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On the Rectifiability of the Free Boundary of the

One Phase Stefan Problem

Marianne K. Korten

In one space dimension and for a given function uI(x) ∈ C∞
0 , (say

such that uI(x) > 1 in some interval) the equation ut = ∆(u− 1)+
can be thought of as describing the energy per unit volume in a
Stefan-type problem, where the latent heat of the phase change is
given by (1−uI(x))+. Given a solution in the sense of distributions
0 ≤ u ∈ L1

loc(IR
n × (0, T )) of this equation, (u − 1)+ is a subso-

lution to the heat equation. The “loss” with respect to a caloric
function is accounted for by a Radon measure λ supported on the
free boundary F = ∂{(x, t) : (u(x, t) − 1)+ > 0}. We prove that
this measure is n rectifiable, i. e., F is λ-essentially the union of
images of imbedded C1 manifolds of dimension n in IRn × (0, T ),
under a weak assumption on the spatial gradient of (u − 1)+.

1. Introduction.

In one space dimension, and for given initial datum uI(x) ∈ C∞
0 , (say, such

that uI(x) > 1 in some interval) the equation

ut = ∆(u− 1)+ (1.1)

can be thought of as describing the energy per unit volume in a Stefan-
type problem, where the latent heat of the phase change is given by (1 −
uI(x))+. Note that discontinuous solutions should be expected for (1.1) (see
[BouKMar]).

In previous papers ([AnK], [K]) a-priori regularity of non-negative so-
lutions (in the sense of distributions) u ∈ L1

loc(IR
n × (0, T )) of (1.1) was

found: Specifically it was shown that u, ∇x(u − 1)+, and ∂
∂t(u − 1)+ ∈

L2
loc(IR

n × (0, T )). Continuity of (u − 1)+ in (IRn × (0, T )) then follows
from DiBenedetto’s result [Di]. It was aso shown that (u − 1)+ is a (weak)
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subsolution to the heat equation. From the weak Harnack inequality∫
IRn

u(x, t) exp(−c|x|2) dx ≤M(u, n, T ),

for some c = c(T ) ∈ IR+ and 0 < t < T/2 (see [AnK]), existence of a
unique initial trace 0 ≤ µ(x) follows, a Radon measure satisfying the growth
condition at infinity ∫

IRn

exp(−c|x|2) dµ(x) <∞.

Conversely, each such measure gives rise to a solution of (1.1), which is
unique (see [K]). In [K1] we prove that for all β, k > 0 and Ln a. e. x0 ∈ IRn,
there exists

lim
(x,t)∈Γk

β(x0), (x,t)→x0

(u(x, t) − 1)+ = (f(x0) − 1)+,

where Ln denotes n−dimensional Lebesgue measure, f = ∂µ/∂Ln is
the Radon - Nikodym derivative of the initial trace with respect to the
n−dimesional Lebesgue measure, and Γk

β(x0) = {(x, t) : |x−x0| < β
√
t, 0 <

t < k} are parabolic “nontangential” approach regions.

In this paper we study the structure of the free boundary of the one
phase Stefan problem formulated in enthalpic variables (1.1): u stands for
the energy (enthalpy), (u − 1)+ for the temperature, and we allow for a
variable latent heat at the interphase. The set {(x, t) : 0 ≤ u(x, t) < 1} is
usually called a “mushy region”, carrying a possibly positive energy, that is
not high enough to start phase change. Because of this possibly positive
energy in the “mushy region” the latent heat is variable. According to
the preceding paragraphs, our results will hold for nonnegative solutions
u ∈ L1

loc(IR
n × (0, T )) which solve (1.1) in the sense of distributions. It

follows from lemma 2.4 below that if u is a solution to (1.1), and the initial
data uI is a function that does not take values in the open interval (0, 1),
then the temperature v = (u− 1)+ is a solution in the sense of distributions
of the one-phase parabolic combustion problem. This problem can be stated
as follows: Find v = limε→0 v

ε(x, t), where vε is a solution of

vε − ∆vε(x, t) = βε(v), (1.2)

and βε(s) appoximates δ0(s) in D′(IR).
This problem has been studied recently by many authors (see [CV], [Da])

and the references therein). It was initially believed to be a free boundary
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problem for the heat equation unrelated to the Stefan problem. Solutions
of this problem may not be unique, and their support may shrink as time
evolves (see [CV]).

From the broad literature on the Stefan problem, which was treated ex-
tensively, among others, by J. R. Cannon, C. D. Hill, A. Fasano and M.
Primicerio, our work is close in its scope to the papers [AtCSa1] , [AtCSa2],
and [AtCSa3]. In these papers, following the steps of the study of the reg-
ularity of minimal surfaces, the authors propose, and pursue a) and b) for
viscosity solutions of the two-phase Stefan problem, of the following pro-
gram:

a) Lipschitz free boundaries are smooth (or are smooth after a certain
time. The existence of this positive time, called “waiting time” is typical in
parabolic problems.)

b) “Flat” free boundaries (in some Lebesgue differentiability or measure
theoretical sense) are Lipschitz.

c) Generalized free boundaries are “flat”.
Here we solve c) for the free boundary of the one phase Stefan problem

(1.1). Our result will hold for non-negative distributional solutions of (1.1).
We show that the free boundary carries a measure λ (which accounts for
the loss of energy at the phase change). On any set on which an additional
condition on the spatial gradient is satisfied (see theorem 2.7 for the precise
statement), we show that this measure is carried by an n rectifiable set,
that is, that the boundary measure λ is n rectifiable (see [Mat], [GiMSou1],
or section 2 below, for the precise definitions). Recently, the auhor and
C. N. Moore succeeded in removing the condition on the spacial gradient
in the statement of theorem 2.7 (see [KMr2]). In remark 2.10 at the end of
this paper outline how this is done.

Heuristically, along this rectifiable set the liquid phase advances at finite
velocity. The maximum principle shows that once the free boundary reaches
(say, at some time t = t0), a set where the initial datum is a locally integrable
function uI(x) = 1 a. e., that is surrounded by a set where the initial datum
is smaller than 1, it advances at infinite velocity - the diffusion is caloric, and
the advance is instantaneous. It follows easily from Besicovitch’s covering
theorem and our framing of the problem in section 2 that the free boundary
measure λ does not charge such “horizontal” parts of the free boundary.
Also λ will not charge the set of so-called “focussing points”: points (x, t)
of the free boundary where a part of the “mushy” region is finally taken
over by a surrounding caloric region (see part ii) of theorem 2.7). In view
of the geometry of the modulus of continuity of (u − 1)+, see [Di], and the
shape of the parabolic approach “cones”, see [K1], such points are typical
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singularities of the free boundary.
It also follows from lemma 2.4 below that λ does not charge the inte-

rior of vertical segments contained in the free boundary. In particular, at
“corner points” the free boundary cannot advance until the caloric region
has expanded in such a way that a measure theorethical normal can be de-
fined. Such “waiting times” are another typical singularity encountered in
parabolic free boundary problems.

We also want to stress that we do not use a different scale for the time and
the space coordinates. While often in parabolic potential theory a modified
Hausdorff measure is used, in which the time dimension “counts” double
with respect to the dimension in the space variables, we will count the space
and time dimensions equally. In fact we will use a variant of “spherical”
Hausdorff measure, replacing Euclidean balls Bn+1

r (x0, t0) = {(x, t) : |(x, t)−
(x0, t0)| < r} with cylinders Cr(x0, t0) = {(x, t) : |x − x0| < r, |t − t0| < r}.
The use of these cylinders makes computations simpler. Recently, G. Weiss
(see [Ws]) proved a structure result for the free boundary of the one-phase
combustion problem. He studies the limits of sequences of scalings uk(x, t) =
u(kx, k2t) of a solution u(x, t) of the problem (1.2). We feel that both the
divergence structure of equation (1.1) (see (2.2)) and the natural bound
for the boundary measure (see lemma 2.2 below) make it desirable to work
within an euclidean geometry.

Our approach is very different from the one in [AtCSa1], [AtCSa2], and
[AtCSa3]: Because our solution is understood in the distribution sense in
IRn × (0, T ), the regularity information we obtained holds across the free
boundary. In [AtCSa1], [AtCSa2], and [AtCSa3], solutions are viscosity
solutions and the free boundary condition is understood in an asymptotic
sense. In their setting regularity information for the solutions near the free
boundary and regularity of the free boundary are sought for simultaneously.

Our setting includes in a natural way the presence of a “mushy” region
(the set where the solution is between 0 and 1) where the energy is positive,
but not enough to start the phase change. This highlights the hyperbolic
aspect of the problem, since in open sets within this region the trivial con-
servation law ut = 0 is satisfied.

Our method exploits heavily that the problem is a one-phase one: First,
we rely heavily on apriori regularity, and the main steps to obtain it (in par-
ticular, the crucial result L1

loc ⇒ L2
loc, see [K], require nonnegative solutions.

Second and more deeply, the fact that the interphase can only advance is
crucial in theorem 2.7, and in the lemmas leading to it (by allowing to define
the function t(x) in (2.1)). As a consequence the “boundary” measure is
nonnegative, whence its lower n density is nonnegative (see section 2 for the
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definition of n density). This is one of the requirements of Preiss’ theorem,
which is the main tool in our work. The author and C. N. Moore have since
beeen able to adapt the tools and ideas in this paper to the two-phase Stefan
problem with a “mushy zone” (that is, allowing for signed solutions), under
the assumption that the solution u ∈ L2

loc (see [KMr1] and [KMr2]). Further
developing the ideas in the present paper, the author and D. Danielli were
able to show that at most points of the free boundary the classical jump
condition is satisfied in a natural (density) sense (see [DaK]).

We would like to note that the problem under discussion is related to
singular integrals on sets of low regularity, and to oscillatory integrals. This
can be seen by integrating the expression (2.2), against the fundamental
solution of the heat equation, and a limiting process which in turn uses the
regularity information for solutions to equation (1.1) described above. We
will not use this approach in this paper.

The method of proof of our result is simple. Basically it reduces to careful
handling of the boundary measure λ. We obtain two disintegrations of this
measure in terms of the solution u of (1.1), show that it is supported on
the free boundary, and then study its density. Since the boundary measure
λ needs not satisfy any homogeneous lower bound on balls (i. e. λ is not
Ahlfors regular), we use the powerful result of D. Preiss ([Pre], see also [Mat])
on rectifiability of measures. As a consequence, we will obtain that but a null
set for the measure λ, (rather than a null set for n dimensional Hausdorff
measure) the free boundary is the union of n dimensional Lipschitz images.

Partial results have been announced in [K2]. The author is gratefully
indebted to Berndt Kirchheim for helpful suggestions.

2. Rectifiability of the free boundary measure.

In this section we will prove our main result, theorem 2.7. After some
definitions we will identify the measure supported on the free boundary
(lemmas 2.1 and 2.2). The rectifiability of this measure λ will follow from
Preiss’ powerful result (theorem 2.6 below). We will first need to prove some
properties of the measure λ that we will need in the proof of theorem 2.7.
In this theorem we show that λ satisfies the hypotheses of Preiss’ theorem
on rectifiability of measures.

We begin with some general notations and definitions.
Throughout this paper we will write Bn+1((x0, t0), r) for the n + 1 di-

mensional Euclidean ball centered at (x0, t0) with radius r, Bn(x0, r) or
Br(x0) for the n dimensional Euclidean ball centered at x0 with radius r,
and Cr(x0, t0) for the cylinder Br(x0) × (t0 − r, t0 + r). Ln will stand for
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n dimensional Lebesgue measure and Hn for n dimensional Hausdorff mea-
sure. For 0 ≤ m <∞ we define the upper and lower m densities of a Radon
measure µ at a point a ∈ IRn as

θ∗m(µ, a) = lim supr→0(2r)
−mµ(Bn(a, r)),

θ∗m(µ, a) = lim infr→0(2r)−mµ(Bn(a, r)).

If they agree, their common value

θm(µ, a) = θ∗m(µ, a) = θ∗m(µ, a)

will be called the m density of µ at a. A set E ⊂ IRn is called m rectifiable
if there exist Lipschitz maps fi : IRm → IRn, i = 1, 2, ..., such that

Hm (E \ ∪∞
i=1fi(IRm)) = 0.

A set F ⊂ IRn is called purely m unrectifiable if Hm(E ∩F ) = 0 for every m
rectifiable set E. A Radon measure µ on IRn is m rectifiable if µ is absolutely
continuous with respect to Hm and there exists an m rectifiable Borel set
E such that µ(IRn \ E) = 0. If a set E is an m rectifiable subset of IRn, by
a result of Federer ([F], Chapter 3) Hm(E \ ∪∞

i=1Mi) = 0, where Mi are m
dimensional immersed submanifolds of IRn.

We define the function

t(x) := inf{t > 0 : u(x, t) > 1}, (2.1)

where u is the solution to (1.1). This function may be zero (for example
on sets where the initial trace is a. e. > 1). We will by convention write
t(x) = T when t(x) /∈ (0, T ) (this may happen on sets where the initial
trace is Ln a. e. smaller than 1 which are never reached by the diffusion).
Here we are using that our solutions are non-negative (that is, that we are
working on the one phase case), whence for t > t(x), (u−1)+(x, t) > 0. Thus
we have that the free boundary ∂{(x, t) : (u− 1)+(x, t) > 0} is the union F
of the graph F = {(x, t) ∈ IRn × [0, T ] : t = t(x)} of the function t(x) with
segments that are parallel to the t axis placed at the values of x at which
t(x) has a jump.

2.1. Lemma. The function t(x) is upper semicontinuous, whence a Borel
function, and therefore measurable.

Proof. The function (u − 1)+ enjoys a uniform modulus of continuity on
each compact subset of IRn × (0, T ) (see [Di], [K]). If x0 ∈ {t(x) < a}, let
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t0 ∈ (t(x0), a). There exists 0 < ρ < a − t(x0) such that u(x, t) > 1 for
(x, t) ∈ Bn

ρ (x0) × (t0 − ρ, t0 + ρ). In particular, t(x) > a for x ∈ Bn
ρ (x0).

Recall that (u−1)+ is a (distributional) subsolution to the heat equation
(see [K]), that is,

∆(u− 1)+ − ∂

∂t
(u− 1)+ ≥ 0 in D′(IRn × (0, T )).

This naturally defines a (non-negative) Radon measure

λ = ∆(u− 1)+ − ∂

∂t
(u− 1)+ = ut − ∂

∂t
(u− 1)+. (2.2)

We next study the measure λ.

2.2. Lemma. The following holds for λ:

i) λ is a non-negative Radon measure.

ii) Supp (λ) ⊂ ∂{(u − 1)+ > 0}.

iii) λ(Bn
r (x0)×(t0−r, t0 +r))) ≤ Ln(Bn

r ) = cnr
n, whence λ is a Carleson

measure (see [St]). This estimate also shows that λ defines a continuous
linear functional on BV (IRn × (0, T )) (see [Z], theorem 5.12.4). Moreover,

θ∗n(λ, (x0, t0)) = lim supr→0
1

2n rn
(λ(Cr(x0, t0)) ≤ cn

2n
(1 − uI(x0))+ <∞

for Ln a. e. x0 ∈ IRn, where cn = Ln(Bn
1 (0)).

iv) λ = div(x,t) (V ), with

V (x, t) = (∇(u− 1)+,−(u− 1)+) ∈ H1
loc(IR

n × (0, T )).

In particular, λ ∈ H1
0 (IRn × (0, T ))∗, and for f ∈ H1

0 (IRn × (0, T )),

(λ, f) = −(V,∇(x,t)f).

Proof.

i) Is obvious and the motivation for the defintion of λ.

ii) Since (u− 1)+ solves the heat equation in the open set

{(x, t) : (u− 1)+ > 0},
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we have that
λ({(x, t) : (u− 1)+ > 0}) = 0.

If Br(x0) × (t0 − r, t0 + r) is contained in the interior of {(u− 1)+ = 0},
then for Ln a. e. x ∈ Br(x0), the function u(x, t) is constant in t, and actually
a. e. equal to the initial data uI(x)) for 0 < t < t0. This follows from local
uniqueness (see [K]) and the fact that u(x, t) = uI(x) solves the equation
(1.1) in the sense of distributions in Br(x0) × (0, t0)). Using the right hand
side expression of λ in (2.2), we see that λ(Br(x0) × (0, t0)) = 0.

iii) Using the expression of λ in the right hand side of (2.1), and recalling
that u(x, t) is non decreasing in t for a. e. x in measurable subsets of {(x, t) :
u(x, t) < 1}, we obtain that

λ(Br(x0) × (0, t0)) ≤
∫

Br(x0)

∂

∂t
(u− (u− 1)+) ≤

≤
∫

Br(x0)
(1 − uI(x))+ dx ≤ Ln(Br(x0)).

iv) Is obvious since we showed in [AnK] that (u−1)+ ∈ H1
loc(IR

n×(0, T )).

2.3 Remarks. As a consequence of i) and iii) above, λ << Hn, whence λ
does not charge any sets of Hausdorff dimension lower than n. Recalling that
∂
∂t(u − 1)+ ∈ L2

loc(IR
n × (0, T )), and ut = λ + ∂

∂t(u − 1)+, we see that the
absolutely continuous part of ut is supported in {u > 1}, and the singular
part on the free boundary F = ∂{(u− 1)+ > 0}.

The fact that λ defines a linear continuous functional on BV (IRn), says
that, heuristically, test functions in BV should suffice to retrieve all the in-
formation λ carries. This motivated the author to seek the structure theorem
2.7 below.

The computation in the proof of iii) above shows the convenience of using
cylinders Cr instead of balls Bn+1

r to exploit best the geometry of λ. The
Ln+1 measures of the cylinders are proportional to the Ln+1 measures of the
balls. Therefore throughout this work we will use the variant of spherical
Hausdorff measure obtained employing such cylinders in the coverings in-
stead of balls. We will not keep track of the proportionality constants. We
stress again that we do not modify the time scale in these cylinders.

Next we will disintegrate λ in a convenient way for its further study.

2.4. Lemma. The measure λ has the decomposition

λ = ((1− uI(x))+δt=t(x)) dx+ (V t(x)−
0 (ut − ∂

∂t
(u− 1)+))(x, s) dx = λ1 + λ2,
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where V t(x)−
0 (ut − ∂

∂t(u−1)+) stands for the total variation over the interval
[0, t(x))∩[0, s] of the measure defined for a. e. x by ut− ∂

∂t(u−1)+.Moreover,

λ1(Cr) =
∫

π(Cr∩F )
(1 − uI(x))+dx ≤ cnr

n, (2.3)

for any cylinder Cr(x,t0) = Bn(x0, r)× (t0 − r, t0 + r). Here π : IRn+1 → IRn

stands for the projection on IRn, π(x, t) = x.

Proof. The decomposition above follows from the fact that u(x, t) is
nondecreasing in {(x, t) : u(x, t) < 1} but constant in the interior of
{(x, t) : (u(x, t) − 1)+ = 0}.

From (2.3), λ1 is a “weighted” Young measure (see e. g. [GiMSou1] for the
definition of Young measure). It also follows from lemma 2.4 and (2.3) that
if uI does not take values in the interval (0, 1) and λ2 = 0 then v = (u− 1)+
is a solution to the one phase combustion problem, see [CV].

2.5. Lemma. The measure λ̄2(x) = (V t(x)−
0 (ut − ∂

∂t(u − 1)+))(x, t(x)) dx
(the marginal of λ2) is carried by a Ln null set.

Proof. Let F denote the graph of the function t(x), and F1 = F \ F the
set of segments of the free boundary parallel to the t axis. Then for any ball
B(x0, r),

λ̄2(B(x0, r)) =
∫

B(x0,r)
χπ(F1)(x)V

t(x)−
0 (ut)(x, s) dx.

If for some x0 ∈ IRn, θ∗n(λ̄2, x0) > 0, then π(F1) has to have positive Ln

density at x0.
That is, x0 ∈ S, where

S = {x : ap lim sup t(x) − ap lim inf t(x) > 0},
and S ∩ F1 has positive Ln density at x0. But this cannot happen because
t(x) is measurable and therefore approximately continuous at a. e. x.

Next let us recall Preiss’ theorem on rectifiability of measures ([P], also
Thm. 17.8 in [M]).

2.6. Theorem (Preiss [Pre]). Let µ be a Radon measure on IRn such
that the density θm(µ, (x, t)) exists and is positive and finite for µ almost all
(x, t) ∈ IRn. Then µ is m rectifiable.
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2.7. Theorem. Let E ⊂ IRn × (0, T ) such that for every (x0, t0) ∈ E ∩ F ,
lim infr→0{|∇(u− 1)+(x, t)|, (x, t) ∈ Cr(x0, t(x0))} ≥ b for some 0 < b <∞.
Then the boundary measure λ restricted to E is n rectifiable.

Proof. By lemma 2.5 and Besicovitch’s covering lemma,

λ2({(x, t) : θ∗n(λ2)(x, t) = 0}) = 0,

so we only need to worry about the rectifiability of λ1.

All we need to check is that θn(λ1, (x, t)) exists and is positive and finite
for λ1 almost all (x, t) ∈ IRn×(0, T ), i. e. that the set of points where either
the upper and lower densities of λ1 do not coincide, or the upper density is
0, has λ1 measure 0. Since λ1 does not charge the interior of any segment
parallel to the t axis contained in F , we only need to worry about the points
of the graph of t(x). Also it suffices to show that the theorem holds in any
cylinder C = BR(0) × (a, b) ⊂ IRn × (0, T ), since we can exhaust the whole
strip with an increasing collection of such cylinders. We will only consider
points (x0, t(x0)) such that x0 is a Lebesgue point of (1 − uI(x))+, and the
precise representative of (1 − uI(x))+ > 0 (we will always work with the
precise representatives of functions in what follows) since by Besicovitch’s
covering lemma, or simply by the desintegration of λ1 in the proof of iv) in
lemma 2.2, λ1 will not charge the set

{(x, t) : x is not a Lebesgue point of (1 − uI)+}.

A similar reasoning shows that λ1 does not charge the set

{(x, t) ∈ IRn × (0, T ) : (1 − uI(x))+ = 0}.

Let us divide the proof in steps:

i) Let B1 = {(x, t(x)) ∈ C ∩ F : θ∗n(λ1, (x, t(x)) < θ∗n(x, t(x))}. By a
standard argument, B1 will be written as a countable union of sets

Bp,q = {(x, t(x)) ∈ B1 : θ∗n(λ1, (x, t(x)) < p < q < θ∗n(x, t(x))},

where p, q are rational numbers. In Bp,q, q < θ∗n(x, t(x)) ≤ cn2n holds,
whence on this set, Hn and λ1 are mutually absolutely continuous, in par-
ticular, Hn(Bp,q) <∞. Then, by Federer’s structure theorem, Bp,q = M∪N,
whereM is n rectifiable and N has integral-geometric (or Favard) measure 0.
At Hn almost every point, M has an approximate tangent plane. It is easy
to verify that at every point (x0, t(x0)) of F admitting a measure theoretic
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tangent plane, x0 being a Lebesgue point of (1 − uI)+, the density of θnλ1

exists, a contradiction. Therefore Hn(M) = 0, and the same holds for λ1.

Next let us show that λ1(N) = 0. If Ln(π(N)) = 0 we have nothing to
prove. Assume Ln(π(N)) > 0. If we rotate the t axis onto the line tω by a
sufficientntly small angle ω, since N ⊂ F, its projection on the hyperplane
Pω nomal to the direction tω has positive Hn measure, and we can recover
the Hn measure of the projection of N on this new hyperplane by using
change of variables. The Jacobian of the transformation of π(N) into the
new hyperplane is a continuous function of ω with value 1 for ω = 0. But
then N has to have stricty positive integral-geometric measure. We conclude
that Ln(N) = 0.

This shows that λ1(B1) = 0.

ii) Let B2 = {(x, t(x)) : θ∗n(λ1, (x, t(x))) = 0}. Of course we may assume
that

lim
r→0

1
Ln(Br(x0))

∫
Br(x0)

(1 − uI(x))+ dx = (1 − uI(x))+ > 0,

and that x is a point of approximate continuity of t(x). Then, for
θ∗n(λ1, (x0, t(x0))) = 0 to hold,

lim
r→0

Ln (π(Cr ∩ F ))
Ln(Br)

= 0 (2.4)

has to hold.

2.8. Claim. We claim that if

lim
r→0

Ln (π(Cr ∩ F ))
Ln(Br)

= 0,

then

lim
r→0

Ln+1(Cr ∩ {(x, t) : t > t(x)})
Ln+1(Cr)

= 1.

We pospone the proof of claim 2.8 to the of the paper end return to the
proof of theorem 2.7:

Let S1 = {(x, t) : t > t(x)} ⊂ IRn × [0, T ]}, and let

M = {x ∈ IRn : Dn+1(S1, (x, t(x)) = 1},

where Dn+1 stands for Ln+1 density. We will show that Ln(M) = 0.
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Indeed, fix α small (to be chosen later), and let

Mk =
{
x :

Ln+1(B(x, r) × (t(x) − r, t(x) + r) \ S1)
Ln+1(B(x, r) × (t(x) − r, t(x) + r))

< α, ∀r ∈ (0,
1
k
)
}
.

If Ln(M) > 0, then there exists k0 such that Ln(Mk0) > 0. Choose a disk in
IRn, B = B(y, r), r < 1

2k0
, such that B∩Mk0 
= φ. There exists x0 ∈ B∩Mk0

with
t(x0) − r

8
< inf t(B ∩Mk0).

Then, (
{y} × (0, t(x0) − r

8
)
)
∩ S1 = φ,

for all y ∈ B ∩Mk0 . We conclude that

Ln(Mk0 ∩Br)
15
8
r ≤ Ln+1(C2r \ S1) < αLn+1(C2r).

After some manipulation this yields

Ln(Br ∩Mk0) ≤ (αc2n+1 8
15

)Ln(Br).

Choosing now α < (c2n+1 8
15 )−1, this implies that Ln(Mk0) = 0.

A similar argument shows that

Ln ({x ∈ IRn : D(S2, (x, t(x)) = 1}) = 0,

where S2 = {(x, t) : t < t(x)}.
Note that in the density topology, points in B2 are actually interior points

of one of the phases.

Proof of Claim 2.8. We will use De Giorgi’s lemma, which we state next
(see [LSolU], p. 89):

2.9. Lemma (De Giorgi). Let BR ⊂ IRm be a ball, v ∈ H1(BR) and let
k, l be real numbers such that l > k, and write Ak,R = ({y ∈ BR, v(y) > k}
for any k ∈ IR. Then

(l − k) Lm(Al,R) Lm(BR \ Ak,R) ≤ DRm+1

∫
Ak,R\Al,R

|∇v| dy,

where D is a constant depending only on the dimension m.
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First note that for x0 ∈ IRn, t0 ∈ (0, T ) and r > 0 such that 0 < t0 − r,
and t0 + r < T,

Ln({(x, t0 + r), x ∈ Br(x0) : (u− 1)+(x, t0 + r) > 0}) =

Ln({(x, t0−r), x ∈ Br(x0) : (u−1)+(x, t0−r) > 0})+Ln (π(Cr ∩ Graph(t))).

Also
Ln({(x, s), x ∈ Br(x0) : (u− 1)+(x, s) > 0})

is increasing in s. Then by (2.4) there exists 1 > a > 0 such that for ε > 0,
a+ ε < 1, r < r0 small enough, and t0 − r < t < t0 + r,

(a+ε)Ln(Br)≥Ln({(x, t), x ∈ Br(x0) : (u−1)+(x, t) = 0})≥aLn(Br). (2.5)

For a. e. t ∈ (t0 − r, t0 + r) we apply De Giorgi’s lemma to v(x) = (u −
1)+(x, t), with k = h, l = h/2 to obtain

cn r
2n a(1 − a− ε) ≤ Drn+1 2

h

∫
Cr∩{h/2<(u−1)+<h}

|∇(u− 1)+|(·, t) dx,

where cn denotes a positive constant depending only on n that may change
from line to line. Integration over (t0 − r, t0 + r) gives

cn r
2n+1 a(1 − a− ε) ≤

Drn+1 2
h

∫
Cr∩{h/2<(u−1)+<h}

|∇(u− 1)+|(x, t) dx dt.

Then
cn a(1 − a− ε) ≤

lim
r→0

lim
h→0

r−n 2
h

∫
Cr∩{h/2<(u−1)+<h}

|∇(u− 1)+|(x, t) dx dt. (2.6)

For h > 0 set

φh(x) =

⎧⎪⎨
⎪⎩

1 if x > h
2
hx− h

2
h
2 ≤ x < h

0 ifx < h
2

Let 0 ≤ η ∈ D(IRn × (O,T )). Then ηφh((u − 1)+) is supported in{
(u− 1)+ ≥ h

2

}
; in particular, (λ, ηφh((u− 1)+) = 0 since λ = ∆(u− 1)+ −

∂
∂t(u−1)+ = ∂

∂t(u−(u−1)+) is supported on {(u− 1)+ = 0}. Using ηφh((u−
1)+) as test functions one can show (see [KMr1]) that

lim
h→0

2
h

∫
Cr∩{h/2<(u−1)+<h}

|∇(u− 1)+|2(x, t) dx dt = λ(Cr).
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Then the right hand side in (2.6) is bounded by

1
b

lim
r→0

lim
h→0

r−n 2
h

∫
Cr∩{h/2<(u−1)+<h}

|∇(u− 1)+|2(x, t) dx dt =

1
b

lim
r→0

λ(Cr)
rn

= 0.

But then a = 0, which proves the claim.

2.10. Remark (see [KMr2]). To remove the assumption on the existence
of a positive lower bound for |∇(u−1)+| in a neighborhood of (x0, t0), apply
Cauchy-Schwarz’ inequality to the right hand side of (2.6). Notice that

Ln(π(F ∩ Cr)) = lim
δ→0

∫
Br(x0)

χt−1(t0−r,t0+r)(x)χ{(u−1)+=δ}(x, t(x)) dx =

lim
δ→0

∫ t0+r

t0−r

∫
{(u−1)+(·,t)=δ}

χBr×{t}(x)
|∇(u− 1)+(·, t)| dH

n−1dt,

where we have used the co-area formula, lemma 2.5, the fact the level sets
within the diffusive region are smooth, and the boundary point lemma (see
e.g. [PoWn], p.170). In addition,

lim inf
h→0

2
h

∫
Br×{t}

χ{h
2
<(u−1)+(·,t)<h} dx =

lim inf
h→0

∫
{(u−1)+(·,t)=sh}

χBr×{t}(x)
|∇(u− 1)+(·, t)| dH

n−1.

Integrating in t over (t0 − r, t0 + r), use of Fatou’s lemma and the fact that

lim
r→0

Ln(π(F ∩ Cr))
rn

= 0

complete the proof (we actually only need the boundedness of the last quan-
tity). The other factor is θn(x0, t(x0)) = 0.
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