
communications in

analysis and geometry

Volume 13, Number 2, 379-400, 2005

On the Volume of a Hyperbolic and Spherical

Tetrahedron

Jun Murakami and Masakazu Yano

A new formula for the volume of a hyperbolic and spherical tetra-
hedron is obtained from the quantum 6j-symbol. This formula is of
symmetric form with respect to the symmetry of the tetrahedron.

Introduction.

A formula for the volume of a generic hyperbolic tetrahedron is given in [1].
In this paper, we give another formula, which is symmetric with respect to
the permutation of the vertices of a tetrahedron. Our formula comes from the
quantum 6j-symbol [5]. The actual formulation of the quantum 6j-symbol is

given in Section 4. Shortly, the quantum 6j-symbol
{
i j k
� m n

}
is a number

defined for six spins i, j, k, l, m, n assigned to the edges of a tetrahedron
as in Figure 1 . The spins correspond to representations of the quantum
enveloping algebra Uq(sl2), and this number is defined as a certain amplitude
of a sequence of coupling and decoupling of representations corresponding
to the tetrahedron.
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Figure 1: The six parameters i, j, k, l, m, n.
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The relation between the volume of a hyperbolic tetrahedron and the
quantum 6j-symbol is expected by the following observations.

(1) R. Kashaev conjectured in [2] that the hyperbolic volume of the com-
plement of a hyperbolic knot is equal to certain limit of the invariants
defined by quantum R-matrices he constructed from quantum diloga-
rithm functions. These invariants are turned out in [7] to be special-
izations of colored Jones invariants. Moreover, in [6], it is observed
that the volume of a hyperbolic manifold given by the Dehn surgeries
along the figure-eight knot is obtained by applying Kashaev’s method
of computation to the Witten-Reshetikhin-Turaev invariants.

On the other hand, Turaev and Viro constructed a 3-manifold invari-
ant in [11] by using a simplicial decomposition. It is defined by as-
signing the quantum 6j-symbol to each tetrahedron of the decompo-
sition. In [9], it is shown that this invariant is almost equivalent to
the Reshetikhin-Turaev invariant, which seem to have some relation
to the hyperbolic volume. Hence there may be some relation between
the quantum 6j-symbol and the volume of a hyperbolic tetrahedron.

(2) A relation between the volume of a Euclidean tetrahedron and certain
asymptotics of the classical 6j-symbols is conjectured by Ponzano and
Regge in 1968, and proved by [10] in 1999. The classical 6j-symbol is
defined similarly as the quantum 6j-symbol from the representations of
the Lie algebra sl2. This formula is quite surprising because the volume
of the Euclidean tetrahedron, which is a basic quantity of geometry, is
dominated by numbers coming from algebraic settings. Generalizing
this relation to a hyperbolic and a spherical tetrahedron may reveal
some fundamental relation between geometry and algebra we haven’t
noticed yet.

Encouraged by the above speculations, we started to apply Kashaev’s
method of computation to the quantum 6j-symbol, and then we get the
following formula.

Let T be a hyperbolic tetrahedron whose dihedral angles are A, B, C,
D, E, F . Assume that A, B and C are the angles at the three edges having
a common vertex, and D, E and F are the angles at the opposite position of
A, B and C respectively as in Figure 2. Let a = exp

√−1A, b = exp
√−1B,
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· · · , f = exp
√−1F and let U(z, T ) be the function

U(z, T ) =
1
2

(Li2(z) + Li2(z a b d e) + Li2(z a c d f) + Li2(z b c e f)

−Li2(−z a b c) − Li2(−z a e f) − Li2(−z b d f) − Li2(−z c d e)) , (0.1)

where Li2(x) is the dilogarithm function defined by the analytic continuation
of the following integral.
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Figure 2: The six dihedral angles A, B, C, D, E, F of T .

Li2(x) = −
∫ x

0

log(1 − t)
t

dt for a positive real number x. (0.2)

Let z1, z2 be the two non-trivial solutions of the equation

d

dz
U(z, T ) =

π
√−1
z

k (k ∈ Z). (0.3)

Let

∆̃(a, b, c) = −1
4
(
Li2(−a b c−1) + Li2(−a b−1 c) + Li2(−a−1 b c)

+ Li2(−a−1 b−1 c−1) + (log a)2 + (log b)2 + (log c)2
)
, (0.4)

∆(T ) = ∆̃(a, b, c) + ∆̃(a, e, f) + ∆̃(b, d, f) + ∆̃(c, d, e)

+
1
2

(log a log d+ log b log e+ log c log f) ,
(0.5)

and
V1(T ) = U(z1, T ) + ∆(T ),
V2(T ) = U(z2, T ) + ∆(T ),

V (T ) =
U(z1, T ) − U(z2, T )

2
.

(0.6)
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Let Vol(T ) denote the hyperbolic volume of T . Then we get the following.

Theorem 1. The volume Vol(T ) of a hyperbolic tetrahedron T is given
by the following.

Vol(T ) = ImV (T ). (0.7)

In the following theorems, the solutions z1 and z2 in the definitions of
the functions V , V1 and V2 are chosen adequately.

Theorem 2. The volume Vol(T ) of a hyperbolic tetrahedron T is given
by the following.

Vol(T ) = ImV1(T ) = − ImV2(T ). (0.8)

Theorem 3. By taking an appropriate branch of U(z, T ), we have

ReV (T ) = 0.

and

Vol(T ) = −√−1 V (T ). (0.9)

Theorem 4. Let T be a tetrahedron T in S3 with the constant curvature
1. Then the volume Vol(T ) is given by

Vol(T ) = V (T ). (0.10)

Acknowledgement. The authors would like to give our thanks to H. Mu-
rakami, M. Okamoto, T. Takata, and Y. Yokota for useful discussion about
the relation between quantum 6j-symbols and the hyperbolic volume. They
also thank to A. Ushijima who informs them several known results, includ-
ing [1]. They appreciate the software Mathematica (Wolfram Research)
which enables them to accomplish the actual computations.
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1. Some property of the formula.

1.1. Quadratic equation for z1 and z2.

The equation dU/dz = π k
√−1/z is investigated. dU/dz is computed as

follows:

dU(z, T )
dz

=

− 1
2 z

(log(1 − z)+ log(1 − a b d e z) + log(1 − a c d f z) + log(1 − b c e f z)−
log(1 + a b c z) − log(1 + a e f z) − log(1 + b d f z) − log(1 + c d e z)) ,

(k ∈ Z). (1.1)

Hence dU/dz = π k
√−1/z is equivalent to the following equation:

log(1 − z) + log(1 − a b d e z) + log(1 − a c d f z) + log(1 − b c e f z) =
log(1 + a b c z) + log(1 + a e f z) + log(1 + b d f z) + log(1 + c d e z)

+ 2π
√−1 k. (1.2)

Any solution of the above equation must be a solution of the following equa-
tion.

(1 − z)(1 − a b d e z)(1 − a c d f z)(1 − b c e f z)
− (1 + a b c z)(1 + a e f z)(1 + b d f z)(1 + c d e z) = 0. (1.3)

The constant term is equal to 0. We put

h(z) = −1
z

((1 − z)(1 − a b d e z)(1 − a c d f z)(1 − b c e f z)−
(1 + a b c z)(1 + a e f z)(1 + b d f z)(1 + c d e z)) (1.4)

Then the equation
h(z) = 0 (1.5)

is a quadratic equation. Let α, β, γ be the coefficient of h(z) of degrees 0,
1, 2 respectively. Then

α = 1 + a b d e+ a c d f + b c e f + a b c+ a e f + b d f + c d e,

β = −a b c d e f
(

(a− 1
a
) (d− 1

d
) + (b− 1

b
) (e− 1

e
) + (c− 1

c
) (f − 1

f
)
)
,

γ = a b c d e f (a b c d e f + a d + b e+ c f + a b f + a c e+ b c d+ d e f).
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Note that
γ = (a b c d e f)2 α,

β

a b c d e f
= a real number,

(1.6)

since the absolute values of a, b, · · · , f are all equal to 1, and so
β2

α γ
is a

non-negative real number.

Lemma. Let A, B, C, D, E, F be the dihedral angles of a hyperbolic
tetrahedron as in Figure 2. Let z1, z2 be the solutions of the equation
h(z) = 0. Then

|z1| = |z2| = 1.

Proof. Let Gram(T ) be the Gram matrix of T defined by

Gram(T ) =

⎛
⎜⎜⎝

1 − cosA − cosB − cosF
− cosA 1 − cosC − cosE
− cosB − cosC 1 − cosD
− cosF − cosE − cosD 1

⎞
⎟⎟⎠ . (1.7)

Since T is a tetrahedron realized in a hyperbolic space,

det Gram(T ) < 0. (1.8)

Putting a = exp
√−1A, b = exp

√−1B and so on,

Gram(T ) =⎛
⎜⎜⎝

1 −(a+ a−1)/2 −(b+ b−1)/2 −(f + f−1)/2
−(a+ a−1)/2 1 −(c+ c−1)/2 −(e+ e−1)/2
−(b+ b−1)/2 −(c+ c−1)/2 1 −(d+ d−1)/2
−(f + f−1)/2 −(e+ e−1)/2 −(d+ d−1)/2 1

⎞
⎟⎟⎠ . (1.9)

Let D be the discriminant of the equation h(z) = 0, i.e. D = β2 − 4α γ. Let
β1 be the real number defined by

β1 =
β

a b c d e f
.

Then
D = (a b c d e f)2

(
β1

2 − 4 |α|2)
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An actual computation shows that

D

16 (a b c d e f)2
= detGram(T ). (1.10)

This and (1.8) implies that

β1
2 − 4 |α|2 < 0. (1.11)

The solutions z1, z2 are given by

z1, z2 =
−β ±

√
β2 − 4α γ
2 γ

= a b c d e f
−β1 ±

√
β1

2 − 4 |α|2
2 γ

,

and so (1.11) implies that

|z1|2 = |z2|2 =
∣∣∣∣αγ

∣∣∣∣2 .
Since

|α/γ| =
∣∣∣∣1 + a b c+ a b d e+ a c d f + a e f + b c e f + b d f + c d e

1 + a b c+ a b d e+ a c d f + a e f + b c e f + b d f + c d e

∣∣∣∣ = 1,

we have |z1| = |z2| = 1. q.e.d.

1.2. Lobachevsky function.

The Lobachevsky function Λ(x) is defined for real x by the following integral.

Λ(x) = −
∫ x

0
log |2 sin t|dt. (1.12)

Note that Λ(x) is a periodic function with period π. It is known (see e.g.
[4]) that

Im Li2(exp
√−1x) = 2Λ(

x

2
). (1.13)

From the remark at the last subsection, we can rewrite V (T ), V1(T ) and
V2(T ) for a hyperbolic tetrahedron T as follows. Let Z1 = arg z1, Z2 =
arg z2, and W1 = A+B+C−π, W2 = A+E+F −π, W3 = B+D+F −π,
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W4 = C +D + E − π be the halves of the solid angles at the four vertices.
Let

UΛ(T,Z) = Λ(
Z

2
)+

Λ(
Z +W1 +W4

2
− C) + Λ(

Z +W1 +W3

2
−B) + Λ(

Z +W1 +W2

2
−A)

− Λ(
Z +W1

2
) − Λ(

Z +W2

2
) − Λ(

Z +W3

2
) − Λ(

Z +W4

2
), (1.14)

∆̃Λ(W,A,B,C) =
Λ(W ) − Λ(W −A) − Λ(W −B) − Λ(W − C)

2
, (1.15)

∆Λ(T ) = ∆̃Λ(
W1

2
, A,B,C) + ∆̃Λ(

W2

2
, A,E, F )+

∆̃Λ(
W3

2
, B,D,F ) + ∆̃Λ(

W4

2
, C,D,E), (1.16)

V1,Λ(T ) = UΛ(T,Z1) + ∆Λ(T ), (1.17)

V2,Λ(T ) = UΛ(T,Z2) + ∆Λ(T ). (1.18)

VΛ(T ) =
UΛ(T,Z1) − UΛ(T,Z2)

2
(1.19)

Then all the absolute values of VΛ(T ), V1,Λ(T ) and V2,Λ(T ) coincide with
the volume Vol(T ).

2. Volume of a tetrahedron with some ideal vertices.

In this section, the case that some of the vertices of T is an ideal one, i.e.
some of them are located at infinity.

2.1. Tetrahedron with one ideal vertex.

Let v be such vertex and assume that v is the end point of the edges corre-
sponding to A, B, C. In this case, A, B and C satisfy

A+B + C = π (i.e. W1 = 0) (2.1)

Let parameters a, b, c, d, e and f be as before. Then (2.1) implies

a b c = exp
√−1π = −1.
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Therefore, one of the solution of (1.5), say z1, is equal to 1. Obtain the
volume of T by (1.17).

UΛ(T, 0) =

Λ(
W2

2
−A) + Λ(

W3

2
−B) + Λ(

W4

2
− C) − Λ(

W2

2
) − Λ(

W3

2
) − Λ(

W4

2
).

(2.2)

Hence we get

V1,Λ(T ) =
1
2

(Λ(A) + Λ(B) + Λ(C)

+ Λ(
W2

2
−A) − Λ(

W2

2
− E) − Λ(

W2

2
− F ) − Λ(

W2

2
)

+ Λ(
W3

2
−B) − Λ(

W3

2
−D) − Λ(

W3

2
− F ) − Λ(

W3

2
)

+ Λ(
W4

2
− C) − Λ(

W4

2
−D) − Λ(

W4

2
− E) − Λ(

W4

2
)
)
. (2.3)

2.2. Tetrahedron with two ideal vertices.

Now consider the case that there are two ideal vertices. Assume that W1 =
W2 = 0. This case, we have

V1,Λ(T ) =
1
2

(Λ(B) + Λ(C) + Λ(E) + Λ(F )

+ Λ(
W3

2
−B) − Λ(

W3

2
−D) − Λ(

W3

2
− F ) − Λ(

W3

2
)

+ Λ(
W4

2
− C) − Λ(

W4

2
−D) − Λ(

W4

2
− E) − Λ(

W4

2
)
)
. (2.4)

2.3. Tetrahedron with three ideal vertices.

Consider the case that there are three ideal vertices. Assume that W1 =
W2 = W3 = 0. This case, we have

V1,Λ(T ) =
1
2

(
Λ(C) + Λ(D) + Λ(E)

− Λ(
W4

2
− C) − Λ(

W4

2
−D) − Λ(

W4

2
− E) − Λ(

W4

2
)
)
. (2.5)

This coinsides with the formula (43) in [12].
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2.4. Tetrahedron with four ideal vertices.

This case, the tetrahedron T is an ideal tetrahedron and W1 = W2 = W3 =
W4 = 0, D = A, E = B, F = C. Therefore

V1,Λ(T ) = Λ(A) + Λ(B) + Λ(C). (2.6)

This coincides with the well known formula of the volume of an ideal tetra-
hedron.

Remark. Let T be a tetrahedra with at least one ideal vertex. Then the
last formula (2.6) suggest that V1,Λ(T ) with z1 = 1 is positive and equal to
the volume of T . For the general tetrahedron, let the solution z1 of (0.3) be
a deformation of z1 = 1 of the above case. Then ImV1(T ), ImV (T ), VΛ(T )
and V1,Λ(T ) are positive and equal to the volume of T .

3. Proofs.

3.1. The formula by Cho-Kim.

A formula of the volume of a generic hyperbolic tetrahedron is given by Cho-
Kim [1]. Let A, B, C, D, E, F denote the dihedral angles of T as before,
and let (P1, Q1, R1, S1, T1) and (P2, Q2, R2, S2, T2) be the solutions of the
following system of equations with respect to the variables P , Q, R, S, T .

P +Q = B, R+ S = E, Q+R+ T = F + π, P + S + T = C + π, (3.1)

∣∣∣∣∣∣∣∣∣∣

1 − cosD − cosP cosB cosC
− cosD 1 cos(R + T ) cosF cosE
− cosP cos(R + T ) 1 − cosQ cos(S + T )
cosB cosF − cosQ 1 − cosA
cosC cosE cos(S + T ) − cosA 1

∣∣∣∣∣∣∣∣∣∣
= 0. (3.2)

This system can be reduced to a quadratic equation and there are two solu-
tions.

Theorem 5. (Cho-Kim [1]) The twice of the volume of T is given as
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follows.

2 Vol(T ) = Λ(P1) − Λ(Q1) + Λ(R1) − Λ(S1)

− Λ(
B −C −A+ π

2
−Q1) + Λ(

D −B − F + π

2
+Q1)

+ Λ(
E − C −D + π

2
−R1) − Λ(

A− E − F + π

2
+R1)

− Λ(P2) + Λ(Q2) − Λ(R2) + Λ(S2)

+ Λ(
B −C −A+ π

2
−Q2) − Λ(

D −B − F + π

2
+Q2)

− Λ(
E − C −D + π

2
−R2) + Λ(

A− E − F + π

2
+R2). (3.3)

The solutions (P1, · · · ) and (P2, · · · ) of the solutions of (3.1) and (3.2) are
chosen so that the value of (3.3) is positive.

3.2. Discriminant of the quadratic equation.

From (3.1), we have

Q = B − P, R = (−B − C + E + F )/2 + P,

S = (B + C + E − F )/2 − P, T = (−B + C − E + F )/2 + π.
(3.4)

Let a = exp
√−1A, b = exp

√−1B, c = exp
√−1C, d = exp

√−1D, e =
exp

√−1E, f = exp
√−1F and p = exp

√−1P . Then (3.2) is reformulated
as follows.∣∣∣∣∣∣∣∣∣∣∣

1 −1
2(d+ 1

d) −1
2(p+ 1

p) 1
2 (b+ 1

b )
1
2(c+ 1

c )
−1

2(d+ 1
d) 1 −1

2(f p
b + b

f p) 1
2(f + 1

f ) 1
2 (e+ 1

e )
−1

2(p + 1
p) −1

2(f p
b + b

f p) 1 −1
2(p

b + b
p) −1

2(p
c + c

p)
1
2(b+ 1

b )
1
2(f + 1

f ) −1
2(p

b + b
p) 1 −1

2(a+ 1
a)

1
2(c+ 1

c )
1
2(e+ 1

e ) −1
2(p

c + c
p) −1

2(a+ 1
a) 1

∣∣∣∣∣∣∣∣∣∣∣
= 0. (3.5)

Multiplying p2, this equation becomes a quadratic equation with respect to
p2, and we denote this equation as

g(p2) = 0 (3.6)

with a quadratic polynomial g(x). Let Dg be the discriminant of g(x). Let

g1(x) =
16 a2 b4 c2 d2 e f2 g(x)

(a b+ c) (b+ a c) (b d+ f) (b+ d f)
.
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Then g1(x) is also a polynomial. Let Dg be the discriminant of g1(x) = 0.
An actual computation shows that

Dg1
= 16 a2 b4 c2 d2 e2 f2 det Gram(T ). (3.7)

Noting (1.10), the quadratic equations (3.6) and(1.5) have similar discrimi-
nants.

3.3. Proof of Theorem 1.

To prove Theorem 1, we first investigate the derivation of (3.3) with respect
to A. Let

h(x, T ) = Li2(x) + Li2(
x

b2
) − Li2(− x

a b c
) − Li2(−x a

b c
)

− Li2(−x f
b d

) − Li2(−xd f
b

) + Li2(
x f

b c e
) + Li2(

x e f

b c
). (3.8)

Lemma Let x1, x2 be the non-trivial two solutions of

dh(x, T )
dx

=
2π

√−1
x

k, (k ∈ Z). (3.9)

Then,

Vol(T ) =
Imh(x1, T ) − Imh(x2, T )

4
. (3.10)

Here x1 and x2 are chosen so that the value of the above formula is positive.

Proof. The equation (3.9) is reduced to the following quadratic equation
with respect to x.

1
x

(
(1 − x)(1 − x

b2
)(1 − xf

bce
)(1 − xef

bc
) −

(1 +
x

abc
)(1 +

xa

bc
)(1 +

xf

bd
)(1 +

xdf

b
)
)

= 0. (3.11)

An actual computation shows that this equation is a multiple of the equation
(3.6) where x corresponds to p2. By using the relation (1.13) and Λ(−x) =
−Λ(x), it is proved that a half of the right hand side of (3.10) is a half of
the right hand side of (3.3). q.e.d.
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Proof of Theorem 1. First, we show that the imaginary part of the derivations
of V (T ) = (U(z1, T ) −U(z2, T ))/2 and (h(x1, T ) − h(x2, T ))/4 with respect
to every dihedral angle of T is equal. Since V (T ) is symmetric with respect
to the six angles A, B, C, D, E, F , it is enough to show for one parameter,
say A.

Since z1, z2 in (0.6) are solutions of (0.3) and |z1| = |z2| = 1,

∂ U(zi, T )
∂A

=
∂ U(zi, T )

∂a

d a

dA

= − 1
2 a

(log(1 − zi a b d e) + log(1 − zi a c d f) −

log(1 + zi a b c) − log(1 + zi a e f))
√−1 a+

∂ U(z, T )
∂z

∂zi
∂a

d a

dA

= −
√−1

2
(log(1 − zi a b d e) + log(1 − zi a c d f) − log(1 + zi a b c) −

log(1+ zi a e f)) +
π
√−1 ki

zi

∂ zi
∂A

(
π
√−1 ki

zi
=
dU(z, T )

dz

∣∣∣∣
z=zi

)

= −
√−1

2
log

(1 − zi a b d e) (1 − zi a c d f)
(1 + zi a b c) (1 + zi a e f)

− π ki αi,(
αi =

∂ arg zi
∂A

∈ R
)
(3.12)

for i = 1, 2. Similarly, since x1 and x2 in (3.10) are solutions of (3.9), we
have

∂ h(xi, T )
∂A

=
∂ h(xi, T )

∂a

d a

dA
=

√−1 log
1 + a xi

b c

1 + xi
a b c

− π k′i α
′
i,(

2π
√−1 k′i
xi

=
dh(x, T )

dx

∣∣∣∣
x=xi

, α′
i = 2

∂ arg xi

∂A
∈ R

)
(3.13)

for i = 1, 2. Then, an actual computation shows that

(1 + z1 a b c) (1 + z1 a e f) (1 − z2 a b d e) (1 − z2 a c d f)
(1 − z1 a b d e) (1 − z1 a c d f) (1 + z2 a b c) (1 + z2 a e f)

=

(1 +
ax1

b c
) (1 +

x2

a b c
)

(1 +
x1

a b c
) (1 +

ax2

b c
)
, (3.14)

for a suitable choice of z1, z2 and x1, x2. This identity implies that

∂ V (T )
∂A

=
1
4
∂ (h(x1, T ) − h(x2, T ))

∂A
+ α, (3.15)
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for some real number α and so we get

Im
∂ V (T )
∂A

=
∂

∂A
Vol(T ). (3.16)

This implies that the difference Im V (T ) − Vol(T ) is a constant C. On the
other hand, the functions ImV (T ) and Vol(T ) are both 0 if the determinant
of the Gram matrix is 0, and they are continuous with respect to the param-
eters A, B, · · · , F corresponding to hyperbolic and degenerate tetrahedra.
Hence the constant C should be 0 and we get (0.7). q.e.d.

3.4. Proof of Theorem 2.

To prove Theorem 2, we show the following identity.

Im (U(z1, T ) + U(z2, T ) + 2∆(T )) = 0. (3.17)

To do this, we first show that

Im
∂

∂A
(U(z1, T ) + U(z2, T ) + 2∆(T )) = 0. (3.18)

To show (3.18), we prove that

Im exp 2 a
∂

∂A
(U(z1, T ) + U(z2, T ) + 2∆(T )) = 1. (3.19)

Since z1 and z2 are solutions of (1.5) and so they satisfy

(1 − z1 x)(1 − z2 x) = x2 h(x−1)/γ, (3.20)
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for any x where h(z) is the quadratic polynomial introduced in (1.4) and α
is the coefficient of the degree two term of h(z). From this relation, we have

(1 − z1 a b d e)(1 − z2 a b d e) =

(a b d e)3 (1 + c d−1 e−1) (1 + b−1 d−1 f) (1 + a−1 e−1 f) (1 + a−1 b−1 c)
γ

,

(1 − z1 a c d f)(1 − z2 a c d f) =

(a c d f)3 (1 + b d−1 f−1) (1 + c−1 d−1 e) (1 + a−1 b c−1) (1 + a−1 e f−1)
γ

,

(1 + z1 a b c)(1 + z2 a b c) =

(a b c)3 (1 + a−1 b−1 c−1)(1 + c−1 d e)(1 + b−1 d f)(1 + a−1 e f)
γ

,

(1 + z1 a e f)(1 + z2 a e f) =

(a e f)3 (1 + a−1 e−1 f−1) (1 + b d f−1) (1 + c d e−1) (1 + a−1 b c)
γ

.

(3.21)
Using the above and (3.12), we get

∂

∂A
(U(z1, T ) + U(z2, T ) + 2∆(T ))

=
√−1

2
log

(
(1 + z1 a b c) (1 + z1 a e f) (1 + z2 a b c) (1 + z2 a e f)
(1 − z1abde) (1 − z1acdf) (1 − z2abde) (1 − z2acdf)

×

(1 + a b c−1)(1 + a b−1 c)
(1 + a−1bc)(1 + a−1b−1c−1)

× (1 + a e f−1)(1 + a e−1 f)
(1 + a−1ef)(1 + a−1e−1f−1)

× d2

a4

)
− π k1 α1 − π k2 α2

=
√−1

2
log

(
(1 + a−1 b−1 c−1) (1 + c−1 d e) (1 + b−1 d f) (1 + a−1 e f)
(1 + cd−1e−1)(1 + b−1d−1f)(1 + a−1e−1f)(1 + a−1b−1c)

×
(1 + a−1 e−1 f−1) (1 + b d f−1) (1 + c d e−1) (1 + a−1 b c)

(1 + b d−1 f−1) (1 + c−1 d−1 e) (1 + a−1 b c−1) (1 + a−1 e f−1)
×

(1 + a b c−1) (1 + a b−1 c)
(1 + a−1 b c)(1 + a−1 b−1 c−1)

× (1 + a e f−1)(1 + a e−1 f)
(1 + a−1ef)(1 + a−1e−1f−1)

× d2

a4

)
− π k1 α1 − π k2 α2

=
√−1

2
log

(
1

a4 d4
(c−1 d e) (b−1 d f) (b d f−1) (c d e−1)×

(a b c−1) (a b−1 c) (a e f−1) (a e−1 f)
)− π k1 α1 − π k2 α2

= −π k1 α1 − π k2 α2. (3.22)
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Hence
Im

∂

∂A
(U(z1, T ) + U(z2, T ) + 2∆(T )) = 0.

The derivation with respect to the other parameters B, C, D, E, F also
vanish and so we get

Im (U(z1, T ) + U(z2, T ) + 2∆(T )) = C′. (3.23)

The function Im (U(z1, T ) + U(z2, T ) + 2∆(T )) is continuous for hyperbolic
tetrahedra including ideal tetrahedra, and the constant C′ is 0 for ideal tetra-
hedra by (2.6), we get (0.8). q.e.d.

3.5. Proof of Theorem 3.

Let Tt, t ∈ [0, 1] be tetrahedra whose dihedral angles continuously depend on
the parameter t. Assume that, if t > 0 then Tt is a hyperbolic tetrahedron,
and T0 is a Euclidean tetrahedron, i.e. rankGram(T0) = 3 and Gram(T0) is
positive semidefinite. Let W be a neighborhood of 0 in [0, 1]. Let z1(t) and
z2 be the equation

dU(z, Tt0
)

dz
=
π
√−1
z

k, (k ∈ Z)

and let k1 and k2 satisfy

dU

dz

∣∣∣∣
z=zi

=
π
√−1
zi

ki.

We assume that W is small enough so that ki is constant for all t ∈W .
Now let Ṽ (T ) be the branch of V (T ) which is the analytic continuation

of

Ṽ (Tt) ={
U(z1(t), Tt) − πk1

√−1 log z1(t)
}− {

U(z2(t), Tt) − πk2

√−1 log z2(t)
}

2
.

(3.24)

Note that ImV (T ) = Im Ṽ (T ) since |zi| = 1.
For t ∈W , (3.12) implies that

∂Ṽ (Tt)
∂A

=

−
√−1

4
log

(1 − z1 a b d e) (1 − z1 a c d f) (1 + z2 a b c) (1 + z2 a e f)
(1 + z1 a b c) (1 + z1 a e f) (1 − z2 a b d e) (1 − z2 a c d f)

, (3.25)
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where αi =
∂ arg zi
∂A

∈ R for i = 1, 2. Since arg(1 − z) =
arg z − π

2
and

arg(1 + z) =
arg z

2
,

arg
(1 − z1 a b d e) (1 − z1 a c d f) (1 + z2 a b c) (1 + z2 a e f)
(1 + z1 a b c) (1 + z1 a e f) (1 − z2 a b d e) (1 − z2 a c d f)

= 0,

and so

Re
∂Ṽ (Tt)
∂A

= 0.

Hence Re
∂Ṽ (T )
∂A

= 0 for any hyperbolic tetrahedron. q.e.d.

3.6. Proof of Theorem 4.

Theorem 4 comes from the following result in [12].

Theorem 6. (Vinberg [12]) There is an analytic function φ defined on
some open set of C6 corresponding to the six dihedral angles of a tetrahedron
such that

φ(T ) =

⎧⎪⎨
⎪⎩

Vol(T ) (T is a hyperbolic tetrahedron),
0 (T is an Euclidean tetrahedron),√−1 Vol(T ) (T is a tetrahedron in S3).

4. Relation to the quantum 6j-symbol.

In this section, we explain how we derive our volume formula from the quan-
tum 6j-symbol.

4.1. Quantum 6j-symbol.

Let N be a integer with N ≥ 3. Let I = {0, 1/2, 1, 3/2, 2, · · · , (N − 3)/2,
(N − 2)/2}. Let i, j, k, l, m, n be six elements of I corresponding to the
edges of a tetrahedron as in Figure 1. For these parameters, the quantum

6j-symbol
{
i j k
� m n

}
is given as follows.

Let q = exp 2π
√−1/N . For a non-negative integer n, let

[n] =
qn/2 − q−n/2

q1/2 − q−1/2
,
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and
[n]! = [n][n− 1][n − 2] · · · [2][1].

Three elements (a, b, c) of I is called admissible triple if |a − b| ≤ c ≤ a + b
and a + b + c is a integer less than N − 1. For i, j, k, l, m, n such that
(i, j, k), (i,m, n), (j, l, n), and (k, l,m) are all admissible triples, let{

i j k
� m n

}
= ∆(i, j, k)∆(i,m, n)∆(j, l, n)∆(k, l,m)×∑

s

(−1)s [s+ 1]!×

{[s− i− j − k]![s − i−m− n]![s− j − l −m]![s− k − l −m]! ×
[i+ j + l +m− s]![i+ k + l + n− s]![j + k +m+ n− s]!}−1 . (4.1)

Here the sum
∑

s

runs over all integers s satisfying

s ≤ min{i+ j + l +m, i+ k + l + n, j + k +m+ n},
s ≥ max{i+ j + k, i+m+ n, J + l +m,k + l +m},

and

∆(i, j, k) =
(

[i+ j − k]![i − j + k]![−i+ j + k]!
[i+ j + k + 1]!

) 1
2

.

The quantum 6j-symbol defined the above is a symmetrized version with
respect to the symmetry of the tetrahedron.

4.2. Large N limit.

Let xN be a sequence of integers such that
2π
N

xN ∼ x

2
(N → ∞). Then, by

(1.12) and (1.13), we have

[xn]! ∼ exp
(
−N
π

Λ
(x

2

))
= exp(−N

2π
Im Li2(exp

√−1x))

= exp(
N

2π
Im Li2(exp−√−1x)). (4.2)

Let iN , jN , kN , lN , mN and nN be sequences of half integers such that{
iN jN kN

lN mN nN

}
is defined and

iN
N

∼ xi,
jN
N

∼ xj,
kN

N
∼ xk,

lN
N

∼ xl,
mN

N
∼ xm,

nN

N
∼ xn. Let a = exp

√−1 (xi − π), b = exp
√−1 (xj − π),
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c = exp
√−1 (xk − π), d = exp

√−1 (xl − π), e = exp
√−1 (xm − π), and

f = exp
√−1 (xn − π), we have

π

N
log

∣∣∣∣
{
iN jN kN

lN mN nN

}∣∣∣∣∼
1
2

Im {(L(a, b, c) + L(a, e, f) + L(b, d, f) + L(c, d, e)) +∫
z
(Li2(z) + Li2(zabde) + Li2(zacdf) + Li2(zbdef)−

Li2(−zabc) − Li2(−zaef) − Li2(−zbdf) − Li2(−zcde)) dz} , (4.3)

where

L(a, b, c) =
1
2

Li2(−ab
c

) + Li2(−bc
a

) + Li2(−ca
b

) − Li2(−abc).

The integral path of z correspond to the range of s in (4.1)

4.3. Saddle points.

From (4.3), we tried to find out the relation of the saddle point of the function

Li2(z) + Li2(zabde) + Li2(zacdf) + Li2(zbdef)−
Li2(−zabc) − Li2(−zaef) − Li2(−zbdf) − Li2(−zcde), (4.4)

with respect to the parameter z. The saddle point means the point that the
derivation with respect z vanish. We put this formula (4.4), as U(z, T ) in
(0.1), and, after various numerical experimentations, we get our formula.

5. Discussion.

5.1. Orientation and mirror image.

Let T be a tetrahedron and let T ′ be its mirror image. Then we have

V (T ) = V (T ′).

The function V is defined as a complex function, but it is pure imaginary for
a hyperbolic tetrahedron and real for a spherical tetrahedron. On the other
hand, we defined another functions V1 and V2 for the volume. Let Ṽ1 and
Ṽ2 be the branch of V1 and V2 obtained similarly as Ṽ . Now assume that
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V1 corresponds to the solution z1 which is equal to 1 when T has an ideal
vertex. Then

Ṽ1(T ) − Ṽ2(T ) = 2 Ṽ (T ) = 2 Vol(T ). (5.1)

If T is hyperbolic, then Re Ṽ (T ) = 0 by Theorem 3 and so

Re Ṽ1(T ) = Re Ṽ2(T ). (5.2)

Hence, if we assign Ṽ1(T ) as the complexification of the volume of T , it may
be natural to assign −Ṽ2(T ′) for the mirror image T ′ instead of Ṽ1(T ) since
Re(−Ṽ2(T ′)) = −Re Ṽ1(T ).

There are four candidates for the complexification of the volume function
of a tetrahedron T ; Ṽ1(T ), −Ṽ1(T ), Ṽ2(T ), −Ṽ2(T ). If the volume of T is
assumed to be positive, there are two candidates; Ṽ1(T ) and −Ṽ2(T ). The
natural way of this choice may be determined by the sign of the vertex
orientation of T . Here, vertex orientation means the order of four vertices
of T .

We would like to give one more remark. The real part Re Ṽ1(T ) may
correspond to the scissors congruence invariant of hyperbolic polyhedra other
than the volume. To define Ṽ1 and Ṽ2, we fix their branches. They are chosen
so that their imaginary parts correspond to the volume. However, there is
still some ambiguity for the choice of branch and we can fix the real part
only up to modulo π2.

5.2. Actual asymptotics of the quantum 6j-symbols.

Our formula is obtained by considering the asymptotics of the quantum 6j-
symbol. Unfortunately, the integral path corresponding to the sum does
not pass the saddle point of the function (4.4). Actually, it is known that
the quantum 6j-symbol is of polynomial growth with respect to N and we
cannot apply the saddle point method. However, our result gives a hidden
relation between the quantum 6j-symbol and the volume of a tetrahedron.

5.3. Regge’s symmetry.

The quantum 6j-symbol is invariant under Regge’s symmetry. This implies
the following. Let T be a tetrahedron whose dihedral angles are A, B, C,
D, E, F as before. Choose a pair of dihedral angles of opposite sides, say A,
D. Let L = (B + C + E + F )/2. Let T ′ be the tetrahedron whose dihedral
angles are A, L−B, L− C, D, L−E, L− F . Since this operation induces
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a permutation of the terms of U(z, T ) and ∆(T ), we have

V1(T ) = V1(T ′), V2(T ) = V2(T ′), V (T ) = V (T ′). (5.3)

Hence, if these functions actually equal to the volume, we have

Vol(T ) = Vol(T ′). (5.4)

5.4. Higher dimensional case.

The area of a hyperbolic triangle is determined by the sum of the three
angles. The angle is given as a argument of a complex number, i.e. the
imaginary part of its logarithm. The volume of a hyperbolic tetrahedron is
given by dilogarithm functions of some complex values relating its dihedral
angles. So it may be natural to seek a formula of the volume of a higher-
dimensional simplex given by polylogarithm functions of certain numbers
related to the simplex. In [3] and in the papers cited in it, such formulas are
actually given for some special cases.
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