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Canonical metrics on stable vector bundles

Xiaowei Wang

This paper is the sequel to [W], we prove that balanced metrics ob-
tained in [W] on a Mumford stable vector bundle over a projective
manifold converge to a solution of the weakly Hermitian-Einstein
equation.

1. Introduction.

The problem of constructing moduli space of vector bundles over a projec-
tive manifold has attracted many mathematicians for decades. In mid 60’s
Mumford first constructed the moduli space of vector bundles over algebraic
curves via his celebrated GIT machinery. Later, in early 80’s Atiyah and
Bott found an infinite dimensional symplectic quotient description of this
moduli space. Since then, we have learned quiet a lot from the work of
Kirwan, Guillemin and Sternberg in 80’s that finite dimensional GIT quo-
tient is equivalent to symplectic quotient. A question that is remaining is
how Atiyah-Bott’s infinite dimensional symplectic quotient is approximated
by Mumford’s finite dimensional GIT quotient. This is the question we are
studying in this paper.

To state our main result, let (X,OX (1)) be a projective manifold polar-
ized by an ample line bundle OX(1) and E be an irreducible holomorphic
vector bundle of rank r on X. Then by Kodaira embedding theorem, we
know that for k sufficient large a basis {Sα} of dimH0(X, E(k) := E⊗OX(k))
will give rise to an embedding

E(k) = i∗Ur −−−−→ Ur⏐⏐� ⏐⏐�
X

i−−−−→ G(r,N)

where N := dimH0(X, E(k)) and Ur is the dual of universal subbundle. In
[W], we have shown

Theorem 1.1. E is Gieseker stable if and only if there is a number k0

such that for k > k0, the kth-embedding given as above can be moved to
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a balanced place, i.e. there is a g ∈ SL(N) which is unique up to left
translation by SU(N) such that:

1
V

∫
g·X

z(z∗z)−1z∗dV =
r

N
IN×N (1)

where z := zN×r(x) is a N by r matrix representing a point in G(r,N) IN×N
is the identity matrix and V is the volume of X. We call the equation above
the balance equation.

We have seen in [W] that the balance equation is a moment map equation.
To relate it to Atiyah-Bott’s moment map description of Hermitian-Einstein
equation, we need a local version of above theorem. First, let us introduce
Hermitian metrics h and H on OX(1) and E respectively, and fix the Kähler
form on X to be ω :=

√−1
2π Ric(h). Let V denote the volume of (X,ω).

Suppose {S1, · · · , SN} is an orthonormal basis of H0(E(k)) with respect to
the induced L2-metric, then the Bergman kernel Bk of E(k) is defined by the
following:

Bk(x) :=
N∑
α=1

〈·, Sα(x)〉Sα(x) : Ex → Ex.

Clearly, it is independent of the choice of orthonormal basis. Now the local
form of Theorem 1.1 can be stated as following

Corollary 1.1. E is Gieseker stable if and only if there is a number k0 such

that for any k > k0 , we can find a metric H(k) which we will call the balanced
metric on E(k), such that the Bergman Kernel satisfies the equation

Bk ≡ χ(k)
V r
· IE ,

where IE is the identity bundle morphism and χ(k) is the Hilbert polynomial
of E with respect to the polarization OX(1).

From the above corollary we deduce that if E is Gieseker stable then for
each k >> 1 there is a balanced metric H(k) on E(k). Hence we will have
a sequence of Hermitian metric Hk := H(k) ⊗ h−k on E . The main result of
this paper is to answer the second question of Donaldson in [D1] by proving
the following:

Theorem 1.2. Suppose E is Gieseker stable. If for k → ∞ we have Hk →
H∞ in C∞, then metric H∞ solves the following weakly Hermitian-Einstein
equation.
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√−1
2π

∧
F(E,H∞) +

S(ω)
2
· IE =

(
deg(E)
V r

+
s̄

2

)
· IE (2)

where
∧
F(E,H∞) is the contraction of curvature form of E with respect to ω,

S(ω) is the scalar curvature of X and s̄ := 1
V

∫
X S

ωn

n! .

Conversely, suppose there is a Hermitian metric H∞ on E solving (2)
then Hk → H∞ in Cr norm for any r.

It follows from Proposition IV.2.4 in [K] that the equation (2) is equiv-
alent to the original Hermitian-Einstein equation up to a conformal change
of the metric on E . By [UY], we deduce that if E is irreducible then the
solvability of equation (2) is equivalent to E being Mumford stable.

Remark 1.1. As we have seen from [AB] and [W] that both equation (1)
and (2) are moment map equations, if we combine this with our knowledge
on Bergman kernel expansion(see Appendix)then we see that Theorem 1.2
and Corollary 1.1 precisely describe how finite dimensional moment maps ap-
proximate the infinite dimensional one. Since it is well known that there are
holomorphic vector bundles which are Gieseker stable but Mumford unsta-
ble(see for example [W1] and [OSS]), Hk do NOT converge in general. This
suggests that we probably should not expect the convergence of balanced
metrics in [D2] for projective embedding of manifolds in general either.

The paper is organized as following. In section 2, we first put the problem
into the framework of moment map geometry. In particular, we present two
equivalent approaches, one is infinite dimensional and the other is finite
dimensional. Both approaches rely on the analytical estimate presented
in section 3, which is essentially due to Donaldson. In section 4, we first
construct approximating solutions to the balance equation (1) and then find
the genuine solutions nearby, thus prove the main result.

Acknowledgements: The author is very grateful to Jun Li and Conan
Leung for many helpful suggestions, to Richard Thomas and Xiaonan Ma
for encouraging him to publish this paper. Also the author want to thank
the referee for his careful reading of the manuscript and offering many very
helpful suggestion. Finally, this paper was a part of author’s Ph.D. thesis,
he wants to thank his thesis advisor S.-T.Yau for his guidance and encour-
agement over the years.
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2. Moment map geometry.

In this section we will present the moment map description of the equations
involved in Theorem 1.1 and Theorem 1.2. There are two different way of
doing this, one is infinite dimensional which we follow Donaldson’s work
[D1] closely and the other is finite dimensional which is along the line of
description in [W]. Although they are equivalent, each one has its own
advantage the first approach make the quantity we need to estimate more
transparent while the second one is simpler and insensible to the singularities
of E .

2.1. Infinite dimensional picture.

Let us start from a simple example which we will use later.

Example 2.1. Let (V, J,ΩV) be a symplectic vector space with complex
structure J such that Ω is J-compatible, that is ΩV(J ·, J ·) = ΩV(·, ·) and
〈·, ·〉

V
:= ΩV(J ·, ·) − √−1ΩV(·, ·) be the corresponding Hermitian metric.

Now let us consider

V
N :=

N∏
α=1

V = V× · · · × V

with the induced Hermitian inner product given as following

〈S, T 〉
VN :=

N∑
α=1

〈Sα, Tα〉V

where S := (S1, · · · , SN ), T := (T1, · · · , TN ) ∈ V
N . There is an natural

U(N) action on V
N given by

A · S := A · (S1, · · · , SN ) = (σ1, · · · , σN )

where σα = AβαSβ. It is a Hamiltonian action with respect to the symplectic
form given as the following

ΩVN (S, T ) :=
N∑
α=1

ΩV(Sα, Tα).

Claim. The moment map of this Hamiltonian action is given by the induced
infinitesimal action is given by

ν(S) =
√−1

2
〈Sα, Sβ〉V,
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In particular, if we use SU(N) action we have the moment map is given by

ν(S) =
√−1

2

(
〈Sα, Sβ〉V −

∑N
α=1 ‖Sα‖2V
N

δαβ

)
,

Proof. We will just do the case A ∈ u(N). A induces an infinitesimal action

Ã =
d

dt

∣∣∣∣
t=0

exp(tA) · (S1, · · · , SN ) = (σ1, · · · , σN )

where σα = AβαSβ. Let S(t) := (S1(t), · · · , SN (t)) be a curve in V
N such

that S(0) = S0 ∈ V
N ,

X :=
d

dt

∣∣∣∣
t=0

(S1(t), · · · , SN (t)) = (Ṡ1, · · · , ṠN )

〈X · ν(S), A〉u(N) =−
∑
α,β

√−1
2

X〈Sα, Sβ〉V ·Aαβ

=−
∑
α,β

√−1
2

(〈Ṡα, Sβ〉V + 〈Sα, Ṡβ〉V) ·Aαβ

=−
√−1

2

∑
α,β

(〈Ṡα, ĀαβSβ〉V + 〈AαβSα, Ṡβ〉V)

=−
√−1

2

∑
α,β

(−〈Ṡα, AβαSβ〉V + 〈Ṡβ, AαβSα〉V)

=−
√−1

2

∑
α

(−〈Ṡα, σα〉V + 〈Ṡα, σα〉V)

=ΩVN (X, Ã)

(3)

A simple application of above setting is that the moment map for the

standard U(N) action on (CN ,
√−1

2 dzλ ∧ dz̄λ) is given by

ν(z) =
√−1

2
zz∗

Consider the family version of the example above. Let E → X be a rank
r Hermitian vector bundle over X. Then the natural symplectic form on the
space of sections Γ(E) is

Ω(S1, S2) := Re(JS1, S2) = Re
∫
X
〈JS1, S2〉ω

n

n!
(4)
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and the moment map for the action of the U(r)-gauge group G on Γ(E) is
given by

µ(S) =
i

2
SS∗ωn

n!
. (5)

Now let us bring in the holomorphic structures on E . Giving E a holo-
morphic structure is equivalent to defining a ∂̄-operator,

∂̄ : Ω0(E) −→ Ω0,1(E), ∂̄(f · S) = ∂̄f · S + f · ∂̄S,

whose natural prolongation satisfies ∂̄2 = 0. Two ∂̄-operators give isomor-
phic holomorphic structures if and only if they are conjugate by an element
in the gauge group G. We say that a connection A is compatible with a
holomorphic structure if the (0,1) component of the covariant derivative

dA = ∂A + ∂̄A : Ω0(E) −→ Ω1(E) = Ω1,0(E)⊕ Ω0,1(E),

is the ∂̄-operator above. In particular, there is a unique connection com-
patible with both holomorphic and Hermitian structures. If H = 〈·, ·〉1,
K = 〈·, ·〉2 are two metrics with

〈S, T 〉2 = 〈hS, T 〉1
for an element h = H−1K ∈ Γ(End(E)) then the corresponding connections
are related in the following way

∂̄2 = ∂̄1,

∂2 = h−1 ◦ ∂1 ◦ h = ∂1 + h−1∂h,

and the curvature forms F1, F2 ∈ Ω1,1(End(E)) are related by the following
equation

F2 = F1 + ∂̄1(h−1∂h).

Let A denote the space of connections on E . Then any unitary connection
in the subset

A(1,1) = {A ∈ A|F (0,2)
A = F

(2,0)
A = 0} ⊂ A

defines a holomorphic structure on E. The complex gauge group GC acts on
A(1,1) by

∂̄g(A) = g ◦ ∂̄A ◦ g−1,

∂g(A) = (g∗)−1 ◦ ∂A ◦ g∗, for A ∈ A(1,1), g ∈ GC,
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extending the action of the unitary gauge group

G = {g ∈ GC|h(g) := g∗g = 1}.

Notice that A(1,1) has a natural symplectic structure (c.f.[AB])

Ω̃(α1, α2) :=
∫
X
Tr(α1 ∧ α2)

ωn−1

(n − 1)!
, (6)

and the moment map for the action of gauge group G is given by

µ̃(A) = FA · ω
n

n!
. (7)

Our main interest is exactly the relation between these µ and µ̃. Now since
the action of the group G on Γ(E) does not preserve the set of holomor-
phic sections for a fixed connection A ∈ A(1,1), it is natural to consider the
diagonal action of G on the space

H :=

N︷ ︸︸ ︷
Γ(E(k)) × · · · × Γ(E(k))×A(1,1)

where N =dimH0(X, E(k)).1 Let H0 be the subspace of H consisting of

(S1, · · · , SN ;A)

such that ∂̄ASα = 0,∀α and Sα’s are linearly independent. Clearly G action
preserves H0, since ∂̄g(A)gSα = g ◦ ∂̄A ◦ g−1(gSα) = g(∂̄ASα) = 0. So the
GC-orbit are equivalence classes of “holomorphic vector bundles and a basis
of holomorphic sections”. Now if we look at the diagram

H0 ↪→ Γ(E(k))× · · · × Γ(E(k)) ×A(1,1) π2−−−−→ A(1,1)⏐⏐�π1

Γ(E(k)) × · · · × Γ(E(k))
then we will see that the restriction of π1 to H0 is injective for sufficient
large k at least in a neighborhood of GC ·A ⊂ A1,1(see the footnote). So we

1In general N depends on A. It follows from upper semi-continuity theorem that
for k >> 1 there is an open neighborhood UA of GC-orbit of A in A1,1 on which
Hi(X, E(k)) = 0, ∀i > 0 and dimH0(X, E(k)) is constant. This is already enough
for our later discussion, since we only care one GC-orbit.
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can pull back Kähler form Ω on Γ(E(k)) to H0. The moment map for the G
action with respect Ω is given by

µG(s1, · · · , sN ;A) =
√−1

2

∑
α

SαS
∗
α

ωn

n!
, (8)

where S∗
α := 〈·, Sα〉. We will drop the term ωn

n! under the natural pairing
between top forms and functions on X.

Notice that although both µ̃ and µG are EndE valued, µ̃ depends only
on the connection. So we have to divide out the freedom of choice of basis.
That is precisely another symmetry on H0, i.e. the action of SU(N) on the
basis (S1, · · · , SN ) and the moment map for this action is given by

µSU(S1, · · · , SN ;A) =
√−1

2
((Sα, Sβ)−

∑ ‖Sα‖2L2

N
δαβ). (9)

So the finite dimensional candidates for µ̃ = a is

µSU = 0 and µG = a.

which is exactly the balance equation (1). Or another way of saying that is
the finite dimensional model is the double symplectic quotient

H0//(G × SU(N)) =
µ−1
G (a) ∩ µ−1

SU (0)
G × SU(N)

(10)

2.2. Finite dimensional picture.

Now we take the finite dimensional point of view, there is only one group
involved and it also works for sheaves which are not necessarily locally free.
First let us recall from [W] that Mapholo(X,G(r,N)) 2 is the space of holo-
morphic maps fromX to the Grassmanian G(r,N) and we have the following
diagram

Mapholo(X,G(r,N)) ×X ev−−−−→ G(r,N)⏐⏐�π
Mapholo(X,G(r,N))

2Strictly speaking we should use Quot-scheme instead, but since we only care
about one SL(N)-orbit in Quot-scheme we will not distinguish them.
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where ev(f, x) = f(x), π(f, x) = f and ωG is the Fubini-Study Kähler form
on G(r,N). The symplectic form on Mapholo(X,G(r,N)) is given by

Ω = π∗(ev∗ωG ∧ ω
n

n!
). (11)

Now the SU(N) action on G(r,N) induces an action on Mapholo(X,G(r,N))
with moment map given by

µMapholo(X,G(r,N)) =
∫
X
µG(r,N)

ωn

n!
(12)

which is exactly the balance equation (1).
To reach our final goal we need another bullet, a finite dimensional im-

plicit function theorem for the moment map. To state the result, let us recall
that if we have a compact Lie group G acting on a Kähler manifold Z with
moment map ν : Z → g then at each point z ∈ Z we have the infinitesimal
action

σz : g −→ TZz.

Now we define an endomorphism of g by

Qz = σ∗zσz (13)

where the adjoint is formed using the metrics on g and TZ. Then we have
the following identity

Qz = dνz ◦ J ◦ σz (14)

where is J is almost complex structure on Z.
Suppose now that the stabilizers of all points under the G-action are

discrete, so Qz is invertible for all z in Z. We define

Λz := max
ξ∈g

‖Q−1
z ξ‖
‖ξ‖ (15)

where the norms are defined using the invariant inner product on g. In order
to find a solution to the equation ν = 0 we have the following result.

Proposition 2.1. ([D2] Proposition 17.) Suppose given z0 ∈ Z and real

numbers λ, δ such that Λz ≤ λ for all z = eiξz0, ξ ∈ g with |ξ| ≤ δ. Suppose
that λ|ν(z0)| < δ. Then there is point w = eiηz0, η ∈ g with ν(w) = 0, where
|η| ≤ λ|ν(z0)|.

Remark 2.1. Notice that the proposition gives us not only the existence
but also the distance between the honest solution and the approximate one.
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To adapt the proposition to the double symplectic quotient setting (10)
we need to treat the case that Z = W//H, and the action of G on Z is
induced by an action of G ×H on the Kähler manifold W . For each point
w ∈W the infinitesimal action gives

σG,w : g→ TWw, σH,w : h→ TWw.

In this variation Λz can be computed via the following.

Lemma 2.1. ([D2] Lemma 18.) Let z ∈ W//H be represented by a point
w ∈ W . Then for ξ ∈ g, the endomorphism Qz of g associated to the G
action on W//H satisfies

〈Qzξ, ξ〉 = |π(σG,wξ)|2

where π : TWw → TWw is the orthogonal projection to Im(σH,w)⊥. In
particular

Λz =
(

min
ξ∈g

|π(σG,wξ)|
|ξ|

)2

. (16)

3. Main estimate.

Our task of this whole section to estimating Λz.

3.1. Preparations.

We first derive the formulae that are needed for the estimates. Consider the
action of the group SU(N) on the symplectic quotient

Z := H0//G.
We fix our attention on a single orbit of the complex group SL(N,C); that
is, we fix attention on a given holomorphic vector bundle E(k) → X. Our
main goal is to solve the equation µSU (z) = 0 in the given complex orbit. We
want to apply the Proposition 2.1, and to do this we need to estimate Λz, for
z ∈ Z, using the formula of Lemma 2.1. We need to keep in mind two points
of view: an element of the orbit is represented by a pair (S1, · · · , SN ;A) with∑
SαS

∗
α = I, or equivalently by an embedding, still denoted by z : X ↪→

G(r,N) with induced Fubini-Study metric. Given a matrix A = (aαβ) ∈√−1su(N) we write
σα =

∑
α

aαβSβ.
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To apply Lemma 2.1, we need to find the orthogonal projection of

σ := (σ1, · · · , σN )

in the Hilbert space Γ(E(k))N , to the orthogonal complement of the subspace

P := {(gS1, · · · , gSN )|g ∈ EndCE}.

Proposition 3.1. Given Sα and A = (aαβ) ∈
√−1su(N), define HA ∈

EndCE by

HA :=
∑
α,β

aβαSαS
∗
β.

Then the orthogonal projection of σ to the subspace P is

p := (HAS1, · · · ,HASN).

Proof. We write
ψα := HASα − σα. (17)

We have to show that, for any g ∈ EndCE∑
α

〈ψα, gSα〉 = 0. (18)

∑
α

〈ψα, gSα〉 =
∑
α

〈
∑
γ,τ

aτγSγ〈Sα, Sτ 〉 −
∑
β

aαβSβ, gSα〉

=
∑
α

∑
γ,τ

〈aτγSγ , gSα〈Sτ , Sα〉〉 − 〈
∑
α,β

aαβSβ, gSα〉

=
∑
γ,τ

∑
α

〈aτγSγ , gSα〈Sτ , Sα〉〉 − 〈
∑
α,β

aαβSβ, gSα〉

=
∑
γ,τ

〈aτγSγ , g
∑
α

Sα〈Sτ , Sα〉〉 − 〈
∑
α,β

aαβSβ, gSα〉

=
∑
γ,τ

〈aτγSγ , gSτ 〉 − 〈
∑
α,β

aαβSβ, gSα〉

=0.

(19)

Note that in the fifth equality follows from the fact that∑
α

SαS
∗
α =

∑
α

Sα〈·, Sα〉 = I.

�
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Although the space H0 is not smooth in general, we are working on a
fixed orbit of A which is smooth. So we are able to apply Lemma 2.1 to
obtain that

Λ−1
z = min

∑
α

‖ψα‖2 = min
∑
α

‖HASα −
∑
β

aαβSβ‖2, (20)

where the minimum runs over A ∈ √−1su(N) with ‖A‖2 =
∑ |aαβ |2 = 1,

and HA is defined in terms of A and Sα as before. Our task is to find a lower
bound for the sum above.

Proposition 3.2. Continuing with the notation above, we have at any fixed
point x ∈ X ∑

α

‖∂̄E(k)ψα‖2 = ‖∂̄EndE(k)HA‖2op, (21)

where ‖ · ‖op is the operator norm of HA ∈ Γ(EndE(k)) at point x.

Proof. First we notice that the statement is unaffected under the SU(N)
transformation, so we are free to choose good co-ordinates. Second, recall
that ψα := HASα − σα, and ∂̄E(k)Sα = 0, which implies ∂̄E(k)σα = 0. We
have ∂̄E(k)ψα = ∂̄E(k)(HASα) = (∂̄EndE(k)HA)Sα. Since

∑
α SαS

∗
α = I, Sα’s

are actually the co-ordinate sections of the universal quotient bundle on
G(r,N), which implies that up to a SU(N) transformation we may assume
that {S1, · · · , Sr} is an orthonormal bases and Sr+1 = · · · = SN = 0 at the
point x ∈ X. With this understood, we have∑

α

‖∂̄E(k)ψα‖2 =
∑
α

‖(∂̄EndE(k)HA)Sα‖2 = ‖∂̄EndE(k)HA‖2op (22)

at every point x ∈ X. �

If we take the finite dimensional point of view then we need to consider
the action of group SU(N) on Mapholo(X,G(r,N)). In this set up, σz(A) =
XA ∈ Γ(X, z∗TG(r,N)) is the vector field induced by the A along z(X) ⊂
G(r,N) and

Λ−1
z = min

‖A‖=1
‖XA‖2 (23)

The following proposition relates above two moment map approaches to each
other. Thus both approaches rely on the same estimates.
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Proposition 3.3. ∑
α

‖ψα‖2 = π‖XA‖2, (24)

where

‖XA‖2 :=
∫
X
ωFS(XA, JXA)

ωn

n!

Proof. From formula (18) we deduce∑
α

‖ψα‖2

=−
∑
α

〈ψα, σα〉

=−
∑
α

〈HASα − σα, σα〉

=−
∑

α,β,γ,τ

aβγaτα〈Sα, Sβ〉〈Sγ , Sτ 〉+
∑
α,β,γ

aαβaγα〈Sβ, Sγ〉

(25)

On the other hand, a point z ∈ G(r,N) can be thought as an N × r matrix.
So we have

‖XA‖2 = ‖XiA‖2
=ωFS(XiA, JXiA)
=〈dµG(r,N)(JXiA), iA〉

=
1
2π

d

dt

∣∣∣∣
t=0

Tr
(
eAtz(z∗eAteAtz)−1z∗eAt · A)

=
1
π
Tr(z(z∗z)−1z∗AA)− 1

π
Tr(z(z∗z)−1z∗Az(z∗z)−1z∗A)

(26)

the proposition follows from the fact

z(z∗z)−1z∗ = {〈Sα, Sβ〉z}

�

3.2. Estimates of Λz.

Now we are ready to estimate Λz. Let us fix any reference metric H0 on
E . For any given k , an orthonormal base of H0(X, E(k)) with respect to
the metric H0 ⊗ hk gives rise to a projective embedding X → G(r,N). Let



266 Xiaowei Wang

H ′
0,k denote the restriction of Fubini-Study metric on E(k) induced from the

embedding then these two metrics are equivalent in the following sense

H0 ⊗ hk ∼ χ(k)
rV

H ′
0,k.

Definition 3.1. Given R > 0 and r > 2 for fixed k we say that another
metric H has R-bounded geometry if
1) H > 1

RH
′
0,k,

2) ‖H −H ′
0,k‖Cr < R,

where the norm ‖ · ‖Cr is the Cr norm determined by the metric H ′
0,k. Sim-

ilarly, we say that the basis {Sα}Nα=1 for H0(E(k)) has R-bounded geometry
if the Hermitian metric H induced from the Fubini-Study metric by the
embedding of X in G(r,N) does.

Throughout this section all norms are with respect to the metric H ′
0,k on

E(k) unless we stress explicitly. Notice that, for this metric if we integrate
over X then we have ∑

α

‖Sα‖L2 = rV,

we write
(Sα, Sβ) =

rV

N
δαβ + ηαβ .

Thus the error matrix E = (ηαβ) is the traceless Hermitian matrix, and
E = 0 if and only if the projective embedding is balanced.

We continue with the notation from Section 3.1, so for any matrix
A = (aαβ) ∈

√−1su(N) we define HA ∈ Γ(EndE) and section ψα as in
Proposition 3.1. We write ψ for the vector

(ψ1, · · · , ψN ) ∈ Γ(E(k))× · · · × Γ(E(k))

so we have
‖ψ‖2L2 =

∑
α

‖ψα‖2L2

Let us recall two standard norms on the Hermitian matrices: the Hilbert-
Schmidt norm

‖M‖2 =:
∑
α,β

|Mαβ|2

and the operator norm

‖M‖op =: max
|ξ|=1

|Mξ|
|ξ|
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then we have the following inequalities, for N ×N Hermitian matrices M , L

|Tr(MLM)| ≤ ‖M‖2‖L‖op
|Tr(LM)| ≤

√
N‖M‖‖L‖op.

(27)

In the following discussion, we will use C to denote any constant which only
depends on the geometry of X and the fixed background Hermitian metric
H0 on E but independent of k.

Theorem 3.1. Suppose E is simple. For any R there is a constant C :=
C(R,H0, r, h) and ε := ε(R,H0, r, h) < 1

2 so that, for any k if a basis {Sα}’s
of H0(E(k)) has R-bounded geometry and with kn‖E‖op < ε. Then

‖A‖ ≤ Ck 3+5n
2 ‖ψ‖L2

holds for any traceless Hermitian matrix A,

Let {Sα} be a basis embedding X into G(r,N). By Section 2 this gives
rise to two points, one in Z = H0//G and the other in Map(X,G(r,N)). If
we denote both points by z then Λz’s are defined by (20) or (23) respectively.
Theorem 3.1 above and Proposition 3.3 then imply the following

Corollary 3.1. Suppose {Sα} satisfying the hypotheses of Theorem 3.1,
Then both Λz’s satisfy

Λz ≤ Ck3+5n

The analytical estimates required to prove Theorem 3.1 are summed up
in the following:

Proposition 3.4. Suppose E is simple. Then there are constants C ′s and
ε which depend on R, H0 and E but independent of k so that for all k
sufficiently large , if the basis {Sα} of H0(E(k)) has R-bounded geometry
we have
i)

‖∂̄HA‖2op−L2 ≤ Ck 3+3n
2 ‖ψ‖L2‖A‖

ii)

‖HA‖2op−L2 ≤ C‖∂̄HA‖2op−L2 +
N

V
‖E‖2op‖A‖2,

Moreover, if we assume further that kn‖E‖op < ε then
iii)

‖A‖2 ≤ Ckn(‖HA‖2op−L2 + ‖ψ‖2L2)
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where ‖ · ‖op−L2 denotes the L2-norm corresponding to ‖ · ‖op on End E .

Proof of Theorem 3.1.

‖A‖2 ≤Ckn(‖HA‖2op−L2 + ‖ψ‖2L2)

≤Ckn(C‖∂̄HA‖2op−L2 +
N

V
‖E‖2op‖A‖2 + ‖ψ‖2L2)

≤Ckn(Ck 3+3n
2 ‖ψ‖L2‖A‖+

N

V
‖E‖2op‖A‖2 + ‖ψ‖2L2)

≤C(k
3+5n

2 ‖ψ‖L2‖A‖+ k2n‖E‖2op‖A‖2 + kn‖ψ‖2L2).

(28)

By the assumption on ‖E‖op ≤ ε
kn , we take an ε := ε(R,H0, r, h) such that

εC < 1
2 ⇒ Ck2n‖E‖2op < 1

2 . So we have

‖A‖2 ≤ C(k
3+5n

2 ‖ψ‖L2‖A‖+ kn‖ψ‖2L2)

Now we have two cases to deal with, either

k
3+5n

2 ‖ψ‖L2‖A‖ ≤ kn‖ψ‖2L2

clearly we will have the ‖A‖2 ≤ Ckn‖ψ‖2L2 , or

k
3+5n

2 ‖ψ‖L2‖A‖ > kn‖ψ‖2L2

again we have
‖A‖2 ≤ Ck 3+5n

2 ‖ψ‖L2‖A‖
which gives us ‖A‖ ≤ Ck 3+5n

2 ‖ψ‖L2 . �

Before we prove the Proposition 3.4, let us begin with the following
estimate.

Lemma 3.1. Under the hypotheses of Theorem 3.1, there is a constant C
such that for any integer j
i) ∑

α

‖∇jSα‖2 ≤ Ckj+n,

ii)
‖∇jHA‖2L2 ≤ Ckj+2n‖A‖2

at each point of X.
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Proof. Let us start with the following toy model. Let

(L = C, e−|z|2)→ (Cn, ω0 =
∑
α

√−1
2

dzα ∧ dz̄α)

be the trivial line bundle with Hermitian metric h = e−|z|2 over C
n. Now,

let S ≡ 1 be the global holomorphic section. If we consider line bundle
L⊗k → C

n then ‖∂̄∂S(0)‖hk = k, on the other hand

‖S‖2L2 =
∫

Cn

e−k|z|
2
ωn0

=
1
kn

∫
Cn

e−k|z|
2
(kω0)n =

(π
k

)n
.

(29)

In conclusion, we have

‖∇jS(0)‖2hk ≤ Ckj+n‖S‖2L2 .

In general, fix a point x ∈ X and a geodesic ball B ⊂ X centered at x
over which E is trivial. Since H is R-bounded, by using the quasi-isometry
between Hermitian vector bundles (E(k)|B ,H0 ⊗ hk) and (Cn, e−k|z|2) we
deduce for any holomorphic section S of E(k)

‖∇jS(x)‖2H0⊗hk≤Ckj+n
∫
B(x)
‖S‖2H0⊗hkdV ≤Ckj+n

∫
X
‖S‖2H0⊗hkdV. (30)

which implies

‖∇jS(x)‖2 ≤ Ckj+n
∫
B(x)
‖S‖2dV ≤ Ckj+n

∫
X
‖S‖2dV. (31)

Since X is compact, we can choose C so that it depend only on X, (E ,H0),R
and h but not on k and x. Summing over α we have∑

α

‖∇jSα‖2 ≤ Ckj+n
∫
X

∑
α

‖Sα‖2 = Ckj+nrV

since Tr(
∑

α SαS
∗
α) = r at each point.

To prove ii), we just apply the part i).

‖∇jHA‖2L2 =‖
∑
α,β

aαβ∇j(SβS∗
α)‖2L2

≤C
∑
α,β

∑
l

|aαβ |2‖∇lSβ‖2L2‖∇j−lS∗
α‖2L2

≤Ckj+2n‖A‖2.

(32)

�
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Proof of Proposition 3.4. Recall from Proposition 3.2 we have∑
α

‖∂̄ψα‖2 = ‖∂̄H‖2op
so

‖∂̄E(k)H‖2op−L2 =
∑
α

‖∂̄E(k)ψα‖2L2 ≤
(∑

α

‖∆E(k)ψα‖2L2

∑
α

‖ψα‖2L2

)1/2

=

(∑
α

‖∆E(k)ψα‖2L2

)1/2 ∑
α

‖ψ‖L2 .

(33)

Now, for each α, we have

∆ψα = ∆(HASα) = ∆(HA)Sα + 2∇HA · ∇Sα.
Summing over α using the first part of Lemma 3.1, integrating over X we
have∑

α

‖∆ψα‖2L2 ≤ Ck1+n(‖∇2HA‖2L2 + ‖∇HA‖2L2) ≤ Ck3+3n‖A‖2, (34)

using the 2nd inequality of Lemma 3.1. Thus we have established the first
inequality of Proposition 3.4.

To prove ii), first we have the following inequality due to the simpleness
of E

‖HA‖2L2 ≤ C‖∂̄HA‖2L2 +
1
V

(∫
X
Tr(HA)

ωn

n!

)2

. (35)

Now Let {ei}ri=1 be a local orthonormal frame for E .∫
X
TrHA(x)dV =

∫
X

∑
i

〈HAei, ei〉dV

=
∫
X

∑
i

〈
∑
γ,δ

aγδSδ〈ei, Sγ〉, ei〉dV

=
∫
X

∑
γ,δ

aγδ
∑
i

SiδS̄
i
γdV

=
∫
X

∑
γ,δ

aγδ〈Sδ, Sγ〉dV

=
∑
γ,δ

aγδηγδ

≤
√
N‖E‖op‖A‖.

(36)



Canonical Metrics on Stable Vector Bundles 271

To prove iii), recall that we have the orthogonal decomposition on
Γ(E(k))N

σ = ψ + p,

so that we have
‖σ‖2L2 = ‖ψ‖2L2 + ‖p‖2L2 . (37)

Now

‖σ‖2L2 =
∑
α,β,γ

aαβaαγ(Sα, Sβ) =
V r

N

∑
α,β

|aαβ |2 +
∑
α,β,γ

aαβηβγaγα.

By (27), the last term is bounded by ‖E‖op‖A‖2, since ‖E‖op ≤ ε
kn by

hypothesis, we deduce that

‖A‖2 ≤ Ckn‖σ‖2L2 . (38)

Now
‖p‖2L2 =

∑
α

‖HASα‖2L2 = ‖HA‖2op−L2

where for the last identity follows from the proof of Proposition 3.2. �

4. Proof of Theorem 1.2.

4.1. Construction of approximating solutions.

First, we try to construct “nearly balanced” projective embeddings. Recall
that for any fixed Hermitian metrics H and h on E and OX(1) respectively,
the Bergman kernel is defined by

Bk(H,h) :=
∑
α

SαS
∗
α ∈ Γ(EndE(k))

where {Sα} is an orthonormal basis of H0(X, E(k)).

Theorem 4.1. Suppose that E is simple and equipped with a Hermitian
metric H∞ solving (2). Then there are η1, η2, · · · ∈ Γ(EndE) such that for
any q > 0 there is a constant Cq such that the Hermitian metric on E of the
form

H(k) := H∞(1 +
q∑
i=1

ηik
−i),
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satisfies

Bk(H(k), h) =
χ(k)
rV

I + σq(k),

with
‖σq(k)‖Cr+2 ≤ Cqkn−q−1

for all large enough k.

Proof. This is a consequence of the Catlin’s result [C] and the expansion
formula in the Appendix. Recall that

Bk(H,h) = kn +A1(H,h)kn−1 + · · ·+Aq(H,h)kn−q +O(kn−q−1)

where A′
ps are polynomials in the curvature tensor of H⊗hk and its covariant

derivatives, and the error term is uniformly bounded in Cr+2 for all metrics
H in a bounded family. Consider the Taylor expansion of the coefficients

Ap(H(1 + η), h) = Ap(H,h) +
q∑
l=1

Ap,l(η) +O(‖η‖q+1
Cs ) (39)

where Ap,l(η) is a homogenous polynomial of degree l depending on H, h,
η and its covariant derivatives and s is sufficiently large (depending on r
and q). In particular, we have that A0(H,h) ≡ 1, A0,l(H,h) ≡ 0, and
A1(H,h) =

√−1
2π

∧
FE + 1

2S(h) ·I, where
∧
FE is the contraction of curvature

form with respect to ω. Thus, for any η1, η2, · · · , ηq ∈ Γ(EndE), we can write

Ap(H(1 +
q∑
i=1

ηik
−i), h) = Ap(H,h) +

q∑
l=1

bp,l(η)k−l +O(k−q−1) (40)

where the bp,l are certain multi-linear expressions in the ηj , and their covari-
ant derivatives, beginning with

bp,1 = Ap,1(η1).

Thus we get

Bk(H∞(1 +
q∑
i=1

ηik
−i))

=
q∑
p=0

kn−qAp(H,h) +
q∑

p,l=1

bp,lk
n−p−l +O(kn−q−1)

=kn + kn−1A1 + kn−2(A2 + b1,1) + kn−3(A3 + b2,1 + b1,2)

+kn−4(A4 + b3,1 + b2,2 + b1,3) + · · · , (41)
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and for χ(k) we have

χ(k) = χ0k
n + χ1k

n−1 + χ2k
n−2 + · · · .

Since

b1,1 =
√−1
2π

∧
∂̄∂η1, (42)∫

X
Tr(A2 − χ2)dV = 0

and E is simple, there is an unique η1 ∈ H0(EndE)⊥ ⊂ Γ(EndE) solving
equation .

In general, suppose we have already solved η1, · · · , ηp−1 then the equation
for ηp is

b1,p =
√−1
2π

∧
∂̄∂ηp = Pp (43)

where

Pp := χp −Al+1 −
p−1∑
l=0

bp−l,l+1

is determined by η1, · · · , ηp−1. We claim that TrPp is a divergence. This is
because the coefficient of kn−p in

Bk((1 +
p−1∑
l=1

ηl
kl

)H∞, h)

is

Al+1 +
p−1∑
l=0

bp−l,l+1

and the identity∫
X

TrBk(H,h)
ωn

n!
=
∫
X

TrBk((1 +
p−1∑
l=1

ηl
kl

)H∞, h)
ωn

n!
= χ(k).

implies

0 =
∫
X

Tr(χp −Al+1 −
p−1∑
l=0

bp−l,l+1)dV =
∫
X

TrPpdV,

that is, TrPp is a divergence. Because of the simplicity of E , equation (43)
has an unique solution in H0(EndE)⊥ ⊂ Γ(EndE). �
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Let us fix a positive integer q, by Theorem 4.1 we can find a Hermitian
metric H(k) so that

Bk(H(k), h) =
χ(k)
rV

(I + εk)

where εk = O(kn−q−1) in Cr+2. We then define a new Hermitian metric
H(k)′ by

〈 · , · 〉χ(k)
rV

H(k)′ := 〈(I + εk)−1 · , · 〉H(k) = 〈 · , (I + εk)−1 · 〉H(k),

since εk = ε∗k. This implies that H ′(k) is the Fubini-Study metric on the
bundle E(k) induced from the embedding of X into G(r,N) given by {Sα},
thus we are in the situation of Section 2. For any D ∈ isu(N), expD ∈
SL(N,C) will move the projective embedding

X −→ G(r,N)

given by {Sα} to a new position. The Fubini-Study metric on E(k) induced
from this new embedding will be denoted by HD. Let ED be the error matrix
(ηαβ) for the metric HD considered in Section 3.2 and H∞ be the reference
metric.

Proposition 4.1. If ‖D‖op ≤ 1
10 then

i) If

‖D‖op +
1
k
≤ R

then the metric HD is R-bounded.
ii) There is a constant C such that

‖ED‖op ≤ C

kn
(‖D‖op + ‖εk‖C2).

Here all norms are with respect to H ′∞, the Fubini-Study metric induced
from H∞.

Proof. The whole construction is SU(N) invariant so we may assume that
D is a diagonal matrix D =diag(λα). By definition the metric HD is given
by 〈·, ·〉HD

= 〈·, B−1
D · 〉H′(k) where

BD :=
∑
α

Sαe
2λαS

∗H′(k)
α =

∑
α

Sα(e2λα − 1)S
∗H′(k)
α + I.
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The first part of the proposition then follows from

‖H ′(k)−HD‖Cr ≤ C‖D‖op, (44)

‖H ′
∞ −H ′(k)‖Cr ≤ C

k
.

For the second part, we know that

(Sα, Sβ)HD

=(Sα, B−1
D Sβ)H′(k)

=(Sα, (B−1
D − I)Sβ)H′(k) + (Sα, Sβ)H′(k)

≤C‖D‖op‖Sα‖L2(H′(k))‖Sβ‖L2(H′(k)) +
rV

χ(k)
(δαβ + ‖εk‖C2)

≤C‖D‖op‖Sα‖L2(H′(k))‖Sβ‖L2(H′(k))(1 + 2‖εk‖C2) +
rV

χ(k)
(δαβ + ‖εk‖C2)

=C‖D‖op rV
χ(k)

(1 + 2‖εk‖C2) +
rV

χ(k)
(δαβ + ‖εk‖C2) (45)

so we get the second part of the proposition. �

4.2. Convergence.

Now we are ready to state the

Proof of Theorem 1.2. The proof for the first part is straightforward. Sup-
pose that Hk → H∞ in C∞ then we have for ∀ r > 0

‖Bk(Hk)− kn · IE−
(√−1

2π

∧
F(E,Hk) +

1
2
S(ω) · IE

)
kn ‖Cr ≤ Ckn−2 (46)

for some fixed constant C (independent of k). By hypothesis H(k) is a
balanced metric so Bk(Hk) = χ(k)

rV this clearly implies that

‖
√−1
2π

∧
F(E,Hk) +

1
2
S(ω) · IE −

(
deg(E)
V r

+
1
2
s̄

)
IE‖Cr = O(k−1),

hence we get the first part.
Conversely, fix any integer r > 0 . First we construct an approximate

solution using the Theorem 4.1 such that the error term E = O(k−q), where
q > 0 is to be determined. Let k be sufficient large then for

‖D‖op + ‖εk‖C2 ≤ ε,
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with ε determined in Theorem 3.1, Proposition 4.1 implies HD has R-
bounded geometry and kn‖ED‖op ≤ ε, thus Theorem 3.1 becomes available.
By Corollary 3.1, we get Λz ≤ Ck3+5n for the corresponding point z ∈ Z.
In order to apply the Proposition 2.1 we set q > 3 + 11n

2 , then we have

Λz‖E‖ ≤ Λz
√
χ(k)‖E‖op ≤ Ck3+5n−q+ n

2 ≤ δ. (47)

Note that ν(expD · z) = ED, Proposition 2.1 then implies that for large
enough k, we obtain a solution to our problem with

‖D‖op ≤ ‖D‖ ≤ Ck3+5n−q+ n
2 . (48)

Let us denote the induced balanced metric by H(k). Finally we rescale back
to Hk := χ(k)

rV H(k) ⊗ h−k giving us

‖Hk −H∞‖Cr(H∞) ≤ O(k3+ 11n
2

+n−q+ r
2 ).

So if we choose q > 3 + 13n
2 + r

2 at the beginning we get the convergence in
Cr. �

5. Appendix: Expansion of Bergman kernel.

In this section, we compute the the second coefficient in the expansion of
the Bergman kernel. The basic idea is due to Tian[T], and later extended
by Ruan [R] and Lu [Lu].

5.1. Statements of the results.

Let us start with the following theorem proved by Catlin 3

Theorem 5.1. [C]
1) For fixed Hermitian metric H and h on E and OX(1) respectively, there
is an asymptotic expansion as k →∞

Bk(H,h) ∼ A0(H,h)kn +A1(H,h)kn−1 + · · · ,
where Ai(H,h) ∈ Γ(EndE) are smooth sections defined locally by H.
2)The expansion holds in C∞ in the sense that for any r,N > 0

‖Bk(H,h) −
N∑
i=0

Ai(H,h)kn−i‖Cr ≤ Kr,N,Hk
n−N−1,

3Zelditch proved in [Z]the same statement for line bundle case.
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for some constants Kr,N,H . Moreover the expansion is uniform in that for
any r,N there is an integer r′ such that if H and h runs over a set of metrics
which are bounded in Cr

′
, and with H and h bounded from below, the

constants Kr,N,H,h are bounded by some Kr,N independent of H and h.

The main task of this Appendix is to extend Lu’s computation to the vector
bundle case. More precisely, we have

Theorem 5.2.
A0(H,h) = I,

A1(H,h) =
√−1
2π

∧
F (E) +

1
2
S(ω) · I.

where
∧
F (E) ∈ Γ(EndE) is the contraction of the curvature of H with

respect to ω :=
√−1
2π Ric(h), and S(ω) is the scalar curvature of X with

respect to ω.

5.2. Constructing Peak sections.

We start by introducing a canonical coordinate system for both the base
manifold and the holomorphic vector bundle over it. The canonical coordi-
nate which was first introduced by Bochner [Bo].

Lemma 5.1. ([R] Proposition 2.1) For any x ∈ X there is a unique holo-
morphic coordinate map z up to affine transformation, for which there exist
a Kähler potential Kx(z) on X such that all the (0, l), (1, l), (l, 0), (l, 1)
terms in the Taylor expansion of Kx(z) vanish except for (1, 1) term which
equals to |z|2. That is,

Kx(z) = |z|2 − 1
4
Rij̄kl̄ziz̄jzkz̄l +O(|z|2).

These are the canonical coordinates.

The corresponding bundle version of the above Lemma is the following

Lemma 5.2. Fix any x ∈ X, let us take a neighborhood Ux � x such that
E|Ux

∼= Ux×C
r is a local trivialization. Then for any holomorphic coordinate

system of Ux, we can find a local holomorphic frame {Si}ri=1 of E over Ux
such that with respect to this frame, the metric H on E has the following
expansion:

Hx = I −Hij̄ziz̄j +O(|z|3)
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where Hij̄ ∈ Γ(Herm(E)) and Hij̄ = H̄t
jī
. Moreover, for any integer l > 0

there is a local holomorphic frame {Si}ri=1 over Ux such that there is no pure
zi and z̄i terms of order less than l in the expansion of Hx.

Proof. We follow the strategy of Bochner. First we choose a holomorphic
frame {Si}ri=1, then near x ∈ X we have the following expansion.

〈Si, Sj〉 = δij +H ij
k zk +H ij

k̄
z̄k +O(|z|2).

Introduce a new basis

S̃i = Si + aipk S
pzk.

We have

〈S̃i, S̃j〉 =〈Si + aipk S
pzk, S

j + ajqk S
qzk〉

=〈Si, Sj〉+ aipk zk〈Sp, Sj〉+ ājqk z̄k〈Si, Sq〉+O(|z|2)
=δij +H ij

k zk +H ij
k̄
z̄k + aipk zk(δ

pj +Hpj
m zm +Hpj

m̄ z̄m)

+ājqk z̄k(δ
iq +H iq

mzm +H iq
m̄ z̄m) +O(|z|2)

=δij + (H ij
k + aijk )zk + (H ij

k̄
+ ājik )z̄k +O(|z|2),

(49)

since we have 〈Si, Sj〉 = 〈Sj, Si〉 which implies H̄ji
k = H ij

k̄
. So if we set

aijk = −H ij
k , we will have 〈S̃i, S̃j〉 = δij + O(|z|2). We killed the first order

terms. For the second order terms, suppose we have

〈Si, Sj〉 = δij +H ij
klzkzl +H ij

k̄l̄
z̄kz̄l −H ij

kl̄
zkz̄l −H ij

k̄l
z̄kzl +O(|z|3)

Introduce a new basis

S̃i = Si + aipklS
pzkzl

we have

〈S̃i, S̃j〉 =〈Si + aipklS
pzkzl, S

j + ajqklS
qzkzl〉

=〈Si, Sj〉+ aipklzkzl〈Sp, Sj〉+ ājqkl z̄kz̄l〈Si, Sq〉+O(|z|3)
=δij +H ij

klzkzl +H ij
k̄l̄
z̄kz̄l + aipklzkzl(δ

pj +O(|z|2))
+ājqkl z̄kz̄l(δ

iq +O(|z|2)) +O(|z|3)
=δij + (H ij

kl + aijkl)zkzl + (H ij

k̄l̄
+ ājikl)z̄kz̄l +O(|z|3).

(50)
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Again 〈Si, Sj〉 = 〈Sj , Si〉 implies H̄ji
kl = H ij

k̄l̄
, so if we set aijkl = −H ij

kl we will
be able to kill the second order terms. By continuing this process we will be
able to get rid of the pure zi and z̄i terms up to any order. �

Remark 5.1. The idea of using holomorphic gauge to kill the holomorphic
and anti-holomophic terms is essentially the gauge fixing.

Corollary 5.1. Under the canonical coordinate and canonical framing, we
have the curvature form

F (E)x = Hij̄dzi ∧ dz̄j (51)

Proof.

F =∂̄(H−1∂H)

=∂̄((I +Hij̄ziz̄j +O(|z|3))∂(I −Hij̄ziz̄j +O(|z|3)))
=− ∂̄(Hij̄ z̄jdzi +O(|z|2))
=−Hij̄dz̄jdzi +O(|z|2)
=Hij̄dzidz̄j +O(|z|2).

(52)

�

To be able to evaluate Bergman kernel at a given point, we need following
two propositions.

Proposition 5.1. [T] Fix a point x ∈ X, let {Si}ri=1 be a canonical frame
for E and e a canonical section for OX(1) in a neighborhood of x. Let the
zi’s give a local canonical co-ordinates for x.

Then for P = (p1, · · · , pn) ∈ Z
n
+, and a integer p′ > p1 + · · · + pn,

there exists an k0 > 0 such that for k > k0, there are holomorphic sections

Sp
′,i
P,k ∈ H0(X, E(k)) for 1 ≤ i ≤ r satisfying:∫

X
‖Sp′,iP,k‖2H⊗hkdV = 1,∫

X−{|z|≤ log k√
k
}
‖Sp′,iP,k‖2H⊗hkdV ≤ O(

1
k2p′ ),

and locally at x ∈ X

S(z)p
′,i
P,k = λ(p1,··· ,pn){zp11 · · · zpn

n +O(|z|2p′)}ek ⊗ S1(1 +O(
1
k2p′ )).
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Now let P stand for the multi-index (p1, . . . , pn), and set zP := zp11 · · · zpn
n ,

similarly zQ := zq11 · · · zqnn , then we have

Proposition 5.2. [R] We continue with the notations and assumptions of
Proposition 5.1. Let T be another section of E(k) . Locally around 0 we
have

T = ek ⊗
r∑
i=1

fiS
i,

Sp
′
P,k(z) = λ(p1,··· ,pn){zp11 · · · zpn

n +O(|z|2p′)}ek ⊗ S1(1 +O(
1
k2p′ ))

i) If f1(z)’s Taylor expansion around 0 doesn’t have the monomial zp11 · · · zpn
n ,

then

(Sp
′
P,k, T )hk⊗H = O(

1
k
)‖Sp′P,k‖hk⊗H‖T‖hk⊗H .

ii)If f1(z)’s Taylor expansion around 0 doesn’t have terms zQ with q < p+d
where q = q1+· · ·+qn, p = p1+· · ·+pn, (d ≥ 1), and f2(0) = · · · = fr(0) = 0
then

(Sp
′
P,k, T )hk⊗H = O

(
1

k1+ d
2

)
‖Sp′P,k‖hk⊗H‖T‖hk⊗H .

Proof. The proof follows directly from Lemma 3.2 in [R]. �

5.3. Evaluating A1(H,h).

With the preparation in the previous section understood, we are ready to
calculate the first two coefficients of B as in [Lu]. Let N := dimH0(X, E(k))
and {S1, · · · , SN} be a basis for H0(X, E(k)). Let us introduce the L2-metric
on H0(X, E(k)) as the following

(SA, SB)hk⊗H :=
∫
X
〈SA, SB〉dV.

Now let us fix the notation, 1 ≤ A,B,C,D,E ≤ N and 1 ≤ i, j, l ≤ r, where
r is the rank of E . Let us define

ΠAB := (SA, SB)hk⊗H
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then there exists a matrix Θ such that Π = ΘΘ∗. Let Ξ := Θ−1 and set
TA =

∑
B ΞABSB, then we have

(TA, TB)hk⊗H =(
∑
C

ΞACSC ,
∑
D

ΞBDSD)hk⊗H

=
∑
C,D

ΞACΞ̄BD(SC , SD)hk⊗H

=
∑
C,D

ΞACΞ̄BDΠCD

=
∑
C,D,E

ΞACΞ̄BDΘCEΘ̄DE

=δAB ,

(53)

that is {TA}NA=1 is an orthonormal basis for H0(X, E(k)). The Bergman
kernel B :=

∑
A TAT

∗
A. Fix a point x ∈ X, let {ei}ri=1 be a local orthonormal

frame in a neighborhood of x. Locally we have SA =
∑

i SAiei, so TA =∑
i TAiei =

∑
B,i ΞABSBiei. Since

Bei =
∑
l

Bilel =
N∑
A=1

TA〈ei, TA〉 =
∑
A,l

TAlT̄Aiel,

we have Bil =
∑N

A=1 T̄AiTAl. Put this into the matrix form we have the
following

Bx =

⎛⎝B11 . . . B1r

. . . . . . . . . . . . . .
Br1 . . . Brr

⎞⎠
=

⎛⎝T̄11 . . . T̄N1

. . . . . . . . . . . . . .
T̄1r . . . T̄Nr

⎞⎠⎛⎝T11 . . . T1r

. . . . . . . . . . . . . .
TN1 . . . TNr

⎞⎠
=

⎛⎝S̄11 . . . S̄N1

. . . . . . . . . . . . . .
S̄1r . . . S̄Nr

⎞⎠⎛⎝ Ξ̄11 . . . Ξ̄N1

. . . . . . . . . . . . . . .
Ξ̄1N . . . Ξ̄NN

⎞⎠
·
⎛⎝Ξ11 . . . Ξ1N

. . . . . . . . . . . . . . .
ΞN1 . . . ΞNN

⎞⎠⎛⎝S11 . . . S1r

. . . . . . . . . . . . . .
SN1 . . . SNr

⎞⎠

(54)
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Note that if we choose the basis S1, · · · , SN such that at x,

⎛⎝S11 . . . SN1

. . . . . . . . . . . . . .
S1r . . . SNr

⎞⎠ =

⎛⎜⎝1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 1 0 . . . 0

⎞⎟⎠ ,

then we have

Bx =

⎛⎝Ξ̄11 . . . Ξ̄N1

. . . . . . . . . . . . . .
Ξ̄1r . . . Ξ̄Nr

⎞⎠⎛⎝Ξ11 . . . Ξ1r

. . . . . . . . . . . . . . .
ΞN1 . . . ΞNr

⎞⎠ .

Since Π = ΘΘ∗, Π−1 = (Θ∗)−1(Θ)−1 = Ξ∗Ξ, we have

Bx =

⎛⎝Λ11 . . . Λ1r

. . . . . . . . . . . . .
Λr1 . . . Λrr

⎞⎠

where Λ = Π−1. So our task is to estimate Λ at the point x.

Proof of Theorem 5.2. For each fixed point x ∈ X, take Ux to be a neigh-
borhood of x such that E|Ux is trivial. Choose a canonical co-ordinate {zi}’s
for Ux, and a canonical frame of E over Ux. Now we can apply Proposition
5.1 to get sections {Sp′,i0,k }ri=1 ∈ H0(E(k)). Extend these to a basis

{Sp′,10,k , · · · , Sp
′,r

0,k , Sr+1, · · · , SN} ∈ H0(E(k))

in such a way that Sr+1(x) = · · · = SN (x) = 0. By our choice, we have that
{Sp′,i0,k }ri=1 is an orthonormal basis for Ex. So to evaluate Bx we only need to
evaluate the upper-left r × r part of the matrix Π, which is the following
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∫
X

⎛⎜⎝〈S
p′,1
0,k , S

p′,1
0,k 〉 . . . 〈Sp′,10,k , S

p′,r
0,k 〉

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

〈Sp′,r0,k , S
p′,1
0,k 〉 . . . 〈Sp′,r0,k , S

p′,r
0,k 〉

⎞⎟⎠
r×r

dV +O(e−(log k)2)

=
∫
|z|2≤ (log k)2

k

⎛⎜⎝〈S
p′,1
0,k , S

p′,1
0,k 〉 . . . 〈Sp′,10,k , S

p′,r
0,k 〉

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

〈Sp′,r0,k , S
p′,1
0,k 〉 . . . 〈Sp′,r0,k , S

p′,r
0,k 〉

⎞⎟⎠ dV +O(e−(log k)2)

=
∫
|z|2≤ (log k)2

k

hk ·HdV +O(e−(log k)2)

=
∫
|z|2≤ (log k)2

k

e−k(|z|
2− 1

4
Rij̄kl̄ziz̄jzkz̄l+O(|z|5))(I −Hij̄ziz̄j +O(|z|3))dV

+O(e−(log k)2)

=
∫
|z|2≤ (log k)2

k

e−k|z|
2
(1− k

4
Rij̄kl̄ziz̄jzkz̄l + kO(|z|5))(I −Hij̄ziz̄j

+O(|z|3))dV +O(e−(log k)2)

=
∫
|z|2≤ (log k)2

k

e−k|z|
2
(1−Hij̄ziz̄j +

k

4
Rij̄kl̄ziz̄jzkz̄l

+O(|z|3) + kO(|z|5))elog det gdV0 +O(e−(log k)2)

=
∫
|z|2≤ (log k)2

k

e−k|z|
2−Rij̄ziz̄j+O(|z|3)(1−Hij̄ziz̄j +

k

4
Rij̄kl̄ziz̄jzkz̄l

+O(|z|3) + kO(|z|5))dV0 +O(e−(log k)2)

=
∫
|z|2≤ (log k)2

k

e−k|z|
2+O(|z|3)(1−Hij̄ziz̄j +

k

4
Rij̄kl̄ziz̄jzkz̄l −Rij̄ziz̄j

+O(|z|3) + kO(|z|5))dV0 +O(e−(log k)2)

=
1
kn
− 1
kn+1

∑
i

Hīi +
k

2
· S(ω)
kn+2

− S(ω)
kn+1

+O

(
1

kn+2

)
=

1
kn
− 1
kn+1

(√−1
2π

∧
F (E) +

1
2
S(ω) · I

)
+O

(
1

kn+2

)
. (55)

To get the eighth identity we have used the fact that if i �= j then the integral
of Hij̄ziz̄j vanishes and the formula∫

Cn

|zp11 · · · zpn
n |2e−k|z|

2
dV0 =

p1! · · · pn!
kn+p

,
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with dV0 :=
(√−1

2π

)n
dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n. Also a priori there will be

terms of order O
(

1

Kn+3
2

)
coming from the integral of O(|z|3) + kO(|z|5).

They vanish because the number of z’s does not match the number of z̄’s for
terms with odd degree (This was also observed in [Lu]). The last identity
follows from Corollary 5.1.

To get Bx, we only need to invert Π. Our conclusion then follows from
Proposition (5.2 ii) and the fact that for any traceless matrix A

det(I + tA) = 1 +O(t2).

�
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Trends Math., Birkhäuser Boston, Boston, MA, 1999.

[D1] ———, Geometry in Oxford c. 1980–85. Sir Michael Atiyah: a great
mathematician of the twentieth century. Asian J. Math.3(1999),no.1
xliii–xlvii.

[D2] ———, Scalar curvature and projective embeddings,I . J. Diff. Geom.
59(2001), no. 3, 479-522.

[K] S. Kobayashi, Differential Geometry of Complex Vector Bundles
Princeton University Press, 1987.

[Lu] Z. Lu, On the lower order terms of the asymptotic expansion of Tian-
Yau-Zelditch, Amer. J. Math. 122(2000), no. 2, 235–273.

[OSS] C. Okonek, M. Schneider, and H. Spindler, Vector Bundles on Com-
plex Projective Spaces, Birkhäser, 1980.
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