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1. Introduction.

The volume of the convex core, the bottom of the spectrum of the Laplacian,
and the Hausdorff dimension of the limit set are important invariants of
hyperbolic 3-manifolds/Kleinian groups, which are closely related to one
another. The behaviour of such invariants with respect to the convergence
of Kleinian groups is an interesting problem to study, and also, it is expected
that these invariants would be useful to investigate the topological structure
of deformation spaces. The behaviour of these invariants with respect to
algebraic and geometric convergence of Kleinian groups has been studied by
Canary, Taylor, McMullen, among others. (See [10], [27], [31].)

For studying this problem, it is essential to see whether convex cores
of the corresponding hyperbolic 3-manifolds converge to the convex core
of the limit geometrically in the sense of Gromov. Consider a sequence
of Kleinian groups {Gi} converging geometrically to G∞. The limit set
ΛG of a Kleinian group G coincides with the intersection of S2∞ and the
closure of the Nielsen convex hull of G in H3 ∪ S2∞. If the convex cores
C(H3/Gi) converge geometrically to C(H3/G∞), then the Nielsen con-
vex hulls of Gi converge to that of G∞ with respect to the Hausdorff
topology of H3. This implies that the limit sets ΛGi converge to ΛG∞
with respect to the Hausdorff topology on S2∞. Conversely, as was shown
by Bowditch [4], if the limit sets ΛGi converge to ΛG∞ , then the con-
vex cores C(H3/Gi) converge to C(H3/G∞) geometrically in the sense
of Gromov. We are interested in the following question. Do the con-
vex cores of H3/Gi converge geometrically to that of H3/G∞? Or equiv-
alently, do the limit sets ΛGi converge to ΛG∞ with respect to the Hausdorff
topology?
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The most interesting case for this problem is when {Gi} is a se-
quence of Kleinian groups with an isomorphism from a fixed Kleinian group
φi : G → Gi converging also algebraically to an isomorphism ψ : G → Γ.
Jørgensen and Marden in [21] showed that in this situation, if the geometric
limit G∞ is geometrically finite, then {ΛGi} converges to ΛG∞ with re-
spect to the Hausdorff topology. On the other hand, Anderson and Canary
proved, in [1], that in this setting, if ψ is type-preserving, i.e. if both ψ
and ψ−1 preserve parabolicity, and ΛΓ �= S2∞, then Γ coincides with G∞
and {ΛGi} converges to ΛG∞ = ΛΓ with respect to the Hausdorff topol-
ogy. Since it is easy to see that if ΛΓ = S2∞, then {ΛGi} converges to
ΛG∞ , which must be equal to ΛΓ, this work answers the question posed
above affirmatively for the case when the algebraic limit Γ has no additional
parabolic elements. (Evans’ theorem in [14] makes it possible to general-
ize this result to the case when the isomorphism from G to Γ is weakly
type-preserving.)

In this paper, we shall study the same problem without assumption
that the geometric limit is geometrically finite, nor the assumption that the
algebraic limit has no additional parabolic elements. We shall prove that
even, then the convex cores converge to that of geometric limit geometrically
if the group is assumed to be freely indecomposable relative to the parabolic
subgroups and without double trouble. Here, we say that a Kleinian group
G is freely indecomposable relative to the parabolic subgroups when for any
non-trivial free product decomposition of G into A ∗B, there is a parabolic
element none of whose conjugates are contained in the factors A,B. We say
that G has double trouble when there are two simple closed curves on the
boundary of a compact core C of H3/G which are not homotopic to each
other on ∂C, but both represent the same parabolic class contained in a
parabolic group isomorphic to Z × Z.

Theorem 1.1. Let G be a geometrically finite torsion-free Kleinian group.
Suppose that G is freely indecomposable relative to the parabolic groups
and does not have double trouble. Let {(Gi, φi)} be a sequence of (possibly
geometrically infinite) Kleinian groups with isomorphisms φi : G→ Gi map-
ping parabolic elements to parabolic elements, which converge algebraically
to a Kleinian group (Γ, ψ). Take conjugates of Gi so that {φi} converges to ψ
as representations and let G∞ be a geometric limit of {Gi}, which is known
to exist if we extract a subsequence. Then, the convex cores C(H3/Gi) con-
verge geometrically to the convex core C(H3/G∞) in the sense of Gromov
as subspaces of H3/Gi and H3/G∞ respectively.
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It should be noted that Fan’s work in [15], combined with the results of
Kerckhoff–Thurston’s [23] and Bowditch [3], implies a result similar to the
theorem above in the case when H3/G is homeomorphic to the interior of
either an I-bundle over a closed surface or an acylindrical 3-manifold. In this
line of argument, we do not need to assume that Gi converges algebraically.

As was remarked before, the geometric convergence of the convex cores
implies the Hausdorff convergence of the limit sets.

Corollary 1.2. In the situation of Theorem 1.1, the limit sets ΛGi converge
to ΛG∞ with respect to the Hausdorff topology on S2∞.

Let us sketch an outline of the proof of the theorem. Since {Gi} converges
to G∞ geometrically, by taking a point x ∈ H3 and taking as basepoints its
projections xi ∈ H3/Gi and x∞ ∈ H3/G∞ by the universal covering maps,
we have geometric convergence (H3/Gi, xi) → (H3/G∞, x∞) in the sense of
Gromov. Therefore, we have an approximate isometry between metric balls
with radii ri, r′i, which we denote by ρi : Bri(H

3/Gi, xi) → Br′i(H
3/G∞, x∞)

with ri, r
′
i → ∞. We can easily see that {(C(H3/Gi), xi)} converges geo-

metrically to a submanifold C∞ of H3/G∞ containing C(H3/G∞). What
we are going to prove is the inclusion of the opposite direction.

The proof is by contradiction. If C∞ has a point not contained in the
convex core C(H3/G∞), there is a large metric ball Bi in H3/Gi whose
geometric limit is disjoint from C(H3/G∞). We can find a boundary com-
ponent of the convex core C(H3/Gi) and a pleated surface homotopic to it
such that a homotopy between them cannot have image disjoint from the
ball Bi. Since the boundary of the convex core is a pleated surface, using
a technique similar to a realization of a homotopy by pleated surfaces and
negatively curved pleated surfaces due to Thurston, we can get a pleated
surface which meets Bi. We shall also show that by putting a basepoint so
that it is mapped to a point in Bi, the pleated surface converges geometri-
cally to a pleated surface of finite area in H3/G∞ which is not contained in
the convex core, as i → ∞. This is a contradiction since we can show that
all the pleated surfaces of finite area must be contained in the convex core.

Most part of this paper was written during the author’s stay at the IHES.
The author expresses his hearty gratitude to the IHES for its hospitality and
mathematical stimuli, and also to the CNRS and the JSPS for their financial
support. He also thanks Frédéric Paulin for his comment which made it
possible to remove an unnecessary assumption in the original version of the
theorem.
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2. Preliminaries.

2.1. Generalities.

For a hyperbolic 3-manifold M , its convex submanifold that is minimal
among those being deformation retracts of the entire manifold M is called
the convex core of M , and will be denoted by C(M) throughout this paper.
Let G be a Kleinian group such that H3/G = M . Then, the convex core
of M lifts to the convex hull of the limit set ΛG, i.e., the minimal closed
convex set of H3 whose closure contains ΛG. The convex hull of ΛG coincides
with the union of all ideal tetrahedra whose vertices at infinity lie on ΛG.
A Kleinian group G, and the corresponding hyperbolic 3-manifold M are
said to be geometrically finite when the convex core of H3/G has finite
volume.

The set of points of M where the injectivity radii are less than ε/2 is
called the ε-thin part of M , and its complement the ε-thick part of M . (We
also refer to the thin part or the thick part when the constant ε is of no
interest.) We denote the complement of the cusp neighbourhoods of M by
M0 for some ε less than or equal to the Margulis constant, and call it the
non-cuspidal part. When we want to specify the constant ε, we call the
non-cuspidal part the ε-non-cuspidal part.

2.2. Compact core.

For an open 3-manifold M , its compact sub-3-manifold C is said to be a
compact core of M if the inclusion is a homotopy equivalence. Scott proved
in [30] that any open 3-manifold with finitely generated fundamental group
has a compact core. This result was generalized by McCullough [24] to
a relative version, which implies that if (M,S) is a pair such that M has
finitely generated fundamental group and S is a subsurface of ∂M which is
incompressible in M , then there is a compact core C such that the inclusion
from (C,S ∩C) to (M,S) is a relative homotopy equivalence. In particular,
for a finitely generated (torsion-free) Kleinian group G, the quotient H3/G
has a compact core. When G has parabolic elements, it is more convenient
to consider a relative compact core of ((H3/G)0, ∂(H3/G)0). When G is
geometrically finite, the non-cuspidal part of the convex core C(H3/G) ∩
(H3/G)0, which we shall denote by C(H3/G)0, is a relative compact core of
((H3/G)0, ∂(H3/G)0).

We should note that a relative compact core C of the non-cuspidal part
M0 of a hyperbolic manifold can be regarded as a pared manifold with
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paring locus C ∩ ∂M0. See for instance Morgan [25] for the definition of
pared manifold.

Definition 2.1. A Kleinian group G or a hyperbolic 3-manifold M is said
to be freely indecomposable relative to the parabolic subgroups when all
the components of the frontier of a relative compact core for (H3/G)0 are
incompressible.

Note that the condition above is equivalent to the following: if G is
decomposed into a free product A∗B, both of whose factors are non-trivial,
then there is a parabolic element ofG none of whose conjugates are contained
in the factors A,B.

2.3. Geodesic and measured laminations.

The notion of a measured lamination, introduced by Thurston and which
we shall discuss briefly below, will be frequently used in this paper. Let S
be a hyperbolic surface of finite area possibly with geodesic boundary. A
geodesic lamination on S is a closed subset of S consisting of disjoint sim-
ple geodesics not meeting the boundary of S. The geodesics constituting a
geodesic lamination are called the leaves. A sub-lamination of a geodesic
lamination �, which does not admit a proper sub-lamination is called a min-
imal component of �. A minimal component which is not a closed geodesic
is called an exceptional minimal component. Any leaf contained in an ex-
ceptional minimal component is dense in the component, and is called an
exceptional minimal leaf. A geodesic lamination endowed with a transverse
measure on arcs which is invariant by parallel translation along leaves is
called a measured lamination. For a measured lamination λ, the support
of λ is the set consisting of points x on S such that any arc transverse to
λ containing x at its interior has non-zero measure. From now on, we con-
sider only measured laminations with full support: those having transverse
measures whose supports are the entire laminations.

The definition of a geodesic lamination and a measured lamination de-
pends on a choice of hyperbolic metric on S. Still, if we have two hyperbolic
metrics m1,m2 on S, there is a natural correspondence between the geodesic
laminations on (S,m1) and those on (S,m2), by taking a geodesic lamination
on (S,m1) to an isotopic one on (S,m2). Similarly, by isotoping also the
transverse measures, we can define a natural correspondence between the
measured laminations on (S,m1) and those on (S,m2). Therefore, we can
consider measured laminations on S without specifying a hyperbolic metric
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by identifying corresponding measured laminations as above.
The set of measured laminations on S endowed with the weak topology

with respect to the measures on transverse arcs is denoted by ML(S), and
called the measured lamination space of S. The measured lamination space
ML(S) is known to be homeomorphic to the Euclidean space of dimension
6g − 6 + 2b, where g denotes the genus of S and b the sum of the numbers
of the punctures and the boundary components. It is also known that the
set of weighted simple closed geodesics on S is dense in ML(S). Refer to
Fathi–Laudenbach–Poénaru [16]. The space obtained from ML(S) \ {∅}
by identifying measured laminations whose transverse measures are scalar
multiples of each other is called the projective lamination space and denoted
by PL(S).

Definition 2.2. We say that a measured lamination is maximal when it is
not a proper sublamination of another measured lamination, and that it is
absolutely maximal when its support is maximal as a geodesic lamination,
i.e., not a proper sublamination of another geodesic lamination. The latter
condition is equivalent to saying that each complementary region of the
lamination is either an ideal triangle or a once-punctured monogon (or a
monogon with a hole when we allow the surface to have boundary).

2.4. Pleated surfaces and ending laminations.

Definition 2.3. For a complete hyperbolic surface (S,m) and a hyperbolic
3-manifold M , a proper continuous map f : S → M is said to be a pleated
surface when

1. the length metric on S induced from M coincides with the one induced
from the metric m, and

2. there is a geodesic lamination � on (S,m) such that both f |� and
f |(S \ �) are totally geodesic.

A geodesic lamination or a measured lamination on S which a pleated
surface f maps totally geodesically is said to be realized by f . In particular,
the geodesic lamination � in the condition (2) of the definition above is
realized by f . The geodesic lamination that is minimal among those for
which the condition (2) is satisfied is called the pleating locus of f .

If there are two homotopic pleated surfaces f, g : S →M both realizing
the same geodesic lamination λ, then we have f(λ) = g(λ): to be more
precise, there is a homeomorphism h of S isotopic to the identity such that
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f ◦h|λ = g|λ. (This was first proved by Thurston [32]. An alternative proof
can be derived from Bonahon’s argument in [3].)

In [3], Bonahon proved the following theorem.

Theorem 2.4 (Bonahon). Let G be a Kleinian group which is freely inde-
composable relative to the parabolic subgroups. Let C be a relative compact
core of (H3/G)0, and S a component of its frontier. Then, either

1. the end e of (H3/G)0 facing S is geometrically finite, i.e., there is a
neighbourhood of e intersecting no closed geodesics, or

2. there is a sequence of essential simple closed curves {γi} on S such
that the closed geodesic γ∗i freely homotopic to γi in H3/G tends to
the end e as i→ ∞.

In the latter case, we say that the end e is simply degenerate.

As a corollary to this theorem, Bonahon showed, using a technique due
to Thurston, that (H3/G)0 can be compactified to a pared manifold so that
∂(H3/G)0 correspond to the interior of the paring locus.

We now define ending laminations for simply degenerate ends.

Definition 2.5. In the situation above, for a simply degenerate end e, a
measured lamination λ whose projective class is the limit of {[γi]} in the
projective lamination space PL(S) is called an ending lamination of S.

The definition above depends on the choice of sequence of simple closed
curves {γi}. Yet, it was also proved by Thurston and Bonahon that if two
measured laminations are ending laminations of the same end, then their
supports coincide. Furthermore, an ending lamination is always maximal
and connected. These facts were first observed by Thurston [32]. Bonahon’s
result in [3] on the intersection number of simple closed curves whose geo-
desic representatives tend to an end provides a proof of the former fact. On
the other hand, the latter fact is implied from the compactness of the space
of marked pleated surfaces (see Canary-Epstein-Green [8]).

It was proved by Bonahon [3] that the following dichotomy holds for
a measured lamination on an incompressible surface in a hyperbolic 3-
manifold.

Proposition 2.6 (Bonahon). Let G be a Kleinian group which is freely
indecomposable relative to the parabolic subgroups, and set M = H3/G.
Let Σ be an incompressible properly embedded surface inM , (i.e., embedded
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in such a way that each puncture of Σ corresponds to a cusp of M), and λ
a measured lamination on Σ. Then, each component � of λ satisfies one and
only one of the following two conditions.

1. There is a pleated surface homotopic to the inclusion of Σ realizing �.

2. Either � is a simple closed curve representing a parabolic class of G or
there are a simply degenerate end e of M0 facing a frontier component
S of M0 with an ending lamination µ and a free homotopy from S to
a subsurface of Σ taking µ to �.

The measured lamination λ itself can be realized by a pleated surface homo-
topic to the inclusion of S if and only if all the components are realizable.

For a surface Σ as above, the subset of ML(Σ) consisting of all the
measured laminations that can be realized by pleated surfaces homotopic to
the inclusion is denoted by R(Σ). Thurston showed in [32] that R(Σ) is an
open dense subset of ML(Σ).

2.5. Algebraic and geometric convergence.

Let G be a Kleinian group. We consider the set of pairs {(Γ, φ)} where
Γ is a Kleinian group isomorphic to G by an isomorphism φ which maps
parabolic elements to parabolic elements. By identifying two pairs (Γ1, φ1)
and (Γ2, φ2) when the isomorphism φ2 ◦ φ−1

1 is realized as a conjugation
by an element of PSL2C, we obtain the quotient set denoted by H(G).
We denote the class represented by (Γ, φ) again by (Γ, φ), slightly abusing
notation. By regarding H(G) as a subset of the representation space of G
into PSL2C, modulo conjugacy, we can endow H(G) with a topology. This
topology is called the algebraic topology, and when a sequence {(Gi, φi)}
converges to (G,ψ) in H(G) with respect to the algebraic topology, we say
that {(Gi, φi)} converges to (Γ, ψ) algebraically. Sometimes, we also say
that {Gi} converges to Γ algebraically. Evidently, if {(Gi, φi)} converges to
(Γ, ψ) algebraically, then by taking conjugates of Gi and φi in PSL2C, we
can have representations {φ′i} converging to ψ.

Since hyperbolic manifolds are aspherical, an isomorphism φi : G → Gi

induces a homotopy equivalence between H3/G and H3/Gi. We denote it by
Φi. Similarly, throughout this paper, for any isomorphism between Kleinian
groups, we denote an induced homotopy equivalence by the corresponding
symbol in the upper case.

For Kleinian groups, there is another notion of convergence, which is
called geometric convergence.
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Definition 2.7. Let {Gi} be a sequence of Kleinian groups. A Kleinian
group H is said to be the geometric limit of {Gi} when

1. every element of H is a limit of elements {gi ∈ Gi}, and

2. the limit of any convergent sequence {gij} for a subsequence {Gij} of
{Gi} is contained in H.

From this definition, it is easy to see that if {Gi} converges to H geo-
metrically, then the Hausdorff limit of the limit sets ΛGi contains ΛH .
It is known that any sequence of non-elementary Kleinian groups, i.e.,
non-nilpotent Kleinian groups, has a geometrically convergent subsequence.
When {(Gi, φi)} converges algebraically to (Γ, ψ), if we take conjugates of
Gi so that {φi} converges to ψ as representations, the algebraic limit Γ is
contained in the geometric limit of any subsequence of {Gi}. Proofs of these
facts can be found in Jørgensen–Marden [21].

Geometric limits of Kleinian groups can be interpreted more geometri-
cally using the notion of geometric convergence of Riemannian manifolds in
the sense of Gromov. Let {(Mi, xi)} be a sequence of hyperbolic 3-manifolds
with basepoints xi ∈ Mi. We say that {(Mi, xi)} converges geometrically
to a hyperbolic 3-manifold with basepoint (M∞, x∞) (in the sense of Gro-
mov) when there is a diffeomorphism ρi : Bri(Mi, xi) → BKiri(M∞, x∞)
between the metric balls with radii ri and Kiri centred at xi and x∞
respectively which is a (Ki, ri)-approximate isometry with Ki → 1 and
ri → ∞. Here, ρi is said to be a (Ki, ri)-approximate isometry when
d(x, y)/Ki ≤ d(ρi(x), ρi(y)) ≤ Kid(x, y) for any x, y ∈ Bri(Mi, xi).

Suppose that a sequence of Kleinian groups {Gi} converges geometrically
to G∞. Fix some point x ∈ H3 and consider its projections xi ∈ H3/Gi and
x∞ ∈ H3/G∞ under the universal covering maps. Then, {(H3/Gi, xi)} con-
verges to (H3/G∞, x∞) geometrically in the sense of Gromov. Conversely,
if hyperbolic 3-manifolds with basepoints {(Mi, xi)} converge geometrically
to (M∞, x∞) in the sense of Gromov, then, we can identify the universal
coverings of Mi and M∞ with H3 in such a way that

1. there is a point x ∈ H3 projected to xi and x∞ by the universal
covering maps,

2. the hyperbolic 3-manifolds Mi are isometric to H3/Gi, and M∞ is
isometric to H3/G∞ by these identifications, and

3. the Kleinian groups Gi converge geometrically to G∞.
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Thus, the notions of geometric convergence of Kleinian groups and geometric
convergence of hyperbolic 3-manifolds in the sense of Gromov are equivalent.

Suppose that we are given a sequence of pleated surfaces {fi : (S,mi) →
Mi}, where Mi is a hyperbolic 3-manifold, and basepoints xi ∈ S. We say
that {fi} with basepoints xi converges to a pleated surface f∞ : (S∞,m∞) →
M∞ with basepoint x∞ ∈ S∞ when there are a sequence of positive numbers
ri going to infinity and an approximate isometries ρi : Bri((S,mi), xi) →
BKiri((S∞,m∞), x∞), ρi : Bri(Mi, fi(xi)) → BKiri(M∞, f∞(x∞)) such that
{ρi ◦ fi ◦ ρ−1

i } converges to f∞ uniformly on any compact subset of S∞.
Note that in particular, the target manifold M∞ is a geometric limit of
Mi with basepoint fi(xi) and S∞ is a geometric limit of (S,mi) with base-
point xi, hence S∞ is homeomorphic to a subsurface of S, whose boundary
components are essential simple closed curves on S.

Recall that a continuous map f from a surface S to a 3-manifoldM is said
to be incompressible when the induced homomorphism f# : π1(S) → π1(M)
is injective. Suppose that for a sequence of incompressible pleated surfaces
{fi : S →Mi}, there is a positive constant ε and a point xi on S such that
the injectivity radii of Mi at fi(xi) are greater than ε. Then, it is known that
{fi} with basepoints xi converges geometrically to a pleated surface after
taking a subsequence. This property is called the compactness of unmarked
pleated surfaces. Refer to Canary–Epstein–Green [8] for the proof.

Suppose that hyperbolic 3-manifolds Mi with basepoints xi converge
geometrically to a hyperbolic 3-manifold M∞ with basepoint x∞. We say
that closed subsets Ci ⊂ Mi converge geometrically to C∞ ⊂ M∞ when for
approximate isometries ρi : Bri(Mi, xi) → BKiri(M∞, x∞) associated to the
geometric convergence Mi →M∞, the subsets ρi(Ci ∩Bri(Mi, xi)) converge
to C∞ with respect to the Hausdorff topology. A sequence of closed subsets
{Fi} of a metric space X is said to converge to a closed set F with respect
to the Hausdorff topology if and only if there exists a sequence of positive
numbers εi going to 0 such that F is contained in the εi-neighbourhood of
Fi and Fi is contained in that of F .

If the distance of Ci from the basepoint xi is bounded above, then a
geometric limit of {Ci} in M∞ always exists after taking a subsequence.

3. Homotopy between pleated surfaces.

We shall first review and slightly generalize Thurston’s technique of con-
structing a homotopy between two pleated surfaces, which consists of pleated
surfaces and negatively curved pleated surfaces whose definition will be given



Continuity of Convex Cores with Respect to Geometric Topology 489

below.

Definition 3.1. Let M be a complete hyperbolic 3-manifold, S a surface
of hyperbolic type. An incompressible map f : S → M is said to be a
negatively curved pleated surface if the following conditions are satisfied.

1. The surface S has a metric with curvature ≤ −1 whose length function
coincides with the one induced from M by f .

2. There is a geodesic lamination λ on S each of whose complementary
regions is either an ideal triangle, or an ideal quadrilateral, or a once-
punctured monogon, or a once-punctured bigon, and f |λ is totally
geodesic.

Similarly, to the case of pleated surface, we say that a geodesic lamination
µ is realized by a negatively curved pleated surface f when f |µ is totally
geodesic.

The following appeared in Section 9 of Thurston [32], in the case when
both measured laminations λ0 and λ1 are realizable by pleated surfaces
homotopic to f . Its generalization and a fairly detailed explanation can be
found in Section 4 of Ohshika [28]. Also, an alternative way to construct
a similar homotopy using simplicial hyperbolic surfaces can be found in
Canary [7].

Proposition 3.2. Let M = H3/G be a hyperbolic 3-manifold, f : S →M
an incompressible embedding of a hyperbolic surface of finite area S into
M taking punctures to cusps, and λ0, λ1 measured laminations on S. Then,
there exist an arc α connecting λ0, λ1 in ML(S) whose interior is contained
in R(S), the subset of measured laminations realizable by pleated surfaces
homotopic to f , and a continuous map H : S × (0, 1) →M as follows.

1. For all but countably many s ∈ (0, 1), the measured lamination α(s)
is absolutely maximal.

2. For any s ∈ (0, 1), if the measured lamination α(s) is not absolutely
maximal, then its complement has only one component that is neither
an ideal triangle nor a once-punctured monogon. The component is
either an ideal quadrilateral or a once-punctured bigon.

3. There is a monotone non-decreasing continuous surjection σ : [0, 1] →
[0, 1], and for every t ∈ (0, 1), the surface H( , t) is either a pleated
surface or a negatively curved pleated surface realizing the measured
lamination α(σ(t)).
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4. For each s ∈ [0, 1], if we set t0 = inf σ−1(s) and t1 = supσ−1(s), the
surfaces H( , t0) and H( , t1) are pleated surfaces provided that they
are defined, i.e., t0 ∈ (0, 1) or t1 ∈ (0, 1).

5. If λj is contained in R(S) for j = 0 or 1, then H( , t) converges to a
pleated surface realizing λj as t→ j uniformly on any compact subset
in S.

Proof. We shall show how to deal with the case when both λ0 and λ1 are
not realizable by a pleated surface homotopic to f . A measured lamination
on S which is not realizable by a pleated surface homotopic to f contains
a component which either is an ending lamination or represents a parabolic
class, as was remarked in Section 2. Let C be a relative compact core of
(H3/G)0, and Σ a component of its frontier. We should note that there
are only finitely many isotopy classes of subsurfaces on S whose images
by f are freely homotopic to Σ. This can be proved by the Jaco–Shalen–
Johannson theory ([19], [20]) as follows. Cut C along f(S) and let C ′ be the
resulting possibly disconnected irreducible manifold. If a surface F on S is
freely homotopic to Σ in C, then there is a sequence of essential homotopies
Ji(i = 0, . . . , n) in C ′ between Fi and Fi+1 such that F0 = F , F1, . . . , Fn−1

are subsurfaces of f(S) and Fn = Σ. By the Jaco–Shalen–Johannson theory,
every homotopy Ji can be deformed into a characteristic pair Φ of C ′, and
F0, . . . Fn can be assumed to be pairwise disjoint. Since Σ is not an annulus,
this characteristic pair Φ must be an I-pair, and there are only finitely many
isotopy classes that F0, . . . , Fn−1 can represent. Thus, we have shown that
there are only finitely many isotopy classes of subsurfaces on S whose images
are freely homotopic to Σ.

Also, by applying the finiteness of maximal parabolic subgroups to the
covering of M associated to f#(π1(S)), we can see that there are only fi-
nitely many homotopy classes of simple closed curves on f(S) representing
parabolic classes of G. Recall that for each end of M0, the support of ending
lamination is unique. Therefore, the ending laminations of the end e facing
Σ form a piecewise linear subspace of ML(Σ). (Recall that the measured
lamination space has a piecewise linear structure induced from the weight
spaces of train tracks. See Penner–Harer [29].) Furthermore, by comput-
ing the dimension of the space of measured laminations, we see that for a
given measured lamination λ on S, the set of measured laminations on S
whose supports contain the support of λ forms a piecewise linear subspace
of ML(S) of positive codimension.
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Therefore, on S, the measured laminations that are not realizable by
pleated surfaces homotopic to f constitute a subset of ML(S) consisting
of finitely many piecewise linear subspaces of positive codimension. This
implies in particular, for any non-realizable measured lamination and a re-
alizable lamination, there is an arc α connecting them whose interior is
contained in the set of realizable laminations, R(S). Furthermore, as was
observed by Thurston in [32], there is a union of countably many piecewise
linear subspaces of codimension at least one containing all the measured
laminations whose complements have a component which is neither an ideal
triangle nor a once-punctured monogon. Also, it was shown there that there
is a union of countably many piecewise linear subspaces of codimension more
than one containing all the measured laminations whose complements con-
tain either more than two components which are neither ideal triangles nor
once-punctured monogons, or a component which is none of an ideal trian-
gle, a once-punctured monogon, an ideal quadrilateral, or a once-punctured
bigon. Therefore, perturbing α, we can assume that all but countably many
points on the arc represent absolutely maximal measured laminations and
the countably many exceptions have only one exceptional complementary re-
gion which is either an ideal quadrilateral or a once-punctured bigon. Thus,
we can apply to our situation the lemma in the original form where both
measured laminations λ0, λ1 were assumed to be realizable, and get our
lemma. �

The same argument works even when S has totally geodesic boundary
which is mapped to closed geodesics in M , or more generally, when the
boundary of S is an ideal polygon which is mapped geodesically to M .
The latter case can be applied to the restriction of pleated surface to a
complementary region of a realized lamination. This makes it possible to
prove the following lemma on the existence of a bounded homotopy.

Lemma 3.3. There is a constant D depending only on the topological type
of S with the following property. Let λ be a maximal measured lamination
on S. Let f, g : S → M be two homotopic pleated surfaces both realizing
λ; hence, it can be assumed that f |λ = g|λ. Then, there is a homotopy
H : S × I → M between f and g fixing λ, such that for every x ∈ S, the
diameter of H({x} × I) is bounded by D.

Proof. By assumption, we have f |λ = g|λ. Let U be a component of the
complement of λ. Since λ was assumed to be maximal, U contains no simple
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closed geodesic at its interior. Therefore, U is either an ideal polygon;
or an ideal polygon with a totally geodesic hole or a puncture, which is
topologically an annulus; or a twice-punctured disc with totally geodesic
boundary; or a once-punctured annulus with totally geodesic boundary; or
a pair of pants with totally geodesic boundary. We have only to prove that
we can construct a homotopy between f |U and g|U which moves the points
within a bounded distance fixing its frontier. Let us define the complexity
c(U) of U to be Area(U)/π. The proof is by induction on c(U). If c(U) = 1,
then U is either an ideal triangle or a once-punctured monogon, and as
f |U = g|U , we have the trivial homotopy satisfying the condition of our
lemma. We suppose that c(U) ≥ 2.

Let ν0 and ν1 be maximal geodesic laminations on U realized by f and
g respectively. Note that such a lamination consists of finitely many leaves
each of whose ends either spirals around a frontier component of U or tends
to a puncture or an ideal vertex of U since no leaf of such a lamination accu-
mulates in U , since U admits no measured laminations by assumption. Let
us consider the case when U is simply connected first. Both ν0 and ν1 give
an ideal triangulation of U , and there are only finitely many ideal triangula-
tions of U . For instance, when U is an ideal quadrilateral, there are exactly
two ideal triangulations. Suppose that, U is an ideal quadrilateral and that
ν0 and ν1 give the two distinct ideal triangulations. As is shown in the proof
of Proposition 3.2 by Thurston (pp. 9.47–48), there is a one-parameter fam-
ily of ideal quadrilaterals with curvature ≤ −1 giving a homotopy between f
and g fixing FrU then. In general, if U is simply connected, any two ideal tri-
angulations can be transformed from one to another by finite steps repeating
a change of triangulations on an ideal quadrilateral in each step. Therefore,
we can construct a homotopy between f and g by negatively curved pleated
surfaces fixing FrU . Since there is an upper bound, depending only on the
number of vertices, for the distance from points in negatively curved poly-
gons to the frontier, and the number of vertices is bounded by a constant
depending only on the topological type of S, the diameter of H({x} × I) is
bounded by a constant depending only on the topological type of S.

Consider now the case when U is not simply connected. Recall that U
admits no measured laminations and that U is not a once-punctured mono-
gon, as c(U) ≥ 2. Therefore, U is either a once-punctured ideal polygon; or
a twice punctured disc with totally geodesic frontier; or an annulus one or
both of whose boundary components are totally geodesic (that is, an ideal
polygon with a hole or a once-punctured annulus); or a pair of pants with
totally geodesic boundary. In these cases, as in the case when U is simply-
connected, there are only finitely many ideal triangulations for U . If U is a
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once-punctured ideal bigon, there are exactly two ideal triangulations, and if
ν0 and ν1 give the two distinct triangulations, we can construct a homotopy
fixing FrU and the cusp by surface with curvature ≤ −1 as is shown in [32],
similarly to the case of ideal quadrilateral. The diameter of the homotopy
is bounded by a universal constant as in the case of ideal quadrilateral. In
general, the number of triangulations is bounded by a constant depending
only on the number of vertices, hence by a constant depending only on the
topological type of S. We can transform the ideal triangulation given by
ν0 to that given by ν1 by repeating finitely many times the changes of tri-
angulations on either ideal triangles or once-punctured bigons. Hence the
diameter of H({x} × I) is bounded by a constant depending only on the
topological type of S. �

By this lemma, we can refine Proposition 3.2.

Corollary 3.4. In Proposition 3.2, the map Hi can be assumed to have
the following property. For s ∈ (0, 1), set t0(s) = inf σ−1(s) and t1(s) =
supσ−1(s). Then, for every point x ∈ S and any s ∈ (0, 1), the diameter of
Hi({x} × [t0(s), t1(s)]) is bounded by D given in Lemma 3.3.

A boundary component of the convex core is a typical example of pleated
surface. Its pleating locus, which we call the bending locus, is the geodesic
lamination along which the surface is bent. A transverse measure on the
bending locus can be defined using the bending angle so that for an arc
a intersecting the bending locus transversely, its measure is equal to the
infimum of the geodesic curvature in the ambient hyperbolic 3-manifold of
arcs homotopic to a allowing the endpoints to move along leaves. Refer to
Epstein–Marden [13] for details. We call the bending locus endowed with
such a transverse measure the bending lamination. The bending lamination
is empty if and only if the component is totally geodesic.

Note that every complementary region of a bending lamination on the
boundary of the convex core is totally geodesic. By adding a maximal sys-
tem of disjoint simple closed geodesics in the complementary region of a
bending lamination to the bending lamination, we get a maximal measured
lamination.

4. The proof of the main theorem.

Let {Gi} be a sequence of Kleinian groups as given in Theorem 1.1 and
G∞ its geometric limit. To prove the theorem, we have only to show that
every subsequence of {(Gi, φi)} has a subsequence for which the conclusion,
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the coincidence of the convex core of the geometric limit and the geomet-
ric limit of the convex cores, holds. Since every subsequence of {(Gi, φi)}
satisfies the hypotheses of the theorem, we have only to show that the orig-
inal sequence {(Gi, φi)} has a subsequence for which the conclusion is valid.
Therefore, we are allowed to take a subsequence each time it is necessary in
the proof.

Recall that by Bonahon’s theorem, H3/G and H3/Gi can be compact-
ified to pared manifolds (M,P ) and (Mi, Pi) respectively where the paring
loci correspond to the cusps of H3/Gi. Although M and Mi are homo-
topy equivalent, they may not be homeomorphic. Still by Jaco–Shalen–
Johannson theory (see Johannson [20], Jaco–Shalen [19], Jaco [18], and
Canary–McCullough [11]), the homotopy equivalences which are not ho-
motopic to homeomorphisms are generated by ‘flips’ along an embedded
annulus in characteristic I-pairs and ‘reshuffling’ of boundary annuli in
solid torus components of the characteristic pair of M . As was shown in
Canary–McCullough [11], there appear only these two types of characteris-
tic pairs as we assumed that G has no double trouble. Since there is only
one way, up to homotopy, to flip in each I-pair, and there are finitely many
ways of reshuffling in a solid torus component, there are only finitely many
marked homeomorphism types among {Mi}. Furthermore, in the group of
self-homotopy equivalences of H3/G, the subgroup of classes represented by
homeomorphisms has finite index as was shown in [11]. Therefore, by tak-
ing a subsequence and replacing G with a geometrically finite group whose
corresponding hyperbolic 3-manifold is homeomorphic to some H3/Gi, we
can assume that there is a homeomorphism Φi : H3/G → H3/Gi induced
by φi.

As was explained in Section 2, there is an approximate isometry
ρi : Bri(H

3/Gi, xi) → BKiri(H
3/G∞, x∞) with ri → ∞, where xi and

x∞ are basepoints obtained by projecting a fixed basepoint x in H3 by the
universal covering maps. It is allowed to move xi within distance bounded
independently of i. In particular, we can assume that xi is contained in
C(H3/Gi) and x∞ is contained in C(H3/G∞).

We fix for the moment a positive constant ε such that 2ε is less than
the Margulis constant. We can assume that ρi maps the ε-thin part of
Bri(H

3/Gi, xi) into the 2ε-thin part of H3/G∞, and the 2ε-thick part into
the ε-thick part. Whenever we need to take a smaller ε later in the proof,
we take a subsequence of {Gi} so that this condition here is preserved.

Before starting the proof, we state the following fact which will be used
essentially in the proof several times.
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Lemma 4.1. Let M be a complete hyperbolic 3-manifold. Then, the image
of every pleated surface of finite area in M is contained in the convex core
C(M).

Proof. Let h : S →M be a pleated surface of finite area. Consider a maximal
geodesic lamination λ realized by h. Since λ is a geodesic lamination on a
hyperbolic surface of finite area, each leaf of λ is either a closed geodesic or
an exceptional minimal leaf or an isolated leaf each of whose ends goes to a
cusp or spirals around a leaf of the former two types. A closed geodesic leaf
is mapped to a closed geodesic in M , hence is contained in the convex core.

Consider an exceptional minimal leaf l of the geodesic lamination. Then,
there is an essential closed curve γk consisting of a geodesic arc lk on l and
a short geodesic arc ak transverse to λ such that lk comes from the different
directions to ak at the endpoints with the following two properties: (i) For
any x ∈ l, there exists k0 such that if k ≥ k0, then x is contained in lk. (ii)
The length of ak goes to 0 as k → ∞. We can take such closed curves γk so
that there is a compact set K of S containing all the γk since l does not tend
to a cusp. Now, we consider the image h(γk), which consists of the geodesic
arc h(lk) and the arc h(ak). Since the arcs ak are contained in K and
length(ak) → 0, we see that length(h(ak)) → 0 as k → 0. Also, at the two
endpoints, the tangent vectors of h(lk) pointing outward viewed from h(lk)
are nearly parallel with opposite directions. Let γ∗k be the closed geodesic
freely homotopic to h(γk) in H3/G∞. Then, the maximal distance of the
points on h(γk) from γ∗k goes to 0 as k → ∞, as can be easily seen using the
elementary hyperbolic geometry. Since any point x on l is contained in lk
for sufficiently large k, this implies that the distance from h(x) to γ∗k goes to
0 as k → ∞. As γ∗k is contained in C(M), we see that h(l) is also contained
in C(M).

Since each end of other leaves either tends to a cusp or spirals towards
a compact leaf or an exceptional minimal leaf, all the images of leaves of λ
are contained in C(M). Finally, since S \ λ is mapped totally geodesically
by h, the image of h itself is contained in C(M). �

Let γ be an element of G such that φi(γ) converges to a loxodromic
element. Since {Gi} converges algebraically, conjugating them by uniformly
bounded elements of PSL2C, we can assume that all of the φi(γ) have the
same geodesic line of H3 as axes. Take a point x on such a geodesic line.
By our choice of x, the minimal translation length of x by the elements of
Gi is bounded by positive constants both above and below as i → ∞. We
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can assume that the basepoints xi are the projections of this point x by the
universal covering maps since the distance between this xi and the original
basepoint is bounded above as i → ∞. Then, the injectivity radius at xi is
bounded below by a positive constant as i → ∞. Consider the geometric
limit C∞ of C(H3/Gi) with basepoint at xi. By definition, C∞ is a closed
subset of H3/G∞. Let C̃∞ be the inverse image of C∞ with respect to the
universal covering map q : H3 → H3/G∞. Recall that the limit sets ΛGi

converge, after taking a subsequence, to a closed set F . By the continuity of
convex hulls with respect to the Hausdorff topology on the sphere at infinity
proved by Bowditch [4], the convex hull of F is equal to C̃∞, which is the
Hausdorff limit (in H3) of the convex hulls of ΛGi . By the definition of
geometric convergence, every fixed point of an element in G∞ is a limit as
i→ ∞ of fixed points of elements in Gi. It follows that ΛG∞ is contained in
F . Therefore, the convex hull of F , which coincides with C̃∞, contains the
convex hull of ΛG∞ . By projecting them down to H3/G∞, it follows that
C∞ contains C(H3/G∞). (Refer also to Theorem 7.2 Taylor [31].) What
remains to prove is the opposite inclusion: C∞ ⊂ C(H3/G∞). Suppose,
seeking a contradiction, that C(H3/G∞) is a proper subset of C∞.

Consider a component Σ of the frontier of C∞. By the definition of
geometric convergence, there is a component Σi of the frontier of C(H3/Gi)
and a point wi on Σi such that Σi with basepoint at wi converges to Σ
geometrically. Recall that every component of the frontier of C(H3/Gi) is an
embedded incompressible pleated surface. By the compactness of unmarked
pleated surfaces, the geometric limit Σ must also be a pleated surface. The
area of Σi is bounded independently of i as the homeomorphism type of
C(H3/Gi) is fixed. This implies that the area of Σ is finite.

Therefore, by Lemma 4.1, every component of the frontier of C∞ must
be contained in the convex core C(H3/G∞). Thus, from now on until the
end of the proof, we assume that there is no component of the frontier of C∞
except those of C(H3/G∞). By our assumption, C∞ \ C(H3/G∞) is non-
empty. We shall first show that there is no relatively compact component
in C∞ \ C(H3/G∞).

Suppose, on the contrary, that a relatively compact component V of
C∞ \ C(H3/G∞) exists. We can assume, by taking a subsequence, that
the ball BKiri(H

3/G∞, x∞) on which ρ−1
i is defined, contains V for every

i. Take any point y ∈ V . Then, since y is contained in C∞, there exists
a point yi in C(H3/Gi) such that {ρi(yi)} converges to y. There exists
an ideal tetrahedron τi containing yi whose vertices at infinity lie on ΛGi .
Since ρ−1

i (V ) is relatively compact and τi intersects FrC(H3/Gi) only at
its boundary, there exists a geodesic arc ai in τi passing through yi whose
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endpoints lie on Frρ−1
i (V )\FrC(H3/Gi). Since the diameters of the ρ−1

i (V )
are bounded above independently of i, the lengths of the ai are also bounded
above. Therefore, the arcs ρi(ai) converge to a geodesic arc a∞ containing
y with endpoints lying on the closure of FrV \ FrC∞, which is contained in
C(H3/G∞). Since C(H3/G∞) is convex, this implies that y is contained in
C(H3/G∞), and we get a contradiction.

More generally, suppose that there is a component V of C∞\C(H3/G∞)
such that the diameter of V relative to FrV is bounded, i.e., there is an upper
bound for the distances from the points of V to FrV . Then, by an argument
similar to the above, for any y ∈ V , as a limit of the images of geodesic
arcs by ρi, we get either a geodesic arc with endpoints on the closure of
FrV \ FrC∞ as above or a geodesic ray or a geodesic line containing y with
the following property. The geodesic ray has its endpoint on the closure of
FrV \ FrC∞, and there is an upper bound for the distance from the points
on the ray or the line to C(H3/G∞). Since, we proved above that the limit
cannot be such a geodesic arc, we may assume that the limit is either a
geodesic ray or a geodesic line. Since a geodesic ray whose end stays within
a bounded distance from C(H3/G∞) is lifted to a geodesic ray in H3 with
its endpoint at infinity contained in ΛG∞ , such a geodesic ray or a geodesic
line must be contained in C(H3/G∞), and this contradicts the fact that y
lies on this geodesic.

Therefore, there is no component of C∞ \ C(H3/G∞) whose diameter
relative to its frontier is bounded, in other words, for each component E
of C∞ \ C(H3/G∞) and for any large R, there is a point yR ∈ E such
that the closed metric ball BR with radius R centred at yR is contained in
C∞ \ C(H3/G∞).

Recall that there is a homeomorphism Φi : H3/G → H3/Gi. We can
assume that Φi takes the non-cuspidal part of H3/G to that of H3/Gi. Let
T be a boundary component of C(H3/G). Since G is freely indecomposable
relative to the parabolic subgroups, each end of (H3/Gi)0 is either geometri-
cally finite or simply degenerate. The surface Φi(T ∩ (H3/G)0) is isotopic to
a surface Fi obtained by connecting (possibly none) components S1

i , . . . , S
p
i

of the frontier of C(H3/Gi)0 (as subsets of (H3/Gi)0) and (possibly none)
embedded surfaces Σ1

i , . . . ,Σ
q
i in neighbourhoods of simply degenerate ends

along annuli on Fr(H3/Gi)0. We let Li be a measured lamination on T ob-
tained as the pull-back of a measured lamination on Fi which is the union of
the maximal measured laminations λ1

i , . . . , λ
p
i realized on the frontier com-

ponents of the convex cores, ending laminations λp+1
i , . . . , λq

i for the simply
degenerate ends, and simple closed curves representing parabolic classes cor-
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responding to core curves of the connecting annuli. (It is possible that p = 0
or q = p. Also, there is a choice for λp+1

i , . . . , λq
i since only their supports

are uniquely determined.) We are going to prove that for some boundary
component T , we can find a pleated surface homotopic to Φi|T intersecting
ρ−1

i (BR) in a homotopy between two surfaces Ti and fi both of which will
be defined below.

The first step for that is the following lemma. Let Ψ : H3/G → H3/Γ
be a homotopy equivalence induced by the isomorphism ψ : G→ Γ.

Lemma 4.2. There are disjoint essential simple closed curves c1, . . . , cm on
T , which are independent of i, such that each component of T \(c1∪ . . .∪cm)
is homeomorphic to a thrice-punctured sphere, with the following properties.

1. Each of c1, . . . , cm is mapped to a closed curve representing a loxo-
dromic class by all the Φi and Ψ.

2. For each i, there is an arc αi : [0, 1] → ML(T ) connecting the mea-
sured lamination Li defined above and c1 ∪ · · · ∪ cm, which is regarded
as a measured lamination by putting a unit weight on each curve.

3. As in Proposition 3.2, for any s ∈ (0, 1), the measured lamination
αi(s) either is absolutely maximal or has only one exceptional com-
plementary region that is an ideal quadrilateral or a once-punctured
bigon.

4. There is a pleated surface fi homotopic to Φi|T realizing c1 ∪ . . .∪ cn,
and a half-open homotopy Hi : T × (0, 1] → H3/Gi with Hi( , 1) = fi

consisting of pleated surfaces and negatively curved pleated surfaces.

5. There is a monotone non-decreasing continuous surjection σ : [0, 1] →
[0, 1] such that for t ∈ (0, 1], the surface Hi( , t) is either a pleated
surface or a negatively curved pleated surface realizing the measured
lamination αi(σ(t)).

6. If Li is realizable by a pleated surface homotopic to Φi|T , then Hi( , t)
converges as t → 0 uniformly on compact subsets of T to a pleated
surface realizing Li on the boundary of the convex core. Furthermore,
the set {t ∈ I|σ(t) = 0} consists only of 0.

7. If Li is not realizable, then T is divided into subsurfaces P 1, . . . , P k

whose interiors are disjoint and each component of whose frontier is
mapped to a closed curve homotopic to a cusp of H3/Gi, such that
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as t → 0, either Hi|IntP j × {t} converges to a boundary component
of the convex core uniformly on any compact subset of IntP j , or the
image of Hi|IntP j × {t} in (H3/Gi)0 tends to an end of (H3/Gi)0,
whose ending lamination is represented by one of λp+1

i , . . . , λq
i .

Proof. Fix a measured lamination µ on T which can be realized by a pleated
surface homotopic to Ψ|T . Since the set of measured laminations realizable
by pleated surfaces homotopic to Ψ|T is open and invariant under scalar
multiplication, we can choose a neighbourhood V of [µ] in PL(T ) so that
every measured lamination in V is realized by a pleated surface homotopic
to Ψ|T . Furthermore, we can choose such a neighbourhood V so that a
measured lamination whose projective class is contained in V is also realized
by a pleated surface homotopic to Φi|T for sufficiently large i. (Refer for
instance to Brock [5] or Ohshika [28] for the proofs of these facts which are
parts of the continuity of the length function.) By taking a subsequence,
we can assume that this is the case for all i. Since the set of projective
laminations whose supports are unions of simple closed curves dividing T
into pairs of pants is a dense subset in PL(T ), we can take a disjoint union
of simple closed curves c1 ∪ · · · ∪ cm dividing T into pairs of pants whose
projective class lies in V , so that none of them are mapped to parabolic
classes by Φi or Ψ. Let Ri(T ) denote the set of measured laminations
realized by pleated surfaces homotopic to Φi|T . By Proposition 3.2, there
is an arc αi connecting c1 ∪ . . . ∪ cm and Li whose interior is contained in
Ri(T ), and a map Hi : T × (0, 1) → H3/Gi satisfying the conditions there.

Note that only the last two conditions in the statement matter now
because all the others follow from Proposition 3.2, since Hi( , t) converges
uniformly to a pleated surface realizing c1 ∪ · · · ∪ cm as t→ 1. We shall first
consider the second but last condition. Suppose that Li is realizable by a
pleated surface homotopic to Φi|T . Then, each component of Li neither is an
ending lamination nor represents a parabolic element. Hence, by definition,
Li is connected and a maximal measured lamination realized on a boundary
component of C(H3/Gi). By Proposition 3.2, the surfaces Hi( , t) converge
to a pleated surface ki : T → H3/Gi realizing Li. Since the complement of
Li in the boundary component of the convex core is totally geodesic, every
pleated surface realizing Li must have the same image as that boundary
component. Therefore, ki itself is a homeomorphism onto the boundary
component of the convex core realizing Li. Furthermore, we can assume
that σ(t) = 0 only if t = 0 by deleting superfluous parameters since the
image of the surface Hi( , t) is constantly the boundary component of the
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convex core realizing Li while t is in {t|σ(t) = 0}.
Suppose next that Li is not realizable by a pleated surface homotopic

to Φi|T . Recall that Li contains (possibly none) measured laminations
λp+1

i , . . . , λq
i each of which is homotopic to an ending lamination for some

end of (H3/Gi)0. Let P be one of the surfaces P 1, . . . , P k on which lies λρ
i

for some ρ = p + 1, . . . , q, supposing that q > p. Let tj ∈ (0, 1) be num-
bers converging to 0. We consider the surface Hi( , tj), which we denote by
κj : T → H3/Gi. By composing an auto-homeomorphism isotopic to the
identity of T , we can assume that each boundary component of P is a closed
geodesic with respect to the negatively curved metric on T induced by κj .

Using the fact that λρ
i is maximal and connected on P , we can see that

by the argument in Section 6.2 in Bonahon [3], if we take a sufficiently
small ε > 0, then κj|P can intersect the ε-cuspidal part of H3/Gi only
at collar neighbourhoods of ∂P . Suppose that there is a compact subset
of H3/Gi which κj(P ) intersects for every j, after taking a subsequence.
Since the injectivity radius of κj(P ) outside neighbourhoods of collars of
the boundary is bounded below by a positive constant, then as remarked
above, the surfaces κj converge to a pleated surface or a negatively curved
pleated surface realizing λρ

i as j → ∞. This contradicts the fact that λρ
i

is an ending lamination. Since two distinct ends cannot have homotopic
ending laminations, we can see that κj |P cannot tend to an end other than
the one whose ending lamination is λρ

i .
Therefore, the complement of the collar neighbourhoods of κj(∂P ) in

κj(P ) tends to the end whose ending lamination is represented by λρ
i as

j → ∞. Each component of κj(FrP ) must be contained in the cuspidal part
of H3/Gi for sufficiently large j since we can choose a neighbourhood of the
end having a product structure P × R with FrP × R lying on ∂(H3/Gi)0
whereas κj(P ) cannot go far enough without having κj(FrP ) in the cus-
pidal part. Thus, we have shown that the intersection of κj(P ) and the
non-cuspidal part tends to the end whose ending lamination is represented
by λρ

i .
Next, consider the minimal supporting surface P for a measured lamina-

tion λρ
i among λ1

i , . . . , λ
p
i , supposing p �= 0. As before, let κj be H ′

i( , tj) and
consider the restriction κj |P after an isotopy of T making each boundary
component of P a closed geodesic with respect to the negatively curved met-
ric on T induced by κj . Since λρ

i is maximal on P and each compact leaf of
λρ

i represents a loxodromic class of Gi, as before, by Section 6.2 in Bonahon
[3], we can assume that κj(P ) intersects the cuspidal part of H3/Gi only
at neighbourhoods of the boundary components. Since λρ

i is realized on a
boundary component of C(H3/Gi), it cannot represent an ending lamina-
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tion of an end. (This follows from Proposition 2.4.) Therefore, after taking a
subsequence, κj |IntP must converge to a pleated surface κ∞ (possibly with
boundary) realizing λρ

j uniformly on any compact subset of IntP . Since
Li contains each boundary component of P as a leaf, κ∞ must map each
boundary component of P to a cusp. (Otherwise, a boundary component
of P must be mapped to a closed geodesic, which is impossible because it
represents a parabolic class.)

Now, recall that each complementary region of λρ
j is totally geodesic on

the boundary component of C(H3/Gi). Therefore, the image of the surface
κ∞, which realizes λρ

j , must coincide with the boundary component. �

Lemma 4.3. Let fi : (T,mi) → H3/Gi be a pleated surface homotopic to
Φi|T realizing c1 ∪ · · · ∪ cm in the precedent lemma. If we take a basepoint
in the non-cuspidal part of (T,mi), then {fi} converges geometrically to a
pleated surface f∞ : T → H3/G∞ which can be lifted to a pleated surface
f̃∞ : T → H3/Γ.

Proof. Let p : H3/Γ → H3/G∞ be the covering map associated to the
inclusion Γ ⊂ G∞.

Since Ψ(c1), . . . ,Ψ(cm) represent loxodromic classes, the length of the
closed geodesic cji homotopic to Φi(cj) is bounded both above and below
by positive constants as i → ∞ for each j = 1, . . . ,m. Therefore, any
pair of pants in the pants decomposition of T obtained by cutting T along
c1∪. . .∪cm converges geometrically to a pair of pants with geodesic boundary
as i→ ∞. This implies that {fi} converges to a pleated surface f∞ mapping
each cj to the closed geodesic cj∞ which is the limit of cji if we take basepoints
outside the cuspidal parts. The closed geodesic cj∞ must coincide with the
image of the closed geodesic homotopic to Ψ(cj) by the covering projection p.

Again since Ψ(c1), . . . ,Ψ(cm) represent loxodromic classes of Γ, there is
a pleated surface g : T → H3/Γ homotopic to Ψ|T realizing c1 ∪ . . . ∪ cm.
The pleated surfaces p◦g and f∞ both realize c1∪. . .∪cm as closed geodesics
c1∞ ∪ . . . ∪ cm∞. By composing an auto-homeomorphism of T isotopic to the
identity to g, we can assume that p ◦ g(cj) = cj∞. Recall, on the other hand,
that we have f∞(cj) = cj∞.

Let F be a pair of pants in the pants decomposition of T by c1∪· · ·∪cm.
Consider an essential arc a connecting one of the boundary components
cj with another cj′ of F . (It is possible that j = j′ when cj is non-
separating.) Moving the basepoint to the endpoint of a on cj , we consider
the loop represented by a ∗ cj′ ∗ a−1 based at that point. By composing
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auto-homeomorphisms of T isotopic to the identity, we can assume that the
length of fi(a) is bounded as i→ ∞ since the lengths of the closed geodesics
cji are bounded below by a positive constant. This implies that fi(a∗cj′∗a−1)
converges geometrically to a loop homotopic to p ◦ g(a ∗ cj′ ∗ a−1). We can
decompose T into hexagons using the pants decomposition and such arcs as
a above. As remarked above, f∞ can be homotoped so that on the bound-
aries of the hexagons, f∞ and p ◦ g coincide. Since H3/G∞ is irreducible,
this implies that f∞ and p ◦ g are homotopic. Therefore, f∞ can be lifted
to a pleated surface to H3/Γ. �

The pleated surface f̃∞ has image contained in the convex core C(H3/Γ)
by Lemma 4.1. Let p : H3/Γ → H3/G∞ be the covering map associated to
the inclusion Γ ⊂ G∞ as in the proof above. Then, f∞(T ) = p ◦ f̃∞(T ) is
contained in p(C(H3/Γ)) ⊂ C(H3/G∞).

Consider the boundary components T 1, . . . , T µ of C(H3/G). For each of
them, we can define fi, f∞, f̃∞ as above, all of which we denote by fi, f∞, f̃∞.
The surfaces T 1, . . . , T µ cobound relative to the cuspidal part the compact
submanifold C(H3/G)0 in (H3/G)0 representing the fundamental class of
(C(H3/G)0,Fr(H3/G)0). Its image Ψ(C(H3/G)0) can be homotoped to a
3-chain C ′ bounded by f̃∞(T 1) ∪ . . . ∪ f̃∞(T µ) in (H3/Γ)0 relative to the
cuspidal part, which we can assume to be contained in C(H3/Γ) because it
is a deformation retract of H3/Γ and it contains all the f̃∞(T 1), . . . , f̃∞(T µ).

Recall that, by assumption, for any large R, we can take a metric ball BR

with radius R in E, a component of the complement of C∞ \ C(H3/G∞).
We can further assume that the centre yR of BR is in the 2ε-thick part
of H3/G∞. Let Bi be the inverse image ρ−1

i (BR/3) of the ball BR/3 with
radius R/3 concentric with BR. Then, Bi is disjoint from fi(T 1), . . . , fi(T µ)
for sufficiently large i since BR is disjoint from f∞(T 1), . . . , f∞(T µ). We can
also assume that Bi is contained in C(H3/Gi).

Lemma 4.4. Let T be any one of T 1, . . . , T µ, and let Hi(T, t) be the ho-
motopy given by Lemma 4.2. After taking a subsequence, if necessary, we
can assume that there exists t0 > 0 such that if t < t0 the ball Bi is disjoint
from Hi(T, t) for every i.

Proof. Let us suppose, seeking a contradiction, that for each i, there is
a sequence {tj} going to 0, which may depend on i, such that Hi(T, tj)
intersects Bi for every j. First consider the case when Li is realizable for
all i (after taking a subsequence). Then, Hi( , tj) converges, as j → ∞,
uniformly on any compact set of T to a pleated surface ζi : T → H3/Gi
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realizing Li and intersecting Bi. Putting a basepoint yi on T whose image
is contained in Bi, the pleated surface ζi with basepoint yi converges to a
pleated surface of finite area ζ∞ : T ′ → H3/G∞ whose image intersects
BR/3, where T ′ is a subsurface of T . This contradicts Lemma 4.1.

Next, consider the case when Li is not realizable. Then, T is divided into
subsurfaces P 1, . . . , Pn and each one of the Hi|(IntP k × tj)(k = 1, . . . , n)
either converges to a boundary component of the convex core uniformly on
any compact set or has non-cuspidal part tending to an end of (H3/Gi)0
as j → ∞. Since the boundary of P k is mapped into the cuspidal part by
Hi( , tj) for large j, we can assume by taking a subsequence that there is
a point yj on IntP k whose image by Hi( , tj) intersects Bi such that {yj}
converges to a point yi on IntP k as j → ∞. This cannot happen when the
image of the subsurface P k by H( , tj) tends to an end as j → ∞. Therefore,
we can assume that Hi( , tj)|IntP k converges to a homeomorphism hi from
IntP k onto a boundary component of the convex core C(H3/Gi) as j → ∞.
The pleated surface hi with the basepoint yi converges as i→ ∞ to a pleated
surface whose image intersects BR/3 as in the precedent case, and we get a
contradiction. �

Thus, we have proved that the image of Hi( , t) is disjoint from Bi for
t near 0. When Li is realizable, we define Ti to be the limit of Hi(T, t) as
t → 0, which is an embedding onto the boundary component of the convex
core. When Li is not realizable, we can assume that for each subsurface
P k such that Hi(IntP k, t) converges to a boundary component of the con-
vex core, Hi(IntP k, t) is homotopic to an embedding inside a small regular
neighbourhood of the boundary of the convex core for sufficiently small t.
For the other P k’s, the surface Hi(IntP k, t) ∩ (H3/Gi)0 tends to an end as
t → 0. Note that even in this case, Hi(IntP k, t) is homotopic to an embed-
ding because its non-cuspidal part is homotopic to a frontier component of
a relative compact core.

If both Hi(P k, t) and Hi(P k′
, t) converge to boundary components

of C(H3/Gi) for k �= k′, then the limit boundary components are dis-
tinct; hence for sufficiently small t, the surfaces Hi(P k, t) ∩ (H3/Gi)0 and
Hi(P k′

, t)∩C(H3/Gi)0 are disjoint. Suppose next that Hi(P k, t)∩(H3/Gi)0
tends to an end. Then, it is clear that for sufficiently small t, the surface
Hi((Pk, t)∩(H3/Gi)0 is disjoint from Hi(P k′

, t) which converges to a bound-
ary component of the convex core. When Hi(P k′

, t) ∩ (H3/Gi)0 also tends
to an end for k′ �= k, the end toward which it tends is different from the one
toward which Hi(P k, t)∩(H3/G∞)0 tends. Hence for sufficiently small t, the
surfaces Hi(P k, t)∩ (H3/Gi)0 and Hi(P k′

, t)∩ (H3/Gi)0 are disjoint. Thus,
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in any case, Hi(P k, t)∩ (H3/Gi)0 and Hi(P k′
, t)∩ (H3/Gi)0 are disjoint for

sufficiently small t.

Lemma 4.5. In any thin neighbourhood of Hi(P k, t) ∩ (H3/Gi)0, there is
an embedding homotopic to Hi(P k, t) ∩ (H3/Gi)0. In particular, there are
embeddings P k

i (t) homotopic to the Hi(P k, t)∩(H3/Gi)0 which are pairwise
disjoint for distinct k for sufficiently small t.

Proof. Freedman–Hass–Scott proved in [17] that in a complete Riemannian
3-manifold with (possibly empty) convex boundary, any incompressible least
area surface homotopic to an embedding is an embedding itself. In our
present situation, we consider a Riemannian metric as follows. First, con-
sider a metric obtained by multiplying a huge scalar to the metric in the
complement of a given thin regular neighbourhood of Hi(P k, t). Then, using
a bump function, we construct a Riemannian metric which is equal to such
a metric outside the regular neighbourhood of Hi(P k, t) and equal to the
original hyperbolic metric in a thinner regular neighbourhood. By applying
the theorem of Freedman–Hass–Scott, we get a least area surface homotopic
to it, which is an embedding contained in the regular neighbourhood. By
our construction of the metric, such a least area surface must be contained in
the thin regular neighbourhood. We denote such an embedding homotopic
to Hi(P k, t) by P k

i (t). In particular, P k
i (t) ∩ (H3/Gi)0 tends to an end as

t→ 0, and two such embeddings are disjoint for distinct k. �

Recall that as t→ 0 either Hi(P k, t) converges to a boundary component
of the convex core or its non-cuspidal part tends to an end. In the case
when Hi(P k, t) converges to a boundary component of the convex core,
the surface Hi(P k, t) is homotopic to such an embedding (disjoint from the
other embeddings homotopic to Hi(P k′

, t)) in a thin neighbourhood of the
boundary component. Since Bi is contained in the interior of the convex
core for sufficiently large i, we can assume that such a homotopy has image
disjoint from Bi. Suppose that Hi(P k, t) ∩ (H3/Gi)0 tends to an end as
t → 0. By Bonahon’s theorem [3], there is a relative compact core Ci of
(H3/Gi)0 such that (H3/Gi)0 \ Ci is homeomorphic to FrCi × (0, 1). We
can assume that Ci contains the ball Bi. For t sufficiently near to 0, both
Hi(P k, t) ∩ (H3/Gi)0 and the embedding P k

i (t) ∩ (H3/Gi)0 are contained
in a component Ei

∼= P k × (0, 1) of (H3/Gi)0 \ Ci. Since both of them are
incompressible and homotopic to the frontier component facing Ci, they are
homotopic in Ei. Thus, in particular, Hi(P k, t) and P k

i (t) are homotopic
outside Bi also in this case.
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Let Ti be an embedding homotopic to Φi(T ) obtained by connecting
P k

i (t) for a small t as above along annuli on ∂(H3/Gi)0 and extending the
remaining boundary into components of the cuspidal part which correspond
to the cusps of H3/G. For the boundary components T 1, . . . , T µ of the con-
vex core C(H3/G), we get disjoint embeddings T 1

i , . . . , T
µ
i in this way. By

letting t as above be sufficiently small, we can assume that all the T 1
i , . . . , T

µ
i

are disjoint from Bi, that they cobound in (H3/Gi)0 a submanifold Ki con-
taining Bi inside, and that there is a homotopy between Hi(T j , t) and T j

i

disjoint from Bi.
Lemma 4.6. If we take the radius R of BR to be sufficiently large, then
there exists a boundary component T of C(H3/G) as follows. Let Hi(T, t),
with small t, be the pleated surface disjoint from Bi obtained above. Then,
the surface Hi(T, t) ∩ C(H3/Gi)0 is not homologous to fi(T ) ∩ C(H3/Gi)0
given in Lemma 4.3 in C(H3/Gi)0 \ IntBi relative to the cuspidal part.

Proof. As above, consider the boundary components T 1, . . . , T µ of C(H3/G).
Recall that we have pleated surfaces fi : T j → H3/Gi converging geomet-
rically to f∞ : T j → H3/G∞ in Lemma 4.3 and that the thick part of the
geometric limit f∞(T 1) ∪ . . . ∪ f∞(T µ), with a suitable orientation on each
component, bound a 3-chain p(C ′) ⊂ C(H3/G∞) relative to the cuspidal
part. By pulling back p(C ′) by ρ−1

i and perturbing it, we get a 3-chain Ci

bounded by fi(T 1)∪ . . .∪fi(T µ) relative to the cuspidal part with a suitable
orientation on each component. (Note here that every thin part containing
a puncture of fi(T j) is a cusp by our construction of fi(T j).)

Consider 3-chains Z1, . . . , Zµ realizing a homotopy between the non-
cuspidal parts of the embedding T j

i and fi(T j)(j = 1, . . . ,m). Then, the
sum of Ci and Z1, . . . , Zµ with adequate orientations represent the funda-
mental class (relative to the cuspidal part) of the compact submanifold Ki

containing Bi. (See the paragraph just before this lemma.) Therefore, each
point in Bi has non-zero algebraic intersection number with either Ci or
one of Z1, . . . , Zµ. If it has non-zero algebraic intersection number with Zj,
then T j

i cannot be homologous to fi(T j) outside Bi by the invariance of the
algebraic intersection number for homology representatives. As Hi(T j, t) is
homotopic to T j

i outside Bi, this implies that also Hi(T j, t) ∩ C(H3/Gi)0
cannot be homologous to fi(T j)∩C(H3/Gi)0 outside Bi. By choosing T to
be such T j, we get the conclusion.

Therefore, there only remains the case when a point of Bi has non-zero
algebraic intersection number with Ci, which implies that a point of BR/3

intersects the projection of p(C ′) in H3/G∞. This contradicts the fact that
p(C ′) is contained in C(H3/G∞) while BR/3 is disjoint from C(H3/G∞). �
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Ti

Im fi

ρi-1(C(H3/G∞)0∩Bri(H3/G∞,x∞))

Bi

Let T be a boundary component of C(H3/G) as given in Lemma 4.6
from now on, and Ti an embedding homotopic to Φi|T defined as before.
Denote by gi the surface Hi( , t) as above. By taking a subsequence, we can
assume that the surface T above does not depend on i.

As gi is a surface in the homotopy Hi given in Lemma 4.2, we have a
homotopy Hi : T×[t, 1] → H3/Gi between gi and fi. By Lemma 4.6 and our
choice of T , the image of the homotopy Hi must intersect Bi. Let ti ∈ [t, 1]
be a point such that Hi(T, ti) intersects Bi.

Claim 1. If Hi( , ti) realizes a measured lamination αi(σ(ti)) with σ(ti) ∈
(0, 1), then we are led to a contradiction.

Proof. By Proposition 3.2 and Lemma 4.2, the measured lamination αi(σ(ti))
either is absolutely maximal or has only one exceptional complementary
region that is an ideal quadrilateral or a once-punctured bigon. If αi(σ(ti)) is
absolutely maximal, then Hi( , ti) is an ordinary pleated surface. Otherwise
Hi( , ti) may be a negatively curved pleated surface, but still there is t′i ∈
(0, 1) with t′i < ti such that Hi( , t′i) is an ordinary pleated surface realizing
the same measured lamination αi(σ(ti)). In this case, by Corollary 3.4, the
diameter of Hi({x} × [t′i, ti]) is bounded by D for every x ∈ T . We can
assume that D is smaller than R/3 choosing a sufficiently large R in the
first place. Therefore in either case, we see that there is a pleated surface hi

with image intersecting the R/3-neighbourhood of Bi. Take a basepoint zi
on T so that its image by hi is in the R/3-neighbourhood of Bi. Then hi with
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basepoint zi converges geometrically to a pleated surface h∞ : T ′ → H3/G∞
of finite area with basepoint z∞, where T ′ is a subsurface of T . Since hi(zi)
is contained in the R/3-neighbourhood of Bi, the point h∞(z∞) is contained
in BR, hence not contained in C(H3/G∞). This contradicts Lemma 4.1. �

Claim 2. If σ(ti) = 0, then we get a contradiction.

Proof. By Lemma 4.2, we have ti = 0, and Li is realized by Hi( , 0) whose
image is a boundary component Σi of the convex core C(H3/Gi). Take a
basepoint yi on Σi∩Bi. The geometric limit of Σi with basepoint yi becomes
a pleated surface intersecting BR. This contradicts Lemma 4.1. �

Claim 3. If σ(ti) = 1, then we get a contradiction.

Proof. In this case, for every x ∈ T , its image fi(x) is within distance
D from Hi(x, ti) by Lemma 4.2; hence fi(S) has a point within dis-
tance D from Bi. Since the non-cuspidal part of fi(T ) is contained in
ρ−1

i (C(H3/G∞) ∩ BKiri(H
3/G∞, x∞)) for sufficiently large i, it must be

at a distance more than R/3 from Bi. Hence, by letting R be larger than
3D, we get a contradiction. �

Thus, we are led to a contradiction in every case, and have completed
the proof of Theorem 1.1.
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