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Mirror Symmetry Without Corrections

Naichung Conan Leung

We give geometric explanations and proofs of various mirror sym-
metry conjectures for T n-invariant Calabi-Yau manifolds when in-
stanton corrections are absent. This uses a fiberwise Fourier trans-
formation together with a base Legendre transformation.
We discuss mirror transformations of
(i) moduli spaces of complex structures and complexified symplec-
tic structures, Hp,q’s, Yukawa couplings;
(ii) sl (2)× sl (2)-actions;
(iii) holomorphic and symplectic automorphisms and
(iv) A- and B-connections, supersymmetric A- and B-cycles, cor-
relation functions.
We also study (ii) for T n-invariant hyperkahler manifolds.
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The mirror symmetry conjecture predicts that there is a transformation
from the complex (resp. symplectic) geometry of one Calabi-Yau manifoldM
to the symplectic (resp. complex) geometry of another Calabi-Yau manifold
W of the same dimension. Such pairs of manifolds are called mirror mani-
folds. This transformation should also has the inversion property, namely if
we take the transformation twice, we recover the original geometry.

It is expected that such transformation exists for Calabi-Yau manifolds
near a large complex structure limit point. Such point in the moduli space
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should correspond to the existence of a semi-flat Calabi-Yau metric, possibly
highly singular.

To understand why and how these two different kinds of geometry were
interchanged between mirror manifolds, we study the T n-invariant case in de-
tails. The importance of the T n-invariant (or more generally semi-flat) case
is first brought up by Strominger, Yau and Zaslow in their foundational paper
[SYZ] which explains mirror symmetry from a physical/geometric viewpoint.
This is now called the SYZ mirror conjecture. The T n-invariant case is then
studied by Hitchin in [H1], Yau, Zaslow and the author in [LYZ] and it is also
an important part of this paper. The main advantage here is the absence of
holomorphic disks, the so-called instantons.

We start with an affine manifold D, which we assume to be a domain
in R

n in this introduction. Let φ be an elliptic solution to the real Monge-
Ampère equation on D:

det∇2φ = 1,

∇2φ > 0.

Then it determines two noncompact Calabi-Yau manifolds, TD and T ∗D.
Notice that T ∗D carries a canonical symplectic structure and TD carries a
canonical complex structure because D is affine. We can also compactify
the fiber directions by quotienting TD and T ∗D with a lattice Λ in R

n and
its dual lattice Λ∗ in Rn∗ respectively and obtain mirror manifolds M and
W . The natural fibrations on M and W over D are both special Lagrangian
fibrations.

The mirror transform from M to W, and vice versa, is a combination of
(i) the Fourier transformation on fibers of M → D together with (ii) the
Legendre transformation on the base D. The Calabi-Yau manifold W can
also be identified as the moduli space of flat U (1) connections on special
Lagrangian tori on M with its L2 metric. We are going to explain how the
mirror transformation exchanges the complex geometry and the symplectic
geometry between M and W :

(1) The identification between moduli spaces of complex structures on
M and complexified symplectic structures on W , moreover this map is both
a biholomorphism and an isometry;

(2) The identification of Hp,q (M) and Hn−p,q (W );
(3) The mirror transformation of certain A-cycles in M to B-cycles in

W . We also identify their moduli spaces and correlation functions (this is
partly borrowed from [LYZ]). In fact the simplest case here is the classical
Blaschke connection and its conjugate connection, they correspond to each
other under the Legendre transformation;



Mirror Symmetry Without Corrections 289

(4) There is an sl (2)-action on the cohomology of M induced from vari-
ation of Hodge structures. Together with the sl (2)-action given by the hard
Lefschetz theorem, we obtain an sl (2) × sl (2)-action on the cohomology of
M . Under the mirror transformation from M to W , these two sl (2)-actions
interchange their roles;

(5) Transformations of holomorphic automorphisms of M to symplectic
automorphisms of W , in fact its preserves a naturally defined two tensor on
W , not just the symplectic two form.

In the last section we study T n-invariant hyperkähler manifolds. That
is when the holonomy group of M is inside Sp (n/2) ⊂ SU (n). The coho-
mology of a hyperkähler manifold admits a natural so (4, 1)-action. In the
T n-invariant case, we show that our sl (2) × sl (2) = so (3, 1)-action on the
cohomology is part of this hyperkähler so (4, 1)-action.

In [KS] Kontsevich and Soibelman also study mirror symmetry for these
T n-invariant Calabi-Yau manifolds, their emphasis is however very different
from ours.

Acknowledgments: The author thanks Richard Thomas, Xiaowei Wang,
Shing-Tung Yau and Eric Zaslow for many helpful and valuable discussions.
The author also thanks Mark Gross for pointing out an earlier mistake on
B-fields and other comments. The paper is prepared when the author visited
the Natural Center of Theoretical Science, Tsing-Hua University, Taiwan in
the summer of 2000. The author thanks the center for providing an excellent
research environment and support. This project is also partially supported
by a NSF grant, DMS-9803616.

1. T n-invariant Calabi-Yau and their mirrors.

A Calabi-Yau manifold M of real dimension 2n is a Riemannian manifold
with SU (n) holonomy, or equivalently a Kähler manifold with zero Ricci
curvature. We can reduce this condition to a complex Monge-Ampère equa-
tion provided that M is compact. Yau proved that this equation is always
solvable as long as c1 (M) = 0, vanishing of the first Chern class of M .

Even though it is easy to construct Calabi-Yau manifolds, it is extremely
difficult to write down their Ricci flat metrics. When Calabi-Yau manifolds
have T n symmetry, we can study translation invariant solution to the com-
plex Monge-Ampère equation and reduce the problem to finding a solution
of a real Monge-Ampère equation.

These T n-invariant Calabi-Yau manifolds form a natural class of semi-flat
Calabi-Yau manifolds. Recall that a Calabi-Yau manifold is called semi-flat
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if it admits a fibration by flat special Lagrangian tori. Such manifolds are
introduced into mirror symmetry in [SYZ] and then further studied in [H1],
[Gr] and [LYZ].

The real Monge-Ampère equation. First we consider the dimension
reduction of the complex Monge-Ampère equation to the real Monge-Ampère
equation. The resulting Ricci flat metric would be a T n-invariant Calabi-
Yau metric: Let M be a tubular domain in C

n with complex coordinates
zj = xj + iyj’s,

M = D × iRn ⊂ C
n,

where D is a convex domain in R
n. The holomorphic volume form on M is

given by
ΩM = dz1 ∧ dz2 ∧ · · · ∧ dzn.

Let ωM be the Kähler form of M , then the complex Monge-Ampère equation
for the Ricci flat metric is the following:

ΩM Ω̄M = CωnM .

We assume that the Kähler potential φ of the Kähler form ωM = i∂∂̄φ
is invariant under translations along imaginary directions. That is,

φ
(
xj , yj

)
= φ

(
xj
)

is a function of the xj’s only. In this case the complex Monge-Ampère
equation becomes the real Monge-Ampère equation. Cheng and Yau [CY]
proved that there is a unique elliptic solution φ (x) to the corresponding
boundary value problem

det
(

∂2φ

∂xj∂xk

)
= C,

φ|∂D = 0.

Ellipticity of a solution φ is equivalent to the convexity of φ, i.e.(
∂2φ

∂xj∂xk

)
> 0.

We can compactify imaginary directions by taking a quotient of iRn by
a lattice iΛ. That is we replace the original M by M = D × iT where T is
the torus R

n/Λ and the above Kähler structure ωM descends to D × iT . If
we write

φjk =
∂2φ

∂xj∂xk
,
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then the Riemannian metric on M is

gM = Σφjk
(
dxj ⊗ dxk + dyj ⊗ dyk

)
and the symplectic form ωM is

ωM =
i

2
Σφjkdzj ∧ dz̄k.

Notice that ωM can also be expressed as

ωM = Σφjkdxj ∧ dyk

because of φjk = φkj. The closedness of ωM follows from φijk = φkji =
∂i∂j∂kφ.

Remark: It is easy to see that D × iΛ ⊂ TD is a special Lagrangian
submanifold (for the definition of a special Lagrangian, readers can refer to
later part of this section.)

Affine manifolds and complexifications. Notice that the real Monge-
Ampère equation

det
(

∂2φ

∂xj∂xk

)
= const,

is invariant under any affine transformation(
xj
)→ (

x̄j
)

=
(
Ajkx

k +Bj
)
.

This is because
∂2φ

∂xj∂xk
= AljA

m
k

∂2φ

∂x̄l∂x̄m
,

and

det
(

∂2φ

∂xj∂xk

)
= det (A)2 det

(
∂2φ

∂x̄l∂x̄m

)
.

The natural spaces to study such equation are affine manifolds. A man-
ifold D is called an affine manifold if there exists local charts such that
transition functions are all affine transformations as above. Over D, there
is a natural real line bundle whose transition functions are given by detA.
We denote it by R→L → D. Now suppose φ (x) is a solution to the above
equation with const = 1 on the coordinate chart with local coordinates
xj’s. Under the affine coordinate change x̄j = Ajkx

k + Bj, the function
φ̄ = (detA)2 φ satisfies

det
(

∂2φ̄

∂x̄j∂x̄k

)
= 1.
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Therefore on a general affine manifold D, a solution to the real Monge-
Ampère equation (with const = 1) should be considered as a section of L⊗2.

It is not difficult to see that the tangent bundle of an affine manifold
is naturally an affine complex manifold: If we write a tangent vector of D
as Σyj ∂

∂xj locally, then zj = xj + iyj ’s are local holomorphic coordinates of

TD. The transition function for TD becomes
(
zj
) → (

Ajkz
k +Bj

)
, hence

TD is an affine complex manifold.
We want to patch the T n-invariant Ricci flat metric on each coordinate

chart of TD to the whole space and thus obtaining a T n-invariant Calabi-Yau
manifold M = TD (or TD/Λ). To do this we need to assume that detA = 1
for all transition functions, such D is called a special affine manifold. Then

gM = Σφjk
(
dxj ⊗ dxk + dyj ⊗ dyk

)
ωM = Σφjk (x) dxj ∧ dyk =

i

2
Σφjkdzj ∧ dz̄k.

are well-defined Kähler metric and Kähler form over the affine complex man-
ifold M , which has a fibration over the real affine manifold D. Moreover

gD = Σφjk (x) dxj ⊗ dxk

defines a Riemannian metric of Hessian type on D.

Legendre transformation. All our following discussions work for D be-
ing a special orthogonal affine manifold. For simplicity we assume that D is
simply a convex domain in R

n and M = TD = D × iRn.
It is well-known that one can produce another solution to the real Monge-

Ampère equation from any given one via the so-called Legendre transforma-
tion: We consider a change of coordinates xk = xk

(
xj
)

given by

∂xk
∂xj

= φjk,

thanks to the convexity of φ. Then we have

∂xj

∂xk
= φjk,

where (
φjk

)
= (φjk)

−1 .
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Since φjk = φkj, locally there is a function ψ (xk) on the dual vector space
R
n∗ such that

xj (xk) =
∂ψ (xk)
∂xj

.

Therefore,

φjk =
∂2ψ

∂xj∂xk
.

This function ψ (xk) is called the Legendre transformation of the function
φ
(
xj
)
. It is obvious that the convexity of φ and ψ are equivalent to each

other. Moreover

det
(

∂2φ

∂xj∂xk

)
= C,

is equivalent to

det
(

∂2ψ

∂xj∂xk

)
= C−1.

Furthermore the Legendre transformation has the inversion property, namely
the transformation of ψ is φ again.

Dual tori fibration - fiberwise Fourier transformation. This con-
struction works for any T n-invariant Kähler manifold M , not necessary a
Calabi-Yau manifold. On M = D × iT there is a natural torus fibration
structure given by the projection to the first factor,

M → D,(
xj , yj

)→ (
xj
)
.

Instead of performing the Legendre transformation to the base of this fibra-
tion, we are going to replace the fiber torus T = R

n/Λ by the dual torus
T ∗ = R

n∗/Λ∗, where Λ∗ = {v ∈ R
n∗ : v (u) ∈ Z for any u ∈ Λ} is the dual

lattice to Λ.
In dimension one, taking the dual torus is just replacing a circle of radius

R to one with radius 1/R. In general, if yj ’s are the coordinates for T and
yj’s their dual coordinates. Then a flat metric on T is given by Σφjkdyj⊗dyk
for some constant positive definite symmetric tensor φjk. As usual we write(

φjk
)

= (φjk)
−1 ,

then Σφjkdyj ⊗ dyk is the dual flat metric on T ∗.
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Now we write W = D × iT ∗, the fiberwise dual torus fibration to M =
D × iT . Since the metric gM on M is T n-invariant, its restriction to each
torus {x} × iT is the flat metric Σφjk (x) dyj ⊗ dyk. The dual metric on the
dual torus {x}×iT ∗ is φjk (x) dyj⊗dyk. So the natural metric on W is given
by

gW = Σφjkdxj ⊗ dxk + φjkdyj ⊗ dyk.
If we view T ∗ as the moduli space of flat U (1) connections on T , then it
is not difficult to check that the Weil-Petersson L2 metric on T ∗ is also
φjkdyj ⊗ dyk.

If we ignore the lattice structure for the moment, then M is the tangent
bundle TD of an affine manifold and

W = T ∗D,

moreover, gW is just the induced Riemannian metric on the cotangent bundle
from the Riemannian metric gD = Σφjkdxj ⊗ dxk on D.

Even though T ∗D does not have a natural complex structure like TD, it
does carry a natural symplectic structure:

ωW = Σdxj ∧ dyj,

which is well-known and plays a fundamental role in symplectic geometry.
ωW and gW together determine an almost complex structure JW on W as
follow,

ωW (X,Y ) = gW (JWX,Y ) .

In fact this almost complex structure is integrable and the holomorphic co-
ordinates are given by zj = xj + iyj ’s where xj (x) is determined by the
Legendre transformation ∂xj

∂xk = φjk as before. In terms of this coordinate
system, we can rewrite gW and ωW as follows

gW = Σφjk (dxj ⊗ dxk + dyj ⊗ dyk)
ωW =

i

2
Σφjkdzj ∧ dz̄k.

Suppose that gM is a Calabi-Yau metric on M , namely φ
(
xj
)

satisfies
the real Monge-Ampère equation, then ψ (xj) also satisfies the real Monge-
Ampère equation because of

φjk =
∂2ψ

∂xj∂xk
.
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Therefore the metric gW on W is again a T n-invariant Calabi-Yau metric.

We call this combination of the Fourier transform on fibers and the Leg-
endre transform on the base of a T n-invariant Kähler manifold the mirror
transformation.

The similarities between gM , ωM and gW , ωW are obvious. In particular,
the mirror transformation has the inversion property, namely the transform
of W is M again.

Here is an important observation: On the tangent bundle M = TD,
suppose we vary its symplectic structure while keeping its natural complex
structure fixed. We would be looking at a family of solutions to the real
Monge-Ampère equation. On the W = T ∗D side, the corresponding sym-
plectic structure is unchanged, namely ωW = Σdxj ∧ dyj. But the complex
structure on W varies because the complex coordinates on W are given
by dzj = φjkdx

k + idyj which depends on particular solutions of the real
Monge-Ampère equation.

By the earlier remark about the symmetry between M and W , changing
the complex structures on M is also equivalent to changing the symplectic
structures on W . To make this precise, we need to consider complexified
symplectic structures by adding B-fields as we will explain later.

In fact the complex geometry and the symplectic geometry of M and W
are indeed interchangeable! String theory predicts that such phenomenon
should hold for a vast class of pairs of Calabi-Yau manifolds. This is the
famous Mirror Symmetry Conjecture.

General Calabi-Yau manifolds do not admit T n-invariant metrics, there-
fore we want to understand the process of constructing W from M via a
geometric way. To do this we need to introduce A- and B-cycles.

Supersymmetric A- and B-cycles. It was first argued by Strominger,
Yau and Zaslow [SYZ] from string theory considerations that the mirror
manifold W should be identified as the moduli space of special Lagrangian
tori together with flat U (1) connections on them. These objects are called
supersymmetric A-cycles (see for example [MMMS], [L1]). Let us recall the
definitions of A-cycles and B-cycles (we also include the B-field in these
definitions, see the next section for discussions on the B-field).

Definition 1. Let M be a Calabi-Yau manifold of dimension n with a com-
plexified Kähler form ωC = ω + iβ and a holomorphic volume form Ω. We
called a pair (C,E) a supersymmetric A-cycle (or simply A-cycle), if (i) C
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is a special Lagrangian submanifold in M , namely C is a real submanifold
of dimension n with

ω|C = 0,

and
Im eiθΩ|C = 0,

for some constant angle θ which is called the phase angle.
(ii) E is a unitary vector bundle on C whose curvature tensor F satisfies

the deformed flat condition,

β|C + F = 0.

Note that the condition (ii) implies that the restriction of β to C repre-
sents an integral cohomology class. Also the Lagrangian condition and the
deformed flat equation can be combined into one complex equation on C:

ωC + F = 0.

Definition 2. Let M be a Kähler manifold with a complexified Kähler form
ωC, we called a pair (C,E) a supersymmetric B-cycle (or simply B-cycle), if
C is a complex submanifold in M of dimension m, E is a holomorphic vector
bundle on C with a Hermitian metric whose curvature tensor F satisfies the
following deformed Hermitian-Yang-Mills equations on C:

Im eiθ
(
ωC + F

)m
= 0,

for some constant angle θ which is called the phase angle.

Constructing the mirror manifold. Now we consider the moduli space
of A-cycles (C,E) on M with C a torus and the rank of E equals one.
In [SYZ] Strominger, Yau and Zaslow conjectured that W is the mirror
manifold of M . The L2 metric on this moduli space is expected to coincide
with the Calabi-Yau metric on W after suitable corrections which comes
from contributions from holomorphic disks in M whose boundaries lie on
these A-cycles, these are called instantons.

When M is a T n-invariant Calabi-Yau manifold with fibration π : M →
D as before. Then each fiber of π is indeed a special Lagrangian torus and
D is their moduli space. Each fiber together with the restricted metric is a
flat torus. Its dual torus can be naturally identified with the moduli space of
flat U (1) connections on it. Therefore the space W , obtained by replacing
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each fiber torus in M by its dual, can be naturally identified as the moduli
space of A-cycles in this case.

Furthermore the L2 metric on this moduli space coincides with the dual
metric gW up to a constant multiple. Physically this is because of the absence
of instanton in this case. We have the following simple result.

Theorem 3. Under the natural identification of W with the moduli space
of flat U (1) connections on special Lagrangian tori in M , the metric gW
equals the L2 metric on the moduli space multiply with the volume of the
fiber.

Proof: Recall that D is the moduli space of special Lagrangian tori. Let
∂
∂xj be a tangent vector at a point in D, say the origin. This corresponds to
a harmonic one form on the central fiber C ⊂ M . This harmonic one form
on C is Σφjk (0) dyk. Now the moduli space L2 inner product of ∂

∂xj and ∂
∂xl

equals

� ∂

∂xj
,
∂

∂xl
�

=
∫
C

〈
φjkdy

k, φlmdy
m
〉
dvC

=
∫
C
φjkφlmφ

kmdvC

= φjl (0) vol (C) .

Note that the volume of special Lagrangian fibers in a T n-invariant Calabi-
Yau manifold is constant.

On the other hand

gW

(
∂

∂xj
,
∂

∂xl

)
= φjl (0) .

Similarly we can identify metrics along fiber directions of π : W → D. By
definition the L2 metric has no mixed terms involving both the base and
fiber directions. Hence we have the theorem. �

Shrinking the torus fibers. Now we fix the symplectic form on M as
ωM = Σφjkdxj ∧ dyk and vary the complex structures. Instead of using
holomorphic coordinates zj = xj+iyj’s, we define the new complex structure
on M using the following holomorphic coordinates,

zjt =
1
t
xj + iyj,
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for any t ∈ R>0. The corresponding Calabi-Yau metric becomes

gt = Σφjk

(
1
t
dxj ⊗ dxk + tdyj ⊗ dyk

)
.

The same fibration π : M → D is a special Lagrangian fibration for each t.
Moreover the volume form on M is independent of t, namely dvM = ωnM/n!.
As t goes to zero, the size of the fibers shrinks to zero while the base gets
infinitely large.

If we rescale the metric to tgt, then the diameter of M stays bound and
(M, tgt)’s converge in the Gromov-Hausdorff sense to the real n dimension
manifold D with the metric gD = Σφjkdxjdxk as t approaches zero. It is
expected that similar behaviors hold true for Calabi-Yau metrics near the
large complex structure limit, as least over a large portion of M . This
prediction is verified by Gross and Wilson when M is a K3 surface [GW].

B-fields. The purpose of introducing B-fields is to complexify the space
of symplectic structures on M , the conjectural mirror object to the space of
complex structures on W which is naturally a complex space. Readers could
skip this part for the first time.

The usual definition of a B-field β is a harmonic two form of type (1, 1)
on M , i.e. β ∈ Ω1,1 (M,R/Z) with dβ = 0 and d∗β = 0. These are equivalent
to the following conditions,

dβ = 0

β ∧ ωn−1
M = c′ωnM .

It is shown by Gross [Gr] that if we consider a closed form β, then the mod-
ified Legendre transformation, as we will describe later, does preserve the
Calabi-Yau condition on the W side. However the harmonicity will be lost.
To remedy this problem, we need to deform the harmonic equation. There
are two natural way to do this, depending on whether we prefer the complex
polarization or the real polarization. We will first discuss the one using the
real polarization, namely the special Lagrangian fibration. When we are in
the large complex and Kähler structure limit, the complex conjugation is the
same as the real involution which sends the fiber directions to its negative,
namely dxj → dxj and dyj → −dyj in our previous coordinates. In general
the complex conjugation and the real involution are different. We denote
the holomorphic volume form of M under this real involution (resp. com-
plex conjugation) by Ω̂ (resp. Ω̄). The author thanks Gross for pointing out
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an earlier mistake about Ω̂. Just like the distinction between Kähler met-
rics and those satisfying the Monge-Ampère equations, namely Calabi-Yau
metrics, we need the following definitions.

Definition 4. Let M be a Calabi-Yau manifold with holomorphic volume
form Ω. Suppose that ω is a Kähler form on M and β is a closed real
two from on M of type (1, 1). Then ωC = ω + iβ is called a complexified
Calabi-Yau Kähler form on M if

(
ωC

)n is a nonzero constant multiple of
inΩ ∧ Ω̂. (

ωC

)n
= cinΩ ∧ Ω̂.

We call this the complexified complex Monge-Ampère equation.

The second definition of a B-field is to use Ω̄ and require that the Calabi-
Yau manifold M satisfies

ωn = cinΩΩ̄

Im eiθ (ω + iβ)n = 0

Im eiφΩ = 0 on the zero section.

If we expand the second equation near the large Kähler structure limit,
namely we replace ω by a large multiple of ω, or equivalently we replace β
by a small multiple of it, we have

(ω + iεβ)n = ωn + iεnβωn−1 +O
(
ε2
)
.

So if we linearize this equation, by deleting terms of order ε2 or higher, then
it becomes

βωn−1 = c′ωn.

That is β is a harmonic real two form. This approximation is in fact the
usual convention for a B-field.

Including B-fields in the T n-invariant case. We first consider the case
when ωC = ω + iβ satisfies the complexified Monge-Ampère equation.

We suppose π : M → D is a T n-invariant Calabi-Yau manifold as before
and ωM = Σφjk (x) dxjdyk is a T n-invariant Kähler form on it. As usual
we will include a B-field on M which is invariant along fiber directions of π,
namely βM = i∂∂̄η (x). It is easy to see that

βM =
i

2
Σηjk (x) dzj ∧ dz̄k = Σηjk (x) dxj ∧ dyk
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with

ηjk = ηkj =
∂2η

∂xj∂xk
.

Then the complexified Kähler form ωC
M = ωM+iβM is a complexified Calabi-

Yau Kähler form if and only if the complex valued function φ (x) + iη (x)
satisfies the following complexified real Monge-Ampère equation,

det (φjk + iηjk) = C,

for some nonzero constant C. If we write

θjk (x) = φjk (x) + iηjk (x) ,

then the above equation becomes det (θjk) = C. In these notations, the
complexified Kähler metric and complexified Kähler form on M are

gC
M = Σθjk (x)

(
dxj ⊗ dxk + dyj ⊗ dyk

)
and

ωC
M =

i

2
Σθjk (x) dzj ∧ dz̄k,

respectively.
Now we consider the dual T n-invariant manifold W as before. Instead

of the Legendre transformation dxj = Σφjkdxk, we need to consider a com-
plexified version of it. Symbolically we should write

dxj = Σθjkdxk = Σ (φjk + iηjk) dxk.

The precise meaning of this is the complex coordinates dzj ’s on W is
determined by Re dzj = φjkdx

k and Im dzj = dyj + ηjkdx
k. That is

dzj = dxj + idyj .
As before we define (

θjk
)

= (θjk)
−1 .

It is easy to check directly that the canonical symplectic form on W can be
expressed as follow

ωC
W = Σdxj ∧ dyj,

=
i

2
Σθjkdzj ∧ dz̄k.

Similarly the corresponding complexified Kähler metric is given by
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gC
W = Σθjk (dxj ⊗ dxk + dyj ⊗ dyk) ,

= Σθjkdzj ⊗ dz̄k.
After including the B-fields, we can argue using the same reasonings

as before and conclude: If we varies the complexified symplectic structures
on M while keeping its complex structure fixed, then under the Fourier
transformation along fibers and the Legendre transformation on the base,
it corresponds to varying the complex structures on W while keeping its
complexified symplectic structure fixed. And the reverse also hold true.

Theorem 5. Let M be a T n-invariant Calabi-Yau manifold and W is its
mirror. Then the moduli space of complex structures on M (resp. on W ) is
identified with the moduli space of complexified symplectic structures on W
(resp. on M) under the above mirror transformation.

Remark: In order to have the above mirror transformation between com-
plex structures and symplectic structures, it is important that the B-fields
satisfy the complexified Monge-Ampère equation instead of being a harmonic
two form.

Next we use the second definition of a B-field, namely ωn = cinΩΩ̄,
Im eiθ (ω + iβ)n = 0 and Im eiφΩ = 0 on the zero section. We still use
the Fourier and Legendre transformation, Re dzj = φjkdx

k and Im dzj =
dyj + ηjkdx

k. Then Gross observed that [Gr],

ΩW Ω̄W =
∏(

φjkdx
k + idyj + iηjkdx

k
)(

φjkdx
k − idyj − iηjkdxk

)
=
∏(

φjkdx
k + idyj

)(
φjkdx

k − idyj
)
.

So we still have ωnW = cinΩW Ω̄W , as if β has no effect.
If we restrict ΩW to the zero section of W , which is defined by yj = 0

for all j, then

Im eiθΩW = Im eiθ
∏(

φjkdx
k + idyj + iηjkdx

k
)

= Im eiθ
∏(

φjkdx
k + iηjkdx

k
)

= Im eiθ det (φjk + iηjk) dx1 · · · dxn.
Hence the equation Im eiθ (ω + iβ)n = 0 for β on the M side is equivalent to
the zero section of W being a special Lagrangian submanifold Im eiθΩW = 0.
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Hence under the mirror transformation, the following conditions on M,

ωnM = cinΩM Ω̄M

Im eiθ (ωM + iβM )n = 0

Im eiφΩM = 0 on the zero section.

becomes the corresponding conditions on W :

ωnW = cinΩW Ω̄W

Im eiθΩW = 0 on the zero section.

Im eiφ (ωW + iβW )n = 0.

In the following discussions, we will always use the first definition of the
B-field.

2. Transforming Ωp,q, Hp,q and Yukawa couplings.

Transformation on moduli spaces: A holomorphic isometry. Con-
tinuing from above discussions, we are going to analyze the mirror transfor-
mation from the moduli space of complexified symplectic structures on M
to the moduli space of complex structures on W . We will see that this map
is both a holomorphic map and an isometry.

To do this, we need to study this transformation on the infinitesimal level.
Since infinitesimal deformation of Kähler structures on M (resp. complex
structures on W ) is parametrized by H1 (M,T ∗

M ) (resp. H1 (W,TW ))1, we
should have a homomorphism

T : H1 (M,T ∗
M )→ H1 (W,TW ) .

Suppose we vary the T n symplectic form on M to

ωnewM = ωM + εΣξjkdxjdyk = Σ (φjk + εξjk) dxjdyk.

Here

ξjk =
∂2ξ (x)
∂xj∂xk

,

and ε is the deformation parameter. Then

Σξjkdxjdyk =
i

2
Σξjkdzjdz̄k

1Cohomology groups are interpreted as spaces of T n-invariant harmonic forms.
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represents an element in Ω0,1 (M,T ∗
M ) which parametrizes deformations of

Kähler forms. This form is harmonic, namely it defines an element in
H1 (M,T ∗

M ), if and only if Σkξjkk = 0 for all j. If we assume every member
of the family of T n-invariant Kähler forms is Calabi-Yau, then the infinitesi-
mal variation ξ satisfies a linearization of the Monge-Ampère equation. This
implies that ξ is harmonic.

Then the new complex structure on W is determined by its new complex
coordinates

dznewj = Σ (φjk + εξjk) dxk + idyj

= dzj + εΣξjkdxk

= Σ
(
δlj +

ε

2
φlkξjk

)
dzl +

ε

2
φklξjkdz̄l.

Therefore if we project the new ∂̄-operator on W to the old Ω0,1 (W ), we
have

∂̄new = ∂̄ − ε

2
Σφjkξkl

∂

∂zl
⊗ dz̄j +O

(
ε2
)
.

It gives an element

−1
2
Σφjkξkl

∂

∂zl
⊗ dz̄j ∈ Ω0,1 (W,TW ) ,

that determines the infinitesimal deformation of corresponding complex
structures on W . This element is harmonic, namely it defines an element in
H1 (W,TW ), if and only if ∂

∂xj

(
ξlkφ

jl
)

= 0. This is equivalent to ξjjk = 0.
Hence we have obtained explicitly the homomorphism

H1 (M,T ∗
M )→ H1 (W,TW )

iΣξjkdzjdz̄k → −Σξjkφkl
∂

∂zj
⊗ dz̄l.

Notice that these infinitesimal deformations are T n-invariant, ξjk = ξjk (x).
Therefore we can use ξjk’s to denote both a tensor in M and its transforma-
tion in W .

We should also include the B-fields and use the complexified symplectic
forms on M , however the formula is going to be the same (with θ replacing
φ). From this description, it is obvious that the transformation from the
moduli space of complexified symplectic forms on M to the moduli space of
complex structures on W is holomorphic.
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Next we are going to verify that this mirror map between the two moduli
spaces is an isometry. We take two such deformation directions iΣξjkdzjdz̄k

and iΣζjkdzjdz̄k, their L2-inner product is given by〈
iΣξjkdzjdz̄k, iΣζjkdzjdz̄k

〉
M

= 2V
∫
D
φjlφkmξjkζlkdvD.

While the L2-inner product of their image on the W side is given by〈
−Σξjkφkl

∂

∂zj
⊗ dz̄l,−Σζjkφkl

∂

∂zj
⊗ dz̄l

〉
W

= 2V −1

∫
D
φjpφlq

(
ζjkφ

klξpmφ
mq

)
dvD

= 2V −1

∫
D
φjlφkmξjkζlkdvD.

Here V (resp. V −1) is the volume of the special Lagrangian fiber in M (resp.
W ). Therefore up to a overall constant, this transformation between the two
moduli spaces is not just holomorphic, it is an isometry too. We conclude
that

Theorem 6. The above explicit mirror map from the moduli space of com-
plex structures on M (resp. on W ) to the moduli space of complexified
symplectic structures on W (resp. on M) is a holomorphic isometry.

Transforming differential forms. Next we transform differential forms
of higher degrees from M to W :

T : Ω0,q (M,ΛpT ∗
M )→ Ω0,q (W,ΛpTW ) .

Using the triviality of the canonical line bundle of W , this is the same as

T : Ωp,q (M)→ Ωn−p,q (W ) .

Readers are reminded that we are discussing only T n-invariant differential
forms.

First we give the motivations for this homomorphism. Since M and W
are related by fiberwise dual torus construction, the obvious transformation
for their tensors would be{

dxj → dxj = Σφjkdxk

dyj → ∂
∂yj

.
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In symplectic language, such transformation uses the real polarizations on
M and W . To transform (p, q) forms, we want to map this real polarization
to the complex polarization. The real polarization is defined by the vertical
tangent bundle V ⊂ TM and the complex polarization is defined by T 1,0

M ⊂
TM ⊗ C. So it is natural to carry V ⊗ C to T 1,0

M and its complement to
T 0,1
M . That is dzj → dyj and dz̄j → dxj on the M side. By doing the same

identification on the W side and compose with the above transformation, we
have

T : Ω0,q (M,ΛpT ∗
M )→ Ω0,q (W,ΛpTW ) ,

with

T
(
dzj

)
=

∂

∂zj

T
(
dz̄j

)
= Σφjkdz̄k.

This homomorphism obviously coincides with the previous identification
between infinitesimal deformation of symplectic structures on M and com-
plex structures on W up to a constant factor i.

Using the holomorphic volume form ΩW = dz1dz2 · · · dzn on W , we can
identify ∧pT 1,0

W with Λn−pT 1,0∗
W , so we obtain a homomorphism

T : Ωp,q (M)→ Ωn−p,q (W ) .

Explicitly if

α = Σαi1...ipj̄1...j̄qdz
i1 · · · dzipdz̄j1 · · · dz̄jq ∈ Ωp,q (M)

then

T (α) = Σαi1...ipj̄1...j̄qφ
k1j̄1 · · ·φkq j̄qdz1 · · · d̂zi1 · · · d̂zip · · · dzndz̄k1 · · · dz̄kq .

Transforming Hp,q (M) to Hn−p,q (W ). If α ∈ Ωp,q (M) is a T n-invariant
form, then we claim that the above transformation of differential forms from
M to W does commute with the ∂̄-operator and also ∂̄∗-operator. Therefore
it descends to the Hodge cohomology (also Dolbeault cohomology) level:

T : Hp,q (M)→ Hn−p,q (W ) .

To simplify our notations we assume that α is of type (1, 1) . That is

α = Σαjkdzj ∧ dz̄k.
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The form α being T n-invariant means that αjk = αjk (x) depends on the x
variables only. We have

∂̄α =
1
2
Σ
(
∂αjk
∂xp

− ∂αjp
∂xk

)
dzjdz̄pdz̄k

Their transformations are

T (α) = Σαjkdz1 · · · d̂zj · · · dzndz̄lφkl,

T
(
∂̄α

)
=

1
2
Σ
(
∂αjk
∂xp

− ∂αjp
∂xk

)
dz1 · · · d̂zj · · · dzndz̄qdz̄lφklφpq.

Now

∂̄T (α) =
1
2
Σ
(

∂

∂xq

(
αjkφ

kl
)
− ∂

∂xl

(
αjkφ

kq
))

dz1 · · · d̂zj · · · dzndz̄qdz̄l.

Using the Legendre transformation

∂

∂xq
= Σφpq

∂

∂xp
,

we have
∂

∂xq

(
αjkφ

kl
)
− ∂

∂xl

(
αjkφ

kq
)

= Σφpq
∂αjk
∂xp

φkl + φpqαjk
∂φkl

∂xp
− φpl ∂αjk

∂xp
φkq − φplαjk ∂φ

kq

∂xp

= Σ
(
∂αjk
∂xp

− ∂αjp
∂xk

)
φklφpq + αjk

(
−φpqφks∂φst

∂xp
φtl + φplφks

∂φst
∂xp

φtq
)
.

The second bracket vanishes because ∂
∂xpφst is symmetric with respect to s, t

and p. Hence we have
∂̄T (α) = T

(
∂̄α

)
.

We can also verify
∂̄∗T (α) = T

(
∂̄∗α

)
in the same way, and is left to our readers. Therefore the transformation T
descends to both the Hodge cohomology and Dolbeault cohomology. More-
over if we go the other direction, namely from W to M , then the correspond-
ing transformation is the inverse of T . That is T is an isomorphism. So we
have the following result.

Theorem 7. The above mirror transformation T identifies Ωp,q (M) (resp.
Hp,q (M)) with Ωn−p,q (W ) (resp. Hn−p,q (W )).
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Transforming Yukawa couplings. Next we compare Yukawa couplings
on these moduli spaces of complex and symplectic structures; they are first
computed by Mark Gross in [Gr]. We choose any n closed differential forms
of type (1, 1) on M : α, β, · · · , γ. We write α = Σαijdzi∧dz̄j and so on. The
Yukawa coupling in the A side on M is defined and computed as follows,

AYM (α, β, ..., γ) =
∫
M
α ∧ β ∧ · · · ∧ γ

=
∫
M
±αi1j1βi2j2 · · · γinjndvM

= V

∫
x

∑
±αi1j1βi2j2 · · · γinjndx1dx2 · · · dxn

where the summation is such that {i1, i2, ..., in} = {j1, j2, ..., jn} =
{1, 2, ..., n} . The constant V is the volume of a special Lagrangian fiber
in M .

For the Yukawa coupling in the B side on W we have the following
definition: For α′ = T (α) , β′ = T (β) , · · · , γ′ = T (γ) ∈ Ω0,1 (W,TW ), we
have

BYW
(
α′, β′, ..., γ′

)
=
∫
W

Ω ∧ δα′δβ′ ...δγ′Ω.

Since Ω = dz1dz2 · · · dzn with dzj = Σφjkdxk + idyj, we have

δαΩ = Σα1kdx
kdz2...dzn + dz1α2kdx

k...dzn + ...+ dz1dz2...αnkdx
k.

Similarly we obtain

δα′δβ′ ...δγ′Ω =
∑
±αi1j1βi2j2 · · · γinjndx1dx2 · · · dxn

and therefore, up to an overall constant, we have

AYM (α, β, ..., γ) =B YW
(
α′, β′, ..., γ′

)
.

Theorem 8. [Gr] The above mirror transformation identifies the Yukawa
coupling on the moduli spaces of complexified symplectic structures on M
(resp. on W ) with the Yukawa coupling on the moduli space of complex
structures on W (resp. on M).

Remark: The Yukawa coupling is the nth derivative of a local holomor-
phic function on the moduli space, called the prepotential F . On the A-side,
this is given by

AF (M) =
∫
M
ωn.
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On the B-side, we need to specify a holomorphic family of the holomorphic
volume form locally on the moduli space of complex structures on W . Then
the prepotential function is given by

BF (W ) =
∫
W

Ω ∧ Ω̄.

Similarly we can identify these two prepotentials by this transformation.
In fact we can express this identification of the two moduli spaces,

together with identifications of all these structures on them, namely
Ω∗,∗,H∗,∗,Y and F , as an isomorphism of two Frobenius manifolds.

3. sl2×sl2-action on cohomology and their mirror transform.

In this section we show that on the levels of differential forms and cohomology
of M , there are two commuting sl (2) Lie algebra actions. Moreover the
mirror transformation between M andW interchanges them. The first sl (2)-
action exists for all Kähler manifolds. We should note that results of this
section depend only on the T n-invariant condition but not the Calabi-Yau
condition.

This type of structure is first proposed by Gopakumar and Vafa in [GV2]
on the moduli space of flat U (1) bundles over curves in M , that is B-
cycles. They conjectured that this sl (2)×sl (2)-representation determines all
Gromov-Witten invariants in every genus in a Calabi-Yau manifold. In fact
we conjecture that such sl (2) × sl (2)-action on cohomology groups should
exist for every moduli space of A- or B-cycles (with the rank of the bundle
equals one) on mirror manifolds M and W [L1].

Hard Lefschetz sl (2)-action. Recall that the cohomology of any Kähler
manifold admits an sl (2)-action. Let us recall its construction: Let M be
a Kähler manifold with its Kähler form ωM . Wedging with ωM gives a
homomorphism LA:

LA : Ωk (M)→ Ωk+2 (M) .

Let
ΛA : Ωk+2 (M)→ Ωk (M)

be its adjoint homomorphism. Then we have the following relation,

[LA,ΛA] = HA,
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whereHA = (n− k) I is the multiplication endomorphism on Ωk (M). More-
over we have

[LA,HA] = 2LA,
[ΛA,HA] = −2ΛA.

These commutation relations determine an sl (2)-action on Ω∗ (M). We call
it the hard Lefschetz sl (2)-action.

These operations commute with ∂̄ and ∂̄∗ because ωM is a parallel
form on M . Therefore this sl (2)-action descends to the cohomology group
H∗,∗ (M).

Variation of Hodge structures sl (2)-action. Suppose M is a T n-
invariant manifold. It comes with a natural family of deformation of complex
structures whose complex coordinates are given by zj = 1

tx
j + iyj .

Recall from the standard deformation theory that a deformation of
complex structures determines a variation of Hodge structures. In-
finitesimally the variation of Hodge filtration F p (H∗ (M,C)) lies insides
F p−1 (H∗ (M,C)): If we write the infinitesimal variation of complex struc-
ture as dMt

dt ∈ H1 (M,TM ). Then the variation of Hodge structures is
determined by taking the trace of the cup product with dMt

dt which sends

Hq
(
M,Ωp

M

)
to Hq+1

(
M,Ωp−1

M

)
. We denote this homomorphism by LB .

That is
LB =

dMt

dt
: Hp,q (M)→ Hp−1,q+1 (M) .

For the T n-invariant Kähler manifold M , it turns out that LB determines
an sl (2)-action on H∗ (M,C) = ⊕Hp,q (M).

To describe this sl (2)-action explicitly, first we need to describe the ad-
joint of LB which we will call ΛB. In general if

dMt

dt
= Σaj

k̄
(z, z̄)

∂

∂zj
⊗ dz̄k

on a Kähler manifold with metric Σgjk̄dz
j ⊗ dz̄k, then the adjoint of LB on

the level of differential forms is just

ΛB = Σbk̄j
∂

∂z̄k
⊗ dzj

where bk̄j = gkl̄am
l̄
gmj̄ . Since ∂̄

(
dMt
dt

)
= 0, LB commutes with the ∂̄-operator.

However ΛB might not commutes with ∂̄ and therefore would not descend
to the level of cohomology in general.
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For the T n-invariant case, it is not difficult to check directly that dMt
dt =

t−1
2 Σ ∂

∂zj ⊗dz̄j . That is the whole family of complex structures on M is along
the same direction. We can rescale and assume

dMt

dt
= Σ

∂

∂zj
⊗ dz̄j .

That is aj
k̄
(z, z̄) = δjk. Hence

bk̄j = gkl̄am
l̄
gmj̄

= φklδmlφmj

= δjk.

That is
ΛB = Σ

∂

∂z̄j
⊗ dzj .

Moreover their commutator HB = [LB ,ΛB ] is the multiplication of
(p− q) on forms in Ωp,q (M). We have the following result:

Theorem 9. On a T n-invariant manifold M as before, if we define

LB = Σ
∂

∂zj
⊗ dz̄j : Ωp,q (M)→ Ωp−1,q+1 (M)

ΛB = Σ
∂

∂z̄j
⊗ dzj : Ωp,q (M)→ Ωp+1,q−1 (M)

HB = [LB,ΛB ] = (p− q) : Ωp,q (M)→ Ωp,q (M) .

Then they satisfy ΛB = (LB)∗ and

[LB ,ΛB ] = HB

[HB, LB ] = −2LB
[HB,ΛB ] = 2ΛB .

Hence they define an sl (2)-action on Ω∗,∗ (M). Moreover these operators
commute with ∂̄ and ∂̄∗ and descend to give an sl (2)-action on H∗ (M,C).

As a corollary we have the following.

Corollary 10. On any T n-invariant manifold M with dMt
dt as before. The

operators LB defined by the variation of Hodge structures, its adjoint opera-
tor ΛB and their commutatorHB = [LB ,ΛB ] together defines an sl (2)-action
on the cohomology of M .

We call this the variation of Hodge structures sl (2)-action, or simply
VHS sl (2)-action.



Mirror Symmetry Without Corrections 311

An sl (2) × sl (2)-action on cohomology. We already have two sl (2)-
actions on H∗ (M), we want to show that they commute with each other.

Lemma 11. On a T n-invariant manifold M as above, we have

[LA, LB ] = 0,
[LA,ΛB ] = 0.

Proof of lemma: We verify this lemma by direct calculations. Let us
consider

LALB

(
dzj1 · · · dzjpdz̄k1 · · · dz̄kq

)
= LAΣ (−1)p−s dzj1 · · · d̂zjs · · · dzjpdz̄jsdz̄k1 · · · dz̄kq

= Σ (−1)p−s (−1)p−1 φjkdz
jdzj1 · · · d̂zjs · · · dzjpdz̄kdz̄jpdz̄k1 · · · dz̄kq .

On the other hand,

LBLA

(
dzj1 · · · dzjpdz̄k1 · · · dz̄kq

)
= LBΣ (−1)p φjkdzjdzj1 · · · dzjpdz̄kdz̄k1 · · · dz̄kq .

If j is not any of the jr’s, then

LB (−1)p φjkdzjdzj1 · · · dzjpdz̄kdz̄k1 · · · dz̄kq

= Σφjkdzj1 · · · dzjpdz̄jdz̄kdzk1 · · · dzkq

+ Σ (−1)p (−1)p−s φjkdzjdzj1 · · · d̂zjs · · · dzjpdz̄jsdz̄kdz̄k1 · · · dz̄kq .

However the first term on the right hand side is zero because φjk = φkj and
dz̄jdz̄k = −dz̄kdz̄j . If j is one of the jr’s, it turns out we have the same
result. This verifies LALB = LBLA on such forms. However forms of this
type generate all differential form and therefore we have

[LA, LB ] = 0.

If we replace LB = Σ ∂
∂zj ⊗ dz̄j by ΛB = Σ ∂

∂z̄j ⊗ dzj , it is not difficult to
check that the same argument works and give us

[LA,ΛB ] = 0.

Hence we have the lemma. �
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Corollary 12. On the cohomology of M as above, the hard Lefschetz sl (2)-
action and the VHS sl (2)-action commute.

In other words, we have an sl (2)×sl (2)-action on H∗ (M,C).

Proof of corollary: From the lemma we have [LA, LB ] = 0 and [LA,ΛB ] =
0. Taking adjoint, we obtain the other commutation relations. Hence the
result. �

Remark: The hard Lefschetz sl (2)-action is a vertical action and the
one from the variation of Hodge structure is a horizontal action with respect
to the Hodge diamond in the following sense: LA (Hp,q) ⊂ Hp+1,q+1 and
LB (Hp,q) ⊂ Hp−1,q+1.

Remark: Notice that so (3, 1) = sl (2)×sl (2). Later we will show that
when M is a hyperkähler manifold, this so (3, 1)-action embeds naturally
inside the canonical hyperkähler so (4, 1)-action on its cohomology group.

Transforming the sl (2)×sl (2)-action. First we recall that the variation
of complex structures dzj = 1

t dx
j + idyj on M was carried to the variation

of symplectic structures ω = 1
t dx

jdyj on W .

Theorem 13. Let M and W be mirror T n-invariant Kähler manifolds to
each other. Then the mirror transformation T carries the hard Lefschetz
sl (2)-action on M (resp. on W ) to the variation of Hodge structure sl (2)-
action on W (resp. on M).

Proof: Let us start by comparing HA and HB. On Ωp,q (M), HB is
the multiplication by p − q. On Ωn−p,q (W ), HA is the multiplication by
n−(n− p)−q = p−q. On the other hand, T carries Ωp,q (M) to Ωn−p,q (W ).
Therefore

HAT = THB.

Next we compare LA and LB for one forms on M . For the (0, 1) form
dz̄j , we have

T
(
dz̄j

)
= Σφjkdz1 · · · dzndz̄k,

LAT
(
dz̄j

)
= 0.

The last equality follows from type considerations. On the other hand
LB

(
dz̄j

)
= 0, therefore

LAT
(
dz̄j

)
= TLB

(
dz̄j

)
.
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For the (1, 0) form dzj , we have

T
(
dzj

)
= (−1)n−j dz1 · · · d̂zj · · · dzn

LAT
(
dzj

)
= Σ (−1)n−j (−1)n+j φjkdz1 · · · dzndz̄k
= Σφjkdz1 · · · dzndz̄k.

On the other hand

LB
(
dzj

)
= dz̄j

TLB
(
dzj

)
= Σφjkdz1 · · · dzndz̄k.

That is

LAT
(
dzj

)
= TLB

(
dzj

)
.

Similarly we can argue for other forms in the same way and obtain

LAT = TLB.

We can also compare ΛA and ΛB in the same way to obtain

ΛAT = TΛB.

Hence the variation of Hodge structure sl (2)-action on M was carried to the
hard Lefschetz sl (2)-action on W . By symmetry, the two actions flip under
the mirror transformation T . �

4. Holomorphic vs symplectic automorphisms.

Induced holomorphic automorphisms. For any diffeomorphism f of
the affine manifold D, its differential df is a diffeomorphism of TD which is
linear along fibers, for simplicity we ignore the lattice Λ in this section and
write M = TD. We write fB = df : M →M explicitly as

fB
(
xj + iyj

)
= fk

(
xj
)

+ iΣ
∂fk

∂xj
yj.
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We want to know when fB is a holomorphic diffeomorphism of M . We
compute

∂

∂z̄l

(
fk + iΣ

∂fk

∂xj
yj
)

=
1
2

(
∂

∂xl
+ i

∂

∂yl

)(
fk + iΣ

∂fk

∂xj
yj
)

=
1
2

(
∂fk

∂xl
+ iΣ

∂2fk

∂xj∂xl
yj − Σ

∂fk

∂xj
δjl

)
=
i

2
Σ
∂2fk

∂xj∂xl
yj.

Therefore fB is holomorphic on M if and only if f is an affine diffeomorphism
on D. Moreover

(f ◦ g)B = fB ◦ gB ,

that is f → fB is a covariant functor.
Even though ∂̄fB does not vanish in general, its real part does. To un-

derstand what this implies, we recall that a T n-invariant Calabi-Yau mani-
fold has a natural deformation of complex structure towards its large com-
plex structure limit point. Its complex coordinates are given by dzj (t) =
t−1dxj + idyj ’s with t approaches 0. Therefore we would have

fB

(
1
t
xj + iyj

)
=

1
t
fk

(
xj
)

+ iΣ
∂fk

∂xj
yj ,

and
∂

∂z̄l (t)

(
fk + iΣ

∂fk

∂xj
yj
)

= t

(
i

2
Σ
∂2fk

∂xj∂xl
yj
)

.

Namely (1) the function fB is holomorphic at the large complex structure
limit point J∞; (2) If f is an affine diffeomorphism of D, then fB is holo-
morphic with respect to Jt for all t. We denote this functor f → fB in these
two cases as follows:

(•)B : Diff (D)→ Diff (M,J∞) ,

and

(•)B : Diff (D,affine)→ Diff (M,J) .
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Induced symplectic automorphisms. On the other hand, any diffeo-
morphism f : D → D induces a diffeomorphism f̂ : D∗ ← D∗ going the
other direction. Here D∗ ⊂ R

n∗ denote the image of the Legendre tranfor-
mation of φ. Pulling back one forms defines a symplectic automorphism on
the total space T ∗D∗ which is just M again (see below for explicit formula).
We denote this functor as

(•)A : Diff (D) → Diff (M,ω)
f → fA.

Again
(f ◦ g)A = fA ◦ gA.

That is f → fA is also a covariant functor.

What if f also preserves the affine structure on D?
The map f̂∗ : M →M is given by

f̂∗
(
f̂j (xk) , yj

)
=

(
xj ,Σ

∂f̂k
∂xj

yk

)
,

for
(
f̂j (xk) , yj

)
∈ T ∗D∗ = M.

Since M is the total space of a cotangent bundle T ∗D∗, it has a canonical
symplectic form, namely ω = Σdxj ∧ dyj , where dxj = Σφjkdxk. When the
base space D∗ is an affine manifold, then there is a degree two tensor � on
its cotangent bundle M = T ∗D∗ whose antisymmetric part is ω. It is given
by

� = Σdxj ⊗ dyj .
It is easy to see that � is well-defined on M .

Lemma 14. If f is a diffeomorphism of D, then f preserves the affine struc-
ture on D if and only if fA preserves � on M .

Proof: Consider the inverse of f as before, f̂ : D∗ → D∗. The pullback
map it induced, f̂∗ : M →M , is given by

f̂∗
(
f̂j (xk) , yj

)
=

(
xj ,Σ

∂f̂k
∂xj

yk

)
,
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for
(
f̂j (xk) , yj

)
∈ T ∗D∗ = M. We compute

f̂∗ (�) = f̂∗
(
Σdxj ⊗ dyj

)
= Σdxj ⊗ d

(
∂f̂k
∂xj

yk

)

= Σdxj ⊗
(
∂f̂k
∂xj

dyk + yk
∂2f̂k
∂xj∂xl

dxl

)

= � + Σyk
∂2f̂k
∂xj∂xl

dxj ⊗ dxl.

Therefore f̂∗ (�) = � if and only if f̂ is an affine transformation on D∗.
And this is equivalent to f being an affine transformation on D. �

We denote this functor f → fA in these two cases as follows:

(•)A : Diff (D)→ Diff (M,ω) ,

and
(•)A : Diff (D,affine)→ Diff (M,�) .

Transforming symplectic and holomorphic automorphisms. We de-
note the spaces of those automorphisms Diff (M, ∗) which are linear along
fibers of the Lagrangian fibration by Diff (M, ∗)lin. Here ∗ may stand for
J, J∞, ω or �. Notice that for any diffeomorphism f of D, its induced diffeo-
morphisms fA and fB of M are always linear along fibers of the Lagrangian
fibration π : M → D. In fact the converse is also true.

Proposition 15. (i) The map f → fB induces an isomorphism,

(•)B : Diff (D)
∼=→ Diff (M,J∞)lin ,

and similarly

(•)B : Diff (D,affine)
∼=→ Diff (M,J)lin .

(ii) Moreover the map f → fA induces an isomorphism,

(•)A : Diff (D)
∼=→ Diff (M,ω)lin ,

and similarly,

(•)A : Diff (D,affine)
∼=→ Diff (M,�)lin .
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Proof of proposition: All these homomorphisms are obviously injective.
To prove surjectivity, we let F be any diffeomorphism of M which is linear
along fibers. We can write

F =
(
F 1, ..., Fn

)
F k = fk (x) + iΣgkl (x) yl,

for some functions fk (x) and gkl (x)’s. We have

∂

∂z̄j
F k =

(
∂

∂xj
+ i

∂

∂yj

)(
fk (x) + iΣgkl (x) yl

)
=
∂fk

∂xj
− gkl δjk + i

∂gkl
∂xj

yk.

So if F preserves J∞, then

Re
∂

∂z̄j
F k = 0,

for all j and k. That is gkj = ∂fk

∂xj , or equivalently F = fB. If F preserves J ,
additionally we have

0 =
∂gkl
∂xj

=
∂

∂xj
∂fk

∂xl
.

That is f is an affine function of xj’s. This proves part (i). The proof for
the second part is similar. Hence we have the proposition. �

Remark: Paul Yang proved that every biholomorphism of M = TD
with D convex is induced from an affine transformation on D, namely the
assumption on the function F being linear along fibers is automatic. That
is Diff (M,J) ∼= Diff (M,J)lin ∼= Diff (D,affine).

Next we are going to show that the mirror transformation interchanges
these two type of automorphisms. Recall that W is the moduli space of
special Lagrangian tori in M together with flat U (1) connections on them.
That is the moduli space of A-cycles (C,L) with C a topological torus. Given
any diffeomorphism F : M →M which is linear along fibers of π, F carries
a special Lagrangian torus C in M , which is a fiber to π, to another special
Lagrangian torus in M . The flat U (1) connection over C will be carried
along under F . Therefore F induces a diffeomorphism of W , this is the
mirror transformation of F and we call it F̂ or T (F ).
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Theorem 16. For T n-invariant Calabi-Yau mirror manifoldsM and W , the
above mirror transformation T induces isomorphisms : (i)

T : Diff (M,J)lin
∼=→ Diff (W,�)lin ,

T : Diff (M,�)lin
∼=→ Diff (W,J)lin .

and (ii)

T : Diff (M,J∞)lin
∼=→ Diff (W,ω)lin ,

T : Diff (M,ω)lin
∼=→ Diff (W,J∞)lin .

Moreover the composition of two mirror transformations is the identity.

Proof of theorem: Given any F ∈ Diff (M,J)lin there is a unique dif-
feomorphism f ∈ Diff (D,affine) such that F = fB. Let f̂ be the inverse
of f which we consider as an affine diffeomorphism of D∗. It is not difficult
to verify that

F̂ =
(
f̂
)
A
.

In particular F̂ ∈ Diff (W,ω)lin. Clearly

̂̂
F = F.

Other isomorphisms can be verified in the same way. Hence we have the
theorem. �

Isometries of M . Recall that a diffeomorphism of a Kähler manifold pre-
serving both the complex structure and the symplectic structure is an isom-
etry. Suppose F is such an isometry of a T n-invariant Calabi-Yau man-
ifold M, and we assume that F is also linear along fibers of the special
Lagrangian fibration. Then it induces a diffeomorphism f of D which pre-
serves gD = Σφjkdxj ⊗ dxk. That is f ∈ Diff (D, gD). In this case we have
F = fA = fB. Hence we have

Diff (D, gD) = Diff (M,g)lin
= Diff (M,J)lin ∩Diff (M,ω)lin .

By the above theorem, this implies that the mirror transform F̂ lies inside,

F̂ ∈ Diff (W,�)lin ∩Diff (W,J∞)lin .
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In fact one can also show that this common intersection is simply
Diff (W,g)lin. A different way to see this is to observe that the Legen-
dre transformation from D to D∗ preserves the corresponding metrics gD
and gD∗ because

Σφjkdxj ⊗ dxk
= Σφjk

(
φjldx

l
)
⊗ (φkmdxm)

= Σδkl φkmdx
l ⊗ dxm

= Σφjkdxj ⊗ dxk.

Therefore if f ∈ Diff (D, gD) then f̂ ∈ Diff (D∗, gD∗). Hence F̂ is an
isometry of W,

F̂ ∈ Diff (W,g) .

Thus we have proved the following theorem.

Theorem 17. For T n-invariant Calabi-Yau mirror manifoldsM andW , the
mirror transformation induces an isomorphism,

T : Diff (M,gM )lin
∼=→ Diff (W,gW )lin .

Moreover the composition of two mirror transformations is the identity.

5. A- and B-connections.

Mirror transformations of other A- and B-cycles can be interpreted as gen-
eralization of the classical duality between Blaschke connection and its con-
jugate connection via the Legendre transformation. We first recall these
classical geometries.

Blaschke connection and its conjugate connection. On a special
affine manifold D, φ is a section of a trivial real line bundle over D. For
simplicity we assume D ⊂ R

n and φ is a convex function on D. If G ⊂ D×R

denote the graph of φ. Using the affine structure on D×R one can define an
affine normal ν which is a transversal vector field along G (see for example
[CY]): If we parallel translate the tangent plane of G, its intersection with
G determines a small convex domain. Its center of gravity then traces out a
curve in the space whose initial direction is the affine normal direction.

Using ν, we can decompose the restriction of the standard affine con-
nection on R

n × R to G into tangent directions and normal direction. So
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we obtain an induced torsion free connection on G, called the Blaschke con-
nection [Bl], or the B-connection, B∇. The convexity of φ implies that the
second fundamental form is a positive definite symmetric two tensor gG on
G. Its Levi-Civita connection is denoted as ∇LC . We define a conjugate
connection A∇ by

XgG (Y,Z) = gG (B∇XY,Z) + gG (Y,A∇XZ) .

We call it an A-connection. The two connections A∇ and B∇ on D induce
torsion free connections on M = TD by pullback. We continue to call them
the A-connection A∇ and the B-connection B∇.

When the function φ satisfying the real Monge-Ampère equation, then
G is a parabolic affine sphere in R

n×R. Namely the affine normal ν of G in
R
n ×R is the unit vector along the last direction, that is the fiber direction

of the real line bundle over D. By abuse of notations, we identify G with
D via the projection to the first factor in D × R. These two torsion free
connections A∇ and B∇ on D are flat in this case. In term of the affine
coordinates xj ’s on D, the B-connection B∇ is just given by the exterior
differentiation d. The A-connection is

A∇ = d+ Σφjkφklm.

One can check directly that it has zero curvature. We will see later that
this also follows from the Legendre transformation (or the mirror transfor-
mation).

A- and B-connections on T n-invariant Calabi-Yau manifolds. From
above, we have two torsion free flat connections A∇ and B∇ on M = TD/Λ.
Recall that the complex structure on M is given zj = xj + iyj and its
symplectic form is ωM = Σφjk (x) dxj ∧ dxk. Since B∇ is the same as the
exterior differentiation on the affine coordinates xj’s on D, it preserves the
complex structure on M . In fact A∇ preserves the symplectic structure on
M .

Proposition 18. Let M = TD/Λ be a T n-invariant Calabi-Yau manifold
as before. Then its A-connection A∇ and B-connection B∇ satisfies

A∇ωM = 0,

B∇J = 0.
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Proof of proposition: We have seen that B∇J = 0. From previous dis-
cussions, A� is a torsion free flat connection on M . To check that it pre-
serves the symplectic form, we recall that ωM = Σφjk (x) dxj ∧ dyk and
A� = d+Γjlmdx

m where Γjlm = φjkφklm. Note that A�
(
dyk

)
= 0 because A�

is induced from the base D. Therefore

A�ωM = Σφjkldxl ⊗
(
dxj ∧ dyk

)
− ΣφjkΓjpqdx

q ⊗
(
dxp ∧ dyk

)
= Σφjkldxl ⊗

(
dxj ∧ dyk

)
− Σφjkφjlφlpqdxq ⊗

(
dxp ∧ dyk

)
= Σφjkldxl ⊗

(
dxj ∧ dyk

)
− Σφkpqdxq ⊗

(
dxp ∧ dyk

)
= 0.

We have use the symmetry of φjkl with respect to its indices. �

In section 6, we will see that the mirror transformation of flat connection
A� (resp. B�) on M is the flat connection B� (resp. A�) on the zero
section in W and vice versa. In particular the Levi-Civita connection �LC =
(A� + B�) /2 is preserved under the mirror transformation. In fact this is
a special case of the mirror transformation between A- and B-cycles on M
and W .

6. Transformation of A- and B-cycles.

In this section we discuss how certain A-cycles on M will transform to B-
cycles on W . This materials is largely borrowed from [LYZ].

Transforming A- and B-connections. Recall the A-connection A� on
M is d + ΣΓjkldx

l, where Γjkl = Σφjmφmkl, in the affine coordinate system.
Let us consider M and W with their dual special Lagrangian tori fibrations.
The restriction of A� on each fiber in M is trivial because dxl’s vanish along
fiber directions. Since the dual torus T ∗ parametrizes flat U (1) connections
on T , the restriction of A� corresponds to the origin of the corresponding
dual torus. Putting all fibers on M together, we obtain the zero section in
W . This is the Fourier transformation.

However this is not the end of the story, the second fundamental form
of A� on each fiber in M is non-trivial. This induces a connection on the
zero section in W . To determine this connection, we need to perform the
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Legendre transformation on M ,

A∇ ∂

∂xj

(
∂
∂xk

)
= Γljk

∂

∂xl

∇ ∂

∂xj

(
Σφkq ∂

∂xq

)
= Σφlmφmjk

∂

∂xl

Σφkqj ∂
∂xq

+ Σφjpφkq∇ ∂
∂xp

(
∂
∂xq

)
= Σφmjk

∂

∂xm

Σφjpφkq∇ ∂
∂xp

(
∂
∂xq

)
= 0.

That is
� ∂

∂xp

(
∂
∂xq

)
= 0,

or equivalently the induced connection on the zero section of W is d in the
affine coordinate system of W . This is exactly the B-connection B�.

Conversely if we start with the B-connection B� on the whole manifold
M , its mirror transformation will be the A-connection A� on the zero section
of W . In particular we recover the classical duality between the Blaschke
connection and its conjugate connection for the parabolic affine sphere. Such
duality is in fact more interesting for other affine hypersurfaces (see for
example [Lo]). Summarizing we have the following theorem.

Theorem 19. For a T n-invariant manifold M , the above mirror transfor-
mation take the A-connection (resp. B-connection) on the whole space M
to the B-connection (resp. A-connection) on the zero section of W .

Transforming special Lagrangian sections. Now we are going to gen-
eralize the previous picture to duality between other supersymmetric cycles.
Let (C,E) be an A-cycle in M such that C is a section of the special La-
grangian fibration π : M → D.

Note that C = {y = y (x)} ⊂M being Lagrangian with respect to ωM =
Σφjkdxjdyk is equivalent to

∂

∂xj
(ylφlk) =

∂

∂xk
(φljyl).

Therefore locally there is a function f on D such that

yj = Σφjk
∂f

∂xk
.



Mirror Symmetry Without Corrections 323

Next we want to understand the special condition on C. Namely

Im eiθΩM |C = 0.

Recall that the holomorphic volume form on M equals ΩM = dz1 ∧ dz2 ∧
... ∧ dzn.

On the Lagrangian section C we have

dyj = d

(
Σφjk

∂f

∂xk

)
= Σφjl

(
∂2f

∂xl∂xk
− φpqφlkp ∂f

∂xq

)
dxk

= Σφjl AHess (f)lk dx
k.

Here AHess (f) denote the Hessian of f with respect to the restriction of
the torsion free A-connection A� and we use the affine coordinate on D to
parametrize the section C. We have

dzj = dxj + idyj

= Σ
(
δjk + iφjl

(
∂2f

∂xl∂xk
− φpqφlkp ∂f

∂xq

))
dxk,

and

ΩM |C = det
(
I + ig−1

AHess (f)
)
dx1 ∧ ... ∧ dxn

= det (g)−1 det (g + iAHess (f)) dx1 ∧ ... ∧ dxn,

Hence C is a special Lagrangian section if and only if

Im eiθ det (g + iAHess (f)) = 0.

Now we perform the fiberwise Fourier transformation on M . On each
torus fiber T , the special Lagrangian section C determines a point y =(
y1, ..., yn

)
on it, and therefore a flat U (1) connection Dy on its dual torus

T ∗. Explicitly, we have
Dy = d+ iΣyjdyj.

By putting all these fibers together, we obtain a U (1) connection �A on
the whole W ,

�A = d+ iΣyjdyj.
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Its curvature two form is given by,

FA = (�A)2 = Σi
∂yj

∂xk
dxk ∧ dyj.

The (2, 0) component of the curvature equals

F 2,0
A =

1
2
Σ
(
∂yk

∂xj
− ∂yj

∂xk

)
dzj ∧ dzk.

Therefore �A gives a holomorphic line bundle on W if and only if

∂yk

∂xj
=
∂yj

∂xk
,

for all j, k. This is equivalent to the existence of a function f = f (xj) on D
such that

yj =
∂f

∂xj
.

Therefore we can rewrite the curvature tensor as

FA = iΣBHess (f)jk dxk ∧ dyj.

Here BHess (f) is the Hessian of f with respect to the B-connection B� on
W .

To compare with the M side, we use the Legendre transformation to
write

yj = Σφjk
∂f

∂xk
.

Then BHess (f) on W becomes AHess (f) on M. Therefore the cycle C ⊂M
being a special Lagrangian is equivalent to

F 2,0
A = 0,

Im eiθ (ωW + FA)n = 0.

Next we bring back the flat U (1) connection on E over C to the picture.
We still use the affine coordinates on D to parametrize C because it is a
section. We can express the flat connection on C as

d+ ide = d+ iΣ
∂e

∂xk
dxk
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for some function e = e (x) on C. Now this connection will be added to the
previous one on W as the second fundamental form along fibers. We still
call this connection �A. We have

�A = d+ iΣyjdyj + ide

= d+ iΣφjk
∂f

∂xk
dyj + iΣ

∂e

∂xj
dxj.

It is easy to see that the curvature form of this new connection is the same
as the old one. In particular the transformed connection �A on W continues
to satisfy the deformed Hermitian-Yang-Mills equations.

F 0,2
A = 0,

Im eiθ (ωW + FA)m = 0,

Therefore the mirror transformation of the A-cycle (C,E) on M produces a
B-cycle on W . The same approach work for higher rank unitary bundle over
the section C. This transformation is explained with more details in [LYZ].

Transforming graded tangent spaces. Recall from [L1] that the tan-
gent space of the moduli space of A-cycle (C,E) in M is the space of complex
harmonic one form with valued in the adjoint bundle. That is

T (AM (M)) = H1 (C, ad (E))⊗ C.

And the tangent space of the moduli space of B-cycle (C,E) = (W,E) in
W is the space of deformed ∂̄-harmonic one form with valued in the adjoint
bundle.

T (BM (W )) = QH1 (C,End (E)) .

A form B ∈ Ω0,q (C,End (E)) is called a deformed ∂̄-harmonic form if it
satisfies the following deformation of the harmonic form equations:

∂̄B = 0,

Im eiθ (ω + F )m−q ∧ ∂B = 0.

Here m is the complex dimension of C.
The graded tangent spaces are given by

T graded (AM (M)) = ⊕kHk (C, ad (E))⊗ C,

T graded (BM (W )) = ⊕kQHk (C,End (E)) .
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Now we identify these two spaces when C ⊂ M is a special Lagrangian
section. It is easy to see that the linearization of the above transformation
of A-cycles on M to B-cycles on W is the following homomorphism

Ω1 (C, ad (E))⊗ C→ Ω0,1 (W,End (E))

dxj → Σ
i

2
φjkdz̄k.

We extend that homomorphism to higher degree forms, in the obvious way,

Ωq (C, ad (E))⊗ C→ Ω0,q (W,End (E)) .

It is verified in [LYZ] that the harmonic form equation on
Ωq (C, ad (E))⊗C is transformed to the deformed harmonic form equation on
Ω0,q (W,End (E)) . Namely the image of Hq (C, ad (E))⊗C under the above
homomorphism is inside QHq (W,End (E)). In fact the image is given pre-
cisely by those forms which are invariant along fiber directions.

As a corollary of this identification, we can also see that the mirror
transformation between moduli space of cycles, AM (M) →B M (W ), is a
holomorphic map.

Identifying correlation functions. The correlation functions on these
moduli spaces of cycles are certain n-forms on them (see for example [L1]
for the intrinsic definition). On the M side, it is given by

AΩ (C,E) (α1, ..., αn) =
∫
C
TrE [α1 ∧ ... ∧ αn]sym ,

for αj ∈ Ω1 (C, ad (E))⊗ C at a A-cycle (C,E). On the W side, it is given
by

BΩ (C,E) (β1, ..., βn) =
∫
W

ΩWTrE [β1 ∧ · · · ∧ βn]sym ,

for βj ∈ Ω0,1 (W,End (E)) at a B-cycle (C,E) = (W,E). If C �= W, then
the formula is more complicated (see [L1]).

One can verify directly that the n-form BΩ on the W side is pullback
to AΩ on the M side under the above mirror transformation (see [LYZ]
for details). This verifies Vafa conjecture for rank one bundles in the Tn-
invariant Calabi-Yau case. His conjecture says that the moduli spaces of A-
and B-cycles, together with their correlation functions, on mirror manifolds
should be identified. In general this identification should require instanton
corrections.
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7. T n-invariant hyperkähler manifolds.

A Riemannian manifold M of dimension 4n with holonomy group equals
Sp (n) ⊂ SU (2n) is called a hyperkähler manifold.

T n-invariant hyperkähler manifolds. Let D be an affine manifold with
local coordinates xj’s and φ (x) be a solution to the real Monge-Ampère
equation det

(
∂2φ

∂xj∂xk

)
= 1. Then both its tangent bundle TD and cotangent

bundle T ∗D are naturally T n-invariant Calabi-Yau manifolds. Moreover
they are mirror to each other. If we denote the local coordinate of TD as xj

and yj’s. Then the complex structure of TD is determined by dxj + idyj ’s
as being (1, 0) forms and we call this complex structure J . Its symplectic
form is given by ω = Σφjk (x) dxj ∧ dyk and its Ricci flat metric is g =
Σφjk

(
dxj ⊗ dxk + dyj ⊗ dyk) .

Now we consider its cotangent bundle M = T ∗ (TD) and denote the dual
coordinates for xj and yj as uj and vj respectively. Therefore the induced
metric on M is given by

gM = Σφjk
(
dxj ⊗ dxk + dyj ⊗ dyk

)
+ Σφjk (duj ⊗ duk + dvj ⊗ dvk) ,

and its induced complex structure J is determined by dxj + idyj ’s and duj−
idvj ’s as being (1, 0) forms. Its corresponding symplectic form ωJ is given
by

ωJ = Σφjkdxj ∧ dyk − Σφjkduj ∧ dvk.
Since M is the cotangent bundle of a complex manifold, it has a natural

holomorphic symplectic form which we denote as ηJ and it is given by

ηJ = Σ
(
dxj + idyj

) ∧ (duj − idvj) .

Notice that the projection π : M → TD is a holomorphic Lagrangian fibra-
tion with respect to ηJ .

We are going to see that M carries a natural hyperkähler structure. If
we denote the real and imaginary part of ηJ by ωI and ωK respectively, then
they are both real symplectic forms on M . Explicitly we have

ωI = Re ηJ = Σ
(
dxj ∧ duj + dyj ∧ dvj

)
,

ωK = Im ηJ = Σ
(
dxj ∧ dvj − dyj ∧ duj

)
.

They determine almost complex structures I and K on M respectively. In
fact these are both integrable complex structures. If we use the following
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change of variables, duj = φjkduk and dvj = φjkdvk then the complex
structure of I is determined by dxj + iduj and dyj + idvj as being (1, 0)
forms. Similarly the complex structure of K is determined by dxj + idvj

and dyj − iduj as being (1, 0) forms. It follows from direct calculations that
both (M,g, I, ωI ) and (M,g,K, ωK ) are Calabi-Yau structures on M . We
can easily verify the following lemma.

Lemma 20. I2 = J2 = K2 = IJK = −id. Namely (M,g) is a hyperkähler
manifold.

Remark: We call such M a T n-invariant hyperkahler manifold. Instead of
T ∗ (TD) , we can also consider T (T ∗D) and it also has a natural hyperkähler
structure constructed in a similar way. In fact these two are isomorphic
hyperkähler manifolds.

An so (4, 1)-action on cohomology. For a hyperkähler manifold M ,
there is a S2-family of Kähler structures ωt on it: For any t = (a, b, c) ∈ R

3

with a2+b2+c2 = 1, ωt = aωI+bωJ+cωK is a Kähler metric on M . For each
ωt, there is a corresponding hard Lefschetz sl (2)-action on its cohomology
group H∗ (M,R). It is showed by Verbitsky in [Ve] that this S2 family of
sl (2)-actions on H∗ (M,R) in fact determines an so (4, 1)-action on coho-
mology. It is interesting to compare the so (3, 1)-action from Gopakumar-
Vafa conjecture with this so (4, 1)-action when M admits a holomorphic
Lagrangian fibration.

Note that sl (2) = so (2, 1) and sl (2)×sl (2) = so (3, 1) . Therefore the
cohomology group of Kähler manifolds admit so (2, 1)-actions, the cohomol-
ogy of T n-invariant Calabi-Yau manifolds admit so (3, 1)-actions and the co-
homology of hyperkähler manifolds admit so (4, 1)-actions. We are going to
show that the so (3, 1)-action we constructed in the T n-invariant Calabi-Yau
case is naturally embedded inside this so (4, 1)-action for hyperkähler man-
ifolds. This is analogous to the statement that the hard Lefschetz so (2, 1)-
action for Kähler manifolds is part of the so (3, 1)-action for Calabi-Yau
manifolds, at least in the T n-invariant case.

Embedding sl (2) × sl (2) inside hyperkähler so (4, 1)-action. As we
discussed before, besides the hard Lefschetz sl (2)-action on Ω∗,∗ (M), the
other sl (2)-action comes from a variation of complex structures on M .
For our T n-invariant hyperkähler manifold M as above with the com-
plex structure I, the Kähler structure ωI and special Lagrangian fibration
π : M → TD, the second sl (2)-action on M can be expressed using ωJ and
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ωK . That is we have a natural embedding of the sl (2)×sl (2)-action into
the hyperkähler so (4, 1)-action on M .

To verify this, we recall that the operator LB in the sl (2)-action coming
from the VHS will send dxj+iduj (we write duj = φjkduk) to dxj−iduj . On
the other hand, for the operators LJ ,ΛK in the hyperkähler so (4, 1)-action,
we have

[LJ ,ΛK ]
(
dxj + iduj

)
= −ΛKLJ

(
dxj + iduj

)
= −ΛK

(
dxj + iduj

) (
Σφkldxkdyl − φkldukdvl

)
= −

(
φkjduk − idxk

)
= i

(
dxj − iduj) ,

because ωK = Σ
(
dxjdvj − dyjduj

)
. The same holds true for all other forms.

Thus we have the following theorem.

Theorem 21. For any T n-invariant hyperkähler manifold M , its Calabi-
Yau so (3, 1) = sl (2) × sl (2)-action on the cohomology of M embeds natu-
rally inside the hyperkähler so (4, 1)-action.
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