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Moment Map, a Product Structure, and

Riemannian Metrics with no Conjugate Points

Raúl M. Aguilar

Let (M, g) be a complete Riemannian manifold, G a group acting
on M freely and properly by isometries with (B = M/G, gB) its
smooth Riemannian quotient.
We prove in Theorem 1 the uniqueness of a certain integrable struc-
ture on the tangent bundle of M defined in symplectic terms (2.1)
and prove in Theorem 2 its naturality with respect to the symplec-
tic reduction corresponding to the tangential action by G.
We define the notion of a “tangentially positive” isometric action
and show in Theorem 3 how this condition implies that if (M, g) has
no conjugate points its quotient (B, gB) has no conjugate points,
and that the strongly stable and unstable distributions in the unit
tangent bundle of M are natural under symplectic reduction, by our
Theorem 4. In particular, we obtain conditions under which having
a geodesic flow of Anosov type is inherited by the Riemannian
quotient.
This work is followed up by [1] where we prove the converse of
Theorem 3 and obtain some curvature restrictions for actions with
conjugate point-free quotients.

1. Introduction.

Let (M, g) be a complete Riemannian manifold and π : TM → M its tangent
bundle. The assignment TM � z → (exp(−z), exp(z)) ∈ M × M defines
local “product coordinates” in a neighborhood of M ⊂ TM corresponding to
the two M factors. Infinitesimally it defines an integrable endomorphism P
of T (TM) with P2 = I (the identity endomorphism) that interchanges the
one-forms Θ and dE, where E : TM → R is the function E(z) = 1

2g(z, z)
and Θ is the standard one-form defined by the metric and the tautological
one-form in the cotangent bundle T ∗M.

In this paper we first show that in any neighborhood of the zero section
of TM with the property of being serrate, meaning essentially the geodesic

1En honor del Instituto Balseiro en su Cinquentenario.
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convexity of its image by the map above, there is at most one such struc-
ture P.

We then show that this characterization of P implies its naturality with
respect to symplectic reduction for the tangential action induced by any
group G acting freely by isometries on M so that the quotient M/G is a
smooth manifold. By the “naturality” of the reduction we mean that the
following two conditions are satisfied:

1) There is a neighborhood of M in TM where P can be reduced;

2) the reduction of P coincides in some neighborhood of B = M/G in
TB with the unique structure PB corresponding to the metric gB that
makes the projection f : (M) → (B, gB) a Riemannian submersion.

Condition 1 holds because the connection for the G-bundle f : M → B
given by g can be naturally extended to a connection in a portion of the
total space of the G-bundle µ−1(0) → TB whose horizontal distribution is
P-invariant, where µ : TM → G∗ is the moment map of the tangential G-
action and G∗ is the dual of the Lie algebra of G. In addition, since this
connection is defined by P, G and especially the symplectic form dΘ on TM,
condition 2 holds also, as a consequence of the uniqueness result for P and
the fact that the identification of TB with the reduced space µ−1(0)/G is
symplectomorphic.

As an application we show that if (M, g) has no conjugate points, and the
action satisfies the extra condition that the connection above can be defined
on all of µ−1(0), the quotient metric gB on B has no conjugate points.

This additional condition for the action is expressed in terms of the
positivity of the length of the action vector fields on µ−1(0) with respect to
the pseudo-Riemannian metric defined by P and the symplectic form dΘ,
and is referred to as the tangential positivity of the action.

When tangential positivity is satisfied on µ−1(0), a reduction similar to
that of P can be performed for re-scaled versions of P, and in a certain
limit of the re-scaling, the reduction corresponds to that of the distributions
in the unit tangent bundle of M given by the strongly stable and unstable
Jacobi fields; in this way we prove the naturality of those distributions under
symplectic reduction. This is so because P is essentially a lift to TM of the
shape operator of geodesic spheres on M which tends to the corresponding
objects for horospheres; but we don’t use this fact directly here.

There are situations where the triviality of the intersection of the strongly
stable and unstable distributions in the unit tangent bundle is known to be
equivalent to the property that the geodesic flow is of Anosov type; here the
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naturality under reduction of the stable and unstable distributions can be
applied to derive conditions under which the geodesic flow in the quotient
manifold is of Anosov type. We use results by P. Eberlein in [4] and derive
a corollary along those lines.

The results above are trivially true for discrete groups G since the quo-
tient map f : M → B in this case is a Riemannian covering, in particular
a local isometry. But, although such is the general situation for actions on
compact manifolds with negative-definite Ricci curvature since their isome-
try groups are finite by a classical theorem of S. Bochner, there is no such
restriction on the dimension of groups of isometries of non-compact mani-
folds. However, constraints on isometric actions that are tangentially pos-
itive should in principle be expected, simply because the Riemannian quo-
tient is curvature non-decreasing and thus it “promotes” the existence of
conjugate points on (B, gB). In this paper we give as a sample restrictions
for isometric actions on Euclidean space, which can be shown with what is
developed here, and continue with further results in the forthcoming [1].

The paper is organized as follows: The main result in Section 2 is The-
orem 1 where we prove the uniqueness of product structures on serrate sets
satisfying the “symplectic condition” as defined by (2.1). Their existence is
also proved in this section. Section 3 contains Theorem 2 where we show
the naturality of the reduction of P for a proper and free isometric action as
explained above. In section 4 we define what we mean by a tangentially pos-
itive action and show in Theorem 3 that the Riemannian submersion metric
in M/G has no conjugate points if M has no conjugate points provided that
the action is of that kind. In Section 5 Theorem 4 we show the naturality of
the strongly stable and strongly unstable distributions on the unit tangent
bundle with respect to reduction, and then derive two corollaries on Anosov
type geodesic flows using work by P. Eberlein from [4] and W. Klingenberg
from [9].

Throughout the paper (M, g) will be a connected, smooth and complete
Riemannian manifold of dimension n.

2. Uniqueness of a certain structure on the tangent bundle.

Let O ⊂ TM be a neighborhood of M, where M is identified with the zero
section. An endomorphism P of the tangent bundle of TM such that P2 = I,
the identity, and is integrable is called a (local) product structure in O. In-
tegrability of P means that for every point z ∈ O there are local ”product
coordinates” {u−1 , · · · u−n− , u

+
1 · · · , u−n+

} defined in some open set U ⊂ O con-
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taining z, such that for all v ∈ U , T±
v (TM) = span

{
∂

∂u±
1

, · · · ∂
∂u±

n±

}
, where

T (TM)|O = [T (TM)]+ ⊕ [T (TM)]− is the decomposition in the ±1-eigen-
bundles of P, hence n− + n+ = dimT (TM) = 2n.

Let Θ be the one-form on TM determined by Θ(U) = g(π∗U, z) for all
U ∈ TzM and E the “energy function” on T (TM), E(z) = 1

2g(z, z).

Definition 2.1. Adapted product structure. A product structure P in O ⊂
TM is adapted iff.

PΘ = dE. (2.1)

Let Σ be the geodesic spray and Ξ the Liouville (radial) vector field on
TM. Recall (see [3], [10]) the definition of horizontal and vertical lifts of a
vector u ∈ TxM at z in TxM, respectively (u)hz and (u)vz both in Tz (TM)
and determined by

π∗ (u)h
z = K (u)v

z = u, π∗ (u)vz = K (u)hz = 0, (2.2)

where K : Tz (TM) → Tπ(z)M is the connection map. With this notation the
geodesic spray Σ and the Liouville vector field Ξ are

Σ(z) = (z)h
z , Ξ(z) = (z)v

z . (2.3)

Definition 2.2. Serrate set. We call a set O ⊂ T (M) serrate if it is invariant
by the contracting diffeomorphisms generated by −Σ − Ξ and Σ − Ξ. In
other words, O is characterized by the following property: if γ is any unit-
speed geodesic such that y γ̇(x) ∈ O for some x ∈ R and some y ∈ R+ then
{(y − t)γ̇(x+ t) , (y − t)γ̇(x− t) | t ∈ [0, y]} ⊂ O. (See Remark 2.1.)

Theorem 1. Uniqueness. In a serrate open O ⊂ TM containing M there is
at most one adapted product structure P.

The proof of Theorem 1 is derived from the next several propositions and
follows Corollary 2.4.1, with the proof that such P always exits right after-
wards.

Proposition 2.1. An adapted product structure P defined on an open O ⊂
T (TM) satisfies PΣ = Ξ on O.

Proof. From PdE = Θ we have d (PdE) = dΘ, and, since P is inte-
grable, in local product coordinates there are functions tik so that dΘ =
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∑n−
i=1

∑n+

k=1 tik du
−
i ∧ du+

j . This implies that dΘ is anti-P-invariant, that is,
for all z ∈ O and all U and V in Tz(TM),

dΘ (PU,PV ) = −dΘ (U, V ) . (2.4)

Now dΘ (U, V ) = g (KU, π∗V ) − g (π∗U,KV ), hence Σ is the Hamiltonian
vector field for E, that is for all U ∈ Tz (TM), dE(U) = g(KU, z) =
dΘ (U,Σ). Similarly we have Θ(U) = g(π∗U, z) = dΘ(Ξ, U). Thus, for
arbitrary U ∈ Tz (TM),

dΘ (Ξ, U) = Θ(U)
(i)
= dE(PU) = dΘ (PU,Σ)

(ii)
= dΘ (PΣ, U) ,

where (i) is PdE = Θ while (ii) the anti-P-invariance of dΘ together with
its anti-symmetry. So Ξ = PΣ, since dΘ is non-degenerate. �

Corollary 2.1.1. dim [T (TM) |O]± = n.

Proof. This follows from the non-degeneracy of dΘ and its anti-P-invariance
which implies that dΘ(U, V ) = 0 if U and V are both eigen-vectors with the
same +1 or −1 eigenvalue. �

Proposition 2.2. Let p ∈ M, u ∈ TpM and 0p the origin of TpM. An
adapted product P structure on an open set O ⊃ M must satisfy

P (u)h
0p

= (u)v0p
. (2.5)

Proof. From Proposition 2.1 PΣ = Ξ which by (2.3) reads on TM \ M,

P (z)hz = (z)vz . (2.6)

We multiply the left hand side of (2.6) by t > 0 along the fibers of
T (TM) → TM and along the fibers of TM → M as appropriate to get

t(Pzh
z ) = Pt(zh

z )
(∗)
= P(tz)hz , where equality (*) holds because t(zh

z )− (tz)hz is
in the kernel of both K and π∗, hence is equal to zero. Similarly, we multiply
the right-hand side of (2.6) to get t(zv

z ) = (tz)vz .
It follows that P (tz)hz = (tz)v

z , and, by replacing z by εz with ε = t−1,
we get

P (z)h
εz = (z)vεz .

Taking ε �→ 0, by continuity of P and of the horizontal and vertical dis-
tributions on TM determined by the connection, we have, P (z)h0p

= (z)v
0p

.
�
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Corollary 2.2.1. Give TR = R2 the structure P0
∂
∂x = ∂

∂y , where (x, y) ∈
R2 is identified with y ∂

∂x |x ∈ TR; let P be an adapted product structure on
O ⊂ TM with M ⊂ O. For any unit-length geodesic γ : R → M, γ∗ : TR →
TM preserves the product structures:

(γ∗)∗ ◦ P0 = P ◦ (γ∗)∗. (2.7)

Proof. With the given parametrization of TR, let z = γ∗(x, y) = y γ̇(x) ∈
TM.

The path t �→ yγ̇(x+ t) ∈ TM is horizontal (in TM) with respect to the
Levi-Civita connection on M, goes through z at t = 0, and its projection
t �→ γ(x+t) ∈ M has velocity γ̇(x) at t = 0. Thus, by definition of horizontal
lift,

(γ∗)∗
(
∂

∂x
|(x,y)

)
=

∂

∂t
|t=0 (yγ̇(x+ t)) = (γ̇(x))h

z

(†)
= P (γ̇(x))v

z , (2.8)

where (†) follows from Proposition 2.1 if y = 0 and from Proposition 2.2 if
y = 0.

On the other hand t �→ (y + t)γ̇(x) ∈ Tγ(x)M is a path that projects to
the point γ(x) ∈ M with conditions so that

(γ∗)∗
(
P0

∂

∂x
|(x,y)

)
=(γ∗)∗

(
∂

∂y
|(x,y)

)
=
∂

∂t
|t=0 ((y+t)γ̇(x))=(γ̇(x))v

z . (2.9)

Equality (2.7) follows from (2.8) and (2.9). �

Remark 2.1. Let 0 < r ∈ R. The set T rM =
{
z ∈ TM | 2g(z, z) < r2

}
, is

an example of a serrate neighborhood of M, but the concept is more general.
For instance, let

E0 = {x+ y < 1} ∩ {x− y < 1} ∩ {−x+ y < 1} ∩ {−x− y < 1} ⊂ R2 ∼= TR,

with R = {y = 0} Euclidean. For an integer n = 0 let En be the translate of
E0 in the x direction, to the right if n > 0 or to the left if n < 0, an amount

of
∑|n|

k=0(|n| − k)2−k units. O =
⋃

nEn is a serrate neighborhood of R that
doesn’t contain T rR for any r > 0.

Let 0 = z and γ the unit speed geodesic with ‖z‖γ̇(0) = z. Let c : [−a, a] →
TM \ M for 0 < a ∈ R be a path in TM with c(0) = z, and for |λ| < a, let
γλ be the geodesic defined by the initial conditions γ̇λ(0) = c(λ). The map

Ψ(λ, x, y) = yΦxc(λ) (2.10)
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where Φ: R × TM is the geodesic flow, defines a variation of the map γ∗
through the family of maps γλ∗ . The variational vector field

J̃
def
= Ψ∗

∂

∂λ
|(0,x,y) ∈ Γ(TR, (γ∗)−1T (TM))

is a vector field along the Riemannian leaf Lγ through γ,

Lγ
def
=

{
y γ̇(x) ∈ TM | (x, y) ∈ R2

}
, (2.11)

that restricts to a Jacobi field J along γ.

Proposition 2.3. If Lγ is parametrized (x, y) �→ z = yγ̇(x) ∈ Lγ the Jacobi

field J̃ along Lγ can be expressed

J̃(x, y) = (J(x))h
z + (∇zJ(x))v

z . (2.12)

Proof. We have π (Ψ(λ, x, y)) = π
(
y γ̇λ(x)

)
= γλ(x). Now, the expression

(2.12) follows from (2.2) and the calculations below:

π∗
(
J̃(x, y)

)
=

∂

∂λ
(π ◦ Ψ) |(0,x,y) =

∂

∂λ

(
γλ(x)

)
|(0,x,y) = J(x),

and

K
(
J̃(x, y)

)
= K

(
∂Ψ
∂λ

)
|(0,x,y) = ∇ ∂(π◦Ψ)

∂λ

(Ψ(λ, x, y)) |(0,x,y) = (†),

where, fixing y, viewing (λ, x) �→ (π ◦Ψ)(λ, x, y) = γλ(x) as a variation, and
using that the connection ∇ is torsion-free,

(†) = ∇ ∂(π◦Ψ)
∂λ

(
y
∂ (π ◦ Ψ)

∂x

)
|(0,x,y)

= y∇ ∂(π◦Ψ)
∂x

(
∂ (π ◦ Ψ)

∂λ

)
|(0,x,y) = y∇γ̇(x)J = ∇zJ.

�

We refer to J̃ given by (2.12) as the “canonical extension” of J along the
Riemannian leaf Lγ .

Proposition 2.4. Let O be a serrate neighborhood of M where an adapted
product structure P is defined. Let γ be a unit-speed geodesic, J a Jacobi
field along γ and J̃ its canonical extension along Lγ . If y γ̇(x) ∈ O where
y > 0, then the following are equivalent:
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i) J(x+ y) = 0 ( resp. J(x− y) = 0) ,

ii)
[
J̃(x, y)

]+
= 0

(
resp.

[
J̃(x, y)

]−
= 0

)
,

iii)
[
J̃(x+ t, y − t)

]+
= 0

(
resp.

[
J̃(x− t, y − t)

]−
= 0

)
∀t ∈ [ 0, y ],

where we used [U ]± = 1
2 (U ± PU).

Proof. Given z = y γ̇(x) in O let {u−1 , · · · , u−n , u+
1 , · · · , u+

n } be a product
coordinate chart defined in some neighborhood U ⊂ O containing the path
λ �→ y γ̇λ(x) for λ ∈ [−a′, a′] with a′ > 0 small enough.

By Corollary 2.2.1 for each λ the map γλ∗ : (γλ∗ )−1(O) → TO preserves the
product structures, P0 in TR and P on O. It follows that for all 1 ≤ i ≤ n

∂

∂s−
(
u+

i (yγ̇λ(x)
)

= 0,
∂

∂s+

(
u−i (yγ̇λ(x)

)
= 0,

where s− = x− y and s+ = x+ y are global product coordinates for P0 in
TR ∼= R2.

Hence, by differentiation of the map Ψ (2.10) with respect to λ, there
are one-variable functions h+

i and h−i such that

J̃(x, y) = Ψ∗
(
∂

∂λ
|(0,x,y)

)
=

n∑
i=1

h+
i (x+ y)

∂

∂u+
i

|yγ̇(x) + h−i (x− y)
∂

∂u−i
|yγ̇(x).

(2.13)
But if {v−1 , · · · , v−n , v+

1 , · · · , v+
n } is another product-coordinate chart about

yγ̇λ(x), we have J̃(x, y) =
∑n

i=1 k
+
i (x + y) ∂

∂v+
i

|yγ̇(x) + k−i (x − y) ∂
∂v−i

|yγ̇(x),

where necessarily h±i (x± y) =
∑n

j=1 k
±
j (x± y)∂u±

i

∂v±j
.

It follows that the condition
[
J̃(x, y)

]+
= 0

(
resp.

[
J̃(x, y)

]−
= 0

)
is open and closed in the connected subset of O

{(y − t)γ̇(x+ t) | t ∈ [0, y]} ( resp. {(y − t)γ̇(x− t) | t ∈ [0, y]} ) ,

the connectedness implied by the hypothesis that O is serrate.
The argument above proves ii) ⇐⇒ iii). It also proves i) ⇐⇒ iii)

once we note that given s ∈ R we have

0 =
[
J̃(s, 0)

]±
=
(a)

[
(J(s))h

0γ(s)

]±
=
(b)

1
2

(
(J(s))h

0γ(s)
± (J(s))v

0γ(s)

)
⇐⇒ J(s) = 0,
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where we used (2.12) in (a), Proposition 2.2 in (b), and the fact that hori-
zontal and vertical lifts are linearly independent. �

Corollary 2.4.1. Let 0 = z ∈ O, with O serrate where an adapted product
structure P is defined. Let γ be the unit-speed geodesic such that z = yγ̇(0)
with y > 0. Then, there are no pair of conjugate points of γ contained in
the segment γ([−y, y]).

Proof. We will get a contradiction from the assumption that γ(a) = p and
γ(b) = q is a pair of conjugate points of γ with −y ≤ a < b ≤ y. So,
let J be a non-zero Jacobi field along γ such that J(a) = 0 and J(b) = 0.
With the notation as in Corollary 2.2.1, because O is serrate and contains
(0, y) = γ−1∗ (z), the image under γ∗ of the triangular region in R2 with
vertices (−y, 0), (y, 0) and (0, y) is contained in O. In particular, the images
under γ∗ of the straight segment from (a, 0) ∈ R2 to (a+b

2 , b−a
2 ) ∈ R2 and of

the segment from (b, 0) ∈ R2 to (a+b
2 , b−a

2 ) ∈ R2 are contained in O. Hence
the extension J̃(x, y) of J to Lγ ∩ O satisfies

[
J̃(
a+ b

2
,
b− a

2
)
]+

=
[
J̃(
a+ b

2
,
b− a

2
)
]−

= 0,

which implies that PJ̃(a+b
2 , b−a

2 ) = 0. Then, since P is non-degenerate, we
must have J̃(a+b

2 , b−a
2 ) = 0. Hence, by Proposition 2.4, J(a+b

2 ) = 0 and
∇γ̇(a+b

2
)J(a+b

2 ) = 0, and thus J(x) = 0 for all x, which contradicts that J is
a non-zero Jacobi field. �

2.0.1. Proof of Theorem 1. Let O be a serrate neighborhood of M where
an adapted product structure P is defined. We will show that P is deter-
mined uniquely by the Riemannian metric g.

From Proposition 2.2 along the zero section P is uniquely defined by
(2.5). So let 0 = z ∈ O. Let γ be the unit-speed geodesic such that
z = y γ̇(0) with y > 0 and let {u1, · · · , un} be an orthonormal basis of
Tγ(0)M.

Since O is serrate, by Corollary 2.4.1 there are no pair of conjugate points
of γ contained in the segment γ([−y, y]). In particular γ(−y) and γ(0) are
not conjugate points of γ, and thus, there are Jacobi fields {J1, · · · , Jn}
along γ such that for all 1 ≤ i ≤ n:

Ji(−y) = 0, Ji(0) = ui.
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Similarly, γ(0) and γ(y) are not conjugate points of γ and thus there are
Jacobi fields {G1, · · · , Gn} along γ so that for all 1 ≤ i ≤ n:

Gi(0) = ui, Gi(y) = 0.

Let J̃i and G̃i be the corresponding canonical extensions to Lγ . With the
parameterization of Lγ as earlier, given by (x, y) �→ yγ̇(x) ∈ Lγ , it follows
from Proposition 2.4 applied respectively to {J̃i} and to {G̃i} that for all
1 ≤ i ≤ n: [

J̃i(0, y)
]−

= 0;
[
G̃i(0, y)

]+
= 0,

equivalently

J̃i(0, y) ∈ [Tz (TM)]+ ; G̃i(0, y) ∈ [Tz (TM)]− . (2.14)

Thus, since the Jacobi fields are defined by the Riemannian metric, and
their equation is linear, in order to show that the splitting Tz (TM) =
[Tz (TM)]− ⊕ [Tz (TM)]+ is determined by the Riemannian metric, due to
(2.14) it suffices to show that each of the two sets in Tz (TM) given by
{J̃1(0, y), · · · , J̃n(0, y)} and {G̃1(0, y), · · · , G̃n(0, y)} have rank n. But, from
equation (2.12) it follows that for any given constants ai ∈ R,

π∗

(
n∑

i=1

aiJ̃i(0, y)

)
=

n∑
i=1

aiJi(0) =
n∑

i=1

aiui

and hence the {J̃i(0, y)} are linearly independent. Similarly for {G̃i(0, y)}.
The argument above applied to all 0 = z ∈ O shows the uniqueness of

P. �

2.0.2. Existence of the adapted product structure.

Proposition 2.5. Let (M, g) be a complete Riemannian manifold. Then
there is an open serrate O ⊂ TM containing M where the adapted product
structure is defined. Moreover, O can be taken to be the whole TM if and
only if (M, g) has no conjugate points.

Proof. Let F : TM → M × M be given by F (z) = (exp(−z), exp(z)) =
(π(Φ−1z), π(Φ1z)), where Φ is the geodesic flow. The set

OF
def
= {z ∈ TM | rankF∗ = 2n}
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contains the zero section since for all p ∈ M and all v ∈ TpM it holds

F∗
(
(v)h

0p

)
= (v, v) and F∗

(
(v)v

0p

)
= (−v, v), both in TpM ⊕ TpM, and

hence F∗ is non-singular along M.
To show that there is an open serrate O ⊂ OF we need to describe F∗

off M.

Proposition 2.6. Let γ be a unit-speed geodesic and let y > 0. The
geodesic segment γ([−y, y]) contains no pair of conjugate points of γ if and
only if for all a and b in R with −y ≤ a < b ≤ y,(

b− a

2

)
γ̇(
a+ b

2
) ∈ OF . (2.15)

Proof. Let 0 = z ∈ TM and Uz ∈ Tz (TM). Let c : [−a, a] → TM \ M be a
path disjoint from the zero section such that c(0) = z and c∗

(
∂
∂λ |λ=0

)
= U .

We calculate F∗ (Uz) = ∂
∂λ |λ=0F (c(λ)), using

Φs (c(λ)) = ‖c(λ)‖ γ̇λ ( s ‖c(λ)‖ ) ,

where γλ is the unit-speed geodesic with initial conditions γ̇λ(0) =
‖c(λ)‖−1c(λ). It follows that

F∗ (Uz) = (J(−‖z‖), J(‖z‖)) ∈ Tx1M ⊕ Tx2M, (2.16)

where x1 = π (Φ−1z) = expπ(z)(−z) and x2 = π (Φ1z) = expπ(z)(z), while
J(−‖z‖) and J(‖z‖) are the evaluations at x1 = γ(−‖z‖) and x2 = γ(‖z‖)
of the Jacobi field along the geodesic γ = γ0 determined by the variation
(s, λ) �→ Φsc(λ).

The previous argument shows that 0 = z ∈ OF if and only if along the
unit-speed geodesic γ defined by ‖z‖γ̇(0) = z there is a unique Jacobi field
whose values at γ(−‖z‖) and γ(‖z‖) can be arbitrarily prescribed, which is
equivalent to γ(−‖z‖) and γ(‖z‖) not being a pair of conjugate points of γ.
Thus, Proposition 2.6 is proved by taking z as in (2.15) and noting that, from
the identity Φs (tγ̇(r)) = tγ̇(r+st), it holds F

((
b−a
2

)
γ̇
(

a+b
2

))
= (γ(a), γ(b)).

�

We can now define our serrate set O ⊂ OF . It is a classical result
that any complete Riemannian manifold M can be covered by open sets
Uα, M = ∪α∈AUα, such that any pair of points x1 and x2 in Uα can
be joined by a unique unit speed minimizing geodesic, call it γx1x2 , with
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γx1x2(−2−1d(x1, x2)) = x1 and γx1x2(2
−1d(x1, x2)) = x2, contained in Uα,

where d(x1, x2) is the distance from x1 to x2. It follows that γx1x2 is min-
imizing for any pair of points in γx1x2 ((−∞,+∞)) ∩ Uα, which, as it is
well-known, implies that there are no pairs of conjugate points of γx1x2 in
γx1x2 ((−∞,+∞)) ∩ Uα. It follows that the set

Wα
def
= {2−1d(x1, x2) γ̇x1,x2(0) | (x1, x2) ∈ Uα × Uα}

is contained in ⊂ OF ⊂ TM, and that it is open, since it is diffeomorphic to
Uα ×Uα under F . It also follows, using Proposition 2.6, that Wα is serrate.
Thus, since the union of serrate sets is a serrate set, the open set

O def
= ∪α∈AWα (2.17)

is serrate and is contained in OF .
Thus, via F we pull back the global product structure P× of M × M to

a local product structure PF in O ⊂ OF . Here T (M×M) ∼= TM× TM, the
right and left factors corresponding respectively to the integral manifolds for
the −1 and +1 sub-bundles for P×.

It remains to be shown that PF Θ = dE, so that, by Theorem 1, PF

is actually the adapted product structure P. So, let z in OF \ M, and let
γ be the unit-speed geodesic with yγ̇(0) = z with y > 0. The Jacobi field
J1 along γ with initial conditions J1(0) = 0 and ∇zJ1(0) = z is given by
J1(s) = sγ̇(s) for s ∈ R. Thus, recalling (2.16) and Ξ(z) = (z)v

z ,

P× (F∗ (Ξ)) = P×(J1(−y), J1(y)) = (−J1(−y), J1(y)) = (y γ̇(−y), y γ̇(y)).

On the other hand the Jacobi field J2 along γ with initial conditions J2(0) =
z and ∇zJ2(0) = 0 is given by J2(x) = yγ̇(s) for all s ∈ R, and thus by
(2.16) and Σ(z) = (z)hz ,

F∗ (Σ) = (J2(−y), J2(y)) = (yγ̇(−y), yγ̇(y)).
It follows that on O, PF (Ξ) = F−1∗ (P× (F∗ (Ξ))) = Σ and, from the non-
degeneracy of dΘ, that PF Θ = dE.

Finally, if (M, g) has no conjugate points it is clear that OF = TM, which
is serrate. �

3. Naturality of P with respect to symplectic reduction.

In this section we show that the adapted structure P is “natural” with
respect to symplectic reduction in the following sense:
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1) In a neighborhood of M in TM a reduction of P is possible;

2) The product structure so induced in a neighborhood of B in TB agrees,
in a perhaps smaller neighborhood of B, with the adapted structure
given by gB,

Part 1 follows from the existence of a connection with P-invariant hori-
zontal distribution in the G-bundle defined by the tangential action on the
zero level set of the moment map in TM, while part 2 relies on the fact
that such connection is defined using the symplectic structure on TM which,
as a consequence the very definition of Riemannian submersion metric for
isometric actions, is itself natural under reduction.

3.0.3. Set up. (See [12].) Let G be a closed subgroup of the group of
isometries of (M, g) and G its Lie algebra. The action G× M �→ M induces
the action G × TM �→ TM by tangent maps which preserves the one-form
Θ, for hπ = πh∗ and h∗π∗ = π∗(h∗)∗ hence for all U ∈ Tz(TM) we have,
(h∗)∗Θ(U) = Θ((h∗)∗U) = g(π∗(h∗)∗U, h∗z) = g(h∗π∗U, h∗z), which is equal
to g(π∗U, z) = Θ(U) if h is an isometry.

Now, given ξ ∈ G let ξM : M → TM and ξTM : TM → T (TM) be the
action vector fields on M and TM respectively. We denote by GM and GTM

the corresponding distributions, that is, for p ∈ M and z ∈ TM,

GM
p = {ξM(p) | ξ ∈ G} , GTM

z = {ξTM(z) | ξ ∈ G} ⊂ Tz (TM) .

Let µ : TM → G∗ be the moment map of the tangent action, where G∗ is the
dual of the Lie algebra of G. At z ∈ TM we have µ(z)[ξ] = Θ (ξTM(z)) =
g (z, π∗ (ξTM(z))) = g (z, ξM(π(z))) and thus

µ−1(0) = {z ∈ TM | g (z, ξM(π(z))) = 0 for all ξ ∈ G}.
Evaluation of µ at a given ξ ∈ G yields a function µ[ξ] : TM → R, and we
have 0 = LξTM

Θ = d(µ[ξ]) + dΘ (ξTM, ·), where the vanishing of the Lie
derivative of Θ is the G-invariance explained in the first paragraph, and the
second equality results from the standard Cartan formula. It follows that
given z ∈ µ−1(0) (see [12])

Tz(µ−1(0)) =
(
GTM

z

)⊥ ⊃ GTM
z , (3.1)

the inclusion valid since G acts on µ−1(0), Θ and the distribution GTM

being G-invariant, where, here and in the rest of the paper, given a subspace
A ⊂ Tz (TM) we put

A⊥ def
= {U ∈ Tz (TM) | dΘ(U, V ) = 0 for all V ∈ A} .
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Since the G-action on M is free, the quotient map

f : M → B = M/G

is a principal G-bundle, with an f -horizontal distribution defined as the g-
orthogonal complement of the fibers of f , which is precisely µ−1(0) ⊂ TM.
But π∗ (ξTM(z)) = ξM(π(z)) = 0, hence the G-action on µ−1(0) is also free
and defines a principal G-bundle

p : µ−1(0) → µ−1(0)/G, (3.2)

with p = f∗ ◦ iµ where iµ : µ−1(0) ↪→ TM is the inclusion.
There are induced on µ−1(0)/G a function Ě and a one-form Θ̌ defined

by
p∗Ě = (iµ)∗E, p∗Θ̌ = (iµ)∗ Θ,

where E : TM → R, E(z) = 1
2g(z, z). The form Θ̌ is well-defined because

Θ(ξi
TM) = 0 in µ−1(0), and dΘ̌ is non-degenerate, since on µ−1(0), by (3.1),

T (µ−1(0)) ∩ (
T (µ−1(0))

)⊥ =
(
GTM

)⊥ ∩ GTM = GTM = ker p∗.
If we identify the G-orbit of each z ∈ µ−1(0) with f∗z ∈ Tf(π(z))B we get,

µ−1(0)/G � T (M/G) = TB, (3.3)

and if we give B the Riemannian metric gB that makes f : M → B a Rie-
mannian submersion,

Ě = EB, Θ̌ = ΘB, (3.4)

where ΘB and EB are the corresponding objects on TB induced by the metric
gB.

We now state the naturality of P with respect to reduction.

Theorem 2. Let G act on (M, g) by isometries freely and properly. Let P
be defined in an open O ⊂ TM containing M where O is G-invariant (which
is always possible by Proposition 3.1). Then, there is a G-invariant open set
O † ⊂ O containing M where P pushes down to a product structure P̌ on
the neighborhood of B, p

(
µ−1(0) ∩ O †) ⊂ TB. Such P̌ agrees in a perhaps

smaller neighborhood of B in TB with the adapted product structure PB for
the submersion metric gB.

The proof of Theorem 2 will be derived from Propositions (3.1) through (3.5)
and follows Corollary 3.5.1.
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Proposition 3.1. Given any open N ⊂ TM containing M we can find a
serrate open O ⊂ N containing M. If N is invariant by a group G of
isometries of M acting on TM by tangent maps, then such an O ⊂ N can
be chosen to be G-invariant.

Proof. In the construction of O in (2.17) we can take each Uα small enough
so that Wα ⊂ N . This yields O ⊂ OF ∩N .

Now let h be an isometry of M. For all s ∈ R and all z ∈ TM we
have π (Φs (h∗(z))) = π (h∗ (Φs(z))) = h (π (Φs(z))) and so F (h∗(z)) = (h×
h) (F (z)). This shows in particular that OF is G-invariant. Thus, if O =
∪α∈AWα ⊂ OF ∩N is serrate so is the G-invariant set ∪h∈Gh∗O ⊂ OF ∩N .
�

Proposition 3.2. With G as in Proposition 3.1, P is G-invariant provided
that it is defined in a G-invariant open serrate O containing M.

Proof. By the uniqueness of the adapted product structure if h is an isometry
of M then h∗Ph−1∗ is equal to P since it satisfies all the conditions for an
adapted structure on O, for Θ and E are invariant by h∗. (This also can be
seen using F ◦ h∗ = (h× h) ◦ F .) �

Proposition 3.3. Let G act freely on (M, g) by isometries. Let the adapted
structure P be defined in the serrate open set O ⊂ TM containing M. Then
for all z ∈ O,

dim
(
GTM

z + PGTM
z

)
= 2dimG.

Proof. (Here it is not necessary that O be G-invariant but only that it be
open and serrate.) Since the action is free, for any basis {ξ1, · · · , ξdim G} of
G the action vector fields ξi

M in M are point-wise linearly independent in all
of M. Thus, if z = 0p ∈ TpM for some p ∈ M the statement follows from
Proposition 2.2 which states P (u)h

0p
= (u)v0p

for all u ∈ TpM.
So, let z ∈ O\M and γ the unit-speed geodesic on M with yγ̇(0) = z and

y > 0. The action vector fields ξi
M restrict to linearly independent Jacobi

fields along γ. Since the +1 and −1 eigen-bundles intersect trivially it follows
from Proposition 2.4 that the canonical extensions ξi

TM of the ξi
M satisfy on

Lγ ∩ O,

[
ξ1TM

]+ ∧ · · · ∧
[
ξdimG
TM

]+ ∧ [
ξ1TM

]− ∧ · · · ∧
[
ξdimG
TM

]− = 0.
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For if there were ai ∈ R not all zero such that 0 =
∑n

i=1 ai

[
ξi
TM(z)

]+
then the Jacobi field along γ given by the restriction to this geodesic of the
action vector field ζTM with ζ =

∑n
i=1 ai ξ

i ∈ G would vanish at γ(‖z‖)
contradicting that the action is free. Similarly 0 =

∑n
i=1 ai

[
ξi
TM(z)

]− would
imply that ζTM vanishes at γ(−‖z‖). �

Definition 3.1. Let P be defined in O ⊂ TM. We set

H
def
=

(
GTM + PGTM

)⊥
.

Proposition 3.4. H and H⊥ are P-invariant. If O ⊂ TM is G-invariant

so are H and H⊥.

Proof. TheG-invariance follows from the fact that P, dΘ and the distribution
GTM are all G-invariant. On the other hand, since dΘ is anti-P-invariant,
for any subspace A ⊂ Tz (TM),

P
(
A⊥

)
= (PA)⊥ .

It follows that H is P-invariant since, obviously, so is H⊥ = GTM + PGTM.
�

Proposition 3.5. With the notation as in Proposition 3.3, if in addition O
is G-invariant, there is a G-invariant open set O † ⊂ O, containing M, where
T (TM) splits in a G-invariant, P-invariant and dΘ-orthogonal way,

T (TM) |O † = H ⊕H⊥. (3.5)

Proof. By Proposition 3.3 dimH⊥ = 2dimG and since dΘ is non-degenerate
as a two-form on TM we have dimH = 2n− 2 dimG. Thus, at z ∈ O ⊂ TM
we have a splitting of Tz (TM) = H⊥

z ⊕ Hz if and only if Hz ∩H⊥
z = {0},

equivalently, if and only if dΘ is non-degenerate on H⊥
z = GTM

z + PGTM
z .

Given a basis of G,
{
ξ1, · · · ξdim G

}
, dΘ is non-degenerate on GTM

z +PGTM
z

if and only det Γ(z) = 0 for

Γ(z)
def
=

⎛
⎝

{
dΘ

(
ξi
TM(z), ξj

TM(z)
)}

−
{
dΘ

(
P ξi

TM(z), ξj
TM(z)

)}
{
dΘ

(
P ξi

TM(z), ξj
TM(z)

)}
−
{
dΘ

(
ξi
TM(z), ξj

TM(z)
)}

⎞
⎠ ,

(3.6)
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where the curl-brackets indicate dimG × dimG matrix blocks and where
we used the anti-P-invariance of dΘ. Since det Γ: O → R is a continuous
function, the set

O † def
= {z ∈ O | det Γ(z) = 0}

is open. This set is also G-invariant for dΘ, P and the distribution GTM are
all G-invariant. We now show that O † actually contains M, that is,

∀x ∈ M, det Γ(x) = 0. (3.7)

On the one hand, the determinants of the two off-diagonal blocks of Γ(x)
are not zero when x ∈ M, for

det
{
dΘ

(
P ξi

TM(0x), ξj
TM(0x)

)}
= det

{
dΘ

(
P

(
ξi
M(x)

)h

0x
,
(
ξj
M(x)

)h

0x

)}

= det
{
dΘ

((
ξi
M(x)

)v

0x
,
(
ξj
M(x)

)h

0x

)}
= det

{
g
(
ξi
M(x), ξj

M(x)
)}

= 0, (3.8)

where we used: ξi
TM(0x) =

(
ξi
M(x)

)h

0x
which follows from our identifica-

tion of M with the zero section; equation (2.5); the formula dΘ(U, V ) =
g(KU, π∗V )− g(KV, π∗U); that {ξ1, · · · ξdim G} is a basis for G and that the
action if free.

On the other hand, every entry of the two diagonal blocks of Γ(x) for
x ∈ M vanish, since for all 1 ≤ i, j ≤ dimG and for all x ∈ M

dΘ
(
ξi
TM(0x), ξj

TM(0x)
)

= dΘ
((
ξi
M(x)

)h

0x
,
(
ξj
M(x)

)h

0x

)
= 0. (3.9)

But (3.8) and (3.9) implies (3.7), hence O † ⊃ M, and thus O † satisfies all
the stated properties. �

Corollary 3.5.1. On µ−1(0) ∩ O † we have the G-invariant splitting

T
(
µ−1(0)

) |µ−1(0)∩O † = GTM ⊕H. (3.10)

Thus, (3.10) defines a connection for the G-bundle p : µ−1(0) ∩ O † → TB
whose horizontal distribution H is P-invariant.
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Proof. Recall the G-invariant and P-invariant splitting T (TM) |O † = H⊥⊕
H from Proposition 3.5, and that T

(
µ−1(0)

)
=

(
GTM

)⊥. Consider:
i) on O ⊃ O †, H ∩ T (

µ−1(0)
)

= H, for GTM ⊂ GTM + PGTM = H⊥,

hence H ⊂ (
GTM

)⊥.
ii) on µ−1(0)∩O †, H⊥∩T (

µ−1(0)
)

= GTM, for PGTM∩(GTM
)⊥ = {0}

on O †, while GTM ⊂ (
GTM

)⊥ on µ−1(0).
From i) and ii) and counting dimensions we get on µ−1(0) ∩ O † the

G-invariant splitting (3.10), while clearly ker p∗ = GTM. �

3.0.4. Proof of Theorem 2. By Corollary 3.5.1, the splitting
T
(
µ−1(0)

) |µ−1(0)∩O † = GTM ⊕ H is G-invariant with H, in addition, P-
invariant. Since at z ∈ µ−1(0) ∩ O † we have ker p∗ = GTM

z , it follows that
p∗|Hz : Hz → Tf∗z (TB) is a vector space isomorphism. So, we define P̌ on
p
(
µ−1(0) ∩ O †) ⊂ TB so that for all U ∈ Hz,

P̌ (p∗U) = p∗ (PU) . (3.11)

Because under the identification (3.4), p∗|H preserves the one-forms Θ and
ΘB as well as dE and dEB, P̌ satisfies on p

(
µ−1(0) ∩ O †) ⊂ TB,

P̌2 = I, P̌dΘB = dEB. (3.12)

Now, let the adapted product structure PB corresponding to the submersion
metric on B be defined in some serrate neighborhood of B, OB ⊂ TB. Since
p
(
µ−1(0) ∩ O †) is an open set in TB containing B, then, both P̌ and PB

are defined on
O ′

B ⊂ OB ∩ p
(
µ−1(0) ∩ O †

)
which, by Proposition 3.1, can be assumed to be a serrate neighborhood of
B in TB. In order to show that P̌ = PB on O ′

B, in light of (3.12) and our
uniqueness result in Theorem 1, it suffices to prove that P̌ is integrable. The
integrability of P̌ in O′

B ⊂ TB follows if we show that for all local sections of
T (TB), U and V , defined in open sets of OB ⊃ O′

B, the Frobenius condition
holds, i.e., there are local sections W and W ′ such that

[U + P̌U, V + P̌V ]
(i)
= W + P̌W, [U − P̌U, V − P̌V ]

(ii)
= W ′ − P̌W ′. (3.13)

We now show this Frobenius condition for P̌ using that it holds for P. Recall
that a vector field X defined in an open set O ⊂ TM is a local section of the
bundle H if and only if

dΘ(X, ξTM)
(∗)
= 0, dΘ(X,PξTM)

(∗∗)
= 0, ∀ξ ∈ G. (3.14)
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Let X1 and X2 be local sections of H and calculate

0 = d2Θ(X1,X2, ξTM)
†
= X1 · (dΘ(X2, ξTM)) +X2 · (dΘ(ξTM,X1))

+ ξTM · (dΘ(X1,X2)) − dΘ([X1,X2], ξTM) − dΘ([X2, ξTM],X1)
− dΘ([ξTM,X1],X2).

The first two terms to the right of equality (†) vanish by (*) of (3.14), while
the third, the fifth and the sixth cancel out, since the Lie derivative of dΘ
along ξTM vanishes. Thus we get

(‡) dΘ([X1,X2], ξTM) = 0.

Since H is P-invariant, X1 ±PX1 and X2 ±PX2 are also sections of H and
hence, putting Y1 = [X1 +PX1,X2 +PX2] and Y2 = [X1 −PX1,X2 −PX2]
in (‡),

0 ∗∗∗= dΘ(Y1, ξTM) = dΘ(Y2, ξTM)

as well; that is, (*) of (3.14) holds for Y1 and Y2. But (**) of (3.14) also
holds for Y1 and Y2, which is seen by using in (***) the anti-P-invariance of
dΘ together with PY1 = Y1, PY2 = −Y2, true since the Frobenius condition
is met for P which is integrable. We conclude:

[X1 + PX1,X2 + PX2] and [X1 − PX1,X2 − PX2] are local sections of
H whenever X1 and X2 are.

Now let U and V as in (3.13) be given. We will show the identity (i) of
(3.13), (ii) being analogous.

Since p|µ−1(0)∩O† : µ−1(0)∩O† → p
(
µ−1(0) ∩ O†) is a principal G-bundle

with connection whose horizontal distribution is H, there are unique “H-
horizontal lifts” of U and V . That is, there are “p-related” (G- invariant in
our case) local sections X1 and X2 of H that project to the sections U and
V , i.e., p∗X1 = U and p∗X2 = V . Applying definition (3.11) we see that
PX1 and PX2 are the unique H-horizontal lifts for P̌U and P̌V .

Since P is integrable in O, there is a section X3 such that

[X1 + PX1,X2 + PX2] = X3 + PX3. (3.15)

Applying p and (3.11) to the left side of equality (3.15) yields the left side
of the equality (i) of (3.13). But, from what we showed a few lines above,
the right side of equation (3.15) is a section of H, hence using (3.11),

P̌p∗(X3 + PX3) = p∗P(X3 + PX3) = p∗(X3 + PX3),

so that p∗(X3 + PX3) = W + P̌W for a section W as required in (3.13). �
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3.0.5. Two examples. We illustrate some elements in Theorem 2, in par-
ticular O † vs. O, with two examples.

1) In M = R2 × R with the Euclidean metric G = R acts by

(x, y, r) θ�→ (x cos θ − y sin θ, x sin θ + y cos θ, r + θ),

with

ξM(x, y, r) = −y ∂
∂x

+x
∂

∂y
+
∂

∂r
, ξTM(z) = −y ∂

∂x
+x

∂

∂y
+
∂

∂r
−v ∂

∂u
+u

∂

∂v
,

where (x, y, r, u, v, t)) are the coordinates of the vector z = u ∂
∂x +v ∂

∂y +t ∂
∂r ∈

TM ∼= R6.
Here, P ∂

∂x = ∂
∂u , P ∂

∂y = ∂
∂v and P ∂

∂r = ∂
∂t , thus

P ξTM(z) = −y ∂
∂u

+ x
∂

∂v
+
∂

∂t
− v

∂

∂x
+ u

∂

∂y

valid in O = TM. Note that ξTM ∧ PξTM = 0 throughout TM.
Since dΘ = du ∧ dx+ dv ∧ dy + dt ∧ dr,

f(z)
def
= dΘ (PξTM(z), ξTM(z)) = x2 + y2 − v2 − u2 + 1,

and thus O † = {z = (x, y, r, u, v, t) ∈ TM | f(z) = 0} is a G-invariant open
set containing M = {z = (x, y, r, 0, 0, 0) ∈ TM}.

To describe the splitting of Tz (TM) for z ∈ O † we use the global product
coordinates x± = x±u, y± = y±v, and r± = r±t. Recall U± = 1

2(U±PU).

So
[

∂
∂x

]±
= ∂

∂x± and
[

∂
∂u

]±
= ± ∂

∂x± . Similarly
[

∂
∂y

]±
= ∂

∂y± ,
[

∂
∂v

]±
= ± ∂

∂y± ,[
∂
∂r

]± = ∂
∂r± and

[
∂
∂t

]± = ± ∂
∂r± . Thus, [ξTM(z)]± = −y± ∂

∂x± +x± ∂
∂y± + ∂

∂r± .
Let

V +
1 =

∂

∂x+
+ y−

∂

∂r+
, V −

1 =
∂

∂x−
+ y+ ∂

∂r−
and

V +
2 =

∂

∂y+
− x−

∂

∂r+
, V −

2 =
∂

∂y−
− x+ ∂

∂r−
.

We check directly that on all TM,

span
{
V +

1 , V −
1 , V

+
2 , V −

2

}
=

(
span

{
[ξTM]− , [ξTM]+

})⊥
and that the splitting [T (TM)]± = span

{
V ±

i , [ξTM]±
}

holds except when-
ever [ξTM]± ∧ V ±

1 ∧ V ±
2 = 0 which is equivalent to

det

⎛
⎝ −y± x± 1

1 0 y∓

0 1 −x∓

⎞
⎠ = x±x∓ + y±y∓ + 1 ≡ f(z) = 0.
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2) Consider the S1-action on the standard sphere S3 =
{∑4

i=1 x
2
i = 1

}
⊂

R4 ∼= C2 defining the Hopf fibration:

exp
(√−1 t

) · (w1, w2) =
(
exp

(√−1 t
)
w1, exp

(√−1 t
)
w2

)
,

where w1 = x1 +
√−1x2 and w2 = x3 +

√−1x4. This action is isometric
and for ξ = ∂

∂t ∈ s(1),

ξS3 = −x2
∂

∂x1
+ x1

∂

∂x2
− x4

∂

∂x3
+ x3

∂

∂x4
.

Using the construction by Jacobi fields in Theorem 1, we have, for z ∈ TS3,
besides P (z)h

z = (z)v
z ,

P (u)hz = ‖z‖ cot ‖z‖ (u)v
z , if g(z, u) = 0.

Moreover P is defined on O = {z ∈ TS3 | g(z, z) < π
2 }.

Choose z = x3
∂

∂x1
−x4

∂
∂x2

−x1
∂

∂x3
+x2

∂
∂x4

∈ TS3 and let 0 < a < π
2 . Then

g (z, ξS3) = g (∇zξS3, z) = 0 and it follows, from ξTS3(a z) = (ξS3(p))h
a z +

(∇a zξS3)va z where p = π(z), and ‖z‖2 = 1, that

PξTS3(a z) = a cot a (ξS3(p))v
a z + a−1 tan a (∇a zξS3)ha z .

Thus, since ‖ξS3‖2 = 1 and ‖∇a zξS3‖2 = a2,

dΘ (PξTS3(a z), ξTS3(a z)) = a (cot a− tan a) , (3.16)

which vanishes at a = π
4 . This shows O † � O. (In fact it holds that O † =

O \ {z ∈ TS3 | g(z, z) = π
4

}
, corresponding to the fact that the Riemannian

quotient S3/S1 is the round two-sphere of radius 1
2 ,

{∑3
i=1 x

2
i = 1

4

}
⊂ R3.

This is explained in general by the converse of Theorem 3 proven in [1].) We
thank the referee for suggesting this example.

4. Tangentially positive isometric actions.

Definition 4.1. Since dΘ is anti-P-invariant wherever P is defined there is
a Pseudo-Riemannian metric of signature (n, n)

GP(U, V )
def
= dΘ(PU, V ). (4.1)
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Remark 4.1. The metric GP is natural with respect to symplectic re-
duction, that is “reduction commutes with submersion”. For, if we have
µ−1(0) ∩ O ∗ ⊂ TM and O ′

B ⊂ TB as in the proof of Theorem 2,
we have shown GP restricts to a pseudo-Riemannian metric of signature
(n − dimG,n) on µ−1(0) ∩ O ∗ so that the pseudo-Riemannian submersion
metric induced in the quotient coincides in O ′

B ⊂ (µ−1(0)∩O ∗)/G with the
metric GPB

defined by dΘB and PB.

Proposition 4.1. Let M ⊂ S ⊂ µ−1(0) ∩ O †. If S is connected GP is
positive-definite on GTM|S .

Proof. We have T
(
µ−1(0)

)
=

(
GTM

)⊥, hence with a choice of a basis for G,

Γ(z) =

⎛
⎝ {0} −

{
dΘ

(
P ξi

TM(z), ξj
TM(z)

)}
{
dΘ

(
P ξi

TM(z), ξj
TM(z)

)}
{0}

⎞
⎠

for all z ∈ µ−1(0). If S ⊂ µ−1(0) ∩ O † is connected, the signature of the
(symmetric) lower left block of Γ remains constant on S. But, a calculation
as in (3.8) shows that for all x ∈ M{

dΘ
(
P ξi

TM(0x), ξj
TM(0x)

)}
=

{
g
(
ξi
M(x), ξj

M(x)
)}

,

which is positive-definite. �

Proposition 4.1 motivates the following

Definition 4.2. Tangentially positive action. Let (M, g) have the adapted
structure P defined in O ⊂ TM and let S be any subset of O . We say that
an isometric G-action on M is tangentially positive on S if and only if the
pseudo-Riemannian metric

GP is positive-definite in GTM|S . (4.2)

Remark 4.2. In the definition, there is no a priori condition on the iso-
metric action, such as being free. In fact, when G acts trivially it acts
tangentially positively on any set S where P is defined.

The reason for the definition is the following result, the converse of which
we prove in [1].
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Theorem 3. If (M, g) has no conjugate points and G acts isometrically on
M, freely, properly and tangentially positively on µ−1(0), then the Rieman-
nian quotient (B, gB) has no conjugate points.

Proof. By Proposition 2.5, if M has no conjugate points, in the proof of
Theorem 2 we can take O = TM as the set where P is defined. If in
addition G acts tangentially positively we can take O † = TM also. Hence
the reduction P̌ of P , which is an adapted product structure, is defined on all
µ−1(0)/G = TB. Corollary 2.4.1 then implies that (B, gB) has no conjugate
points as claimed. (Furthermore, the last statement and Proposition 2.5 then
shows that PB is defined on all TB, and hence, by Theorem 1, P̌ = PB.) �

Remark 4.3. Since µ−1(0) is connected and contains M, by Proposition 4.1,
the positive-definiteness of GP on GTM|µ−1(0) in the statement of Theorem 3
is equivalent to the non-degeneracy of dΘ on

(
GTM + PGTM

) |µ−1(0). Clearly
not so for other subsets of TM.

4.0.6. An example. Let Hn = {(x1, · · · , xn) |xi ∈ R,Xn > 0} with the
hyperbolic metric g =

∑n
i=1 dx

2
i /x

2
n. We have

THn = {(x1, · · · , xn, u1, · · · , un) |xi, ui,∈ R, xn ∈ R > 0}

where z =
∑n

i=1 ui
∂

∂xi
|(x1,···xn) is identified with (x1, · · · , xn, ui, · · · , un).

Consider the isometric R-action on Hn

t · (x1, · · · , xn) = (etx1, · · · , etxn). (4.3)

Then

ξHn(x1, · · · , xn) =
n∑

i=1

xi
∂

∂xi
, ξTHn(z) =

n∑
i=1

(
xi

∂

∂xi
+ ui

∂

∂ui

)
.

We now calculate PξTHn(z) at z ∈ µ−1(0).
Since Hn has constant sectional curvature equal to −1 we have, for ex-

ample from the construction of P via the Jacobi fields in (2.14), that

P (w)h
z = ‖z‖ coth ‖z‖ (w)v

z if g(w, z) = 0; (4.4)

P (z)hz = (z)vz ,

where ‖z‖2 = x−2
n

∑n
i=1 u

2
i .
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Now, we decompose ξTHn(z) into horizontal and vertical components.We
get, using g(∇ ∂

∂xi

∂
∂xj

, ∂
∂xk

) = 1
2

(
∂gjk

∂xi
+ ∂gik

∂xj
− ∂gij

∂xk

)
for all i, j, k, with δij the

Kroenecker delta:

∇ ∂
∂xi

∂

∂xj
=
δij
xn

∂

∂xn
, i = n = j;

∇ ∂
∂xi

∂

∂xn
= ∇ ∂

∂xn

∂

∂xi
= − 1

xn

∂

∂xi
, 1 ≤ i ≤ n.

It follows that ∇ ∂
∂xj

ξHn = xj

xn

∂
∂xn

for j = n and ∇ ∂
∂xn

ξHn = −∑n−1
i=1

xi
xn

∂
∂xi

.

Thus at z =
∑n

i=1 ui
∂

∂xi
∈ TpHn with p = (x1, · · · , xn)

∇zξHn = −un

xn

n∑
i=1

xi
∂

∂xi
+

(
n∑

i=1

uixi

x2
n

)
xn

∂

∂xn

= −un

xn
ξHn(p) + µ(z)xn

∂

∂xn
,

where µ(z) = x−2
n

∑n
i=1 uixi is the moment map of the action applied to the

basis element ξ = ∂
∂t of the Lie Algebra of R. Thus,

ξTHn(z) = (ξHn(p))h
z + (∇zξHn)vz (4.5)

= (ξHn(p))h
z +

(
−un

xn
ξHn(p) + µ(z)xn

∂

∂xn

)v

z

.

Given z ∈ µ−1(0) ∩ TpHn, in addition to the vanishing of the obvious term
in (4.5), we also have g(ξHn(πz), z) = 0 and, since g (∇zξHn , z) = 0, using
(4.4),

PξTHn(z) = ‖z‖ coth ‖z‖ (ξHn(p))v
z −

tanh ‖z‖
‖z‖

un

xn
(ξHn(p))h

z . (4.6)

It follows that at z ∈ µ−1(0),

GP (ξTHn , ξTHn) |z = ‖z‖ ‖ξHn(π(z))‖2 coth ‖z‖
(

1 − 1
‖z‖2

u2
n

x2
n

tanh2 ‖z‖
)

which is always positive since u2
n/x

2
n ≤ ‖z‖2 and tanh2 ‖z‖ < 1. Thus the

R-action (4.3) is tangentially positive on µ−1(0).

Remark 4.4. The R-action (4.3) is not tangentially positive on the whole

THn. To show this as concretely as possible, take z = a
∑n

i=1

(
∂

∂xi

)
|p =
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a ξHn(p) /∈ µ−1(0) where p = (1, · · · , 1) and 0 = a ∈ R. Set in (4.5) ui =
xi = 1, 1 ≤ i ≤ n, then

ξTHn(z) = (ξHn(p))h
aξHn(p)

+ a

(
−ξHn(p) + n

∂

∂xn

)v

aξHn(p)

.

By (4.4) and ‖z‖ =
√
na,

P ξTHn(z) = (ξHn(p))v
aξHn(p)

+
tanh(a

√
n)

a
√
n

(
−ξHn(p) + n

∂

∂xn

)h

aξHn(p)

.

So, at the chosen z,

GP (ξTHn , ξTHn) = ‖ξHn(p)‖2 − a tanh(a
√
n)√

n
‖ − ξHn(p) + n

∂

∂xn
‖2

= n− a
√
n(n− 1)−1

coth(a
√
n)

,

which is negative if we let a >> 1. (See [1] for more results along this line.)

5. Stable and Unstable Jacobi fields under reduction.

Let (M, g) be a complete Riemannian manifold with no conjugate points.
The geodesic flow Φ on the unit tangent bundle SM = {z ∈ TM | g(z, z) = 1}
is said to be of Anosov type if the orthogonal complement to the flow with
respect to the Sasaki metric,

GS(U, V ) = g(π∗U, π∗V ) + g(KU,KV ), (5.1)

splits into a sub-bundle of exponentially contracted and a sub-bundle of
exponentially expanded directions under the action of the differential of the
geodesic flow.

More specifically, put for z ∈ SM

Wz := {U ∈ Tz(SM) | GS(U,Σ(z)) = 0}, (5.2)

where Σ is the geodesic spray, Σ(z) = (z)hz . Then, the geodesic flow is of
Anosov type if and only if for each z ∈ SM there are positive constants
a, b, c, such that we have a splitting

Tz(SM) = R Σ(z) ⊕ (Wz) Anosov
contract ⊕ (Wz) Anosov

expand
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where (Wz) Anosov
contract consists of those vectors U ∈Wz with

‖(Φt)∗U‖GS
≤ a ‖U‖GS

e−ct ∀t > 0, ‖(Φt)∗U‖GS
≥ b ‖U‖GS

e−ct ∀t < 0,

and the (Wz) Anosov
expand is the (Wz) Anosov

contract for the reversed geodesic flow. Here
‖U‖GS

is the length of U in the Sasaki metric (5.1).

Remark 5.1. Hyperbolic space Hn is an example of a manifold with Anosov
flow. In the previous section we showed that the R-action (4.3) on Hn

is tangentially positive on µ−1(0). It turns out that the geodesic flow of
Hn/R = B with the Riemannian submersion metric gB is of Anosov type
since B is isometric to Hn−1: In Hn, with the notation as in paragraph
containing (4.3), the vector field ξHn together with Yi = xn

∂
∂xi

− xi
∂

∂xn
for

1 ≤ i ≤ n − 1 form a global frame for THn. Moreover, g(Yi , ξHn) = 0 and
[Yi, Yj ] = xj

∂
∂xi

− xi
∂

∂xi
for all 1 ≤ i, j ≤ n− 1. So g([Yi , Yj] , ξHn) = 0 and

the distribution of vectors orthogonal to the action is integrable. O’Neill’s
curvature formulas in [13] show that the quotient metric gB has constant
sectional curvature −1.

Remark 5.1 motivates Theorem 4 below. To state the result we need to
recall the definition of stable and unstable distributions by P. Eberlein in
[4] for manifolds with no conjugate points (see also [5]). Given z ∈ SM and
0 = t ∈ R let

Et : Tz (TM) → Tz (TM) (5.3)

be the linear map such that for each U ∈ Tz (TM) the image Et(U) ∈
Tz (TM) satisfies

π∗ (Et(U)) = π∗U, π∗ ((Φt)∗Et(U)) = 0. (5.4)

Let
(Wz)Jacobi

s−stable
def
= {U ∈Wz | lim

t 	→+∞Et(U) = U}, (5.5)

and
(Wz)Jacobi

s−unstable
def
= {U ∈Wz | lim

t 	→−∞Et(U) = U}. (5.6)

At each z ∈ SM the subspaces (5.5) and (5.6) have both dimension n − 1,
but they might intersect non-trivially. (See [4] for details.)

We will prove the following

Theorem 4. Let (M, g) be complete with no conjugate points. Let G
act on M by isometries, freely, properly, and tangentially positively on
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µ−1(0), with (B = M/G, gB) the Riemannian quotient. The distributions
(W )Jacobi

s−unstable and (W )Jacobi
s−stable on the unit tangent bundle SM can be sym-

plectically reduced, and the reduced distributions agree with the distribu-
tions (WB)Jacobi

s−unstable and (WB)Jacobi
s−stable in SB.

If we let (M, g) have no conjugate points, by Theorem 1, the adapted struc-
ture P is defined in all TM. This allows the introduction of a one-parameter
family of re-scaled adapted product structures natural under reduction and
whose ±1-eigen-subbundles tend in the limit for the parameter going to ∞
to the strongly stable and strongly unstable Jacobi distributions. The proof
of Theorem 4 is derived from Propositions 5.1 through 5.4 and comes right
after Corollary 5.4.1.

Definition 5.1. Given λ > 0, consider the multiplication by λ along the
fibers of π : TM → M. Let λ∗ : T (TM) → T (TM) denote its tangent map and
λ∗ : Λ∗(TM) → Λ∗(TM) the corresponding pull-back of forms, (λ∗ω)(U) =
ω(λ∗U).

Put

Pλ
def
= λ−1

∗ Pλ∗.

Definition 5.2. Given a Pλ-invariant subspace Az ⊂ Tz (TM) we put

[Az ]±Pλ

def
= {U ± PλU | U ∈ Az} ; (5.7)

for clarity also we use the notation for the adapted structure P = P1.

We also set,

[Az ]±∞
def
=

{
U ∈ Az | lim

λ	→∞
(U ∓ PλU) = 0

}
. (5.8)

Proposition 5.1. a) Pλ is integrable and G-invariant; b) Pλ is the unique
product structure on TM with Pλ Θ = λ−1 dE.

Proof. For part a) we just note that Pλ is induced from the map Fλ : TM →
M × M given by Fλ(z) = (π(Φ−λz), π(Φλz)), hence is integrable and G-
invariant. Equivalently, for G-invariance, note P is G-invariant and for any
map h : M → M, λ∗(h∗)∗ = (h∗)∗λ∗.

For part b) simply apply Theorem 1 to λ∗ (Pλ)λ−1∗ . �
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Proposition 5.2. Given 0 < λ ∈ R, the image of Wz by map
Et : Tz (TM) → Tz (TM) in (5.3) satisfies

Et(Wz) =

{
[Wz]

−
Pλ

if t = λ;
[Wz]

+
Pλ

if t = −λ. (5.9)

Proof. Fix z ∈ SM and let γ be the unit speed geodesic with γ̇(0) = z. For
U ∈Wz let J (t,U) be the Jacobi field along γ with conditions

J (t,U)(0) = π∗U, J (t,U)(t) = 0. (5.10)

Let J̃ (t,U)(s, y) =
(
J (t,U)(s)

)h

y γ̇(s)
+ y

(∇γ̇(s)J
(t,U)(s)

)v

y γ̇(s)
be the canonical

extension of that Jacobi field along the leaf Lγ with parametrization (s, y) ∈
R2 �→ yγ̇(s) ∈ Lγ , so that the given z = (0, 1). Then

Et(U) = J̃ (t,U)(0, 1). (5.11)

But, from the identities listed ahead in (5.20), it follows that

λ∗
(
J̃(s, y)

)
= J̃(s, λ y), (5.12)

and thus, we re-write (5.11) as

Et(U) = λ−1
∗

(
J̃ (t,U)(0, λ)

)
. (5.13)

Consider t = λ. By (5.10) J (λ,U)(λ) = 0, hence by Proposition 2.4,[
J̃ (λ,U)(0, λ)

]+

P
= 0

and thus, putting t = λ in (5.13),

Eλ(U) = λ−1
∗

([
J̃ (λ,U)(0, λ)

]−
P

)
(5.14)

= λ−1
∗

(
[λ∗ (Eλ (U)) ]−P

)
= [Eλ(U)]−Pλ

.

Now, consider t = −λ. We have J (−λ,U)(−λ) = 0 by (5.10), and by Propo-
sition 2.4 [

J̃ (−λ,U)(0, λ)
]−
P

= 0.
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Hence, setting t = −λ in (5.13),

E−λ(U) = λ−1
∗

([
J̃ (−λ,U)(0, λ)

]+

P

)
(5.15)

= λ−1
∗

(
[λ∗ (E−λ(U)) ]+P

)
= [E−λ(U)]+Pλ

.

Equalities (5.14) and (5.15) show that E±λ (Tz (TM)) ⊂ [Tz (TM)]∓Pλ
. (In

fact, we have equalities since dimEt (Tz (M)) = n. This is because M has
no conjugate points and thus the subspace

ker Et|z = ker π∗|z = {U = (u)v
z | u ∈ TπzM} ⊂ Tz (TM) ,

which has dimension n.) But, for any 0 = t ∈ R,

Et (Wz) ⊂Wz, (5.16)

for if U ∈ Wz, the Jacobi field J (t,U) defined by (5.10) along the geodesic γ
with γ̇(0) = z is normal to γ, hence, its canonical extension J̃ (t,U), satisfies
dΘ

(
J̃ (t,U),Σ

)
= dΘ

(
J̃ (t,U),Ξ

)
= 0, that is J̃ (t,U) ∈ W . Thus, it follows,

since Wz is Pλ-invariant, that

E±λ (Wz) ⊂ [Wz]∓Pλ
. (5.17)

Equality in 5.17 follows if we show that 0 = t ∈ R, dimEt(Wz) = n−1. But,
dimWz = 2n−2 and dimWz∩ker Et = dim{U = (u)vz | u ∈ TπzM, g(u, z) =
0} = n− 1. �

Corollary 5.2.1. Given ‖z‖ = 1, with notation as in (5.5), (5.6) and (5.8),

[Wz]
−
∞ = (Wz)

Jacobi
s−stable , [Wz]

+
∞ = (Wz)

Jacobi
s−unstable .

Proof. Let z ∈ SM. If U ∈ (Wz)Jacobi
s−stable then limλ	→∞ Eλ (U) = U . Thus,

by Proposition 5.2 and (5.8), U ∈ [Wz]
−
∞. Hence (Wz)

Jacobi
s−stable ⊂ [Wz]

−
∞ . But

equality holds since

n− 1 = dim (Wz)
Jacobi
s−stable ≤ dim [Wz]

−
∞ ≤ n− 1.

Similarly for [Wz]
+
∞. �
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Proposition 5.3. For any 0 < λ ∈ R, the distribution on TM \ M

W
def
= (R Σ + R Ξ)⊥ , (5.18)

and the distribution on TM

Hλ def
=

(
GTM + PλGTM

)⊥
(5.19)

are both G-invariant and Pλ-invariant.

Proof. These distributions are G-invariant for dΘ and Pλ are G-invariant.
Furthermore, we have for all z ∈ TM and all u ∈ Tπ(z)M,

λ∗
(
(u)hz

)
= (u)hλz , λ∗ ((u)v

z) = λ (u)vλz = (λu)vλz . (5.20)

From (5.20), λ∗dΘ = λdΘ, thus for any subspace A ⊂ Tz (TM) it holds
λ∗

(
A⊥) = (λ∗A)⊥. Hence, since dΘ is anti-P-invariant,

Pλ

(
A⊥

)
= (PλA)⊥ . (5.21)

But (5.21) implies that W is Pλ-invariant, for, from (5.20),

λ∗ (Σ(z)) = Σ(λ z), λ∗ (Ξ(z)) = λΞ(λ z),

hence Pλ Ξ = λΣ, which implies that W⊥ = R Σ + R Ξ = R Σ + RPλΣ is
Pλ-invariant.

Similarly (5.21) implies the Pλ-invariance of Hλ. �

Corollary 5.3.1. Given any 0 < λ ∈ R, we have the splitting

T
(
µ−1(0)

)
= GTM ⊕Hλ (5.22)

which defines a connection for the G-bundle p : µ−1(0) → TB.

Proof. Recall the dΘ-orthogonal G-invariant splitting T
(
µ−1(0)

)
= GTM⊕H

that defines a connection with horizontal distribution H = (G + PG)⊥ from
Corollary 3.5.1.

Clearly multiplication by λ along the fibers of π : TM → M acts on
µ−1(0) ⊂ TM. Now, by (5.20), for all ξ ∈ G the action vector field ξTM(z) =
(ξM)hz + (∇zξM)vz re-scales as λ∗ (ξTM(z)) = ξTM(λz), and thus

λ∗GTM = GTM. (5.23)
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So, since λ∗dΘ = λdΘ, it follows that the splitting

T
(
µ−1(0)

)
= GTM ⊕ λ−1

∗ H

is dΘ-orthogonal and G-invariant; it defines a connection with horizontal
distribution

λ−1
∗ H = λ−1

∗
((

GTM + PGTM
)⊥)

=
(
λ−1
∗

(
GTM + PGTM

))⊥
= GTM + PλGTM = Hλ.

�

Remark 5.2. (RΞ + RΣ)⊥ = {U ∈ T (TM) | GS(U,Σ) = GS(U,Ξ) = 0}
since GS (U,Ξ) = g (KU, z) = dΘ (U,Σ), and GS (U,Σ) = g (π∗U, z) =
−dΘ (U,Ξ). Thus (5.18) simply extends the definition of Wz for z ∈ SM
given in (5.2).

Proposition 5.4. Give B = M/G the Riemannian metric gB which makes
f : M → B a Riemannian submersion. Let PB be the adapted structure
defined on TB and WB = (RΣB + RΞB)⊥ with ΞB and ΣB respectively the
Liouville vector field and the geodesic spray on TB.

Given 0 < λ ∈ R, consider the total space of the principal G-bundle
p :

(
µ−1(0)

) → TB with the connection defined by Hλ. Then, at each
z ∈ µ−1(0), with notation as in (5.7) applied to Pλ and (PB)λ = λ−1∗ PBλ∗,

p∗ :
[
Hλ

z ∩Wz

]±
Pλ

→
[
(WB)p∗z

]±
(PB)λ

, (5.24)

is an isomorphism.

Proof. For all z ∈ µ−1(0), identifying as in (3.3),

p∗ :
(
Hλ

z ,Θ, E
)
→ (Tp∗zB,ΘB, EB) (5.25)

is an isomorphism. Thus, for all U ∈ Hλ,

dE(U) = dΘ (U,Σ) = dΘB (p∗U, p∗Σ) = dEB(p∗U),

and also,
Θ(U) = dΘ(Ξ, U) = dΘB(p∗Ξ, p∗U) = ΘB(p∗U),
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which, by the non-degeneracy of the symplectic forms, shows that

p∗Σ = ΣB, p∗Ξ = ΞB. (5.26)

Since Hλ is Pλ-invariant, and both Hλ and Pλ are G-invariant, there is on
TB a structure (Pλ)̌ defined by

(Pλ)̌ (p∗U) = p∗PλU

for all U ∈ Hλ. Such reduced (Pλ )̌ is integrable and squared gives the
identity. Also,

ΘB ((Pλ)̌ (p∗U)) = ΘB (p∗ (PλU)) = Θ (PλU) = λdE(U) = λdEB (p∗U) ,

and thus (Pλ )̌ ΘB = λdEB, which implies, by Proposition 5.1 applied to
TB,

(Pλ)̌ = (PB)λ = λ−1
∗ PBλ∗. (5.27)

From (5.25), (5.26), (5.27), W = (R Σ + R Ξ)⊥ = (R Σ + RPλ Σ)⊥ and
correspondingly WB = (R ΣB + R ΞB)⊥ = (R ΣB + R (PB)λ ΣB)⊥, it follows
that for z ∈ µ−1(0),

p∗ :
(
Hλ

z ∩Wz,Pλ

)
→

(
(WB)p∗z , (PB)λ

)
(5.28)

is an isomorphism, hence p∗ :
[
Hλ

z ∩Wz

]±
Pλ

→ [(WB)p∗z]
±
(PB)λ

is an isomor-
phism. �

Corollary 5.4.1. For each z ∈ µ−1(0) ∩ SM, in terms of Definition 5.2,

p∗ : lim
λ	→∞

[
Hλ

z ∩Wz

]−
Pλ

→
(
(WB)p∗z

)Jacobi

s−stable
(5.29)

p∗ : lim
λ	→∞

[
Hλ

z ∩Wz

]+

Pλ

→
(
(WB)p∗z

)Jacobi

s−unstable
.

are isomorphisms.

Proof. By Theorem 2, the Riemannian quotient (B, gB) has no conjugate
points, and thus, by the paragraph following (5.6) applied to (B, gB), we

know that dim
(
(WB)p∗z

)Jacobi

s−stable
= dim

(
(WB)p∗z

)Jacobi

s−unstable
= dim B − 1.

So, in light of Corollary 5.2.1 applied to (B, gB),
[
(WB)p∗z

]±
∞

are well-defined

subspaces of Tp∗z(TB) of dimension dim B − 1. The Corollary follows by
taking λ �→ ∞ in (5.24). �
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5.0.7. Proof of Theorem 4. By Corollary 5.2.1, the limits as λ �→ ∞ of
the direct summands in the splitting W = [W ]−Pλ

⊕ [W ]+Pλ
are the distribu-

tions we claim are being reduced. Thus, by Corollary 5.4.1, the theorem is
proved if we show that on µ−1(0) ∩ SM

W ∩ T
(
µ−1(0)

)
= GTM ⊕

(
Hλ ∩W

)
(5.30)

= GTM ⊕
[
Hλ ∩W

]−
Pλ

⊕
[
Hλ ∩W

]+

Pλ

,

which means that

[W ]±Pλ
∩ T

(
µ−1(0)

)
=

[
Hλ ∩W

]±
Pλ

.

Of course, by Proposition 5.3, Hλ and W are both Pλ-invariant, so all we
need to show is the first equality in (5.30), which we do next.

Since W⊥ = RΣ+RΞ and dΘ(Ξ,Σ) = 2E = 0 off M, we have W ∩W⊥ =
{ 0 } on TM \ M, and thus

T (TM) |TM\M = W⊥ ⊕W. (5.31)

The dΘ-orthogonal splitting (5.31) is G-invariant, since Ξ, Σ and dΘ are all
G-invariant, and it is also Pλ-invariant by the arguments in Proposition 5.3.

Now, by Proposition 5.22,

T
(
µ−1(0)

)
= GTM ⊕Hλ,

where Hλ =
(
GTM + PλGTM

)⊥. So, by (5.31), restricting to µ−1(0) \M we
have the G-invariant and Pλ-invariant splitting

T
(
µ−1(0)

) |µ−1(0)\M

=
(
GTM ∩W⊥

)
︸ ︷︷ ︸

= {0}

⊕
(
Hλ ∩W⊥

)
︸ ︷︷ ︸

= W⊥

⊕ (
GTM ∩W )︸ ︷︷ ︸

= GTM

⊕
(
Hλ ∩W

)
.

To justify the equalities underlying the summands above, note that on µ−1(0)

GTM ⊂W, (5.32)

since for all ξ ∈ G it holds dΘ (ξTM(z),Σ(z)) = g (ξM(π(z)), z) = 0 whenever
z ∈ µ−1(0), and dΘ (ξTM(z),Ξ(z)) = −g (∇zξM, z) = 0 by skew-symmetry of
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∇ξM. But inclusion (5.32) implies GTM∩W = GTM, as well as GTM∩W⊥ =
{0} in µ−1(0) \ M, since there W ∩W⊥ = {0}; it also implies

W⊥ ⊂ (
GTM

)⊥
= T

(
µ−1(0)

)
,

which forces W⊥ ∩Hλ = W⊥ = R Ξ + R Σ.
Thus we have shown

T
(
µ−1(0)

)
= (R Ξ + R Σ) ⊕ GTM ⊕

(
Hλ ∩W

)
︸ ︷︷ ︸

= W ∩T (µ−1(0))

,

as required. �
This section ends with two corollaries. To state the first one we recall

from [4] the following

Definition 5.3. A Riemannian manifold (B, gB) is compactly homogeneous
if there is a compact set C ⊂ B such that B = ∪h∈ Isometry (B)h(C).

Corollary 5.4.2. Let (M, g), be complete, with no conjugate points, and
with sectional curvatures K ≥ −c2, for a constant c > 0. Also, assume that
(B = M/G, gB) is compactly homogeneous with G as in Theorem 4. Then, if
the geodesic flow of (M, g) is Anosov so is the geodesic flow of (B = M/G, gB).

Proof. For any U ∈ T (TM), from (5.1),

g (π∗ ((Φt)∗U) , π∗ ((Φt)∗U)) ≤ GS ((Φt)∗U, (Φt)∗U) . (5.33)

In particular, if U is in (Wz)
Anosov
contract the right-hand side of (5.33) is bounded

above for all t ≥ 0. Hence, if K ≥ −c2, Proposition 2.12 in [4] implies that
for the metric g, (Wz) Anosov

contract ⊂ (Wz)Jacobi
s−stable; and similarly, (Wz) Anosov

expand ⊂
(Wz)Jacobi

s−unstable.
So (Wz) Anosov

expand = (Wz)Jacobi
s−unstable and (Wz) Anosov

contract = (Wz)Jacobi
s−stable. Thus,

if the flow of g is of Anosov type,

W = W Jacobi
s−unstable ⊕W Jacobi

s−stable,

and by our Theorem 4,

(WB) = (WB)Jacobi
s−unstable ⊕ (WB)Jacobi

s−stable.

Hence, from the assumption on (B, gB) and Theorem 3.2 in [4] the corollary
is proved. �
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Corollary 5.4.3. Let (M, g) be complete, with no conjugate points, with
sectional curvatures K ≥ −c2 for a constant c > 0, and with geodesic flow
of Anosov type. Let G ⊂ Isom (M) act freely, properly and tangentially
positively on µ−1(0), with M/G a smooth compact manifold. If N(G) is the
normalizer of G in Isom (M), then N(G)/G is finite.

Proof. The group N(G) = {h ∈ Isom (M) | hG = Gh} acts on B = M/G
via the correspondence N(G) � h �→ ȟ where ȟ (G · p) = G · h(p) for all
p ∈ M.

Such action is by isometries for the Riemannian submersion metric gB
corresponding to f : M → B. For, if h ∈ Isom (M) then ȟ ◦ f = f ◦ h,
and h preserves the f -horizontal distribution defined as the g-orthogonal
complement to the fibers of f ; thus if u and v in TpM are f -horizontal
we have, using the definition of the metric gB, gB

(
ȟ∗ (f∗u) , ȟ∗ (f∗v)

)
=

gB (f∗ (h∗u) , f∗ (h∗v)) = g (h∗u, h∗v) = g (u, v) = gB(f∗u, f∗v). It follows
that ȟ is an isometry for gB.

But since G is the kernel of the homomorphism N(G) → Isom (B)
given by h �→ ȟ, the corollary follows from Theorem 4 and the result of W.
Klingenberg in the appendix of [9] which states that the isometry group of a
compact Riemannian manifold whose geodesic flow is Anosov must be finite.
�

6. Final Remarks.

The results obtained in this paper for actions by groups G of isometries of
arbitrary dimension acting on M tangentially positively in µ−1(0) extend the
results previously well-known for the case dimG = 0. Although when (M, g)
is compact with negative-definite Ricci tensor, or compact with Anosov type
geodesic flow, the isometry group is finite, for more general Riemannian
manifolds, especially for non-compact ones, the question of whether there
are groups of isometries of positive dimension acting tangentially positively
is meaninful, as the R-action (4.3) on Hn shows.

In light of Theorem 1, and due to the curvature decreasing property of
submersions, one should expect restrictions on the existence of such actions.
We hint here at such constraints, and develop more results along these lines
in [1]. The next Proposition is actually used in [1].

Proposition 6.1. LetG act by isometries on (Rn, Euclidean ), tangentially
positively on µ−1(0) ⊂ TRn. Then,



436 Raúl M. Aguilar

1) the fibers of the action on M = Rn are hyper-planes;

2) if G is Abelian, it acts by translations.

Proof. For ξ ∈ G, p ∈ M, z ∈ TpM, and a ∈ R, we have ξTM(az) =
(ξM(p))h

az + a (∇zξM)vaz , PξTM(az) = (ξM(p))v
az + a (∇zξM)h

az, and thus,

dΘ (PξTM(z), ξTM(z)) = ‖ξM(p)‖2 − a2 ‖∇zξM‖2.

But Rz ⊂ µ−1(0) provided that z ∈ µ−1(0). It follows from the hypothesis
on the action that ‖ξM(p)‖2 − a2‖∇zξM‖2 ≥ 0 for all a ∈ R. Thus,

∇zξM = 0 if z ∈ µ−1(0). (6.1)

Now part 1) follows from that given ξ and ζ in G and z ∈ TpM ∩ µ−1(0) we
have

g
(∇ζM(p)ξM, z

)
= −g (∇zξM, ζM) = 0,

where the first equality uses skew-symmetry of ∇ξM and the second one (6.1).
Since z is arbitrary in the g-orthogonal complement of GM

p , then ∇ζM(p)ξM
lies in GM

p . This shows that the fibers are totally geodesic submanifolds.
To prove part 2) we first show that for any given ξ ∈ G

∇ξMξM = 0 on M. (6.2)

Let p ∈ M and z ∈ TpM. By (6.1) we already know that g
(∇ξM(p)ξM, z

)
= 0

if z ∈ µ−1(0). So we now take z = ζM(p) for ζ ∈ G. But

g (∇ξMξM, ζM)
(i)
= −g (∇ζMξM, ξM)

(ii)
= −g (∇ξMζM + [ζM, ξM] , ξM)

(iii)
= 0,

where (i) uses skew-symmetry of ∇ξM, (ii) that the connection is torsion-
free, and (iii) both the skew-symmetry of ∇ζM and that G is Abelian, and
thus (6.2) is proved.

Now, let ξ ∈ G and X a local vector field in a neighborhood of p in M.



Moment Map and Conjugate Points 437

Letting RM(X,Y ) = [∇X ,∇Y ] −∇[X,Y ] be the curvature operator on M,

(a)︷ ︸︸ ︷
g (RM (X, ξM) ξM,X) = g(

≡0 by (6.2)︷ ︸︸ ︷
∇X∇ξMξM −∇ξM∇XξM −∇[X,ξM]ξM , X) (6.3)

=

(b)︷ ︸︸ ︷
−g (∇ξM∇XξM,X)

(c)︷ ︸︸ ︷
−g (∇[X,ξM]ξM , X

)
(∗)
=

=(b)︷ ︸︸ ︷
−∇ξM (g(∇XξM,X)) + g (∇XξM,∇ξMX)

(c)︷ ︸︸ ︷
−g (∇[X, ξM]ξM , X

)
(∗∗)
= |∇XξM|2 ≥ 0,

where equality (*) holds since ∇ξMg ≡ 0. To see (**) note that the first
term to the right of equality (*) is zero due to the skew-symmetry of ∇ξM;
moreover, the second term to the right of (*) is re-written by using the
vanishing of the torsion of ∇ and again, the skew-symmetry of ∇ξM, this
last property also used to re-write the term (c) and cancel it out with a term
coming from (b).

Thus, if M is Euclidean (a) ≡ 0, we have,

0 = g (RM (z, ξM(p)) ξM(p), z) = |∇zξM|2 ≥ 0. (6.4)

It follows from (6.1) and (6.4) that ∇zξM = 0 for all z ∈ TpM. �

Remark 6.1. The definition of P in terms of the symplectic geometry of
TM is inspired by the comparison of the adapted complex structure of L.
Lempert and R. Szőke in [11] with the construction of the equivalent complex
structure in the cotangent bundle by V. Guillemin and M. Stenzel in [6] by
means of analytic continuation, hence the name adapted product structure.

Remark 6.2. In [1] we prove the converse of Theorem 3, showing that the
“Pseudo-Riemannian reduction” fails precisely when conjugate points are
created, allowing several applications.

6.0.8. Acknowledgements. We are thankful to the anonymous referee for
helpful suggestions and corrections in an earlier version of the manuscript.
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