm by a point in this argument gives
the required J on X completing the proof of (b). (To smooth J if desired,
assume it agrees with the smooth J0 near K, then perturb away from K by
first smoothing a J-complex line bundle complementary to L.) On the other
hand, Lemma 3.2(a) (over Dm+1 ×X with C = Sm ×X) extends J to an
(ωΣ, f)-compatible structure on Dm+1 ×X that is ω-tame on ∂Dm+1 ×X.
As in the uniqueness proof of Theorem 2.7(a) (which is the m = 0 case),
we can now construct a J-taming symplectic form on each {p} × X (The-
orem 1.5), then splice by a partition of unity on Dm+1 to obtain a family
of forms parametrized by Dm+1. The resulting map Dm+1 → S provides a
nullhomotopy of the original map, showing πm(S) = 0 for all m. But S is
an open subset of a metrizable vector space of closed forms, so it is an ANR
and hence contractible [8] (cf. last paragraph of [4, Section 3]). �

Proof of Lemma 3.3. The lemma is obvious when n = 1, so we prove the
statement for fixed n > 1, inductively assuming it for n−1. It is well-known
that if G is a finite, connected graph for which each edge has two distinct
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vertices, then there is a vertex v with G − {v} connected. (This is easy to
prove by induction on the number of vertices: Fix a pair of vertices connected
by an edge, delete all edges between them and identify the pair, then apply
the induction hypothesis to this smaller graph.) Given A satisfying (a)–
(c), reorder the coordinates so that GA − {vn} is connected. If (d) fails,
then rankA < n, but the (n − 1) × (n − 1) matrix obtained from A by
deleting the last row and column has rankn− 1 by induction. (Hypothesis
(d) holds for it since connectivity of GA implies anj > 0 for some j < n.)
Thus, we can assume A satisfies (a)–(d). Note that ann < 0 by (a), (b) and
(c). Eliminate the remaining entries in the last column by row operations,
adding −ain/ann times the nth row to the ith row for i < n, then delete the
last row and column and let B = [bij ] denote the resulting (n− 1)× (n− 1)
matrix. Since bij = aij − ainanj

ann
, B is symmetric, so it now suffices to show

B satisfies (a)–(d). Condition (b) is obvious since bij ≥ aij for all i, j < n.
Condition (a) follows since GB is obtained from GA by deleting vn (and
adjacent edges) and possibly adding edges. Condition (c) follows from two
applications of (c) for A. First, we have (for j = n)

n−1∑

i=1

miain ≤ −mnann.

Since ann < 0, we obtain
∑n−1

i=1 mibij =
∑n−1

i=1 miaij − (
∑n−1

i=1 miain) anj

ann
≤

∑n−1
i=1 miaij + mnanj =

∑n
i=1miaij ≤ 0 for all j < n, verifying (c). If the

final inequality here is strict for some j < n, then (d) follows and we are
finished. Otherwise, (d) for A implies that the displayed inequality (for
which j = n) is strict. By (a), there is some j < n for which anj �= 0, so the
remaining inequality above is strict for this j, and (d) follows. (Note that
condition (a) is crucial. Otherwise, a matrix of diagonal blocks satisfying
(b), (c) but not (d) would be a counterexample.) �
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