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with Tunnel Number One

Marc Lackenby

1. Introduction.

An alternating diagram encodes a lot of information about a knot. For
example, if an alternating knot is composite, this is evident from the diagram
[10]. Also, its genus ([3], [12]) and its crossing number ([7], [13], [17]) can
be read off directly. In this paper, we apply this principle to alternating
knots with tunnel number one. Recall that a knot K has tunnel number
one if it has an unknotting tunnel, which is defined to be an arc t properly
embedded in the knot exterior such that S3− int(N (K ∪ t)) is a handlebody.
It is in general a very difficult problem to determine whether a given knot has
tunnel number one, and if it has, to determine all its unknotting tunnels. In
this paper, we give a complete classification of alternating knots with tunnel
number one, and all their unknotting tunnels, up to an ambient isotopy of
the knot exterior.
Theorem 1. Let D be a reduced alternating diagram for a knot K. Then
K has tunnel number one with an unknotting tunnel t, if and only if D
(or its reflection) and an unknotting tunnel isotopic to t are as shown in
Figure 1. Thus the alternating knots with tunnel number one are precisely
the two-bridge knots and the Montesinos knots (e; p/q,±1/2, p′/q′) where q
and q′ are odd.
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For an explanation of the Montesinos knot terminology, see [1]. The
grey discs in Figure 1 denote alternating diagrams of rational tangles with
no nugatory crossings. It is proved in [18] (see the comments after Corollary
3.2 of [18]) that such a diagram is constructed by starting with a diagram
of a 2-string tangle containing no crossings and then surrounding this dia-
gram by annular diagrams, each annulus containing four arcs joining distinct
boundary components, and each annular diagram having a single crossing.
(See Figure 2.) The boundaries of these annuli are denoted schematically by
dashed circles within the grey disc. Of course, the signs of these crossings
are chosen so that the resulting diagram is alternating.

Figure 2.

Theorem 1 settles a conjecture of Sakuma, who proposed that, when
D is a reduced alternating diagram of a tunnel number one knot K, then
some unknotting tunnel is a vertical arc at some crossing of D. For, the
tunnels in Figure 1 can clearly be ambient isotoped to be vertical at some
crossing, unless the rational tangle containing the tunnel has no crossings.
But, in this case, the diagram can be decomposed as in the left of Figure
1. In particular, the knot is a 2-bridge knot. Hence the knot has a vertical
unknotting tunnel.

A given alternating diagram D may sometimes be decomposed into the
tangle systems shown in Figure 1 in several distinct ways. Hence, the knot
may have several unknotting tunnels. For example, from Theorem 1, it is
not hard to deduce Kobayashi’s result [8], classifying all unknotting tunnels
for a 2-bridge knot into at most six isotopy classes.

We now explain why the knots in Figure 1 have tunnel number one. In
the left-hand diagram of Figure 1, contract the tunnel to a point, resulting
in a graph G. It is clear that, by an ambient isotopy of G, we may undo the
crossings starting with the innermost annulus and working out. Hence, the
exterior of G is a handlebody, as required.
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We may perform a similar procedure in the right-hand diagram of Fig-
ure 1, resulting in Figure 3. Pick the crossing in the outermost annulus of the
lower rational tangle. If it connects the strings emanating from points SW
and SE, we may remove it. If it connects the strings emanating from NW
and NE, we may flype the rational tangle so that instead the crossing lies
between SW and SE, and then remove the crossing. If the crossing lies be-
tween points NW and SW (or NE and SE) we may slide the graph as shown
in Figure 4 without altering the exterior, to change the crossing. This pro-
cedure does not alter the way that the two strings of the tangle join the four
boundary points. If the original diagram had more than one crossing, then
we consider the possibilities for the next annulus in the inwards direction.
By flyping if necessary, we may assume that its crossing joins SW and SE,
or SW and NW. In both these cases, the tangle has an alternating diagram
with fewer crossings. Hence, inductively, we reduce to the case where the
original tangle has at most one crossing. Since K is a knot, rather than a
link, the strings of the tangle run from NW to either SW or SE, and from
NE to either SE or SW. So, it is clear that the exterior of this graph is a
handlebody.

Theorem 1 has been proved by Shimokawa [15] in the case where the
unknotting tunnel is isotopic to an embedded arc in some region of the
diagram. A large part of this paper is a proof that this must always be the
case.

Theorem 2. Let D be a reduced alternating diagram for a knot K. Then
any unknotting tunnel for K is isotopic to an unknotting tunnel that is an
embedded arc in some region of the diagram.
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Figure 4.

This leaves open the question of which planar arcs are actually unknot-
ting tunnels. This was answered by Shimokawa [15], but we give a new proof
of his result. If one retracts a planar arc to a point, one does not change
the exterior, but the resulting graph now has a single 4-valent vertex. We
therefore introduce the following definition.

Definition. A diagram of an embedded 4-valent graph in S3 is alternating
if there is a way of modifying the vertices to crossings so that the result is
an alternating link diagram. The diagram is reduced if it is not of the form
shown in Figure 5.

Figure 5.

Morally, one perhaps should also consider a diagram as in Figure 6, where
each grey box contains at least one crossing, as not reduced. However, we
will not adopt this convention in this paper.
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Figure 6.
We prove the following result which can be used to determine whether

the planar arc is an unknotting tunnel.
Theorem 3. Let D be a reduced alternating diagram of a graph G with a
single vertex. Then the exterior of G is a handlebody if and only if D is one
of the diagrams shown in Figure 7.

rational rational

Figure 7.
The dotted arcs in a grey disc denote the way that the strings of the

tangle join the four points on the boundary. Note that the middle and right-
hand alternating graphs in Figure 7 are ambient isotopic to that shown in
Figure 3.

Theorem 1 is a straightforward corollary of Theorems 2 and 3. Given a
reduced alternating diagram D of a knot K with an unknotting tunnel t, we
use Theorem 2 to establish that t is isotopic to a planar arc. Contract this
tunnel to a point to form a graph G with an alternating diagram. Alter this
diagram until it is reduced, by removing crossings adjacent to the vertex.
Theorem 3 implies that it is of the form shown in Figure 7. Hence, D and
the unknotting tunnel are as shown in Figure 1. This proves Theorem 1.

The proof of Theorems 2 and 3 is largely an amalgamation of ideas by
Rubinstein and Menasco. We now give a brief outline of the main arguments.
It is a well-known fact that an unknotting tunnel for a knot is determined
by its associated Heegaard surface, up to an ambient isotopy of the knot
exterior. This follows from the fact that, in a compression body C with



156 Marc Lackenby

∂−C a torus and ∂+C a genus two surface, ∂C has a unique non-separating
compression disc up to ambient isotopy. Hence, we will focus on the Hee-
gaard surface. Rubinstein showed that, given any triangulation of a compact
orientable irreducible 3-manifold M , a strongly irreducible Heegaard surface
for M can be ambient isotoped into almost normal form [14]. An alternat-
ing knot complement inherits an ideal polyhedral structure from its diagram
[9]. We therefore in §2 develop a notion of almost normal surfaces in such
an ideal polyhedral decomposition of a 3-manifold. A genus two Heegaard
surface F for a non-trivial knot must be strongly irreducible, and so can be
ambient isotoped into almost normal form. Once in this form, F intersects
the plane of the diagram in a way rather similar to the surfaces studied by
Menasco [10]. In §3, we recall Menasco’s techniques.

It would seem logical to prove Theorem 2 before Theorem 3, but in fact
the latter result is necessary in the proof of the former. Therefore in §4, we
prove Theorem 3. The hypothesis that the graph’s exterior is a handlebody
is used to establish the existence of a compressing disc in normal form. This
is then used to show that G must be as described in the theorem.

In §5, we adapt Menasco’s arguments to restrict the possibilities for the
Heegaard surface F . We show that F is obtained from a standardly embed-
ded 4-times punctured sphere by attaching tubes that run along the knot.
The sphere divides the diagram into two tangles. We analyse the possibilities
for these tangles, using Theorem 3, and prove that the unknotting tunnel
is isotopic to a planar arc in one of them. This will prove Theorem 2 and
hence Theorem 1.

2. Heegaard surfaces in ideal polyhedral decompositions.

A reduced alternating diagram of knot determines an ideal polyhedral de-
composition of the knot complement. Hence, in this section, we develop
an almost normal surface theory for ideal polyhedral decompositions of 3-
manifolds and establish that, under certain conditions, a strongly irreducible
Heegaard surface can be ambient isotoped into almost normal form.
Definition. A polyhedron is a 3-ball with a non-empty connected graph
in its boundary, the graph having no edge loops. An ideal polyhedron is a
polyhedron with its vertices removed. An ideal polyhedral decomposition
of a 3-manifold M is a way of constructing M − ∂M as a union of ideal
polyhedra with their faces identified in pairs.

Note that polyhedra cannot necessarily be realised geometrically in Eu-
clidean space with straight edges and faces. In particular, it is possible for
a face in a polyhedron to have only two edges in its boundary. Such faces
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are known as bigons.
There is a reasonably well-established theory of normal surfaces in ideal

polyhedra. Associated with an ideal polyhedral decomposition of a 3-
manifold M , there is a dual handle decomposition of M , where i-handles
(0 ≤ i ≤ 2) arise from (3 − i)-cells in the ideal polyhedra. In [6], Jaco
and Oertel gave a definition of a closed normal surface in such a handle
decomposition. Here we give the dual version.
Definition. A disc properly embedded in an ideal polyhedron P is normal if

• it is in general position with respect to the boundary graph of P ,

• it intersects each edge of P at most once, and

• its boundary does not lie wholly in some face of P .

A closed properly embedded surface in a 3-manifold M is in normal form
with respect to an ideal polyhedral decomposition of M if it intersects each
ideal polyhedron in a (possibly empty) collection of normal discs.

Note that a normal surface intersects each face in normal arcs, which
means that each arc is not parallel to a sub-arc of an edge.

There is also a notion of normality for properly embedded surfaces with
non-empty boundary. We will come to this at the end of §3.

The following is an elementary fact about normal surfaces. The proof is
an easy generalisation of the case where each polyhedron is a tetrahedron,
which can be found in [19].
Lemma 4. Fix an ideal polyhedral decomposition of a 3-manifold in which
each face is a triangle or a bigon. Then a closed normal surface is incom-
pressible in the complement of the 1-skeleton.

Therefore, given any ideal polyhedral decomposition of a 3-manifold,
we will always subdivide its faces into bigons and triangles, by possibly
introducing new edges, but adding no vertices.

It is a well-known result [6] that any closed properly embedded incom-
pressible surface with no 2-sphere components in a compact orientable irre-
ducible 3-manifold M can be ambient isotoped into normal form with respect
to some fixed triangulation. Stocking [16], building on ideas of Rubinstein
[14] and Thompson [19], proved that any strongly irreducible Heegaard sur-
face in M can be ambient isotoped into ‘almost normal’ form. Recall that
a closed surface is almost normal with respect to a triangulation of M if its
intersection with each tetrahedron is a collection of squares and triangles,
except in precisely one tetrahedron, where precisely one component of inter-
section between the surface and the tetrahedron is either an ‘octagon’ or an



158 Marc Lackenby

annulus obtained from two triangles or squares by attaching an unknotted
tube. These two possibilities are shown in Figure 8.

Tubed piece Octagon

Figure 8.
Stocking’s result holds true even when M has non-empty boundary: in

this case, we consider the usual definition [2] of a Heegaard splitting for M as
a decomposition into compression bodies. Recall that a compression body C
is a connected compact orientable 3-manifold that is either a handlebody or is
obtained from S× [0, 1], where S a closed (possibly disconnected) surface, by
attaching 1-handles to S × {1}. Then we let ∂−C be S × {0}, or the empty
set when C is a handlebody, and we let ∂+C = ∂C − ∂−C. A Heegaard
splitting for a compact orientable 3-manifold M is a decomposition of M
into two compression bodies glued along their positive boundaries.

One feature of octagonal and tubed pieces is that the resulting almost
normal surface F has an edge compression disc, namely a disc D embedded
in a tetrahedron ∆ such that D∩ ∂∆ lies in ∂D and is a sub-arc of an edge,
and D∩F is the remainder of ∂D. There is one aspect of polyhedral decom-
positions that makes them a little more complicated than triangulations. If
a disc properly embedded in a tetrahedron intersects each face in a collection
of normal arcs and has an edge compression disc on one side, then it has an
edge compression disc on the other side also. This need not be true in more
general polyhedra. Therefore we introduce the following definition.
Definition. Let F be a closed two-sided surface properly embedded in
a compact orientable 3-manifold with an ideal polyhedral decomposition.
Then F is normal to one side if

(i) its intersection with any face is a collection of normal arcs,

(ii) its intersection with any ideal polyhedron is a collection of discs, and

(iii) all edge compression discs for any of these discs emanate from the
same side of F .
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Note that a surface that is normal to one side may in fact be a normal
surface. However, we will often refer to ‘the’ normal side of the surface, with
the understanding that if the surface is normal, then this means either side.
We now introduce a generalisation of almost normality to surfaces in ideal
polyhedral decompositions.
Definition. Let P be an ideal polyhedron in which each face is a triangle
or bigon. An almost normal disc in P is a properly embedded disc D having
the following properties:

(i) its intersection with each face is a collection of normal arcs,

(ii) in each component of cl(P −D) there is an edge compression disc, and

(iii) any two edge compression discs, one on each side of D, must intersect
in the interior of P .

Let M be a compact orientable 3-manifold with an ideal polyhedral de-
composition in which each face is a triangle or bigon. A closed properly
embedded surface in M is almost normal if either

(a) its intersection with each ideal polyhedron is a collection of normal
discs, except in precisely one ideal polyhedron where it has precisely
one almost normal disc, together possibly with some normal discs, or

(b) it is obtained from a normal surface by attaching a tube that lies in
a single ideal polyhedron, that runs parallel to an edge and that joins
distinct normal discs.

An example of an almost normal disc is shown in Figure 9.

Figure 9.
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Theorem 5. Let F be a strongly irreducible Heegaard surface for a compact
orientable irreducible 3-manifold M . Fix an ideal polyhedral decomposition
of M in which each face is a bigon or triangle. Suppose that M contains
no 2-spheres that are normal to one side. Then there is an ambient isotopy
taking F into almost normal form.

The proof of this theorem follows Stocking’s argument [16] very closely.
We therefore will only sketch the main outline and will refer the reader to
[16] for further details.

The hypothesis that M contains no 2-spheres that are normal to one side
is an unfortunate one. Although this theorem is sufficient for our purposes,
it is possible that this assumption can be dropped, with some substantial
work. Normal 2-spheres caused significant complications in Stocking’s proof,
and the possibility of 2-spheres that are normal to only one side causes even
more difficulties.

We will need the following lemma, which is a translation of Lemma 1 in
[16] to the polyhedral setting. However, the proof in [16] involves a case-
by-case analysis that is not suitable here. We therefore give an alternative
proof.

Lemma 6. Let S be a closed separating properly embedded surface in a
compact orientable irreducible 3-manifold M with an ideal polyhedral de-
composition in which each face is a triangle or bigon. Suppose that S is
almost normal or normal to one side. Suppose also that S is incompressible
into one component I of M−int(N (S)), and that S has an edge compression
in I. Then S is ambient isotopic to a surface in I, each component of which
is either normal or a 2-sphere lying entirely in a single ideal polyhedron.

Proof. We will perform a sequence of isotopies that move S into I. At
each stage, we will denote the new surface by S and the new component of
M − int(N (S)) into which S is incompressible by I. We are assuming that
S has an edge compression disc in I. This specifies an ambient isotopy that
reduces the weight of surface. Perform this ambient isotopy into I. The
result is a surface that need not be normal, but which has the following
properties:

(i) for any component B of intersection between I and a polyhedron, the
intersection between B and any face has at most one component;

(ii) if an arc of intersection between S and some face has endpoints on the
same edge, and D is the subdisc of the face that it separates off, then
the interior of D is disjoint from S and is a subset of I;
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(iii) if C is a simple closed curve of intersection between S and some face,
and D is the subdisc of the face that it separates off, then the interior
of D is disjoint from S and is a subset of I;

(iv) any component of intersection between S and a polyhedron P is in-
compressible in the M − I direction;

(v) for any component B of intersection between I and a polyhedron P ,
∂B ∩ P is boundary-parallel in P .

Note that (i) need not apply to S before the isotopy. But it does after-
wards. Otherwise, we may find an edge compression disc for the original S
in M−I with the property that it and the edge compression disc in I do not
intersect away from the 2-skeleton of M . This contradicts the assumption
that S is almost normal or normal to one side.

Suppose that in some polyhedron P , S ∩ P is not a collection of discs
and 2-spheres. Then S ∩ P has a compression disc D in P . This disc lies in
I, by (iv). Hence, ∂D bounds a disc D′ in S. Ambient isotope D′ onto D.

Note that if S intersects some face in a simple closed curve, but S ∩ P
does not admit a compression in any polyhedron P , then this is the only
intersection between this component of S and the 2-skeleton. By (iii), this
2-sphere bounds a 3-ball in I, and we may ambient isotope it into a single
ideal polyhedron.

Suppose that, for some polyhedron P and some component D of S ∩ P ,
D intersects some edge e more than once. We may assume that there are
two adjacent points of intersection between D and e. Hence, there is an
edge compression disc. This edge compression disc must lie in I, otherwise
we contradict (i) or (ii). Hence, we use this to perform an isotopy into I,
reducing the weight of the surface.

After each of these isotopies, properties (i) - (v) still hold. Eventually,
this process must terminate in the required surface.

Corollary 7. If M contains no normal 2-spheres, then it contains no almost
normal 2-spheres.

Proof. Let S be an almost normal 2-sphere, and let M1 and M2 be the two
components of M− int(N (S)). By Lemma 6, we may ambient isotope S into
each Mi until it is normal or disjoint from the 2-skeleton. The former case
is impossible, by hypothesis. Thus, S must bound a 3-ball on both sides.
Therefore, M is the 3-sphere, which is closed, but closed 3-manifolds do not
have an ideal polyhedral decomposition.
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We will prove Theorem 5 by induction. At each stage, we will consider
a connected compact 3-manifold Mi embedded in M such that

(i) ∂Mi is normal in M , and

(ii) F lies in Mi and is a Heegaard surface for Mi.

Initially, M1 = M . Note that Mi inherits an ideal polyhedral decomposition
from that of M , by taking the intersection between Mi and the ideal poly-
hedra of M , and then removing ∂Mi. The hypothesis that ∂Mi is normal in
M guarantees that surfaces that are normal, normal to one side or almost
normal in Mi have the same property in M .

At each stage of the induction, we either deliver the Heegaard surface F
in almost normal form, or we construct a new embedded 3-manifold Mi+1

contained in Mi, that satisfies (i) and (ii) above. The boundary of Mi+1

will not be parallel in the ideal polyhedral decomposition to that of Mi. A
straightforward modification of the standard argument due to Kneser gives
that there is an upper bound on the number of such surfaces in M [5]. So,
we eventually obtain F in almost normal form. We now give the main steps
of the argument.

The Heegaard splitting for Mi determines a singular foliation, as follows.
In the case where a compression body C is a handlebody, the singular set
in C is a graph onto which C collapses; otherwise it is the cores of the 1-
handles. The complement of the singular set and ∂−C is given a product
foliation F × (0, 1). A small isotopy guarantees that the 1-skeleton ∆1 of
the ideal polyhedral decomposition is disjoint from the singular set. We
then place ∆1 in thin position with respect to F × (0, 1). The following
proposition is the key step.

Proposition 8. There is a non-singular leaf F of the foliation, which either
is almost normal or can be compressed on one side in the complement of
the 1-skeleton to a (possibly disconnected) almost normal surface F . In the
latter case, the incompressible side of F has an edge compression disc.

Proof. There are two cases to consider: when there is a thick region and
when there is not. Consider first the case where there is no thick region.
Then we take F to be a leaf in the foliation having the maximal number
number of points of intersection with ∆1. This is obtained from ∂−C for one
of the compression bodies C, by attaching tubes, which are the boundaries of
small regular neighbourhoods of the singular set. The argument of Lemma 4
in [16] gives that, after possibly compressing some of these tubes to one side,
we obtain an almost normal surface that contains a tubed component. If any
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compressions were used, the resulting surface is incompressible to one side,
as F is strongly irreducible [2]. The edge compression disc for the tube lies
on this side. (Essentially, Lemma 4 in [16] barely uses that the hypothesis
that M is triangulated; instead it is an analysis of how the tubes lie in the
ideal polyhedral decomposition.)

Consider now the case where there is a thick region. Applying the proof
of Claim 4.4 in [19], we can find a leaf F of the foliation in the thick region,
which intersects each face in a collection of normal arcs and simple closed
curves. It has an upper and a lower disc. The assumption that this is thin
position guarantees that any two such discs must intersect at other than
their endpoints. We compress F , if necessary, to a (possibly disconnected)
surface F which intersects each face only in normal arcs, and which intersects
each ideal polyhedron in discs.

We claim that F is normal to one side or almost normal. If F has edge
compression discs on at most one side, it is normal to one side. If it has
edge compression discs on both sides, they must lie in the same polyhedron,
otherwise we contradict thin position. By the argument of Claims 4.1 to 4.3
in [19], at most one disc of F in this polyhedron can be non-normal, and it
must be almost normal. We indicate briefly how this argument runs. Any
edge compression disc for any disc of F can be isotoped so that its interior is
disjoint from F . For, otherwise, F (and hence F ) has a pair of nested upper
and lower discs, contradicting thin position. Thus, if F contains two non-
normal discs, we may find disjoint edge compression discs, one emanating
from each side of F . These form disjoint upper and lower discs for F , which
is a contradiction. Similarly, any two edge compression discs for a disc of
F , one on each side of F , must intersect away from their boundaries. This
proves the claim.

Now, F is obtained from F by attaching tubes. We claim that they
are not nested, and that their meridian discs all lie on the same side of F .
For if they are nested, then we may pick a tube T , with at least one tube
running through it, but such that all tubes T1, . . . Tn running through T are
innermost. Let Di be a meridian disc for Ti, and let D be a meridian disc
for T . If Di is not a compression disc for F , then ∂Di bounds a disc in F . If
this disc contains any tubes, consider the simple closed curves forming the
boundaries of their meridian discs. Pass to an innermost such curve. This
bounds a disc in F which forms part of a 2-sphere component of F . But we
have made the assumption that M contains no 2-spheres that are normal
to one side. By Corollary 7, M also contains no almost normal 2-spheres.
Thus, no component of F is a 2-sphere. Thus, each Di is a compression
disc for F . So, when we compress F along these discs, the resulting surface
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F ′ is incompressible on the side containing D, as F is strongly irreducible.
Therefore, ∂D bounds a disc in F ′. Again, this implies that F contains a
2-sphere component, which is a contradiction. Therefore, the tubes of F
are not nested. Their meridian discs are all essential. Since F is strongly
irreducible, they all lie on the same side of F . This proves the claim.

We claim that F is almost normal, giving the required surface. Suppose
that, on the contrary, F is normal to one side. Now, F has both upper
and lower discs. By the argument in Claim 11 of [16], we may assume that
they are disjoint from the interiors of the tubes. Thus, on the side of F to
which the tubes are not attached, there must be an edge compression disc,
making that side non-normal. So, the tubes are attached to the normal side
of F . Then, since the tubes of F are not nested and all emanate from the
same normal side, we may apply by the argument of Lemma 4 in [16] to
deduce that there is an edge compression disc for F that runs over one tube
exactly once. This and the edge compression disc on the non-normal side of
F form upper and lower discs for F that intersect away from ∆1, which is a
contradiction.

If F is almost normal, Theorem 5 is proved. If not, then by Proposition 8,
it compresses on one side to an almost normal surface F . Let I be the
incompressible side of F . The tubes of F are all attached to this side, and
hence lie in I. Apply Lemma 6 to ambient isotope F into I to a normal
surface. Let Mi+1 be the copy of I after the ambient isotopy. This has the
required properties. Hence the proof of Theorem 5 is complete.

3. Polyhedral decompositions of alternating
knot complements.

It is well known that a reduced diagram of a knot induces a decomposition
of the knot complement into two ideal polyhedra. The construction is due to
Menasco [9]. We recall the main details now. Suppose we are given a reduced
knot diagram D lying in a 2-sphere. We embed this 2-sphere into S3. The
knot lies in this 2-sphere, except near each crossing, where it skirts above
and below the diagram as two semi-circular arcs (see Figure 10). These arcs
lie on the boundary of a 2-sphere ‘bubble’ that encloses each crossing. The
2-sphere containing the diagram decomposes each bubble into two discs, an
upper and lower hemisphere. The upper (respectively, lower) hemispheres
together with the remainder of the diagram 2-sphere is a 2-sphere denoted
S2

+ (respectively, S2−). We will use S2± to denote S2− or S2
+.
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Bubble

Figure 10.

At each crossing there is a vertical arc properly embedded in the knot
complement. These arcs form the edges of the ideal polyhedral decompo-
sition. There is one face for each region of the diagram. (See Figure 11.)
The complement of the edges and faces is two open 3-balls, one above the
diagram, one below. These open balls are the interior of the two ideal poly-
hedra.

Edge

Face

Figure 11.

A closed normal or almost normal surface F in this ideal polyhedral
decomposition can be visualised in quite a straightforward way. At each
point of intersection between F and an edge, we insert at a saddle in the
relevant bubble (see Figure 12). The intersection between F and the faces of
the polyhedra is a collection of arcs which lie in the regions of the diagram.
The condition that F is normal (or almost normal) and that the diagram is
reduced guarantees that no arc has endpoints in the same crossing.
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Figure 12.
We will need to consider surfaces that are more general than normal

surfaces. Let F be a surface properly embedded in the knot complement,
such that any boundary component of F is meridional. We say that F is
standard if it intersects each bubble in a collection of saddles, intersects each
face in a collection of arcs and intersects the two truncated polyhedra in a
collection of discs. Also, the boundary C of each such disc must satisfy the
following conditions:

(i) no arc of intersection between C and a face has endpoints lying in the
same crossing;

(ii) if C intersects the knot, it does so transversely away from the bubbles;

(iii) C intersects the knot projection in more than two points.

A central part of Menasco’s techniques [10] is to analyse how a normal
surface F lies in an alternating knot complement. Under many circum-
stances, he established the existence of a meridional compression disc which
is defined to be an embedded disc R such that R ∩ F = ∂R and R ∩ K is
a single point in the interior of R. The meridional compression disc that
Menasco constructs is diagrammatic which means that its intersection with
the bubbles is a single disc in a single bubble, and the remainder of the disc
is disjoint from the plane of the diagram.

We say that a 2-sphere is trivial if it is disjoint from the bubbles and it
intersects the plane of the diagram in a single simple closed curve.

The following is a generalisation of Menasco’s results to standard sur-
faces.
Lemma 9. Let D be a prime alternating diagram of a knot K, and let F be
a standard surface properly embedded in the knot exterior with at most two
meridional boundary components. Then either F is a trivial twice-punctured
2-sphere, or it admits a diagrammatic meridional compression.
Proof. We claim that we can find a simple closed C of F ∩S2

+ that intersects
some bubble in at least two arcs, where two of these arcs are part of the
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same saddle and have no arc of F ∩ S2
+ between them. We can then find a

simple closed curve in F that runs from C across the saddle back to C and
then over the disc that C bounds above the diagram. This curve bounds the
required diagrammatic meridional compression disc.

If there is only one curve of F ∩ S2
+, then it is either disjoint from the

bubbles, in which case F is a trivial twice-punctured 2-sphere, or it intersects
some bubble as claimed. Thus, we may assume that there are at least two
such curves. Consider an innermost one, C, bounding a disc I containing
no other curves of F ∩ S2

+. By choosing this curve suitably, we can ensure
that C has at most one point of intersection with K, since F has at most
two boundary components.

Each time that C runs over a bubble, the crossing either lies in the inward
direction or outward direction from C. Note, however, that just because a
crossing lies in the inward direction from C, this does not guarantee that the
crossing itself lies in I, since C may return to the crossing several times. The
hypothesis that the diagram is alternating ensures that, as one runs along
C, one meets crossings alternately on the inward direction and outward
direction of C.

Consider the arc components of intersection between I and the knot
projection, ignoring the components containing crossings. Suppose first that
there are at least two such arcs. Let α be an outermost such arc in I,
separating off a disc E. By choosing α appropriately, we can ensure that
E ∩C is disjoint from K. It therefore runs from a bubble back to the same
bubble. It meets this bubble once in the inwards direction and once in the
outwards direction. Hence, by property (i) in the definition of a standard
surface, it runs over at least one other bubble in the inwards direction.
Consider the curve of F ∩S2

+ on the other side of this crossing, connected via
the saddle at the bubble. This must again be part of C, by the assumption
that C is innermost. Hence, we have the found the required intersection
with C and a bubble.

Suppose now that there is precisely one arc α of intersection between I
and the knot projection. If C∩K does not lie at an endpoint of α, the above
argument works. Suppose therefore that C ∩K does lie at an endpoint of α.
Note that C must meet at least one other crossing, by (iii) in the definition
of a standard surface. Hence, it meets a crossing in the inwards direction,
and the claim is then proved.

Suppose now that there is no arc of intersection between I and the knot
projection. Now, C must meet at least three crossings, at least one of which
lies in the inward direction. Thus, as above, the claim is proved.
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F

F F

F

Meridional
compressionK

Figure 13.
Let F be the result of F immediately after the diagrammatic meridional

compression. Then F satisfies all the conditions of a standard surface, except
possibly (iii). This may fail, since F may have one or two ‘tubes’ that run
parallel to the knot for a time before closing off with a disc that intersects the
knot in a single point. We now explain how to modify F by retracting these
tubes, under the assumption that the diagram is prime. Each component of
the resulting surface will be standard or a trivial 2-sphere. For, if (iii) fails
for a component of F that is not a trivial 2-sphere, then there is then an
ambient isotopy which retracts this tube, reducing the number of curves of
F ∩ S2

+ and leaving the number of curves of F ∩ S2− unchanged. Clearly, (i)
and (ii) still hold, and the surface still intersects the bubbles in saddles, the
faces in arcs and the polyhedra in discs. Hence, eventually, each component
is a trivial 2-sphere or a standard surface.
Corollary 10. Let D be a prime alternating diagram of a knot K. Then

(i) the exterior of K contains no standard 2-spheres that intersect the
knot in at most two points;

(ii) any standard torus disjoint from the knot is normally parallel to
∂N (K).

Proof. Let F be a standard 2-sphere disjoint from the knot. Then by Lemma
9, F admits a meridional compression. The result is two 2-spheres, each of
which intersects the knot once, which is impossible.

Now consider a standard 2-sphere F intersecting K in two points. We will
prove, by induction, on the number of its saddles that such a 2-sphere cannot
exist. It admits a meridional compression to two such 2-spheres. Retract
the tubes of these 2-spheres. The result, inductively, cannot be standard
2-spheres. Hence, they must be trivial. However, if we then reconstruct F
by tubing these two trivial 2-spheres together, the result is not standard.

Finally, let F be a standard torus disjoint from the knot. Find a dia-
grammatic meridional compression to a twice punctured 2-sphere. Retract
its tubes. The result cannot be standard, and hence must be trivial. There-
fore, the original torus F must have been normally parallel to ∂N (K).
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A further variation that we need to consider is alternating graphs as op-
posed to alternating knots. In this case, we will need to analyse surfaces with
non-meridional boundary properly embedded in the graph exterior. Again,
there is a theory of normal surfaces, following [6]. If one truncates the ideal
vertices of the ideal polyhedral decomposition, the resulting truncated poly-
hedra have boundary that can be identified with S2±. A properly embedded
surface is normal if it intersects each bubble in a collection of saddles, in-
tersects each face in a collection of arcs and intersects the two truncated
polyhedra in a collection of discs. Also, the boundary C of each such disc
must satisfy the following conditions:

(i) C intersects each side of each crossing in at most one arc;

(ii) C does not lie entirely in ∂N (G) ∩ S2±;

(iii) no arc of intersection between C and a face F has endpoints lying in
the same crossing, or in the same component of ∂N (G) ∩ F , or in a
crossing and a component of ∂N (G) ∩ F that are adjacent;

(iv) C intersects any component of N (G) ∩ S2± in at most one arc;

(v) any such arc cannot have endpoints in the same component of N (G)∩F
for any face F .

4. Alternating graphs with handlebody exteriors.

The main goal of this section is to prove Theorem 3 below.
Theorem 3. Let D be a reduced alternating diagram of a graph G with a
single vertex. Then the exterior of G is a handlebody if and only if D is one
of the diagrams shown in Figure 7.

We will use the following lemma at a number of points.
Lemma 11. Let D be a reduced alternating diagram of a graph G with
a single vertex, such that the exterior of G is a handlebody H. Let C be
a simple closed curve in the diagram that intersects the graph projection
transversely in two points disjoint from the crossings and the vertex. Then
C bounds a disc in D that is disjoint from the crossings and the vertex.

Proof. Suppose, on the contrary, that there is such a curve C, bounding a
disc in D that is disjoint from the vertex but contains at least one crossing.
It bounds two discs, one above the diagram, and one below. The union of
these is a 2-sphere, whose intersection with H is an annulus A. The core
curve of A is homologically non-trivial in H. Hence, A is incompressible
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in H. When a handlebody is cut along a properly embedded orientable
incompressible surface, the result is a disjoint union of handlebodies. Hence,
the 1-string tangle that C bounds must be trivial. But this contradicts
Menasco’s theorem [10], since it is reduced, alternating and has at least one
crossing.

Proof of Theorem 3. We argued in the introduction that the exteriors of
the graphs in Figure 7 are handlebodies. Hence, we need only prove the
converse.

Suppose now that the exterior of G is a handlebody. Its boundary there-
fore has a compression disc. Hence, by [6], it has a compression disc E
in normal form. Note that E cannot have a meridional compression disc
E1. For ∂E1 would then bound a subdisc E2 of E, and E1 ∪E2 would be an
embedded 2-sphere intersecting G in precisely one point, which is impossible.

Consider the intersection between E and S2−∪S2
+. This is a graph embed-

ded in E. Its complimentary regions are saddles and normal discs, where the
former lie in the interior of E. If this graph fails to be connected, then pick
a component that is outermost in E. Let E′ be the subdisc of E comprised
of this component and all faces adjacent to it. Suppose that the region of E′

containing ∂E′ − ∂E lies below S2−, say. Then we will focus E′ ∩ S2
+. This

has the property that any curve of E′ ∩ S2
+ runs over ∂N (G) at most once.

Also, if E′ ∩ S2
+ runs over a saddle, then the curve of E ∩ S2

+ on the other
side of the crossing also lies in E′.

Let N be the component of N (G) ∩ S2
+ containing the vertex v. If N

is not a disc, then one of the components β of G − v runs from v back
to v without passing underneath any crossings. Since G is alternating, it
therefore runs through at most one over-crossing. Suppose first that β runs
through no crossings. Then the remainder of the diagram is a diagram of
the other component of G − v. By Lemma 11, this tangle has no crossings.
Then, D is as in the leftmost diagram of Figure 7. If β runs through a
single crossing, then it divides the diagram into two 1-string tangles. Each
tangle has no crossings by Lemma 11. Hence, the diagram of G has a single
crossing, and therefore fails to be reduced. We may therefore assume that
N is a disc. Note that ∂N runs through crossings eight times.

We perform a small ambient isotopy so that all curves of E′ ∩ S2
+ are

disjoint from the vertex v of G. We can ensure that, for any curve C of
E′ ∩ S2

+, the disc of S2
+ that C bounds not containing v contains at most

four crossings in ∂N .
Pick a curve C of E′∩S2

+ innermost in the diagram, where we define the
innermost direction so that the disc that C bounds does not contain v.
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Consider first the case where C is disjoint from N (G). Then it runs over
an even number of crossings. As in the proof of Lemma 7, the fact that
the diagram is alternating and that C is innermost implies that E has a
meridional compression disc, which is impossible.

Thus C must run over N (G). The arc C − N (G) runs over at most
one saddle. Otherwise, we would either contradict the assumption that C is
innermost or we would find a meridional compression disc for E.

Suppose the component of G∩S2
+ that C runs over does not contain the

vertex of G. Then it intersects G in one of the ways shown in Figure 14. In
the first two cases, this part of C intersects the projection of G only once.
Therefore, for parity reasons, C − N (G) must run over a crossing. In the
third case of Figure 14, C − N (G) cannot run over a crossing. Hence, C
bounds a diagram of a 1-string tangle that must have no crossings. In the
left diagram of Figure 14, this contradicts the fact that E is in normal form.
In the remaining two diagrams, we contradict the fact that D is reduced and
alternating.

G GG

C C C

Figure 14.

Thus, we are reduced to the case where C runs over the component N
of N (G) ∩ S2

+ that contains the vertex v. Let α be the arc cl(C −N). Join
the endpoints of α with a curve γ in ∂N that is parallel in N to C ∩N , the
parallelity region not containing v. Note that γ runs through at most four
crossings. The simple closed curve α ∪ γ must run through an even number
of crossings. If this number is zero, then the disc is not in normal form.
If this number is two, then α ∪ γ separates the diagram into a connected
sum. As before, α ∪ γ then bounds a disc containing a single arc of the
diagram and no crossings. In each case, this implies that the diagram fails
to be reduced and alternating, or E fails to be normal. Hence, α ∪ γ runs
through precisely four crossings. We list all the possibilities in Figure 15.
We have not included any possibilities that would contradict the fact that
the diagram is alternating.



172 Marc Lackenby

C not innermost

α
α

α

α

α

Diagram is a
connected sum

Diagram is a
connected sum

Figure 15.

It is clear that only two of these diagrams may arise. In both cases,
Figure 16 shows a way of removing the vertex and replacing it with two
arcs.

α

α

Figure 16.

The result is a composite alternating diagram of a knot or link L. It has
no trivial loops (namely, a loop that starts and ends at the same crossing,
with interior disjoint from the crossings). Hence, L is composite by [10].
This link L has tunnel number one, since there is an obvious unknotting
tunnel t such that the exterior of L∪ t is homeomorphic to the exterior of G.
A result of Gordon-Reid [4] asserts that a tunnel number one knot or link
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can be composite only if it has a Hopf link summand. The Hopf link has a
unique reduced alternating diagram [11]. Therefore, in the diagram of L, one
of its components runs through exactly two crossings, forming a meridian
of the other component. Since G is connected, these two components are
fused together at v. Thus, a subset of D is as shown in Figure 17. Note that
this is identical to the complement of the grey discs in either the middle or
right-hand diagrams of Figure 7.

A

G

Figure 17.

We need to show that the remainder of the diagram is a rational tangle.
The strings of this tangle must join up as shown in Figure 7, since G is
connected. Let S be the 2-sphere bounding the subset of the diagram in
Figure 17. This sphere divides S3 into two 3-balls, B1 and B2, where we say
that B2 is the one containing the vertex v.

We need to show that the tangle G∩B1 is rational. Let A be the annulus
shown in Figure 17 properly embedded in the exterior of G. Note that there
is a homeomorphism h from S3−int(N (G∪A)) to B1−int(N (G∩B1)), taking
the two copies of A in ∂N (G∪A) to the two annuli cl(∂N (G ∩B1)− ∂B1).
This annulus A is incompressible in the complement of G. But the exterior
H of G is a handlebody. Hence, A admits a ∂-compression in H. The image
under h of this ∂-compression disc is a disc P embedded in B1 − G. Note
that P ∩ ∂B1 is a single arc, and the remainder of ∂P runs once along one
component of G ∩ B1. Hence, P specifies a parallelity disc between this
component of G∩B1 and an arc in ∂B1. The remaining arc of G∩B1 lies in
the complement of P , which is a 3-ball. It must be a trivial 1-string tangle
in this 3-ball. Hence, the intersection of B1 with G is a rational tangle. This
proves that G is as shown in Figure 7.
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5. Almost normal surfaces in alternating knot complements.

Our goal in this section is to prove Theorem 2, and hence complete the proof
of Theorem 1.
Theorem 2. Let D be a reduced alternating diagram for a knot K. Then
any unknotting tunnel for K is isotopic to an unknotting tunnel that is an
embedded arc in some region of the diagram.

Note first that the diagram D is prime. Otherwise, K is a non-trivial
connected sum [10], which is impossible by Gordon-Reid’s theorem [4].

Step 1. The Heegaard surface is strongly irreducible.
We will denote the genus two Heegaard surface by F . Let M be

S3 − int(N (K)). Let H and P be the closures of the two components of
M − F , where H is the handlebody and P is the compression body con-
taining ∂N (K) in its boundary. Note first that we may assume that F is
irreducible. For otherwise, the Heegaard splitting is the connected sum of a
genus one splitting of S3 and a genus one splitting for the knot exterior. By
Waldhausen’s theorem [20], the splitting is stabilised. Thus, the unknotting
tunnel is isotopic to a planar arc, which proves the theorem.

Suppose that F is weakly reducible, via disjoint compressing discs D1

and D2 in H and P respectively. If we cut P along D2, the result is a copy
of T 2 × I and possibly also a solid torus V . The curve ∂D1 is disjoint from
D2. Since the splitting is irreducible, it does not bound a disc in P . If it
lies in T 2 × I, it extends to a compression disc for ∂N (K). Then K is the
unknot, and by [2], the splitting is reducible, contrary to assumption. If ∂D1

lies in the solid torus, then we obtain a lens space summand for the knot
exterior. This lens space must be S3 and hence ∂D1 has winding number
one round V . This implies that the Heegaard splitting is reducible, which is
a contradiction. This proves that F is strongly irreducible.

Step 2. Placing F into almost normal form.
Pick some subdivision of the faces of the ideal polyhedral decomposition

of the knot complement, without introducing any vertices, so that each face
is bigon or triangle. By Corollary 10, this contains no properly embedded
standard 2-spheres. In particular, it contains no 2-spheres that are normal to
one side. So, by Theorem 5, we may ambient isotope F into almost normal
form in this ideal polyhedral decomposition.

Consider first the case where F has an almost normal tubed piece. Com-
press this tube. The result is a surface that is normal to one side. By
Corollary 10, it contains no 2-sphere components. Hence, it is one or two
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tori. In the latter case, one of these tori would be compressible. Each torus
is standard, and hence, by Corollary 10, is normally parallel to ∂N (K). In
particular, it is incompressible. Thus, the compressed surface is a single
torus F that is normally parallel to ∂N (K). Up to isotopy, the unknotting
tunnel runs from ∂N (K) through the tube and then to ∂N (K), respecting
the product structure in the tube and the product structure on the par-
allelity region between ∂N (K) and F . This arc can therefore be ambient
isotoped into a face of the ideal polyhedral decomposition. This is then an
embedded arc in some region of the diagram. This proves Theorem 2 in this
case.

We therefore assume now that the almost normal surface F contains no
almost normal tubed piece.

Step 3. Meridionally compressing F .
By Lemma 9, F admits a diagrammatic meridional compression to a

twice-punctured torus T . Retract the tubes of T to place it in standard
form. Now apply Lemma 9 again to find another meridional compression
disc. There are two possibilities for the resulting surface: either a 2-sphere
intersecting K in four points or a torus intersecting K in two points and a
2-sphere intersecting K twice. We claim that the latter case cannot arise.
For the twice-punctured 2-sphere retracts to a trivial 2-sphere by Corollary
10. But, then reconstructing T , we see that it could not have been standard.
Hence, the meridional compression must yield a 2-sphere S intersecting K
in four points.

Step 4. How the tubes can be nested.
When we performed the first meridional compression to F , this created

two points of intersection between T and K. Let α1 be the sub-arc of K that
runs between these two points, and which lies in a regular neighbourhood
of the compression disc. When we retracted the tubes of T , this expands
α1, but it remains an embedded sub-arc of K. When we perform the second
meridional compression, we get a similar arc α2 running along K between
two points of S ∩K. The surface F is obtained from S by removing the four
discs S ∩ N (K) and attaching a tube (that is, an annulus) that runs along
α2 and then another that runs along α1. There are two cases to consider:
either α1 and α2 are disjoint, or α2 is a subset of α1. In the latter case, we
say that the tubes are nested, whereas in the former case, they are not.

Step 5. S bounds a rational tangle on at least one side.
Consider first the case where the tubes are not nested. Since F is a

Heegaard surface, K is parallel to a simple closed curve on F , via an annulus.
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We may assume that the meridional compression discs each intersect this
annulus in a single arc, and hence, when we cut along these discs, we obtain
two discs E1 and E2, where Ei ∩ K is an arc in ∂Ei, and Ei ∩ S is the
remainder of ∂Ei. Hence, in this case, S bounds a rational tangle on one
side. We call the 3-ball on this side B1.

Consider now the case where the tubes are nested. Let B1 and B2 be
the 3-balls on each side of S. The Heegaard surface F is obtained from S in
two stages:

(i) attaching a tube T2 running along K, joining two punctures of S;
suppose that this tube lies in the 3-ball B2 bounded by S, and then

(ii) by attaching another tube T1; this time T1 runs between the two other
punctures of S; it runs into B1, back to S, through the tube formed in
stage (i), and then back through B1.

The component of S3 − int(N (F )) not containing K is a handlebody H.
This component consists of B1 − int(N (K ∩ B1)) together with the space
between the two tubes, which is a copy of A × I, where A is an annulus
and where (A × I) ∩ B1 = A × ∂I. Then A × {1

2} is an incompressible
annulus properly embedded in a handlebody. Such an annulus must have a
boundary-compression disc E. We may assume that E intersects A × I as
the product of a properly embedded essential arc in A and either [0, 1

2 ] or
[12 , 1]. We may also assume that E intersects the remainder of T1 in a single
arc. By extending E − (A× (0, 1)) a little, we obtain a disc E′ embedded in
B1, such that ∂E′ is the union of an arc of K ∩B1 and an arc in ∂B1. The
other arc of K ∩B1 lies in B1 − int(N (E′)), which is a 3-ball. This arc must
also be trivial, since H − int(N (A)) is a handlebody. Hence, (B1, B1 ∩K) is
a rational tangle.

Step 6. The possible positions for S.
We retract the tubes of S to a standard surface. In [10], Menasco anal-

ysed in some detail the possible arrangements for a four-times punctured
2-sphere in normal form. Although S is not necessarily normal, Menasco’s
arguments still hold here. We claim that S intersects S2

+ and S2− as in one
of the possibilities of Figure 18.

We first claim that S has no diagrammatic meridional compression disc.
For, the boundary of this disc would have linking number one with K. How-
ever, the only curves on S −K with this property are parallel to one of the
curves of S∩∂N (K). Hence, a diagrammatic meridional compression would
yield another four-times punctured 2-sphere and a twice-punctured 2-sphere.
We argued in Step 3 that there can be no such twice-punctured 2-sphere.



Alternating Knots with Tunnel Number One 177

K
K

S S+
2

S S+
2

Figure 18.

Applying the arguments of Lemma 9 and the fact that S has no dia-
grammatic meridional compression, we deduce that each innermost curve of
S ∩ S2± must intersect K at least twice. If there is a single curve of S2

+ ∩ S,
then it must meet K four times and can meet no saddles. It is then as
in shown in the left-hand diagram of Figure 18, which we term the simple
arrangement for S. If there is more than one curve of S2

+ ∩ S, then there at
least two that are innermost. Each of these curves has two points of intersec-
tion with K. As in the proof of Lemma 9, they cannot meet a saddle in the
inwards direction. Hence, each meets two saddles, the saddles alternating
with points of K. Since this holds in both S2

+ and S2−, it is not hard to see
that the only possibility is as in the right-hand diagram of Figure 18, which
we term the complex arrangement for S.

Our aim is to reduce the complex arrangement to the simple arrangement.
We will show that, in the complex case, there is an ambient isotopy, leaving
K invariant and introducing no new point of S ∩ K, taking S to a simple
arrangement. So, suppose that S is as in the right-hand diagram of Figure
18. There is an obvious vertical disc E with E∩S = ∂E, which intersects K
in two points. The boundary of this disc runs from the top crossing, along
the inner disc of S − S2

+ above S2
+ to the next crossing, under the saddle,

then over the top disc of S−S2
+ back to the top crossing. There is a similar

disc under S2−. We choose E so that it lies in B1, the 3-ball containing the
rational tangle. Note that ∂E separates the four points of S ∩K into two
pairs.

Let P be two disjoint discs embedded in B1, so that ∂P contains the two
arcs B1 ∩K, one in each component of P , and so that the remainder of ∂P
is P ∩∂B1. Such discs P exist because (B1, B1 ∩K) is a rational tangle. We
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may isotope P so that it intersects E in simple closed curves and embedded
arcs. The six possible curve or arc types of E ∩ P in E are shown in Figure
19. Note that a curve of E ∩ P encircling a single point of E ∩K is ruled
out, since the arc of E ∩ P emanating from this point must have another
endpoint.

1 2 3

4 5 6

Figure 19.

If there is a type 1 curve, pass to an innermost one in E. This bounds a
disc in P and a disc in E. Alter P , replacing the former disc with the latter,
and then perform a small ambient isotopy to remove this curve of E ∩P . In
this way, we remove all type 1 curves. Similarly, by dealing with outermost
type 2 curves in E, we may remove all type 2 curves. There are now two
possibilities: E contains a type 4 curve and perhaps some type 3 curves; or
E contains two type 5 curves and perhaps some type 6 curves.

We start with the first case. Suppose that there is a type 3 curve. An
innermost type 3 curve in P bounds a disc whose interior is disjoint from
E. The union of this disc and E divides B1 into three balls. The 3-ball that
intersects E in an annulus contains a single arc of B1 ∩K, which must be a
trivial tangle. Similarly, the 3-ball disjoint from ∂B1 intersects K in a single
arc α, which again must be a trivial tangle. Hence, there is a disc embedded
in this ball, whose boundary is α and a single type 4 curve. This type 4
curve is isotopic to α, leaving its boundary fixed. Hence, the final 3-ball
B′

1 (the one containing all of E in its boundary) intersects K in a 2-string
tangle, so that the union of these two strings, the type 4 curve and an arc in
∂B1 − E bounds a disc in B′

1. (See Figure 20.) Hence, we may reconstruct
P so that it intersects E in a single type 4 curve. We may therefore assume
that P contains no type 3 curves.
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B'1

B1

α
E

Figure 20.

We claim that the ‘satellite’ tangle in B′
1 is trivial. In other words,

pair (B′
1, B

′
1 ∩ K) is homeomorphic to the product of an interval and the

pair (E,E ∩ K). The tangle in B′
1 has a diagram which is a subset of

the alternating diagram D. However, a non-trivial satellite tangle cannot
have an alternating diagram. Otherwise, we could extend the tangle to
an alternating diagram of a prime non-trivial satellite knot, contradicting
Menasco’s theorem [10]. This proves the claim. We may now use the product
structure on B′

1 to isotope S, as required, across B′
1, so that afterwards S

has a simple arrangement in the diagram.

We now deal with the case where P intersects E in two type 5 curves
and possibly some type 6 curves. If there is a type 6 curve, consider one
outermost in P . This separates off a subdisc P ′ of P that is disjoint from
K. It lies in one component B′

1 of cl(B1 − E). It separates the two arcs of
B′

1 ∩ K. The intersection between K and each component of B′
1 − P ′ is a

trivial 1-string tangle. Since ∂P ′ runs over E in a single arc, we deduce again
that the pair (B′

1, B
′
1 ∩ K) is homeomorphic to the product of an interval

and the pair (E,E∩K). Similarly, if there are no type 6 curves, the closures
of both components of B − E have such a product structure. Hence, again,
there is an ambient isotopy, leaving K invariant and introducing no new
points of S ∩K, taking S to the 2-sphere (S− ∂B′

1)∪E, which has a simple
arrangement with the knot diagram.

Hence, we may assume that S ∩ S2± is a single simple closed curve con-
taining all four points of S ∩K.

In the case where the tubes of F are not nested, the proof of Theorem
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2 is now complete. Up to isotopy, the unknotting tunnel lies in the rational
tangle B1 as shown in Figure 21. This is a planar arc in the diagram.

tunnel

Rational tangle

Figure 21.

Step 7. The case where the tubes are nested.

Recall from Step 5 that S divides S3 into 3-balls B1 and B2. The tangle
(B1, B1∩K) is rational. We now need to analyse the other tangle (B2, B2∩K).
We know that F is a Heegaard surface for K. Hence, the component H ′

of S3 − int(N (F )) containing K is obtained by attaching a 1-handle to a
solid torus in which K is the core curve. There is therefore an annulus A′

embedded in this handlebody H ′, with K as one boundary component and
the other boundary component lying in ∂H ′. If D1 is the first meridional
compression disc for F , we may assume that D1 ∩A′ is a single arc running
from ∂D1 to D1 ∩K. Hence, D′ = A′ − int(N (D1)) is a disc lying on one
side of T , such that D′ ∩ (T ∪K) = ∂D′, with ∂D′ comprising an arc in K
and an arc in T . Note also that T has a compression disc disjoint from K on
the D′ side of T . Therefore, the component of S3− int(N (T )) containing D′

is a solid torus V , and K ∩ V is a curve α3 parallel to an arc in ∂V , via the
disc D′. This solid torus is B2 − int(N (α2)). We will exhibit a planar arc t
with endpoints in α3 such that α3 ∪ t is the union of a core curve in V and
two vertical arcs. This t will therefore be isotopic to the original unknotting
tunnel.

Now, B2 − int(N (α2 ∪ α3)) is a handlebody. We may view the subset of
the diagram that specifies B2 as an alternating diagram for this handlebody,
where the outside of B2 is a single vertex. This diagram need not be reduced,
since it may be as in the right-hand diagram of Figure 5. But nevertheless,
we deduce from Theorem 3 that the diagram for B2 is either rational or as
shown in Figure 22, where the arcs in R join the boundary components so
that this tangle has two strings. As usual, the restriction of the diagram to
each of the concentric annuli has a single crossing and contains four arcs,
each running between the two boundary components of the annulus.
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rational
R

Figure 22.

Consider first the case where B2 is rational. The diagrams for B1 and
B2 are as shown in Figure 2. Take t in B2 to be the tunnel shown in the
left diagram of Figure 23, where the endpoints of t lie in α3. Then α3 ∪ t is
the union of a core curve in V and two vertical arcs, as required. However,
t is not yet planar. Consider the two annuli closest to the disc containing
this tunnel, as shown in Figure 23. In each case, there is an ambient isotopy
that makes this tunnel planar. This proves the theorem in this case.

tunnel

Rational tangle

Figure 23.

Now suppose that B2 is as shown in Figure 22. Note that we may assume
that R contains at least two crossings, for otherwise the tangle in Figure 22
is rational. There are two cases: when the left-hand arc in Figure 22 (that
runs through only two crossings not in the outer annuli) is α3, and when it is
α2. When it is α3, we know that the tangle R is integral, as shown in Figure
24, since α2 must be a trivial 1-string tangle in B2, as V = B2 − int(N (α2))
is a solid torus. The arc t shown in Figure 24 is the required unknotting
tunnel.
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α α3 2

unknotting
tunnel t

Figure 24.

When the left-hand arc of Figure 22 is α2, we take t to be the planar
tunnel shown in Figure 25. We must show that t ∪ α3 is the union of a core
curve of V and two vertical arcs. We will ambient isotope α3 ∪ t in the solid
torus V until this claim is evident. In fact, t will remain fixed.

α α2 3

tunnel t

Figure 25.

By applying a homeomorphism to B2 − int(N (α2)), we may remove the
crossings in the outer annuli. The tangle R is decomposed into annular
diagrams, each containing a single crossing, surrounding a 2-string diagram
with no crossings. Consider the crossing of R lying in the outermost annulus
A1. If it joins the right two points of the annulus, then it may be removed,
since it can be viewed as a crossing in an outer annulus of the diagram for
B2. If it joins the left two points, then we may flype R so that it lies between
the right two points, and then remove it. The cases where the crossing joins
the top two points, and where it joins the bottom two points are symmetric.
Hence we suppose the former. Now consider the second outermost annulus
A2. If there is none, then R has only one crossing, and we are done. Flype
the subset of R inside A2, if necessary, so that the crossing in A2 joins the
top two points, or the left two points. There are thus two cases, which are
shown in Figure 26. There, an isotopy of α3 in V is shown which removes
these two crossings, but leaves the remaining crossings unchanged.
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R

α α2 3

R

α α2 3

α α2 3 α α2 3

α α2 3 α α2 3

Figure 26.
It is clear therefore that we can isotope α3 until R has at most one

crossing. But, in this case, α3 ∪ t is clearly the union of a core curve and
two vertical arcs.

This completes the proof of Theorem 2.
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