COMMUNICATIONS IN
ANALYSIS AND GEOMETRY
Volume 13, Number 1, 187-251, 2005

Asymptotic Morse Theory for the Equation
Av = 20, A vy

SAGUN CHANILLO AND ANDREA MALCHIODI

Given a smooth bounded domain € C R?, we consider the equation
Av = 2v, Ay in Q, where v : Q@ — R3. We prescribe Dirichlet
boundary datum, and consider the case in which this datum con-
verges to zero. An asymptotic study of the corresponding Euler
functional is performed, analyzing multiple-bubbling phenomena.
This allows us to settle a particular case of a question raised by H.
Brezis and J.M. Coron in [9].
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1. Introduction.

Let © C R? be a smooth bounded domain. We shall denote by v,§ two
maps such that v : Q@ — R3 and §: 09 — R3, with § smooth. Consider the
problem

(1)

Av=H({ v, Vo)vy Avy  in €,
v=g on 0f),

where H is a smooth scalar function, v,, vy are the z and y-derivatives of v,
¢ = (z,y) and A denotes the cross-product in R3.

Equation (1) has been the subject of several works, see for example the
survey paper [28] by K. Steffen and the recent paper [10]. Existence of so-
lutions of (1) when g = 0 strongly depends on the topology of the domain.
In fact we show using a Pohozahev-type identity, see Proposition 3.1, that
equation (1) has no solution in any simply connected domain when g = 0.
When H (¢, v, Vv) = H, a non-zero constant, such a result was proved by H.
Wente, [16], using reflection techniques and the Kelvin transformation. In
the same paper, Wente also showed that if {2 is an annulus then the study
of (1) can be reduced to an ordinary differential equation and (1) does have
a non-trivial solution when v = 0 on 0f2. Thus equation (1) presents fea-
tures similar to the Yamabe equation on domains with Dirichlet boundary
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conditions, studied in particular by A. Bahri and J.M. Coron, [4]. In fact,
part of the difficulty in studying (1) is that it is invariant under conformal
transformations. This invariance forces the associated variational problem
to exhibit non-compactness phenomena, like in the Yamabe problem on do-
mains. We point out that in our case, contrary to the Yamabe problem, sim-
ply connected domains always admit only trivial solutions. For the Yamabe
problem in dimension greater or equal than three, there are indeed examples
of contractible domains which admit non-trivial positive solutions, see [23].

From now on we consider the case of constant H, precisely H(&,v, Vv) =
2. So problem (1) reduces to

{Av = 2u; ANy, in ),

2
v=g on 0f2. @

Under the assumption ||§||cc < 1, S. Hildebrandt, [18], constructed a solu-
tion of (2) with minimal energy called the small solution, while Brezis and
Coron, [8], K.Steffen, [27] and M. Struwe, [29], constructed a second solution,
referred to as the large solution. We remark that the assumption ||§llcc < 1
is sharp, see [17].

Results similar to those regarding the Dirichlet problem hold for the
Plateau problem, in which one looks for solutions of Au = Hu, A u, which
are conformal and which map the boundary to a given curve (with free
parametrization). As a result one obtains surfaces with constant mean cur-
vature.

We mainly focus on the following problem

Av =2v, Avy, in(,
U =eg on 0.

3)

We will study (3) turning it into a variational problem. In view of the non-
existence result in [17], it is natural to assume that the boundary datum is
small. T. Isobe in particular, [20]-[22], analyzed the behavior of the large so-
lutions of Brezis and Coron in the limit &€ — 0 (the small solutions converges
to the trivial one v =0 as € — 0).

Let g denote the harmonic extension of g in €2, i.e.

Ag=0 in {;
g=43 on 0f).
If v is a solution of (3) and if we set v = u + € g, the function u solves

{Au:Av:2(ux+sgx)/\(uy+5gy) in

P.
u=20 on 0N. (Fe)
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Problem (P.) admits the Euler functional I. : H}(;R3) — R, which has
the following expression

1 2
IE(U)ZQ/Q|Vu|2—|—§/Qw(ux/\uy)—i—e/Qu'(uxAgy—i—gx/\uy)—i—QeQ/Qu-(gx/\gy).
()

The aim of this paper is to develop a Morse theory for the functional I. when
¢ is small. In order to do this we take advantage of the perturbative approach
in [1]. We first recall from [9] that the fundamental solution (bubble) of the
equation

Au = 2uy A uy, in R? (6)

is the stereographic projection 7 : R? — §2 C R3

2 2y 22 +y?—1
T+a22+ 92" 1+ a2+ y2 1+ 22 + y2

W(.Q?,y) = ( > ’ (xvy) € R?. (7)
Our analysis will use translations, dilations and rotations of the function in
(7) and we set

Réa,)x(xv y) =Ro W(A(IE — a1,y — a’2))7 (8)

for R € SO(3), a = (a1,a3) € R? and A > 0. The functions RJ, ) are
mountain-pass critical points of the functional

- 1 2
I(u)——/ ]Vu\Q—i——/ u- (ug A uy), u €D, 9)
2 Jpe 3 Jr2
where D denotes the functional space

2
D=<uel? (R%R3) : u2:/ Vu2+/ L<+oo}.
{ue ) i = [ v+ [

The space D coincides with H!(S?;R3) after inverse stereographic projec-
tion. We point out that the functionals I and I, are well defined and smooth
on D and H}(Q,R3) respectively, see Section 2. It turns out that the man-
ifold constituted by the &’s is non-degenerate for the functional I (modulo
constants), as proved in [21] Lemma 5.5, using an isoperimetric inequality.
Proving the non-degeneracy condition is equivalent to classify the solutions
of

Aw = 2 (wgz A dy + 6, A wy) in R?, (10)

which is the linearization of (6) around ¢, and to show that the only solutions
are the tangent vectors to Z at J, see equation (16). We remark that equation
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(6) admits solutions of the form 7(2*) (in complex notation) for any integer
k, see [9]. We will refer to these solutions as higher degree bubbles. For this
reason we give in the Appendix an alternative proof of the non-degeneracy,
which we believe could adapt naturally to the higher-degree case.

To analyze the problem in €2, it is convenient to consider the functions
P§ = § — ¢, where ¢ is defined in (21). P§ is the element of H{(Q;R3)
closest to ¢ in the Dirichlet norm. We may write

k
u = ZPRiépiJ\i + w, (11)
=1

where R; € O(3), \; > 0, p; € R? for all 4, and w is orthogonal to the
manifold Zle PR;6p, »,- Once we have the non-degeneracy property for
1, then it is standard to prove that for suitable values of a and \ also the
manifold of projected bubbles is non-degenerate for I, and the same holds
true for a finite sum of bubbles. This property allows us to solve the equation
I'(u) = 0 in w (see Proposition 4.3), and thus our problem is reduced to
a finite-dimensional one which involves an auxiliary functional I.(z) (see
Section 4) depending only on {p;};, {\:}; and {R;};. Substituting (11) into
I. and letting € — 0, we expand I.(z) for large values of \; (roughly of order
e~ h).

The large solution of Brezis and Coron corresponds to a one bubble so-
lution when ¢ — 0, and has been studied in detail by T. Isobe, [20]-[22].
However, from Theorem 0.3 in [9] it is clear that a more complicated con-
figuration may occur. Thus to manufacture this type of solutions we are
naturally led to a variational analysis of the functional (5) for multiple bub-
bles. We point out that from the work of Brezis-Coron the bubbles will
not necessarily be all of degree 1. However the variational analysis is more
difficult if we allow bubbles of arbitrary degree, and we will return to this
point in a subsequent article.

To state our results we need some notation.  Given (a,{) =
((a1,a2), (z,y)) € Q x Q, let hi,he : Q x & — R be the solutions of the
problems

A¢hi(a,§) =0 in Q, A¢ho(a,§) =0 in Q, (1)
hi(a,) = =5 on 9% ha(a,€) = (a5 on 09,

see Remark 5.3 (b). If G(a,&) denotes the Green’s function of €2, normalized
so that G(a,§) ~ —log|a — & for a ~ &, and if H(a,§) denotes the regular
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part of G (G(a,&) = —logla —&| — H(a,§)), then we have

e, = 20, (o6 = L)
Let al
et also i ohy Ohs
H(a) = <% + 8—3/) le=a- (14)

It has been proved in [20]-[22] (see also [26]) that the function H plays a
crucial role in studying the location of blowing-up solutions of (2), when
the boundary datum converges to zero. In fact, the function H appears in
the expansion of I.(u), when w is of the form (11) with k& = 1, as a self-
interaction term, see Proposition 5.1. The expansion for k = 1 is essentially
performed in the works of Isobe, but we derive it in a framework which is
convenient to treat the case of k > 1, see Section 7. We have the following
result, regarding the function H.

Theorem 1.1. (a) For a simply connected domain €2 there holds

H(a) = 2¢*H(a0) a €,

where H (a,&) is the regular part of the Green’s function of ).

(b) For a multiply connected domain §) there not exist in general a func-
tion F such that H(a) = F(H(a,a)). In particular, for some annulus of the
form {p~' < |z| < p}, p > 1, the critical points of H(a,a) and of H(a) do
not coincide.

Theorem 1.1 is proved in Section 6. The function H(a,a) is called the Robin
function of the domain €2, see [6]. In dimension 2 it also appears in extremal
problems related to the Moser-Trudinger inequality, where the critical points
of H(a,a) are shown to be related to the conformal incenter of Q. Isobe
showed that H > 0 on any domain, see Remark 5.3, but did not analyze it
further. Since H is defined by means of second derivatives of H, we need
to use a global argument (the Riemann mapping theorem) to compare the
two functions H and H. The new feature of Theorem 1.1 is that the Robin
function plays a role in concentration phenomena only for the case of simply
connected domains.

The regular part of the Green’s function plays an important role in many
problems with critical exponent in dimension larger than two, see [2], [5], [7],
[15], [24], [25]. The difference here is that the regular part does not appear
directly in the expansion, we find the above function H instead, and we
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recover the regular part from the Riemann mapping Theorem. The Robin
function is also related to the notion of conformal incenter, see [14].

The expansion of I (u) for multiple bubbles is performed in Section 7,
see Proposition 7.4. It turns out that when )\; ~ ¢~! for all i, the mutual
interaction among the bubbles is of the same order as the interaction with the
boundary (through both the geometry of 2 and the datum g). We observe
that the interaction among the bubbles depend on their mutual orientation.

There is a by-product of the expansion in Proposition 7.4. It allows us
to settle a particular case of a question raised by Brezis and Coron, see
Section 8. In [9] the authors consider a sequence of solutions u, of (1) and a
sequence g, of boundary data which converge to zero in H 3 (092) N L*>®(09).
Under these conditions they prove that the sequence u, splits into a finite
number of bubbles, and their image converge to a finite and connected union
of spheres of radius 1. They ask whether every configuration of spheres can
be obtained as a limit of solutions u,, for a suitable sequence of boundary
data g,. We have an affirmative answer if all the spheres pass through the
origin.

Theorem 1.2. Let D denote the unit disk in R?, and let A = {S1U---USk}
be any configuration of unit spheres, each passing through the origin of R3.
Then there exist a sequence g, : S' — R3 and a sequence of functions u,
solving

Av =2v, Avy in D,

v =gy on 0D,
such that the image of the function u,, converge to A in the Hausdorff sense.

The functions u, in Theorem 1.2 are constructed studying the interactions
of the bubbles (of degree 1) with the boundary datum and among them-
selves. Choosing boundary data with an appropriate strong concentration at
k points on 0D, we show that the self interaction among the bubbles becomes
negligible. Hence we can find solutions w,, which are highly concentrated at
k points close to the boundary of D and with prescribed orientations in R3.
We remark that the order of concentration, roughly the parameter X in (8),
turns out to be the same for all the bubbles.

The case of spheres not passing through the origin is not treated here.
We believe that it could be possible to achieve such configurations by con-
sidering bubbles with higher degree. In fact, in the recent paper by A. Bahri
and S. Chanillo, [3], the authors showed that when considering changing-
sign solutions of the Yamabe problem, the bubbles can exhibit different or-
ders of concentration. If there is an analogy between higher-degree bubbles
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and changing-sign solutions of the Yamabe equation, then one could obtain
bubbles with higher and higher concentration and with image not passing
through the origin. This will be the object of a future work.
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2. Notation and preliminary facts.

In this Section we introduce some notation and preliminary facts in order to
tackle problem (3).
In the following D will denote the unit disk in R?

D:{fz(ﬂc,y)ERQ:x2+y2<1}.

Let I : D — R be defined by (9). From [12] the last term in I(u) is well
defined on D, together with its Frechet derivatives. This makes I a smooth
functional on D. The same argument provides regularity of the functional
I. on H}(Q;R3).

Using a finite-dimensional reduction, we are going to treat the functional
I. as a perturbation of I. In order to do this, it is essential to consider the
critical points of the functional I, namely the solutions of

Au = 2uy Ay in R?, u € D. (15)

The stereographic projection (7) is indeed a solution of (15), which we call
fundamental solution or bubble. By invariance its translations, dilations and
rotations are also solutions of (15). We set

Z ={Ré7()=Ro\(-—a) : A>0,a e R* , R€ SO(3)}. (16)

We remark that, since SO(3) is a three-dimensional manifold, Z is a six-
dimensional manifold.
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We list now some useful expressions. Note that the function ¢ (A (§ —a))
has the explicit form

B 2M€—a)  N¢—al* -1
5()‘(5_a)) - <1+)\2’5_a‘2’ )\2]£—a]2—|—1>’

from which, if a is bounded away from 02, one can deduce

T(A(§—a)) ~ <§%7 1—- %ﬁ) +O0(\™3), for Alarge. (17)

Writing for brevity ¢ instead of J, , we compute some derivatives of 5. We
emphasize that throughout the paper, unless explicitly stated, the point a
will always be bounded away from 952, namely we will assume dist(a, Q) >
79 for some fixed 7p > 0. We have

2.2 2 3
(0z)1 =2 1+)\2(y2 xQ)QS (0z)2 = — ;L)\;cy 2))2
(14 X2(z2 + y2)) (14 X2(z% + y2))
ANz
Ol = T+
(18)
AN3zy 1+ 2(2* —y?)
(6y)1 1+ A2(22 + 42))2’ (6y)2 1+ A2(22 + 42))2’
42y
(5y)3 = (14 X2(22 + 42))%
From the last two formulas we deduce
A3z 8)\39
((53; A 5y)1 = — (1 i )\2(372 T y2))37 (5;18 A 5y)2 - _(1 + )\2($2 + y2))(31a9)
1 — 22(g2 2
(60 A 8,)3 = 4N2 (@ +y) (20)

T+ X+ )

The functions R, \|q do not belong to HJ(Q;R?) since they are non-zero at
the boundary. Following [2], [25], it is convenient to project these functions
on the space H}(2; R?), by subtracting the harmonic function on  with the
same boundary data. Let ¢ : Q — R3 be the unique solution of the problem
{Agp =0 in Q, (21)

=20 on 012,
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and set Py = J — ¢. We will often omit the dependence of ¢ on the param-
eters a, A\, R, as for 4.

From (18) and some standard computations it is easy to find that, in the
case R =1d

o= (%m(&a)—ko()\l)a %hg(f,a)—ko()fl), 1—%h3(§7a)+0()\2)> , (22)

and 2x( )
W — (& a) + oA
O-0=| e - iha(€,a) +o(A) ] (23)

“Tle=aE t %h?)(gaa) +o(A7?)
where hy and hy are defined in (12), and where hg is the solution of

hs(a, €) L on 9. (24)

~ [e—aP?

{Afhg(a,f) =0 inQ,

The quantities o(A~!) and o(A~2) in formulas (22) and (23) denote functions
which C*(Q2)-norm, for any & € N, is of order o(A™!) and o(A~2) respectively.

We collect some further estimates, whose proof are trivial, and which we
will use later. Given a fixed positive constant 7 < 3, for A sufficiently large
there holds

[ipai<Si [1vai<c82 [ wps<ct; [ sp<cEr @
BT )\ BT )\ BT )\ BT )\2

| P6|(2)+|Vo|(z) <

Vre.
(26)
In the following, for brevity of notation, the constant C' will be allowed to
vary from formula to formula and from line to line.
For k > 1 and for i,5 € {1,...,k}, i # j, we will use the following
notation

C
0 VEEMNBr [9=(0,0,1)|(2)+Vel(z) <

¢
)\ )

k
1
iNj

i=1 ,J

e(e, \i) = o(e?) + o(eA; 1);

11 1 1
e(Ai,Aj) =0 <(10g)\z‘+10g)\j) <p Tt en T A )\j>> 5
i j 17 (24D)
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k
e(e, My Ag) :0(52)-l-ZO(E)\i_l)-FZ@()\i;)\j)"‘ Z 0 <)\i)\1j)\k> :

i=1 i<j i<j<k
We will often make use of the identity
1 ¢
Sl ) (27)
/Rz (1 +[5P)?
which is immediate to verify (the integrand is indeed the third component
of Ad up to a multiplicative constant).

3. A non-existence result via a Pohozahev-type identity.

In this section we prove a Pohozaev-type identity for the H-surface equation.
The proof is elementary and extends a previous result of Wente, see [31].

Proposition 3.1. Let Q C R? be a smooth bounded and simply-connected
domain, and let v € C%(Q;R?) be a solution of

{Av = H(&v,Vo)vy Avy, in Q, (28)

v=20 on 05,

for some continuous function H(&,v,Vv). Then v =0 in Q.

PrROOF. We assume first that the domain €2 is the unit disk D. In the spirit
of the Pohozahev identity, we consider the quantity Z?Zl(f - Vv;)Av; and
integrate on D. We claim that

3

D (€ Vi) (v Avy)i =0, ¢ = (,y). (29)

i=1
Once (29) is proved, we have

3

Z(ﬁ - Vv;)Av; = 0. (30)

=1

Integrating (30) over D and taking into account that the dimension is 2, we

find
3 2 3 2
1 ov; . 1 ov; _
2 () =s e (E) =0
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where v denoted the exterior unit normal to 0D. As a consequence we
have % = 0 on 0D. Thus, extending v to zero on the complement of D
and also extending H continuously outside D we obtain a C! solution of
Av = H (¢, v, Vv)v, Avy in R?. Hence, applying Theorem 1 in [16] we obtain

v=01in D. Let us now verify (29): using simple computation we find

3

> (€ V) (ve Avy)i= [(01)a(v2)a(v3)y — (01)a (V3)z (v2)y+ (v2)a(v1)y (v3)a

=1
— (v2)2(v1)2(v3)y + (V3)2(v1)2(v2)y — (V3)z(v2)w(v1)y]
+y [(v1)a(v2)2(v3)y — (V1)2(v3)2(V2)y + (V2)2(v1)y(V3)s
— (v2)2(v1)2(v3)y + (V3)2 (V1) (v2)y — (V3)2(v2)z(v1)y] = 0.

This concludes the proof in the case 2 = D. For the general case of a simply-
connected domain, it is sufficient to use the Riemann Mapping Theorem and
the transformation rule of (28) under conformal mappings. We recall that
for Q smooth, the Riemann map is also smooth up to the boundary, see [30].
|

4. The finite-dimensional reduction.

In this section we show how problem (3) can be reduced to a finite-
dimensional one for small values of €. The starting point is the following
Proposition, proven in [21] (Lemma 5.5) using an isoperimetric inequality.
We give an alternative proof in the Appendix, using the stereographic pro-
jection and shifting the problem from R? to S?. We believe that our proof
could be naturally extended to the case of higher degree bubbles.

Proposition 4.1. There exists a constant Cy > 0 such that

T"(ROa7)[Rdar, Roax] < —CollRdar?, for all R6, 5 € Z.
and

T'(R0,,5)[v,v] > Col| V3 2(z2y, for all R z€Z and vL(Trs, \Z®{tR0a}y)-

In particular, the equation T”(Réa)\)[v] =0 impliesv—c € TR&,Mi for some
ceR3.
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We are going to consider now problem (15) on the domain Q. Given C > 0
we set

k
7 = {Z Py, », © dist(p;,0Q) > 6_1, dist(pi, pj) > C ' i + 7,
i=1
Neel[C 'Ol R; e 50(3)}. (31)

Proposition 4.1 asserts that the manifold Z, see (16), is non-degenerate for
the functional I module translations. As a consequence, it is easy to extrem-
ize I. in the direction perpendicular to Z. This is stated in the following
Proposition 4.3, in the same spirit as [1]. We need first a preliminary Lemma
(see also [2], Proposition 3.1).

Lemma 4.2. Let k € N, C > 0, and let Z be as in (31). Then there exists
a positive constant C' such that

ifve HY(Q),v L T,Z,v L P§;Vi, then I”(z)[v,v] > C_1||v||§{é(ﬂ).

——1
PrOOF. For i =1,...,k, let B; be the ball of radius CT around p;, and

~ ——1
let also B; be the ball of radius CT around p;. Let us denote by P; the
orthogonal projection of HE(Q) onto HE(B;), and for any v € HY(Q) set
v =0 — Zle Pyv. Tt follows immediately that

k
ol ) = Zl 1Pl 0y + o1l 7 - (32)

From standard regularity results, since the function vy is harmonic in each
B;, and since it coincides with v on each 0B;, there holds

loilloegz,y < Clollmay,  foralli=1,....k, (33)

where C is a constant independent of v. Since v is orthogonal to Pd;, from
(26) we deduce

1
(P, P5)=|v—v1— Y Pw,Ps | =—(v1,P5)+ > O (A—) V]l 2 -

J#i J#i J
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To evaluate the scalar product (vi, Pd;) = fQ Vi - VP§;, we divide the
integral in the regions BZ- and Q\ BZ-. We have clearly fﬂ\ B, Vv - VP, =
O )0l 2 () On the other hand, using (25) and (33) we find

log \;
=0 ([ 19751) Illuy <0 (52 ) Il ycor

Using these formulas and (26) we obtain

log \;
|<Pw76i>|=o< )uvum >+ZO< )uvum oy <Cellog el o] s -
JFi

/~ Vv1 . VP(SZ
B;

(34)
In the same way as (34), using the explicit expression of the function
6; and taking the scalar product of v with 82 , gf{ nd gf\ , one finds
ITL; Po|| < Cellog €|HUHH1(Q Where II; denotes the orthogonal projection

95, 86
’8R and

onto the space spanned by §;, 2 8 . The functional I”(z) is given

by
Ig(z)[v,ﬁ]:/Vv'Vf)—Q/z“(vx/\f)y-i—@x/\vy)
Q Q
+25/@-(ngvy+vagy), v, 7 € HY(Q).
Q

It follows easily from the expression of I and from Proposition 4.1 that
IZ(2)[Prv, P) = Col|[ Pl o) — Cellogel [[v] my - (35)

For an arbitrary function v there holds
I"(z ZI” )Py, Piv] + I (2)[v1, v1 +2ZI” [P, v1]. (36)

From the orthogonality of P;v and vy it follows that
E@Pwm] =<2 [ 2 (Bo)a A1)+ (00)s A (P)y)
422 [ P (g A o)y + (002 A )
Q

=0 ([ EIVEAITul) + 0Oy e
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Dividing again the integral into the regions B; and € \ B; we deduce

log \;
12(2) (P o] = 0 (252 ) ol 0+ 30 (5 ) Il +OE Ty o

JFi
(37)
Similarly, we obtain
log \;
]g(z)[vl,m] = HUlH%ﬂ(Q) + O < . ) [lv HHl (38)
+30(52) Il + 0ol ey
JFi

From (32), (35), (36), (37) and (38) the Lemma follows. m

Proposition 4.3. Let C be a fixed positive constant, let k € N, let € > 0,
and Z be defined as above. Then, if € is sufficiently small, for every z € Z
there exist a function w.(z) € HY(Q;R3) and C > 0 with the following
properties

i) we(2) is orthogonal to T, Z, for all z € Z;
i) IL(z + we(2)) € T, Z, for all z € Z;
iii) ||lw:(2)|| < C|IL(2)|l, for all z € Z;
By i) and i), the manifold
Ze ={z+we(z) : z€ Z}

is a natural constraint for I.. Namely if u € Z. and I.|z.(u) = 0, then
Il(u) =0.

PrOOF. Given Proposition 4.1, the arguments are quite standard. For
convenience, we give a brief sketch in the case ¥ = 1. In the proof, we
simply write ¢ for R, .

Let us define F. : Z x H*(Q;R3) x T,Z — H'(Q;R3) x R by setting

e = (L)

With this notation, the unknown (w,q) = (we, IL(z + we(z))) can be im-
plicitly defined via the equation F.(z,w,q) = (0,0). Setting G.(z,w,q) =
Fe(2,w,q) — O q)Fe(2,0,0)[(w, q)] we have that

Fe(sz7Q) =0 < a(w q) (Z 0 0)[( )] + Ge(sz7Q) = 0.
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Reasoning as in [1], using Lemma 4.2 one can prove that 9, 4 F:(z,0,0) is
uniformly invertible for z € Z and e sufficiently small. Hence we can write

FE(Z,U},C]):O ~ (w7Q) :W5(27w7Q)
= (8(“17(1)F5(Z7 0’0))71 [FE(Zaov 0) + Qe(zawa Q)] )

where

Qe(sz7Q) = Fé(sz7Q) - Fg(Z,O, 0) - a(w,q)Fa(Zaov 0)[(w7Q)]

It is also standard to prove that Q.(z,w, q) satisfies

{HQE(z,w,q)H < Cll(w, q)||? (39)

Qe (2, w, q) = Qc (2, w, @) | < C([[(w, Q)| +[[(w, O)) [|(w, ¢) = (@, )],

where |[|(w, q)|| and where C = C(Q,g,C) is a constant depending on €2,
g, C, and independent of z € Z and e. Using (39) it is possible to prove
that the function W, is a contraction in a ball of radius C|F.(z,0,0)]|| for
some positive constant C(Q,g,C). Since ||F.(2,0,0)|| < C||I.(2)]| for some
constant C, the conclusion follows. m

We estimate now the quantity ||IZ(3>° Pd;)|| in order to control the norm of

we(z), see ii7) in Proposition 4.3.

Lemma 4.4. Let C be a fixed positive constant, let k € N, let € > 0, and
let Z be as in (31). Then there holds

IIZ(2)|| < é(e, A1yeny Ap), for e sufficiently small and for all z € Z,

where é(e, \1,...,\g) is defined in Section 2.

PrROOF. Let v € H}(;R?) and z € Z. Using integration by parts we
deduce easily

Ié(z)[v]:/QVZ'VQH—Q/QU'(zx/\zy)—i—Qe/Qz“(vx/\gy—i—gx/\vy)—i—QeQ/ﬂv'(gx/\gy).

(40)
From Hoélder’s inequality we get

Jun

2
/Q 2(ve A gy + g0 Avy)| < gl ( /Q |z|2> Joll, for all v e H'(Q;RY),
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1
From (25), (26) it is easy to check that ([, [z[*)2 < CZZ b L log \; ]2
hence we have

k
s/z.(wgﬁngy) SCZ)\EHog)\A%HvH, for all v € HL (% R?).
Q = N

On the other hand, it is also immediate to verify the inequality

/Qv~(gx/\gy)

It remains to estimate the first two terms in (40). Writing for brevity §; =
R;ép, »;» we have also

[eviiz[vanz=[o]-a (Sra) (T rs) A(ra) )

Using the equation Ad; = 2((0;)x A (0;)y) and the fact that Ad; = A(P6;),
the above quantity becomes

Q/QU. [(ZP&)x/\ (ZP@)y-Z(&i)M(@)y} ,

which can be written as

22/ ((P5y). (P(Sj)y)—i-QZ/Qv-[(Péi—5i)x/\(5i)y+(5i)x/\(P5i—5i)y].

7]

2

£ < Ce2|vl], for all v € H}(Q) and all z € Z.

(41)
Let us estimate first the term [, v - (Pd;)s A (Pdj)y. Let v < %6_1 (recall
the definition of Z) be a fixed positive number and divide the integral in the
three regions B, (p;), By(pj) and Q\ (By(p;) U By(p;)). Integrating by parts
on the balls B (pz) and B, (p;), the quantity [, v - (Pd;), A (Pd;), becomes

—/ Vg * (P(SZ/\(P(SJ)y)—/ v - (P61A(P5])xy)+/ v - (P(SZ/\(P(SJ)y)Vx
By (pi) By (pi) 9B (pi)

—/ Vg * (P(SZ/\(P(SJ)y)—/ v (P(SZ/\(P(SJ)xy)-i-/ (o (P(SZ/\(P(SJ)y)I/x
By (p;) By(pj) 0B (p;)

4 / v ((P8)a A (PS)),).
Q\(By (pi)UB~(pj))

Hence, since §; and its derivatives are of order ;" in Q\ B, (p;) one finds

c

[o]]

/ o (Po:)a A (P),)] <
Q

Aidj
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Using similar estimates we find that the whole expression in (41) is of order
2. So we obtain the conclusion. m

Lemma 4.5. Let C > 0 and let Z be as in (31). Then there holds

k
1
I(2) {MH <5 C e+ > N,

for everyi=1,...,k.

PRrROOF. From (40) and some integration by parts it follows that

Ié’(z)[v,ﬁ]:/Vv'Vf)—i—Q/@'(zx A vy + Vg /\zy)—|—25/17~(gx AN vy +vg A gy),
Q Q Q

where v, U are arbitrary functions in H&(Q,R:g). We choose now v = g—;,
: . Oz __ 06 _ Oy
and we let v be an arbitrary test function. We have clearly = op. o

where ¢; is the function in (21) corresponding to ¢;. From the estimates in

(26) and from the explicit expression of ggi

i

z £ 851
oo nuts ng)| <Ol | 3] i<l (2
1 )\z 8]% LQ(Q)
Turning to the remaining two terms, we have
0z 00;
/Vv v@pl N 2z Ny Fvp N 2y) = /Vv v@pl
+2 00; ((03)a N vy + vz A (67)y)
 Opi ooy
d6;
+22/ﬂ 9 ~((87)z Avy +va A (87)y) + O ]lv. (43)
J#i '

Integrating by parts and using the fact that Vg—gi is of order )\Z-_l on 0f) we
find

00; 09; o [ 00;

Vv -V—L+2 L ((8)) e A vy + g A (65 :/ v-—< ’)
/Q oot [ (e Ay e n ) = [ v (S
Ol (44)
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since g—f)é satisfies (10). To estimate [, g_gi'((dj)x A vy +vg A (65)y) for j # 1,
we proceed as follows. Let B; and B; denote the balls of radius % centered
at p; and p; respectively. By the definition of Z these two balls are disjoint
and moreover, by (26) VJ; and V¢; are of order )\Z-_l and )\j_l respectively

outside B; and Bj. Hence we have

98
o Op;

sc(i+i 1)uvu. (45)

((5j)x N Vy + Vg A (5j)y) NN AN

Hence (42)-(45) imply ‘Ié’(z) {g—pzz” <C (5 + Z?Zl )\j_l). The remaining
part of the statement follows from similar arguments. m
From Proposition 4.3, critical points of I. restricted to Z. are true critical

points of I.. We define lig :Z —Ras fE(Z) = I.(z+w(z)). We now analyze
the reduced functional 1.

Proposition 4.6. Let C > 0, let Z be as in (31) and let w-(z) be as in
Proposition 4.3. Then we have

L(z) - Ig(z)‘ <C&E M, N\, VeeZ; (46)

Moreover, for all z = Zle R; Py, », € Z there holds

Ol (z 0l (z ol (z Ol (z -1\ ~ .

?pg)_ (o) +‘ fe(s)  OLet) §(€+2jAj )e(s,)\l,...,)\k), .
Ol (z Ol (z _ -

—8>fi)_—8>fi) gi(s+2j)\j1) e(e, A1y vy Ak)

Proor. We have

5 1
() = L() = L+ w) = L) = [ 1+ su)ulds
1

— I()w]+ / (I (5 5w) — T (2))uw] ds.

Since the functional I/ is locally bounded, we have the following estimate

1
|IL(z + sw) — IL(z)| < / Ié’(z—ktsw)[w]dt‘
0
< sup (= + tsw)] ] < O]

t,s€(0,1]
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for some fixed constant C' depending on €2, ||g||c2 (s0) and the above constant

C. Using the last three equations, Lemma 4.4 and the property iii) in
Proposition 4.3 we find

[(2) = I(2)| < ()| we ()]l + Cllwe(2)|* < €(e, Axs -, An).

This concludes the proof of (46). We just sketch the proof of (47). Differ-
entiating the equation F.(z,w,q) = 0 with respect to p; we obtain

OF. 0z OF. 0(w,q) " 0z OF. 0(w,q)
— 7 A .
0z Op; * O(w,q) Op; ezt (Z))ﬁpi * O(w,q) Op;

Similarly as before, one finds that 9y, 4)F% is uniformly invertible, and hence

0:

0z
Op;

0z
Opi

<c 0z

< C| (2 +we(2))

I//( )

+ Cl|lwe(2)

e -

Op;

where we have used the fact that I” is locally Lipschitz. We have

v [ e s - 1) o) ds
#1495 + 1) | e
b [ e s - 26) [ 2] s 9
Equation (49) implies
L) L) < ofrte [ 2]
wetueal? (|22 + | 52])
r ol o] + et |5

Then the estimate of 815( ) Masp(z) in (47) follows from Lemma 4.4, (48) and

Lemma 4.5. The remammg part of (47) follows from similar estimates. m
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5. The expansion for one bubble.

In this section we compute the expansion of I.(z), with z € Z, for € small
and in the case k = 1. This is essentially performed in [20]-[21], in order
to construct blowing-up solutions of (2), and in order to characterize the
mountain-pass solutions in the limit ¢ — 0. We derive the expansion here,
in a form which is useful for us in the expansion for multiple bubbles in
Section 7. Let us first introduce some notation. We recall that g : Q — R3?
denotes the solution of (4), and letting R € SO(3), define drg : @ — R by

((%(Rog)l(a)—i—%(]%og)g(a), x € Q.

For a fixed boundary datum g, we are interested in expanding the functional
I.(P9) as a function of the parameters a, A, R and €. We have the following
Proposition.

drg(a) =

Proposition 5.1. Let C > 0 be fixed, and let a, \, R be such that PRO, ) €
Z. Then, setting

€7 = £
A = _ F E = A _ — —

0 /R? (L4 €)% Dole,0 A R) = 84, A2 Hia) AR i)
there holds

8
L(PROx) = 5 A0+ Fagla, A R) + o(e?) + e(e, \);

I.(PRS,
PR 0Ty
OI.(PRS,,) OFa,
OrR  OR
where e(e, \) is defined in Section 2.

OI.(PRdq) 0Fqy n e(e,\)
o\ ) A

+ e(e, \),

PROOF. We assume that R = Id, and we write ¢ for d, . Let also ¢ be
the solution of (21). We have

2 2 .
/ Vo + /Q Vel /Q Vi Vo
+3/Q<6 2) - (6= 9)a A (65— 0)y)
5/9(5—@)-((5—<P)x/\gy+gx/\(5—<ﬁ)y)

+22 [ (6= (0 100, (50)
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Integrating by parts we can write

3 [IVoR+5 [1VeP = [ Vo-V5= [(o=0)-Gnd). o1

We expand first the expression in (51). Let us evaluate the z-component
in the scalar product of the integral on the right-hand side in (51). From
formulas (18) and (23) we deduce

(p = 0)3(02 A 0y)3

2 NE—al 1 -2 o 1=N[¢—af
=—|1-=h - A 4\
(1 St = S a1 07 G

1 1 _ 1—A2|¢ —al?
_ 2 - = 2
= —8\ ()\2|§ e szh3(a,a) +o(A )> O2[€ —aP 1)
Integrating on 2 we get
[ (o= 920678, (52)
1 1 _ 1—A2|¢ —al?

=8N [ ([————n A3 .

o [ (Semarss e +o07) e o 1

Using a change of variable we obtain

v 1 X —af oY 1 - X2 —af e 1 X —af
o VIE—aP+ D)7~ " Jpe P —aP T 17" Jana (V€ — aP? + 1)

= /R ﬁ +O(™), (53)
and also
/ (;2_ 12’62_ a\23 —/ 12_ 12’62_ a!23 _/ 12_ );2’52_ a!23
o (M€ —al*+1) r2 (A?[§ —al? +1) g2\ (A€ —al* +1)
- L[ KL o = op, (54)

=N e QEP+ 1P

The last identity follows from (27). In conclusion, from (52), (53) and (54)
we get

_ O ek S
| e=0ntna)=s [ TerT o), (55)
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We consider now the z and y components of the integral on the right-hand
side in (51). We have, using (17) and (19)

/Q (0 — 6160 A B
B 2 2Nz —aq) -1 8\ (x — ay)
== J, (e = 5 2 o) i e
We can write
4 (z—a)®* (z—a)* (x —a1)?
A/Q T+ N2 —apyt /R 22— api /Rz\n 1+ X2 — a?)?

xQ
-/, e OO

From the smoothness of h; we have also

Tr — ay

/Q(hl(&a) - hl(av a) - (5 - a) : Vhl(ava)) (1 T )\2’5 _ a’2)3

=0 </Q § +|§2|_scﬂga|2>3) '

As a consequence we deduce

(& — a1) B (x —ay)
Jy e S = e e e
(r —ay)

+ /Q((é —a)-Vhi(a,a)) 1+ N2[€ — af?)3

o </Q a +’§2|_scﬂga|2>3>

1 x?

= xi Oh(a0) /R EENEER

From the last equation we deduce

22
/Q(go —0)1(02 N dy)1 = 16/]R2 7(1 TR
2

1 x _
1655 Dehi(a,0) /Rgm—ko()\ 2 (56)
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In the same way we obtain
2

/(2(()0_5)2(5$/\5y)2_16/RQW

1 2 _
~ 165 0y hs(a, ) /R (H"”W Fo(A).  (57)

From (55), (56) and (57) it follows that
). I e _ e
fte-orans)=s [ o +92 [ ey
1 5122 3h1 3h2 —9
-t (L) (36 + ) @ +o0™)

It is standard to check that

€2 -1 / z? 8
8 S 43 T 24
/Rz LHIEP)T ™ Jee T 1gP)T 377
Hence from the last two equations we find
8 8 Ohy  Ohsy
—0)- (0 NOy) ==Ag— Ao | — + —
o= 0 6 n8) = 30— 50 (G + 5
We turn now to the fourth term in (50). We have clearly

/(5—w>-<<5—¢>w<5—¢>y>—/(a—go)-(amw
Q Q

_/9(5_90)‘((%/\903;"1'903;/\51!).

Let us consider the term d, A ¢,. Using the above formulae we deduce

) (a,a) +o(A7%).  (58)

o =SSR (G 007)
-5 (3 +o0):

0= e (7 +00)
S (o) o

6o nonye —al A2E§y+—;2|22_—a<|;c)2— a1)?) (88_22 + 0(A1)>

8\ (z —ay)(y — a9) <8h1

A+ E—aP? \dy OWI)) |
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and also

8)\( —CLQ) ahg 1
(o A 0y)1 = <1+A2|s—a|>( o ))

P (o)

e (5 00)

ey = (%w(A ) "

oo ) (O o)
i (5 ow)

(@x/\d)

The functions gh? i
T

(a,a). Using (23), (59) and (60) we find

. (= N2
L6 6ne)~ -2 ([ gms ) Ga@a +oa ), @

and similarly

5122 8h1 _
/Q(é—so)-(wéy) 32A2 (/R W) —(a:0) +o(A 2,

Since |(pz A @)1l [(x Apy)i] < OAT?) and [(pz A @y)3] < O(X?), one
can check that

/ (6—9)- (92 Apy) = o(A2).
Q

Let us now turn to the fifth term in (50). The quantity (6—¢)-((6 — )z A gy)
can be estimated as

2Nz —a1) 2 ANz —ay)(y —ag) 2
<m B Xhl) K_ A+ 2 —aP)? X‘M) (95)y

AN (z — a 2
- ((1 T A(2|s - §|)2>2 * ﬁaf’”’) (92)4

(T ) [((1%@_—@5\)) atehs) o)
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14 X2 ((y — a2 — (2 — @)?)
- (” (1+ 226 a2 - 30 }“>( )]

14+22((y —a2)?—(z —a1)?) 2
<A2h3 1+)\2]£—a]2)[<2)\ 1+)\2]£—a] 7 A h1> (92)y

4)\3(:c—a1)(y az) 2
o (e ) (o]

Integrating on €2 and reasoning as before we get

16 x? -
[6-0-@=e1na) =3 [ Gy o0, ©

and similarly

16 z?
§—0) (G N(E—p)y)=—— | ——= +O0(\7%). (63
L= n@-) =3 [ G e+ 00, 63
Finally, the last term in (50) is easily seen to be of order o(¢?). This concludes
the proof in the case of R = Id. For a generic rotation R it is sufficient, by
invariance, to consider the boundary datum R~!g and to substitute (g1). +
(92)y With dp-19. m

Remark 5.2. Propositions 4.6 and 5.1 allow us to find critical points of I,

extremizing the reduced functional I. on Z. Differentiating with respect to
R, )\, a we get

S Vdp-1g = 0. (64)

iVﬁ(a) =3

)\2

Using the second and third equations in (64) we deduce

9 3
aRdR 19=0; 2H(a) —eAdr-19=0;

Vlog H(a) = 2V log dp-19(a).

The extremization with respect to R (the first equation in (64)) is performed
in [21] Lemma 5.4 and [20] Lemma 3.1.2 and, requiring dr-1g to be positive
(from the second equation in (64)) yields

0 1
8RdR 1g=20 = dp-19 = (]Vg\2:t?\gx/\gy\)2 . (65)

Hence, under the conditions Vg # 0, the extremization in (64) becomes

\_2 H()

. oVl £2lg: A gyl
edp-19(a)’ OR

—divrrg = 0;

(a) = 0. (66)
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In particular the mountain-pass solution of (3) (see [21]) has minimal energy
on Z, and one has to chose the + sign in (65)-(66), and the last function in
(66) is maximized on §.

Remark 5.3. (a) We point out that the expansions in (51) and (58) yield

164¢ -~ -
32 H(a) +o(A\7%).

1P5]1%1 0y = N8I —

Since the norm of PJ, being the projection of §, is smaller than the norm of
8, the above formula implies H > 0 on Q. A little more calculation shows
that indeed H > 0, as proved in [21].

(b) The functions hy, he, and hg defined in (12), (24) are related to the
boundary values of §. Since hy and hy are of order A\™!, while hy is of order
\"2, h3 appears in the expansion only as a lower order term.

6. The role of the Robin function.

In this Section we investigate the relation between the Robin function H and
the function H defined in (14). Since H consists of second derivatives of the
regular part of the Green’s function, while the Robin function involves the
regular part itself, we need to use global arguments, based on the Riemann
mapping theorem. See [6] for some properties of the Robin function.

6.1. Simply connected domains.

In this subsection we prove the first assertion of Theorem 1.1.

Proposition 6.1. Let Q@ C R? be a smooth simply connected domain.
Then, if f : Q2 — D is a Riemann map, there holds

! 2 B ! 2
eZH(a,a) _ |f (a’)| - . H(a) —9 |f (CL)| - (67)
(1 —=1f"(a)l) (1 =1[f"(@)]*)
PRrROOF. The first part of the statement is well-known, see e.g. [6], Table 2.

Letting Gp(a, &) denote the Green’s function for D, and letting ¢ : D — R
being any smooth function with compact support, we have

o) = [ 6ot a0t deD.
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Let ¢ :  — R be defined by ¢ = ¢ o f. We have Ay (&) = \f/(§)|2A90(5) and

hence, letting G(a, &) be the Green’s function for €2 and using a change of
variables we get

vla)=¢(fa) = ()= | Gold OApE)E= | GlFla). F(E)AVEE,
where @’ = f(a). Hence, from the explicit expression of Gp it turns out that

log 1) = fla)?
2 11— f(2)f(@)]?

where we have identified £ with the point z in the complex plane. It follows
that

G(a,z) = Gp(f(a), f(2)) = a,z €4,

log —|f(z) — @2
11— f(2)f(a)]?

The last expression can be rewritten as

1
H(a,z):§[10g|z—a|2— ]; a,z € L.

- z) — f(a)|?
H(a,z) = % [log]l — f(2)f(a)* = log M} ; a,z € Q.

|z —af?

In particular, taking the limit z — a, we deduce immediately the first equal-
ity in (67).
Using complex notation, we have

O (9,9, 90 _ (9 _9Y\,

a1 \da "oa)’ day ‘\9a da)’

9 _(0, 0 9 _,(9_29

or \oz 9z) oy '\ 8z)°
It follows that

o 0 o 0 o 9 0 0 0 0
T T T P R = = PR L)

To derive the expression of H, recall (13), we apply L to H (a, z) and evaluate
at z = a. We have, still in complex notation

9 e L TAW 10 6w
a 21— f(2)f(a) 20a i—a
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When we apply the operator 5= the second term vanishes and we get

Taking the real part we find

1Re L D py = | SO ST

0z da (1= f(2)f(@)? (1= fla)f(2)?

Choosing z = a in the last formula, we obtain the second identity in (67).
This concludes the proof. m

Remark 6.2. (a) The expression of H in (67) does not depend on the choice
of the conformal map f of  into D.

(b) From the explicit description of H in Proposition 6.1 we obtain
H(a) — 400 as a — Q. This is true for any domain, as proved in [21],
Lemma 5.7.

(¢) In the case of simply connected domains, the function H coincides
with the square of the reciprocal of the conformal radius and the hyperbolic
radius, see [6], Definitions 1, 7 and Theorem 8. See also Remark 6.4.

(e) Since every convex domain has a single conformal incenter, see [14]
Proposition 11, it follows that H possesses a unique critical point in this case.
For a general simply connected domain H will have multiple critical points,
see [14] page 483. We also point out that, even if a conformal transformation
of the domain affects the number of critical points of H, the topology of
critical points at infinity (see [2]) at the first level of non-compactness should
be an invariant.

6.2. Multiply connected domains.

In this subsection we derive a general formula for H on multiply connected
domains. This formula makes use of the covering map and the deck trans-
formation.

Let us recall that the Green’s function in the unit disk with pole zy € D
is given by
Z— 20

Gp(z,29) = —log , z,20 € D.

1—2pz
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Let us pick a point w € € and consider the Green’s function for {2 with pole
at a. From [6], Theorem 4, one has

_ zk:log 1Zk_ —

Thus the regular part G (a,w) is

where f(z) = w, f(2x) = a for all k.

Ho(a,w) = log | f(z0) — |—Zlog|zk—z|+21og|1—zkz| (69)

Now, as in the previous subsection, it is sufficient to apply the operator L
defined in (68). The first two terms vanish when L is applied. To handle the
third term, note that f~!is a local diffeomorphism. So f~! is defined from
f~1:U — V, where U is a neighborhood of a and V}, is a neighborhood of

2. Thus we have
OH O0HOz, 1 OH

a0z, da f'(z1) Oz,

Similarly, there holds

O’H 1 1 0°H
Owda — f'(z1) f/(z) 020z

(70)

Hence, using (69) and (70) we find

02H ! !
4R8M|w=a = —2Re Z f/(Zk)f (20) (1 — ZkZO)

Let T}, be the Mobius (deck) transformation that maps zp into z;. We have

[ =[foT = f'(20) = f(zr)Ti(20).

Using the last equation and factoring the term (1 — |29|?)?, we deduce

O2H 1 k(z0) (1 — |z0[*)
re PH . (n
Regealummn = —2rpe s Re Z e

From (71) we obtain immediately the following result.

Proposition 6.3. Let Q@ C R? be a multiply connected domain, and let
f: D — Q be a conformal covering map. Given a € Q, let {z}r be the
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pre-image of the point a under the map f, and let T}, : D — D denote the
deck transformation mapping zg into z,. Then there holds

: T} (20)(1=|20*)? | T{(20)(1—|20[*)
H{a)= |f"(20)|?(1—]20]?) ZZ( (1—2,Z0)? * (1—Zx20)? > '
(72)

We note that when f~!(a) = {20} we recover the formula for the simply
connected domain.

6.3. Some numerical computation.

In this subsection we prove that in general, for a multiply connected domain,
the two functions H and 22 do not coincide (this is the case for simply
connected domains, see Proposition 6.1). We consider in particular the case
of an annulus of inner radius % and outer radius p, where p > 1. Our
numerical computations show that the critical points of these two functions
do not coincide, hence we obtain the statement (b) in Theorem 1.1.

For p > 1 we set

1
A, = {(w,y) : e < 2?4y <p2}; S, ={(z,y) : —logp < <logp}.

It is clear that S, is a covering of A, through the exponential map. We also
define a € C, h,: S, — D and f,: D — A, by

in eow _ 1 1 1+z2 -1
oz:—mogp; hp(w):m’ hﬂ (Z):ElOg<1—z>’ f:eXpth'

where w € S, and z € D. Our aim is to compute formula (72) for this
particular case. Fixing zy € D, the points z; and the corresponding points
wg = h;lzk are given by

2kmio (1+Z0> -1
e 1 1
o = 1720 : ( + ZO) + ki

w, = —lo
o 2kmia (1+ZO)+1 P a 1 — 20

Using some elementary computations we obtain

M k?
zZE = M; where M), = tanh il .
oMy + 1 2log p
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If T}, denotes as before the deck transformation, then there holds

z+ My 1— M2

/
@) = Ry o ) = ey

By symmetry, it is sufficient to compute (71) for f(zp) real and positive. It
is convenient to use the following parametrization for the points a € A, and
z0 €D

a = log x; 20 = —itan <417T logac> , x € (—log p,log p).

og p

Using this notation, from equation (72) we are left with

. (1— M2)(1—|2*)?
H(a) = ‘f’(ZO) 1_‘2«0’ QZ( 1—|—Mk20 (1—ZkZO)

(1 - MR)(A — [=0/*)? >
(1 + Mkz0)2(1 — Zk§0)2 ’

From the above formuls it follows
~ 1 M2 1— 2 2_4 2M2
H(a)=— 22 —l20*)? ((1—20/*) 2120\ i)
| f'(20)[*(1—]20[?) 1—|z0| )2 4 4] 202 M2)
From [6] we have

2H(aa)
Fera e L

Using elementary computations it turns out that

2
Rk TR0

1 — 2L20

) 2 1 N
(o) = 1” . <1 +2ZW(k,x)>; (73)
( og p) cos2 <2logp log 33) ’113‘2 k=1
2 1 i
9p2H(aa) — T (k,x)?, (74)
8(10g /0)2 0052 (210gp 10g x) ‘$’2 IH
where

k2 2 T 2
= (1 — tanh? 1 — tan® 1
W (k,x) tan (2 )> ( tan <4logp ogac>>

(1 — tan? <4logplog )
X
((1—tan (4logplog:1:)>
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Figure 1: the functions 2e*" and H for p = e, full picture
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Figure 2: the functions 2¢2H and H for p = e, detail

2 ( kn? 4
tanh (210gp) sec (

_m

4log p

)

4
<l—tan <410gp

2
log x)) +4 tanh? (;fg;p

) tan? <4lggp log x)

In Figures 1-3 we plot the functions 2¢2# and H (modulo the irrelevant

factor

2

ﬁ) for p = e and for p = e3°. We note that, roughly, W (k,z) ~

¢ 165 and Z(k,x)~1— e~ T55 50 for small values of p the terms with k£ # 0

are almost negligible. This accounts for the fact that for p = e the graphs

are very similar, see Figure 1, even on a fine scale, see Figure 1. For large

values of p the difference between the two functions is mpre pronounced, see

Figure 3.

Remark 6.4. We recall that the harmonic and hyperbolic radii are defined

by

Thar (5) = e_H(f’E);

Thyp(f(2) = IF (2)I(L = |2?),
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Figure 3: the functions 2¢2H and H for log p = 3.5

®

where f : D — Q denotes a conformal covering map. See [6] Definition 1
and page 15. Note that the function H, in the case of general non-simply
connected domains, do not even coincide with 'r,:;p. However, in the case of
small annuli, numerical computation show that ry,, and ry,, are very close,
see [6] Figure 8. We also point out that the harmonic radius is related to
the Bergman kernel, see [6] Section 8.4.

7. The expansion for multiple bubbles.

In this section we consider the case of multiple bubbles. We begin considering
only two bubbles R1d, x, and Radj »,, which we denote for simplicity by d;
and Jy respectively. We assume that Ry = Id, namely the first bubble is not
rotated, and we simply write R for Rs.

For C > 0, k = 2 and P§;+ Pdy € Z, our aim is to expand the functional
I. (see (P:)) on Z in terms of the parameters a = pj, b = p2, A1, A2 and R.
In the following, for brevity, we set (see Section 2)

1 1 1 1
sz—a, e()\l,)\g):O((log)\1+log)\2) <F+F+)\2—)\2+W>)
1 2 1 2

We recall the explicit form of the functional I.(u), for u € Hg(Q;R3)

1 2
Ig(u)—5/9[Vu\2—|—§/ﬂu'(ux/\uy)+€/ﬂu-(ux/\gy—l—gx/\uy)—l—stQ/Qu-(gx/\gy).

7.1. Interaction with g.

We consider first the interaction term e [, u(ug A gy + gz A uy) in (P.), with
u = Pdé; + Pdy. We recall that throughout this section we assume that
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e < C’)\ ! for some fixed constant C and for i = 1,2. We have

/ (Uz A Gy + gz N uy)

= /Q(P51 + Pd2) - [((Pd1)e + (Pd2)z) A gy + go A ((P01)y + (Pd2)y)]

_/pa1 (P81)a A gy + gu A (Pél)y)+/P51 (P2)s A gy + go A (PS3),)
Q 0 73)

i /Q Py ((P62)s A gy + g A (P62)y)+ /Q Py ((P61)a A gy + g 1 (P61)y).

The first term in (75) has been estimated in Section 5, formulas (62)-(63),
and gives

g .’/UQ _
< [, PoiPangy o (P30 = o | W‘W(@m@zjﬁ)ﬁ

The third term in (75) can be estimated similarly, using the invariance of
the problem under rotation, and gives

€ a? 52
6/Q]362((]D(SQ)IAWL!]IA(pag)y):—16A—2/QWd];;_lg(b)+O(A§77)).

Let us compute now the remaining two terms in (75), starting from the
fourth. We write @ = (a1, a2) and b = (by,b2). Up to an error of order €2,
we have

(Pd1)a A gy = (78)
3(x—a —a 2(zx—a
(-t - f0uhe) (90, — (Tt + el ()
4\ (z—a HA] T—a
(e %0 h3><91) (20— R0 00),
A2 ((y—a2)°H(z—a1)?) 403 (v—a1) (y—a2)
(”1 Tle—am? Tlaxm)(”)y*((lﬂﬂg a7 a0 hQ)(gl)
and
2X2(x—b1) 2
rin Ti2  T13 1+§\2|£*;\2 — M9
Péy={ra1 7122 723 % — 2ha(b,6) |,
31 T32 T33 )\_%h:,) ~ TRl

where 7;; are the entries of the matrix R. We are going to prove that

/Qpag((ml)x Agy+ go A (PS1),) = O (2| loge]) . (79)
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If one uses (78) and (79), the integrals involved in the above expression are
of the form

333 (x —a1)(y — az)(z — by) ;
! 2/(2 (14 X2J¢ — af2)” (1+ AZ[¢ — b]2)

A3\ (z —a1)(y —a2)(y — b2) ,
! 2/@ (14 X206 —af2)® (1+ A2[¢ — b))

3 (z —a1)(y — as) SN [ E-a)ly—a)
Al/@ (14 X3¢ —al?)® (1+ 226 —bf2) " A2 /Q (1+ 22 —af2)®
(81)

A_i)’/ (z —a1)(y — a2)
A3 Q(1+)\%|f—a|2)2

\2) (z —ar)(z —b) ,
! 2/@ (14 X206 —af2)” (1+ A2[¢ — b))

(82)

9

\2) (x —ar)(y — ba)
! 2/9 (14 221€ — af2)® (1 + A2l¢ - b[2)

)\2 (‘T_a’l) :
1/@ (1+ N3¢ — a|2)2 (1+ N3¢ —b]?)

)\_%/ (x —ay) ‘ )\_%/ (x —ay)
M Jo (14 X216 —al?)? A Ja (1+22[¢—al?)?

AA /1+A?((y—a2)2—(w—a1)2)($—b1).
0 (1+X20E—aP)® (1+23le— o)

A /1+>\%((y—a2)2—(90—@1)2)(?/—52),
o (1+221¢—a]?)? (1+ A3 —b2)
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A1/ 1+ M((y —a9)? — (x —a1)?)
o (142216 —a?)® (14 A%¢ —b2)

(85)
M 1Ny —a2) = (x—a1)?)
A_2/ (1+22)¢ —al?)” ’
A 1+)\%((y—a2)2—(x—a1)2)' Ao x — b ‘
2 Ja (1423 —al?)” Ao (1 23€ - bP)
(86)
A2 y—by

M Jo T+ A2 —b2)’

Ao T —by .
/(1+)\2]§—bl /)\1)\2 /Alv A?/ (1+A2!£—b!2)’ o

e e L L o
A%Q(1+)\%|f—b|)’)\2 (1+>\2|§—b| o' Jo N2AZ

The errors in the expressions of (Pd1),; A gy and Pdy are negligible with
respect to the quantities listed in (80)-(88), hence it is sufficient to consider
the above expressions.

Estimate of (80). Using the rescaling £ — A (£ — a) and setting 0, , =
A1(Q —a), we get

)\3)\ (x_a’l)(y_a’Q)(x_bl)
! 2/ (14 X3¢ — af2)” (1 4+ A2[¢ — b]2)
Ao %y

o —2/ B}
M o (141627 (14 5316 — Maol?)

+

Ao Ty

—0'1/ B} .
A o (14 1627 (14 531€ = Awol?)

Let us consider the first integral. We divide Qy, , into the regions [£| < 232
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2 2
and ¢ > 22, If |¢] < A2, then [¢ — Mo > #, so we have

&/ %y __Ch / [3&
M i< 1+ g2y (1+j—§|5—A10|2) = AA3(01? Jigpeg2ae (1 +[€[2)?2
Ok
~ Ao

where C'is a positive constant depending only on Q. When |{| > )‘ITM then
As a consequence, using also the

for A1 large there holds @ ﬁgzy < >\12\a\'
change of variables %(5 — M\1o) — &, we deduce

)\2 ny C)\Q )\1 2 1
32 | oo 2 (1.2 N ESHEASS TEuED
=22 (14 [¢2) (1+ Ble— Aol ) i 2/ Jay.
log Ao
- )\1)\2|0’|'

Turning to the second integral in the r.h.s. of (89), we again divide the

domain into two regions [¢| < 1% and [¢] > 21Z. Reasoning as before we

find
&01/ Ty <C A201 / |€|2
A=A (14 1¢)2)2 (1+§-§|§-A10|2) T Ao Jig<dye (1+[E7)?
|O'1|10g)\1

< -t .

= CoE
ﬁgl/ zy oo (ﬁ>2/ 1
A1 \s\z¥(1+15\2)2(1+§_§15_xlay2) = UNel? \ e ) Ja,,, (1+1€)

’01’ )\2 log)\g
<Cir——ZF—.
I [ R

Since in the definition of Z we assume dist(p;, pj) > 671, |o| is uniformly
bounded from below, the last formulas imply

< Ce?|logel.

A3\

/ (z —a1)(y — ag)(z — by)
o (14 A2€ = af?)” (1+ A3JE - b]?)
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The second expression in (80) can be estimated in the same way.

Estimate of (81)-(88). We just treat some particular cases, since many
terms are similar to each other. First of all, all the terms for which the
quantity (1 + Af[€ — al? ) (1+ A3|€ — b|?) appears in the denominator can
be treated as before.

Next, we consider for example the second term in (85) and the last term
n (86). Using the changes of variable A\1({ — a) — & and A\a(§ — b) — & we
find

ﬁ/lﬂ%«y—agﬁ—(x—al)?) 1 / Ly’ —a” _ logh
Q)\a

A2 (1+A21¢ - a|2)2 A (1T+]62)? — A
<Ce*|logel;
Az y—bs L / €] 1 2
3 = <C < Ce”.
N o (TFBE—0) ~ 303 Jo,,, THIEP = Chons =

Conclusion. Using the estimates of (80) and those of (81)-(88), we obtain
(79). In the same way, one can prove that

/QP61((P52)90 A gy + gz A (PS3),) = O (2| logel) . (90)
Hence, from equations (76), (77), (79) and (90) we deduce
Lemma 7.1. For u = Pd, + Pdy € Z there holds
5/Qu(ux/\gy+gx/\uy) = —8Aodrq9(a) —8Aodr-19(b)+O (°|logel) . (91)
7.2. Mixed terms in Pd; and Pds.

For u = Pd1 + Pds, we consider the first and the second integrals in (5). We
are interested in the terms involving both Péd; and Pds, namely

/ v Ps, - vp52+§ / Poy - ((P63)s A (Pag)y)% /Q P61 - (P3)e A (P51),)
/ Poy - (P61, (P52)y)+§ /Q Pbs - ((Pd2)a A (P61),)
+ g/QP(SQ . ((Pél)x AN (P(;Q)y) +§/QP5Q . ((P(Sl)x AN (P(Sl)y) .
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Integrating by parts it is easy to we see that the last expression becomes
/(2VP51-VP52+2/QP52'((P51)$ A (P(Sl)y)+2/QP51-((P52)x A (P52),).
Integrating by parts the first term we get
/QVP& - VP = —/QAP62 - Poy = —2/QP(51 “((82) A (62)y),

so we are left with

2/ Py ((Pél)x AN (P61)y) + 2/ P ((P(Sg)x VAN (P(Sg)y — (52)1 VAN (62)31) .
Q Q

Lemma 7.2. For P§; + Pdy € Z, there holds

2/p52((p51)w(p51)y) v 2/ P81 (P62)s A (P52)y — (52)s A (52),)
Q Q

= 2 [ PR (B, AG)) el (92)
Q
PRrROOF. Since the difference between the Lh.s. and the r.h.s. of (92) is

5 / P51 (P82)s A (P52)y — (82)s A (52),)
Q

+ 2/QP62 ((Pél)x A\ (P(Sl)y — (51)1 A (51)3/) )

it is sufficient by symmetry to estimate one of the two terms in the last
expression. We have

/Q PG, ((PS3)s A (Pd3)y — (82)s A (52)y)

= /QP51 [(p2)a A (p2)y — (92)z A (02)y — (02)2 A (p2)y] -
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Using equations (25)-(26), choosing 7 < $C and setting €y, = Q\ (B (a) U
B-(b)), we find

C
< 3
- )\1)\%

C
<% [/ Pall2), ]+ [ |PAilI(E)
2 | /B (a) B (b)

T /Q P r«w]

c| C log A C
< R
T A2 {)\1)\2 e A1A2 * )\1)\2} ’

/ P61 - ((92)s A (02)y)
Q

\ [ Poi- (e 1 (02))

and an analogous estimate for the term Pd; - ((d2) A (p2)y). This concludes
the proof. m

Lemma 7.3. For Pé, + Pdy € Z, there holds
2 [ Po-((50). A (1))
Q

16A0 O'% - O'% ahl 16A0 O'% - O'% 8h2
= “Liab 2 (a,b
b 7“11( o] + o (a,b) | + )\1)\27”22 o] + oy (a,b)

16A0 0102 8h1 16A0 0109 8h2
2 —(a,b — 2——+ —(a,b 93
" A1 A2 r12< o]t " Ay (@ )> " g ( |o|* "o (@ )) (52)

+ 6()\1, )\2)

PRrROOF. The left-hand side of (93) is given explicitly by

3
2/91352 () A @Br)y) =2 Tij/ﬂ(52)j ~((61)z A (61)y)s

i,j:lg
) Qi,jzl " /QWJ ((00)a A @1yl (94)

where {r;;} are the entries of the matrix R. We are now going to estimate

these integrals. We recall that, by (22)

p2(§) = )\—2h1(§7 b)+0(A;7), )\_2h2(§ab)+0()\2 ) 1=5hs(§,0)+0(X7) | -
2
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Taking this into account, we find that the terms in (94) involving the coef-
ficients 711, 712, 713,731 and rs3 are given respectively by

_39)3 (@ b)) —a)
20 | e o T

A PR (6,0) + Oz —a
R (9
(z = b)(y — az)
- 32”3“2/9 (L + A2[¢ — )31+ A3[E — b2)
A PR (6,0) + OO ) (y — a
+32>\i”/ﬂ( : 1((6143)2’5(_2’2)))9 2, (96)

) (x—bl) (1_)‘%|§_a’|2) —
16)\1)\2/Q 1+ N2JE — a1 + A€ — %)

(A7 Tha(€,0) + O(A5?)) (1= A3[¢ — a)?
o [ SRR
3 2 2 -3 (‘T — a’l) .
10y | <1+A%\§—br2 " xgal& D)+ 00 )> e —app Y
2 2 2 -3 (1 —)\%|§—a|2)
- | <1 Tagie o age& b O )> G —app 9

The terms involving the other coefficients of the matrix R can be estimated
using the above ones, and will be taken into account later.

Estimate of (95). Using the change of variables A\;(§ — a) — &, equation
(95) becomes

)\2/
3 2
Ao (14 Ig2)% (14 331€ = Auol?)

(A Thi(A\THE 4 a,b) + O\ %)
* 32/9 1+ €2 |

_ 39 :):(x—)\lal)

(100)

A1,a

We estimate the first term in (100). Consider the following subsets of the
domain of integration

AMlo Alo
B1—{§€QA1,a : \5!3%}, B2—{§€QA1,a : !5—)\10!§%}7

B3 = Q)\l,a \ (Bl U Bg)
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We can write

A2 A2
MIeP - 23 o

A2 -1
14+ 2216 — Mo =1+ XcH |1 . (101
(1 53e=noP) =gy 1+ R (101)
On the set By we have the following inequality
)‘% 2 )\% )‘%‘0‘2 )\%’UP 3.9, 2
22 —9222¢ .45l < <=

hence, from a Taylor expansion, we obtain the following uniform estimate

)\2 )\2 -1 )\2 )\2
L LA WD 1L e LAk
(1+A3lo]?) (1+A3lo]?)
€1 €I )
<C ( + , £eB. (102)
Ale* Aflof?

Using equation (102) and some elementary computations we find

x(x — \oq)
B (1+ ¢ (1+ 33l — oP?)
Y
A2 A2
/ x(x — A\oq) n g o- /\_%‘5’2
s (L ER (L + AZlo]?) L+ Alof?

AO 1 AO 20’%
2 (1+A3l0?) 2 (14 A3lof?)[o]?

Ay 1 0'% A(]O'%—O'%
N A Ag) = 20 AL Aa).
2 A%W( oz ) T e = T el Aa)

+ 6()\1, )\2) = + 6()\1, )\2) (103)

On the set By we have
3
€] = Mfo| = 1€ = Mol = Zlol,

and hence we deduce easily

llz — Mo . ¢ 1

2)3 A3 2) = Mot A3 12
B (14 Je[2)3 (1+ 3l — of2) — Mol by 14 34
<Clog)\1

<c—"L (104)
Alo*
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In Bs we have [£]| > AlTM and |£ — A\jo| > ’\14|0|, and hence

€]z — Ao 1 1 1
/ 23 )\2 9 §C|Q)\1,a|)\5|0_|5 )\ |O'| SC)\4|O-|6 (105)
Ba(1+1¢P)* (14 531§ = Aol?) tlof> A !

Let us now treat the second term in (100). Reasoning as above we find

- (a,b)+e(A1, A2). (106)

32/ A2 (AL E+a,b)+0(N )z 1 Ayl
(1+]¢2)3 M2 2 Oz

Qz\l,a

Hence, using formulas (103)-(106), we are able to estimate (95), and we find

16A0 (O‘%—O‘% ahl

2/9(]352)1((51)”(51)")1:mg e +a—x(a,b)>+e()\1,)\2). (107)

Estimate of (96). The proofs of the estimates of this and the remaining
terms will only be sketched, since they are similar to that of (95). Using the
usual change of variables, equation (96) becomes

A2 / z(y — A102)
2

Moy (14 Ig2)% (14 331€ = Mol?)
1

A TR AT+ a,b) + O(AF2))y
* 32/9 TENERE '

—32

(108)

A1,a

To treat the first integral in (108) we begin by dividing again €, , into the
above sets B1, Ba, Bs. Reasoning as before and neglecting the higher-order
terms we find

A2 z(y — )\;02) _ a4, 0109 e )
A /B, (14 [€]2)3 (1 + )\_é‘g _ )\10‘2) A1 Ao
(A 'm(AT e+ a,b) + 05y 1 Ay ohy
= — —(a,b) + e(A1, A2).
/Qxl,a (1+1[¢%)3 At 2 8y( ) (A1, 22)

Hence, using the last two equations we deduce

0109 Oh

A
2/9(1352)1 ((61)a A (51)y)2:m (32W+168—y(a’ b)>+€()\1,)\2)~ (109)
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Estimate of (97). We turn now to the term involving the coefficient 3,
(97), which can be written as

1622 (1 —[¢]*) (@1 — \iow)

)\1 Q 1 233 1 A_% -\ 2
e (L [€2)2 (14 331 = ol

i O mOTEra b L0l g
%, (1+ |€]2)3 (1 + §—§|5 _ )\10|2>

Using (27), (102) and reasoning as in (103) one finds

/ (1 - ‘5’2)(371 2_ )‘101) _ 6()\1 )\2)
Bi (14 [P)° (14 33le = Aol

Similar estimates hold if one integrates on the sets By and Bs. Moreover,
using (27) and elementary computations one finds

/ A Tha A+ a,b) + O = [P
22 = 6()\1,)\2).
B (L4 [EP) (14 531€ — MaoP)

From the last two equations we deduce

2 [ (Pa)r (5 A (B1))a = e, ). (111)
Q

Estimate of (98). The expression in (98) becomes

1 1 z
32/ — Shs\ e+ a,0) + 0N | — .
Qo \ 14+ Bl - Moz A 2] U+ 1ePy
1
Reasoning as above, we obtain
2 2 z
— Sha(A\ '+ a,b) + O ?)| — 55 =e(A1, A2),
/Bl 14336 - o2 3 ! 27 (L [EP)?

and that the integrals on the sets By and Bs are also of order e(A1, A2). Hence
we find

2 [ (Paa)a (9 A (B1))1 = e, ). (112)
Q
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Estimate of (99). We turn now to the term involving r33. Using the above
change of variables, (99) becomes

1 1€
—16/ L s+ a,b)+ 005 | —— S
e \ 1+ Bl Aot B ) | T 1epy
Using equation (27) and reasoning as above one finds
2 [ (Poa)a (8): A (G1)y)s = e, Do) (113)
Q

Other estimates. From the estimates of the terms (95)-(99) one can deduce
also those involving the coefficients rq2, 712, 193 and r3o. In fact, it is sufficient
to permute the coordinates x and y in a suitable way. Thus one finds

16A0 (O’% - O'% + 8h2

2/(P52)2 ((61)a A (01)y)2= N (a, b)) +e(Ar, A2). (114)

Q |o|* Jy
164 o109 Ohs
2/§§P52)2 ((O) A (01)y)r =7 <2—‘0_‘4 +—-(a b)) +e(Ar, Ao).  (115)

2[(P62)s (51)2 A (81),)2=c(ha,da). 2[(Poa)a (B1)a A (B Ja=e(h, Ao
Q Q
(116)
Hence the conclusion follows from (107), (109), (111), (112), (113), and
(114)-(116). m

7.3. Expansion for k& bubbles.

In this subsection we consider the case of k masses. When k = 2, from
Proposition 5.1, and Lemmas (7.1) 7.2, 7.3 we find

1) = 5 Ao+ 80 (3 7(0) + 35 0) = dnaa(a) - Aidegm))

16 A0 o? —o2 Oy 0% 0% 8h2
— — b
e | (T )+ (7
(117)

ooy Ohy o109 Ohsy
2——- b 2—— + —(a,b
e (2957 + Gren) +ra (352 + G2

+e(g, A1) +e(g, X2) + e(A1, A2).
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where v = Péd; + Pdo and r;; are the entries of the matrix R.
We consider now the more general case of k masses. Given two bubbles §; =
R;m and §;, = Ry (we recall the definition of the stereographic projection 7
in Section 2), where R;, Ry € SO(3), we denote by R;; the matrix Ri_1 oRy.
By invariance under rotation, it is clear that the interaction between 9; and
0 is the same as the interaction between 7 and Ri_ldk = Ri_leTF.

In the expansion of the Euler functional for k£ masses, since I, is cubic in
u, we are going to find mixed terms of the form [, Pd; - (Pé; A Pdy), where
1,7 and k are all different. Since we are assuming that the distance of the
points p;, p; and pj, is uniformly bounded from below, there holds

1

/ Po (P, APO) < O——) it jtkitk  (118)
Q Aidj AR
It follows that the interaction among three distinct bubbles in Z is negligible
with respect to the interactions with g, and the interaction between two
bubbles.

We recall the definition of the quantity e(e, A1, ..., Ag) in Section 2. Using
equation (118), and omitting some straightforward but tedious computations

we obtain the following Proposition.

Proposition 7.4. Let C > 0, let k € N and let Z be defined by (31). For
1 # j let us set

Fo(pi, pj, Ri, Rj) = 164, (119)
X [(Rz'j)n ((pj - ]T;)j__;ii — i) + %(m,p]’))

+ (Rij)22 ((pj - ﬁf:;ﬁi —pil + %(mmﬂ)

+ (Rij)12 (2 v _|£;)i(2|4_ Pi)2 + %—hyl(l?ippj)>

+(Rij)zn (2 (b, _|Z;)1_(ZZ|Z P2 %(Ma]%’))]

and

k
Zﬂ,g(57p17"'7pka)\l7”’7Ak7R17°" 7R - ZFQQ p’m)\laRz)

Fol(e, pi, ,RZ,R
+Z QEP p] )

1<j
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Then there holds
8k
1. (u) ?Ao—l-EQg-l-e(E )\1,...,/\k);
and
OL.(v) 9Sa, OL(v) S, 1
= ’ Ay AR)S = ’ — AMyeo s AL);
apz apz +6(€, 1 ; k)7 a)\z 6)\z +)\‘€(57 1 ; k)a

7

OL(u) 0%q,
= : A,y A
8RZ 8RZ —|—6(€, 1 5 k)v
where u = Zle P R;),,,

7.4. Some remarks.

In this subsection we consider the expansion for 2 masses with zero boundary

data. Our goal is to extremize the functional in (117) with respect to a,b
—; and R. Letting G denote the Green’s function of {2 and setting

G1(0,) = (@) Ga0,) = (a8
there holds

2 2
< |O'|4 + 8:6 (CL?b)) - ax (a7b)7 2 |O_|4 + ay (aﬂb)

Y
o109  Ohsg 0Gy 0’% - 0’% Oho 0Gy
2 .
< ’0’4 + 5 o (a’ b)) (CL, b)a <

s o Ty @)

Using these expressions, the expansion of I.(u), with u = Pd; + RPJy be-
comes

16 1 (0hy  0Ohy 1 (0hy  0Ohy

IE( )— 9A0+8A0( 2(8x+8y>(a,a)+ (8x+8y>(b,b)>
16 A oG 0G 0G 0G9

+)\1)\2 [7“11 pe ~L(a, b)+712 8y1 (a,b)+r2 pe “2(a, b)+rag——

8y (a b)]—i—e()\l, )\2)

The entries ;3 and r3; of the matrix R appear as lower order in the above
formula, see Remark 5.3 (b). We can write
oG 0G4
11 6:1:1 (a,b) +rig——

oG
ay (a b)—i—?”gl Iz 2(a b)+7“22

=e- RVGl(a, b) +eq- RVGQ(CL, b)

0G>
P2 (e.b)
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As in [21], Lemma 5.4, the extremization with respect to R gives
e; - RVGi(a,b) + ey - RVGs(a,b) = £ (|VGi(a,b)|* + |VGi(a,b)|?
12|V G (a,b) A VGa(a,b)])2 .
Hence, setting H = (hy), + (ha),, we are left with

16 1 -~ 1 -
I.(u) = —Ap + 84 (—H(a) + —H(b)>
1
16A0 8G1 8G2 2 602 aGl 2 2
+ i
A Ao <6:1: 8y> (a,0) + ( oy T ay> (a,b)| +e(A1, A2),

where the 4+ and — signs inside the square brackets are opposite (hence there
are four different possibilities). I.(u) has the form c+a11£3 + a5 +£2a1261 &9,
with a;; > 0. Thus if we consider the case ¢ + anﬁf + a22§§ + 2a12&1&9,
we notice that minimizing Y a;;&:¢;/|€]* we necessarily need to select & =
(&1,&2) with &€ < 0 and so this case does not arise. Thus the only case
that remains after extremizing is

16 1 -~ 1 -
1 2
1
1640 | (0G1 08G9\ oGy  0G1\? 2
_ + 2 .
)\1)\2 < ax 8:1./ ) (CL, b) + ( 63? + 8:1./ > (a’7 b) + e()\la )‘2)

8. Proof of Theorem 1.2.

In this Section we prove Theorem 1.2. We begin with the following Lemma,
proved in [26] and which follows from straightforward computations.

Lemma 8.1. Let w € (0,1), and let a, = (w,0) € D. Define also g, :
0D — R3 as

~ T —w Y
= 0 oD.
gw($7 y) ((.I —u))2 +y27 ($ _w)2 +y27 ) ) (x7 y) E
Then, letting g, be the harmonic extension on D of g, there holds
v —w(@® +y?) y
Zz, = 5 0, (z, € D7 121
oo = (o G TP ) - @ €Dy a2

and
4

(1 —ww)? + w?y?)?’

|ng|2 + 2|(gw):t A (gw)y| = (x,y) €D. (122)
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By equation (66), the concentration points of blowing-up solutions as e — 0

2
are critical points of the function [VoI"#2l95/9ul 1, the next Lemma we

describe the critical points of this function in the case of g,,.

Lemma 8.2. Let w € (0,1), and let g,, be as in Lemma 8.1. Then one has
1
Vg|? £ 2[g, A 2 1—a2? —y?
W, (Vo E2le: A g\ _ 5 ( - y?) N
H (1 —wz)? + (wy)
The point (w,0) is a non-degenerate global maximum for W,, and

V2

1—w?’

Wy(w,0) = (123)

The Hessian of W, at (w,0) is given by

1 0
D*W,(w,0) = —2v/2 <(1‘w2>3 |- (124)

0 ==y

Remark 8.3. From equation (124), the fact that Vg(w,0) # 0, and from
Theorem D in [22] it follows that problem (3) admits a solution concentrating
at (w,0) as ¢ — 0. The image of these solutions converges to a sphere of
radius 1 centered at (0,0, —1), since ¢, x» — (0,0, —1) as € — 0, see (22).

Note that, from (123) and (124), W,, attains a sharp maximum with
highly non-degenerate hessian when w is close to 1. We will use this fact
to glue k single bubbles showing that, for a suitable boundary datum, the
interaction of this datum with the bubbles is stronger than the interaction
among different bubbles. In the next Lemma we give quantitative estimates
of the gradient of Fp 4, (see Proposition 5.1) in a suitable neighborhood of
one of its critical points.

It is classical to represent a rotation Ry € SO(3) using the Euler angles in
the following way
cos 1 cos ¢ — cos 6 sin ¢ sin cos 1 sin ¢ 4 cos 8 cos ¢ sin Y sin) sin 6
RO = (sinw cos¢ —cosf sing costp —siny sing + cos cos @ cosy  cosp sin9> ,
sin 0 sin ¢ —sinf cos ¢ cos @
where 6 € (0,7), ¢,¢ € (0,27). For us it is convenient to use coordinates
different from the Euler angles, in order to have a smooth parametrization
near the identity matrix. A rotation R will be parameterized as
cos 1) cos ¢ — cos 6 sin ¢ siny cos 1 sin ¢ + cos 6 cos ¢ sin sin) sin
R_lz ( —sin 6 sin ¢ sin 6 cos ¢ —cos 6 > ,

—siny cos ¢ — cosf sin¢g cosyp —siny sin¢ + cosf cos¢ cosy cosp sin

(125)
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namely as
1 0 0
R'=10 0 —1]|Ry.
01 0

R is the identity matrix for § = 5, and ¢ = ) = 0, and the angles 0,1, ¢ are
smooth coordinates near the identity. In fact there holds

OR-1 00 O OR-1 0 01 OR-1 0 10
90— 00 —-11; e 0 0 0]; 9% -1 0 0],
01 0 v -1 0 0 ¢ 0 00

when 6 = 5, ¢ = ¢ = 0. We will show that the identity matrix is critical
with respect to the rotations for the quantity dg-1g,(w,0). There holds

8(9«.0)1

ox

a(gw)2
0

T
0(gw)2
oy

dr-19., = (cost cos ¢ — cos B sin ¢ sin))

+ (cos v sin ¢ + cos 6 cos ¢ sin )

— (sin @ sin qb)%z)l + (sin @ cos ¢)

From simple computations one finds

g1 Olgw)2 (1 —wz)®—w??

or Oy (1 — wz)? + w?y?)?’

Ogo)t _ Ogw)2 _ , (1 -wajwy

oy or T ((1 —wz)? + w?y?)?’

and hence

(1 —wz)? —w?y?
(1 —wx)? + w?y?)?
(1 — wz)wy
(1—wz)?+w?y?)?

dp-1g, = (cost cos ¢ — cosf sin ¢ sin + sinf cos @)

+2(cos 1 sin ¢p+cos @ cos ¢ sinp+sin 6 sin @) (126)

In the next Lemma we study the critical points of Fp g4, for £ ~ (w,0),
R ~ Id, A ~ 2¢7! and € small. We use below the coordinates 6,1, ¢ in (125)
to parametrize the matrix R.
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Lemma 8.4. Let w € (0,1) and let g, be as above. Then, for fixed ¢,
the point x = w, y = 0, A = %,0: 5, ¥ =0, ¢ = 0 is critical for
Fpg.,(e,6,X,0,7,¢). For ;1 > 0 define the set

2
A= 2
€

<

7= {lo = ol < (1=l < 1 - ) "
™
10— 2] < vl < lol < u-

Then for p sufficiently small and w sufficiently close to 1, there exists a
universal constant Cy independent of €, u and w such that

£2,,2
ﬁ on 07,, and hence deg(VFpg,,7,,0)=1,
(127)

where y denotes the set of variables x,y, \, 0,1, ¢, and the gradient is taken
with respect to x.

VEpg(e,x) - x>Cy!

Proor. We recall that the functional Fp 4, is defined by

11~ ~ 2
Fpg.(e,&,A R) = 2 [H(ﬁ) - eAdelgw(f)] » where H(¢) = AR
and where dr-19,,(€) is given by (126). In particular there holds
27
v-FWD,gw <€7 W, 07 gu 57 07 0) = U
27 g2
HessF'p g4, <5,w, 0, = 5,0, 0) = 2mAw,5,
where
1 3w? 1_ew
(1_w2) + (1_w2)2 0 ) _5(15002) 0 0 0
1 Sw w
Y e e N €
Aw,s — -3 (150;2) 0 §€ 0 0 0
0 0 0 20 0
0 0 0 0 1 0
w 1
0 — 0 0 0 5

We point out that the matrix A, . is positive-definite and non-degenerate.
Using simple but tedious computations, one finds

352
IVEp g, (e,%) - X — Awex| < 0(167@2)2’ for 2,5, \, 0,9, ¢ € T,.  (128)
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Then the conclusion follows from the fact that w,0, 2, 5,0,0 is a critical
point of Fp 4, from (128), and from the fact that A, . is positive definite.
|

Now we are in position to prove Theorem 1.2. For the main idea see Remark
8.3.

PROOF OF THEOREM 1.2 Let A = {S; U---U Sy} be as in Theorem 1.2,
and let {vy,...,vi} C R3 denote the centers of Si,. .., Sy respectively. Note
that, since all the spheres have radius 1 and since they all pass through the
origin, one has |v;| =1, for all j =1,... k. Let Rq,..., Ry € SO(3) satisfy

R;(0,0,-1) = vy, forall j =1,...,k, (129)
see Remark 8.3. Let w € (0,1) and define ék,w : 0D — R3 by

k

ka LE y Z ]gj,uh (iﬂ,y) € aD7
=1

where

- ( )_* 2ﬂ + 2L 2L + 2ﬂ
95w (T, Y) = Gu CoS 2 T sin 3 y,— | sin 3 T CoS 2 TR

It is clear that the harmonic extension G, of ék,w to the interior of D is
given by

kaxy ZRzgijy

219 21y 21y 21y
:ZRigw (<cos ﬂ) T+ (sin ﬂ)y,— (sin ﬂ)x—k <cos ﬂ)y) , (z,y)€D.
= k k k k

(130)

where g, is given by (121). Our goal is now to study the critical points of
the functional Xp g, , defined in Proposition 7.4.

We introduce coordinates ¢;, ¢; and ¢; parameterizing a rotation R;
(note that this is a generic rotation, which differs from the fixed rotation
R;) in the following way

—sinf; sin¢; sinf; cos ¢; —cos 0

cospj cos ¢pj — cos B sin¢; sinp; cos; sing; 4 cosf; cos¢; sinyp;  sinap; sinb;
—sint; cos ¢; — cos@; sing; costp; —siny; sing; 4 cos; cos¢; cosp; cosp; sinb;
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= R;'R;. (131)

The choice of this parametrization will become clear below. Note that for

0; ~ 5 and 1;, ¢; close to 0, these angles are a smooth parametrization of
SO(3) near R;. Define also the set

2
\j— =
€

21y 2
(x,y5) —w (cos%‘y &n%‘y)‘ < (1 — w?),

65— 5| < mlusl < polosl < u}.

<

iy
e’

We are going to prove that for ¢ sufficiently small and for w sufficiently close
to 1, the functional ¥p ¢, , has a critical point with z;,y;, A, 05, %5, ¢ € 7
forall j =1,..., k.

By Proposition 7.4 and by the definition of Fp ¢, , we have

F 9 7R,R
ZFDW@,AJ,R oy

By
= FD,ngk,w(gapkv ey Bi) — 8)\—140 Znglgw,j(pk)
Mok
Fp(pi,pj, Ri, R;
+3 Fpa,., (5,050 R)) +Z Dpli& b By) (132)
J

J#k
By invariance we can write

€
A
1 ~

= 37 [71(6) — Mg i ©)

= FD,gw (Evpka AkaRllek)

= FD,gw(vakayka>\k70/ﬁ¢/ﬁ¢k)‘ (133)

FD Rygr. (& Phy Ay Bi) = [ﬁ(fk) - EAdeglegw(fk)]

We remark that the function in (133) is exactly the one studied in Lemma
8.4. This justifies the choice of the coordinates 6;, ¥, ¢; in (131).
There holds

0 0
8—%2D,Gk,w = a—FD,gw(E,ﬂ%,yk, ey Ok, Yne, D)

0 Fp(pi,pk, R, R)
— A o .
W OZ By Ry 19 (P) + Zl# e AR
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Since all the \;’s are of order e~!, and since the mutual distance between the
points p;’s is bounded from below, it is easy to check that for u sufficiently
small

(pi i, Ri) € TV i =
e | o 0 Fp(pj,pk, Rj, Ry)
— | —=d._ i Y WAl s Ly
Ak | Oz R 3(Pr) oxy, Aj Ak

where C' is a positive constant independent of ¢, w and . Hence the last
formula and (132) imply

+

<Ce* j#k,

0

0
— — —F Ak, 0
8$k D,Gg, axk D,gw (vakayka k> k7¢k7¢k)

if (pj, Aj, Rj) € T forall j=1,... k.

< Ce?

Using similar estimates we find

{WCED,GW — VFD g, (& Tk, Yiy Ak Oy Uiy d1)| < Ce?;

(134)
‘%EDva,w - %FDygw(E’ xkhyk‘) Ak70k7¢k7¢k‘)‘ S 0533

provided (pj, A\j, R;) € ’Z;f for all j = 1,...,k, Here { denotes the set of
variables x, Yk, Ok, Vi, ¢, and where C is a positive constant independent
of €, w and pu.
Let us fix p and ¢ sufficiently small such that (127) and (134) hold. Then
we have
CIC Gty € OTE if (py Ay, Ry) € T for all
m— e, x € u,l(pj, s j)EMora 7,
where C' and Cj are independent of €, w and . Now, choosing w sufficiently
close to 1, depending on C, Cy and pu, and reasoning in the same way for

the indexes different from k we obtain
-1

C .
vXjEDva,w *Xj 2 %527 deg(vXjED,Gk,wa,]g?O) =1,

if (pj, Aj, R;) € T for all j,

VDG, X = Cyt

where y; denotes the set of variables x;,y;,A;, 0;,v;,¢;. For the above
choices of u and w, let I, ... denote the Euler functional I, corresponding

to the boundary datum Gy, (). By Proposition 4.6, for ¢ sufficiently small
we obtain
—1

~ C
vXjID7Gk:,w75 : X] 2 g €

if (pj, \j, R;j) € 7;{ for all j.

, deg(Vy, Ip,Gye, T7,0) =1,

M

2
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Then, by Proposition 4.3 and Lemma 8.5 below, letting ¢ — 0, we find a
family of solutions u, , of I’Gk oy = 0 satisfying, up to a subsequence

Ueu(D) — Ay ={S1,u,---, Sk} in the Hausdorff sense as e — 0,

where S1,, ..., Sk, are spheres of radius 1 passing through the origin and

lying in a neighborhood of order pu of Sy, ..., Sk respectively. Now we can

choose u(e) — 0 sufficiently small as ¢ — 0, and find a corresponding w(e) —

1 such that the solution wu, . of I = 0 obtained with the above
’ kw(p(e)) €

method satisfies

ue (D) — A= {S1,...,Sk} in the Hausdorff sense as € — 0.

This concludes the proof of the Theorem. m

Lemma 8.5. Let §: 02 — R3 be a smooth function, let k € N, C > 0, and
let Z be defined as in (31). Let u be a solution of (F:) of the form

k k
u= ZPRiépi,Ai"f'w? with ZPRﬁPi’M € Z, and HwHHé(Q) —0ase—0.
i=1 i=1

Then |wl|peo(q)y — 0 as e — 0.

Proor. In the following we simply write d; for R;0,, »,, and we let ¢; be
the function in (21) corresponding to d;. The function w satisfies

Aw =23 (6 — i) +w+eg), A (Zj(dj — i) +w +Eg)y

—>2i(8:)x A (04)y, in Q,
w = 0 on 0f).

where g, as before, denotes the harmonic extension of g to 2. Expanding the
wedge produce on the right-hand side we obtain (as before Pd; = 6; — ¢;)

Aw =2 (P6;)a A (P5)y +2> [(P6;)a A wy +wy A (P5;)y]
i#j i

+ 262 [(P6i)a A gy+9a A (Péi)y]—2z [(00)2 A (pi)y +(@i)a A (i)y]

+ 3 (i) A (@i)y + 2we Awy + 26(wy A gy + go A wy) (135)

+ €2gx N Gy.
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Using (25), (26) and some elementary computations, for any p > 1 the first
term in the right hand side can be estimated in the following way

1 AP AP

(B8 A (P )y laogey < O@p) | 33+ 5+ 5

<C(@pler, i)
From standard elliptic estimates it follows that
vl 2 . .
1) (P:)2 A (P}),)]| ey < CC@op)er, i #

where (A)~! denotes the Green’s operator for A in §2 with Dirichlet bound-
ary conditions. Let us focus now on the second term in (135). Writing for
brevity ¢ = PdJ;, one has

(Y N wy + wy Aty) = [J (w2, ¥3) + J (2, ws)]i + [J(wi,93) + J (Y1, w3)]j
+ [J (w1, ¥2) + J (Y1, wa)]k,

where J(F,G) = F,G, — F,,G, is the Jacobian function. By the result in
[12] there holds

H(A)il (Y A Wy + Wy A ¢y)HLoo(Q) < C‘|P6i||Hé(Q) HwHHé(Q) —0ase—0.
(136)
The remaining terms in (135) can be estimated as in (136). m

Remark 8.6. With an easy modification of the above arguments we can
obtain the limit configuration {S1,...,Sx} with a boundary datum of the
form G, for some fixed function G on 0D independent of €.

Remark 8.7. We remark that to obtain L™ estimates on the solutions
of (P.), we use in a crucial way that these solutions satisfy the H-surface
equation with H = constant. Such estimates are not available for general
Palais-Smale sequences, as exhibited in [11].

In Figure 4 we indicate the location of the points p; in D when w is close to 1,
see the definition of ’]ﬁ . We also plot the boundary datum eg,, j, which lies
in a plane, and the corresponding bubble (as in Remark 8.3) whose center
v; is, roughly, perpendicular to the plane of g, ;. We note that the image
of g, is a great circle (the Kelvin inversion of 0D w.r.t. the point (w,0)).
In Figure 5 we plot the configuration of bubbles generated by the function
€G- Each bubble is nearly perpendicular to some gj,w (whose sum is

Grw)-
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Figure 4: the points p; on the disk D and the bubble generated by g, ;

eG

30

Figure 5: the boundary datum eG},, and the corresponding configuration
of spheres



244 S. Chanillo and A. Malchiodi

9. Appendix.

This Appendix is devoted to the characterization of the solutions of the
equation [ ”(5(17 A)[w] = 0. We can suppose by invariance that a = 0 and

A =1, and we set J,\ = m, see Section 2. If a function w € D satisfies
==

I'" (8)[w] = 0, then it solves the linearization of (15), namely
Aw =2 (wy A Sy + 6 Awy), in R? w € D. (137)

After inverse stereographic projection, equation (137) can be equivalently
viewed on S? as follows

Agyw = 2(sin ) ! (wg A S, + 8 Awy,), in S% we HY(S%:RY).  (138)

where (0,0), 0 < 6 < 2, 0 < ¢ < , are spherical coordinates on S? and
Ay, is the Laplacian with respect to standard metric on S2.

To analyze (138) we shall use some properties of spherical harmonics that
we now recall. Let P,(z), x € (—1,1), denote the n-th Legendre function.
We define the associated Legendre function P¥(z) by

dk

Pi() = (1)1~ 2”2 o

P,(z), k> 0. (139)
The spherical harmonics are defined by

Yok (0:0) = o p P (cos p)e™,  —n <k <n, (140)
where the normalization constant c,, ||, see [13] equation (21), p.171, is given
by

1
2n+1\2 [(n—|k|)!
= —_— . 141
= (M) G .

From (139) we easily have, by differentiation

P (cos p) = —sin o(PF) (cos p) — m cot o P¥(cos ), (142)
and from equation (41), p.107 in [19],

PFM2(cos ) +2(m + 1) cot @ PE (cos ) + (n — k) (n + k + 1) P¥(cos ) = 0.

(143)
From (141) we also have, for 0 < k <n,n > 2,
dp = Cnk < /3/2n, enk 1= (n—k:)(n-l—k—i—l)cn—’k <V/3/2n
Cn,k+1 Cnk—1
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In the sequel we will often write P¥(y) for P¥(cos ¢).

We define the finite-dimensional subspace H,, to be the linear span of
Y,k —n < k <n, and 'H,, the subspace of L?(S?;R3) consisting of vectors
w = (f1, f2, f3) with f; € H,, i = 1,2,3. Recall that any function w €
L%*(S?;R3) can be decomposed orthonormally as w = Y o0, wy,, with w,, €
‘H,,. We have

Lemma 9.1. Letw : S — R3 be a solution of (138), and let w = >_°° wp,
with w,, € ‘H,. Then w, =0 for n > 4.

Proor. We first claim that for any F' € H,, there holds
2
I'(F) := Ay F — o —— (Fy Aoy + g N Fy) € Hy. (145)

If our claim is verified, to prove the Lemma it will be enough to pick a
solution w to (138) in H,, and to show that w,, = 0 for n > 4.
We now prove our claim. W.l.o.g. pick F' € H,, of the form

F = (aklcn k1Pk1( ) Zklaaﬁkgcn kszQ( ) k26 s VksCn, kgpk3( ) ikg@)
= (ky Yo ky s Bk Yo kos Vhs Y ks)
Next we have 0, = (cospcosf,cospsinf,—sinp) and 0y =

(—sinpsinf,sinpcos#,0). We will show that I'(F) = —n(n + 1)F — 2v,
where

VvV =
—ik2Bky Y ko + 1/2dn ks Vi Y ka+1 — 1/2€n ks Vi Yn kg —1
ik1ak, Yo iy — /200 kg Vs Yn ka1 — 9/2€n k3 Vs Y ks —1
1/2dn ko Bro Yn,ko+1 — 1/2€n ko Bl Y ko—1 — 1/2dn 1y @k Yok 41 + 1/2€0 1, @y Yo by —1

(146)
Since v € Hy, our claim follows. It is evident that Ay F = —n(n + 1)F,
thus it is enough to show that the second expression in (145) is 2v. This
follows by noting that

—ik2 By Cn by SN P2 (0)etk20 — 1Kk3Gky Cn, ky COS pSin opks (p)etkst
Fy N 54,0 = | ik3grsCn, ks cOS gosinGP,]fS (p)etks? ¢ ik10y, Cp i, Sin goP,]fl (p)etkr?

k10, Cn Ky COS @ sin OPF1 (p)eik10 — k2 Bk, Cn Ky SID ©PF2 (p)eik29

oy cn kg sin® 9 cos O(PLY ) (p)eiks?
b N Fcp = —Vks Cn, kg SinZ @ sin 0(PF3) (p)eika? .

Bl Cn,key SIn2 5in 0(Py2) (9)e*20 + ag, e 1, sin? g cos O(PEL) (ip)ei*1?
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Using (142) and (143) it is easily verified that (sin) =t [Fy A 8y + dg A Fy] =
v. Then from (146) and integrating the equation I'(w) -w = 0 on S? we find
A2
—n(n+1) | B? (147)
CQ

—ik Bkt + 1/2dp k1041 — 1/2€n kY601
=-2) ik By, — i/2dn kViBrs1 — 1/26n kYK Br—1 ,
k \4/2dn 1 Bk V41— 1/ 260k Bk V-1 — 1/ 2dn k0 Vi1 +1/ 260 ki Vg1

where w = Y (arYnk Be Yok, Yk Ynk) and where A = 3|yl B? =
S 18k|?, C? = 3 |y|?. Using (144), (147) and the Cauchy-Schwartz in-
equality we find

n(n +1)|(A2, B, C?)|

(AB+\/ J2AC, AB + \/3/2BC/3] BC+AC)(
<9 ) A4+B4+C4)1/2.

<2n‘

1
Thusn+1< (18 + \/ﬂ) 2, which implies n < 3. m

Lemma 9.2. The solutions of equation (138) are of the form

aze + Bxs3 T
w=c+ | —azy +yz3 | + (21 + 20 ++'23) | 22
—Br1 — Y2 xs3

where ¢ € R? and «, 3,7, o, 3,7 € R are arbitrary.

PrROOF. We denote by J(w) the r.h.s. of (138). From the proof of Lemma
9.1 it follows that J preserves the degree of spherical harmonic functions.
Equivalently, J preserves the degree of polynomial functions in R? restricted
to S2. By this reason and by Lemma 9.1, we can confine ourselves to study
J just on polynomials of order 1,2 and 3. Since the computations involved
in the proof are straightforward, we just give a simple sketch below, omitting
some details.
Using simple computations, we obtain

J(21,0,0)=(0,2x2,2x3); J(x2,0,0)=(0,—2x1,0); J(x3,0,0)=(0,0, —2x7).
(148)
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With a permutation of coordinates one also finds

J(O, ZTo, 0) = (221?1, 0, 2.’/63); J(O, 3, 0) = (0, 0, —2.’162); F(O, 1, 0) = (—2.’/62, 0, 0);
(149)
F(O, 0, .21?3) = (2.’/61, 2.’/62, 0); F(O, 0, xl) = (—221?3, 0, 0); F(O, 0, .21?2) = (0,—2.’163, 0).
(150)
Hence, letting w = (a1x1 + agxe + asws, bixy + baxa +bsxs, c1x1 + cora+c3x3)
we find

—bi1xg + bax1 — c113 + c371 a1x1 + asw + azrs
J(w) =2 ajx9 — asx1 — CcoT3 + Cc3x9 ; Aw=—-2| bix1 + boxo + b3xs |,
a1x3 — a3ry + baxz — b3z c121 + CaT2 + 323

The system of equations Aw = J(w) admits the following solutions;

ay az as 0 a pf
b1 b2 bg = — 0 Y : (15 1)
C1 C2 C3 -8 — 0

with «, 8, v arbitrary real numbers.

Let us now consider the homogeneous second order polynomials. We
have Az? = 2(1 — 3z?) and A(z;x;) = —6z;z;. Using the Leibnitz rule and
(148)-(150), we can compute J(w) when w has the form;

a17? + agr1Te + a3l + agr1T3 + asrors + ar
w = blx% + box1To + bgCC% + byz1z3 + bsxoxs + b6:c§
123 + com1 g + c33 + cax123 + Cc5T2w3 + Co

From the relation Aw = J(w), and using elementary computations we obtain
w = (Oé.ilfl + Bxo + 7373) + (577770)7

where a, 3,7, d,7n,0 are arbitrary real numbers.
Let us now turn to the third order polynomials. We have
Az =6x;(1 —22%);  A(z?z)) = 22;(1 — 627);  A(vwjay) = — 122,18
Again, the values of F' on the third order polynomials can be computed with
the Leibnitz rule and (148)-(150).
Letting
w =

blx‘i’ + ng%xg + bBI%% + bgr1ToT3 + 5511&0% + bﬁxlmg + b790§ + bsxg + 591313 + b10$2x§

<alx§+a2xfx2 + azxirs + asT1w223 + asT172 + agz173 + arTs + agz + a9$§$3+a1oxzx§>
3 2 2 3 3
€127 + c2x7T2 + €3T7T3 + C4T1X2X3 + 52125 + C6T1T3 + C7TH + €8T

2
3+ cox3x3 + cloT2x]
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and equating the coefficients in the expressions for Aw and J(w), we find a
system decoupled into four parts. The first part consists of seven equations
involving the seven terms ao, a7, aig, b1, bs,bg and c¢4. Using simple compu-
tations one finds as = a7 = a19 = o, b1 = b5 = bg = —«, ¢4 = 0, for some
a e R

The second part consists of seven equations involving the seven terms
as,as, ag, by and cq,cs, cg. Using simple computations one finds ag = ag =
ag =0, c1 =c5 =cg=—/3, by =0, for some G € R.

The third part consists of seven equations involving the seven terms aq,
b3, bs, bg, and co, c7, c19. Using simple computations one finds by = bg = bg =
v, co = c7 = c19g = —7, a4 = 0, for some v € R.

The fourth part consists in nine equations involving the terms a1, as, ag,
ba, b7, b1g and c3, cg, cg. Using simple computations one finds a1 = a5 = ag =
b2:b7:b10:C3268269:0.

The solution obtained in this way represent just the linear functions in
(151), taking into account of the identity % + 23 + 2% = 1 on S?. This
concludes the proof. m

PRrROOF OF PROPOSITION 4.1. Coming back to the space D, and using some
elementary computation, the proof of the last statement follows immedi-
ately from Lemma 9.2. The first inequality is immediate to check. The
second inequality follows from the proof of Lemma 9.2 when v € ©p>4H,.
When v has some non-zero components in &, <3Hy,, then it is sufficient to use
straightforward computations, since we have to deal with finite combinations
of spherical harmonics. Alternatively note that, since § is a mountain-pass
critical point of I, the linearized operator possesses only one negative eigen-
value (with corresponding eigenvector 6), hence if v L § and v L K erT”(é),
v must be a combination of positive eigenvectors. m
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