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1. Introduction.

This paper comprises of the foundational work for some versions of Seiberg-
Witten theory on 3-manifolds with Euclidean ends. A manifold with a Eu-
clidean end, or an MEE for short, is a smooth, orientable 3-manifold formed
by connect-summing a compact closed manifold with R3, whose metric is Eu-
clidean outside a compact region (cf. Definition 2.2.2 below). We consider
Seiberg-Witten equations ((2.2) below) on such manifolds, with a family of
perturbations parametrized by t ∈ R+∪{0}. See (2.4) below for the form of
the perturbation 2-form ω. Roughly speaking, it has −tθ/2 as the dominant
term, where θ is a harmonic 2-form asymptotic to dx1 ∧ dx2, (x1, x2, x3) be-
ing the coordinates of R3. In contrast to the well-known theory on compact
manifolds, which is essentially independent of the choice of metric or per-
turbation, the theory on non-compact manifolds typically depends crucially
on the asymptotic conditions. Indeed, in our theory the cases of t = 0 and
t > 0 behave quite differently.

The following theorem summarizes our main conclusions.

Theorem Let M be a 3-manifold with a Euclidean end with a fixed Spinc

structure.

(a) When t = 0 and b1(M) > 1, for a generic pair of metric g and closed
2-form w on M , the moduli space Mg,w of Seiberg-Witten solutions is a
compact 0-dimensional manifold, and for two such pairs (g1, w1), (g2, w2),
the moduli spaces Mg1,w1, Mg2,w2 are cobordant.

(b) When t > 0, the moduli space Mg,w,t of Seiberg-Witten solutions
for a generic pair (g,w) is a disjoint union of finite-dimensional (possibly
non-compact) manifolds. The dimensions of the different components depend
on the vortex number n ∈ Z+ ∪ {0}. Letting Mn

g,w,t ⊂ Mg,w,t denote the
subset of vortex number n, there is a smooth, proper map from Mn

g,w,t to
Symn R2 × Symn R2. Furthermore, every point of vortex number n in the
end of the moduli space has a neighborhood with a product structure N ×R,
where N is a neighborhood in Mp

g,w,t, p < n, and R is a neighborhood in
Symn−p R2. Finally, for two arbitrary t1, t2 > 0, Mg1,w1,t1 and Mg2,w2,t2

are cobordant for generic pairs (g1, w1), (g2, w2).
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1.1. Motivation.

The main motivation of this work is two-fold:
(a) Three-dimensional versions of Taubes’s work on SW = Gr.

Taubes’s work on the equivalence of 4-dimensional Seiberg-Witten in-
variants and the Gromov invariant of symplectic manifolds [42, 43, 44, 46] is
arguably the most influential result of Seiberg-Witten theory. Very roughly,
the idea is to consider Seiberg-Witten equations perturbed by two-forms of
the form tω (up to an inessential term), where ω is the symplectic form
on the underlying symplectic 4-manifold, and t is a large positive real pa-
rameter. As t → ∞, the zero locus of the Higgs field of a Seiberg-Witten
solution approaches a set of pseudo-holomorphic curves in the symplectic
manifold, which the Gromov invariant counts. Conversely, given a suit-
able set of pseudo-holomorphic curves in the symplectic manifold, one may
construct a Seiberg-Witten solution for large t by “grafting” vortices along
the pseudo-holomorphic curves. To extend this equivalence to general 4-
manifolds with b+2 > 0, one may take ω to be a self-dual harmonic 2-form.
(Symplectic forms, together with suitable metrics, are examples of such 2-
forms.) Generically, such a 2-form vanishes along a set of circles in the
manifold. The generalized Gromov invariant, which should be equivalent to
the Seiberg-Witten invariant, should then count pseudo-holomorphic curves
ending at these circles. In a series of articles [47, 48, 49], Taubes obtained
some partial results implementing this generalization; the full equivalence,
however, has not been established. In fact, even the “generalized Gromov in-
variant” mentioned above is yet to be defined. One of the main difficulties is
to understand the behavior of pseudo-holomorphic curves or Seiberg-Witten
solutions near the circles of degeneracy.

The 3-dimensional analogue of this generalization appears more accessi-
ble. Consider Seiberg-Witten equations on closed 3-manifolds X perturbed
by a large harmonic 2-form tω. Generically, ω may be chosen such that its
dual 1-form ∗ω is Morse, with a equal number of index-1 and index-2 critical
points. Taubes’s argument in this case concludes that the zero loci of the
Seiberg-Witten solutions converge to suitable sets of (finite length) gradient
flows of ∗ω ending at the critical points. Due to this simpler description, we
were able to define in [12, 13] an invariant I3 that counts flows of a Morse
1-form, and conjectured based on Taubes’ philosophy that:

Conjecture 1.1.1. [12, 13] Let X be a closed 3-manifold with b1 > 0 and
orientation o. Then the 3-dimensional Seiberg-Witten invariant SwX,o =
±I3.
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We refer the reader to section 4 of [12, 13] for the precise definition of I3,
a brief explanation of the ideas behind, and the notation used here. In the
b1 = 1 case, SwX,o is the Seiberg-Witten invariant in the “Taubes chamber”
(i.e. large perturbation).

The counting invariant I3 is shown (in a more general setting) in [12, 13]
to be equivalent to a version of Reidemeister torsion T (X, o) due to Turaev:

Theorem 1.1.2. [13] Under the same assumptions, I3 = ±T (X, o).

The present work may be viewed as the first step towards a proof of Conjec-
ture 1.1.1 via Taubes’s ideas, and this together with Theorem 1.1.2 would
provide a geometric proof of the equivalence:

Theorem 1.1.3. (Meng-Taubes) [28, 52] SwX,o = ±T (X, o).

In [28], the equivalence is established by checking that both invariants satisfy
the same set of axioms, which depends most importantly on the surgery
formulae of Seiberg-Witten invariants [50].

On the other hand, Donaldson proposed a scheme of proving (an averaged
version of) Conjecture 1.1.1 via a topological field theory formulation of the
3-dimensional Seiberg-Witten invariant, which was recently implemented by
T. Mark [27].

Among the three approaches to the Seiberg-Witten–torsion correspon-
dence, the geometric picture following Taubes’ approach mentioned above is
conceptually most direct, though technically most challenging. However, an-
other advantage of this approach is that the geometric picture has (relatively)
simple extensions to Floer theory. Motivated by this picture, Hutchings and
Thaddeus [14] define a “periodic Floer homology” for mapping tori of sur-
face automorphisms, which is supposed to correspond to the Seiberg-Witten-
Floer homology for such 3-manifolds. In this case, one may suppose that the
harmonic 1-form ∗ω has no critical points, and the sets of flows counted by
I3 above consist only of periodic orbits. The chain groups of this “periodic
Floer homology” are precisely free modules spanned by these sets of periodic
orbits, and the boundary maps are defined by counting pseudo-holomorphic
curves in X×R, with symplectic form ω+ ∗ω∧ dt. On the other hand, with
a less straightforward twist of the same geometric picture, the author has a
scheme of establishing the equivalence of the Seiberg-Witten-Floer homology
(hopefully for general X) with the recently discovered Ozsvath-Szabo Floer
homology [33], which is more computable. The details of of this have to be
described elsewhere [24]; at present it seems accessible.
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Here is roughly how the present work relates to the proof of Conjec-
ture 1.1.1. A basic building block in Taubes’ work is the “local model”
for grafting, which is obtained by classifying Seiberg-Witten solutions on
R4 (with suitable perturbations) and understanding their behavior. In the
symplectic 4-manifold case, Taubes found them to be basically (up to gauge
transformations) “pull-backs” of vortex solutions over R2. We obtain the
analogous result in §3.2: The Seiberg-Witten solutions on R3 with perturba-
tion ∗dx3 are basically “pull-backs” of vortex solutions along the projection
R3 → R2 : (x1, x2, x3) �→ (x1, x2). Since over a closed 3-manifold X, ∗ω,
wherever it is nonzero, locally approximates ∗dx3, this means that in the 3-
dimensional case, the correspondence should be obtained by grafting vortices
along flow lines of the dual vector field of the Morse 1-form ∗ω. (Note that
x3 corresponds to the direction of the dual vector to ∗ω.) More importantly,
since ∗ω in general has critical points (i.e. where it vanishes), we also need a
local model for grafting Seiberg-Witten solutions near these points. Such a
local model is obtained in this paper, by understanding the Seiberg-Witten
solutions on R3 with perturbation ∗tdf , where f is an “admissible” Morse
function with a pair of canceling critical points. (See Definition 2.2.6 for the
definition of admissibility.) In fact, to produce such a local model is the main
reason why in this paper we choose to consider perturbations of the specified
asymptotic behavior. We remark that such a local model is missing in the
more difficult 4-dimensional situation, and it is one of the main obstacles for
establishing the generalized SW = Gr correspondence proposed by Taubes.

(B) New gauge-theoretic invariants of 3-manifolds.

Instead of just R3, we consider the more general 3-manifolds with Eu-
clidean ends (MEE). The motivation is a traditional one: to obtain invariants
of 3-manifolds out of moduli spaces of solutions to a PDE. Since an MEE
M is a connected sum M = X#R3, where X is closed and R3 is endowed
with the Euclidean metric, the gauge-theoretic invariant obtained may be
regarded as an invariant of the closed 3-manifold X. In this paper we con-
centrate on the structure-theoretic aspects of the moduli spaces and leave
the properties of such invariants for future investigation; so here we shall
only very briefly indicate why this might be worth pursuing.

First, the better-known (and simpler) Seiberg-Witten invariant for com-
pact 3-manifolds has been well-studied (see e.g. [25, 26, 28, 1]); however it
turn out to be equivalent to previously-known invariants. For homology 3-
spheres, it has been shown (with a modification due to Kronheimer to make
it metric-independent) to coincide with the Casson invariant. For manifolds
with b1 > 0, we have already mentioned that it is equivalent to a version of
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Reidemeister torsion. Our version of Seiberg-Witten theory for MEE’s how-
ever looks very different and might lead to something new. When t is large,
the philosophy described in part (A) above leads one to expect that the
associated invariants should be computable via Morse-theoretic methods.

Second, even if as a topological invariant, the gauge-theoretic invari-
ant obtained is not new, it might still have less straightforward applica-
tions to the geometry or topology of 3-manifolds or 4-manifolds. There are
plenty of such applications in other versions of gauge theories. For example,
via Weitzenböck-type formulae, the 4-dimensional Seiberg-Witten equations
give various curvature estimates, and hence constraints on the existence of
Einstein metric. (See e.g. [22].) The Seiberg-Witten theory for (closed) 3-
manifolds or 4-manifolds has various applications to minimal-genus problems
([18]). Fintushel-Stern’s construction [4] of exotic homotopy K3’s was based
on the Meng-Taubes theorem on the equivalence of 3-dimensional Seiberg-
Witten invariants and Reidemeister torsion. In the non-compact situation,
Floer proposed studying Yang-Mills-Higgs equations over asymptotically flat
3-manifolds, and was able to recover a theorem of Schoen and Yau on the
geometry of such 3-manifolds [5].

1.2. Outline and summary of results.

Below is a section-by-section outline of this paper which also serves as a brief
summary of the results obtained. Due to their technical nature, here we can
not be very precise in the statement of these results; the reader may find the
precise statements in subsequent sections. Some non-technical explanation
of the key points will be presented in §1.3.

• Section 2 contains the setup: basics of Seiberg-Witten theory, the def-
inition of MEE and admissible 2-forms or functions, and some basic
tools of analysis on such manifolds.

• In §3.1, we define “admissible configurations”, which are basically
L2

2,loc-configurations with some weak assumptions on their asymptotic
behavior. We shall always work with such admissible configurations.
Some basic properties of these objects are discussed in §3.1.

• In §3.2, we completely solve the Seiberg-Witten equations on R3 with
Euclidean metric and the standard perturbation − t

2dx1 ∧ dx2, where
t > 0. The solutions consist of “pull-backs” of solutions to the vortex
equations on C. This leads to the description of the moduli space of
Seiberg-Witten solutions on R3 as

∐
k>0 Symk(R2). We remark that



Seiberg-Witten Equations on Three-manifolds with Euclidean Ends 7

this is another instance of the well-known relationship between Seiberg-
Witten equations and the vortex equations: this has been used in
the computation of Seiberg-Witten invariants for Kähler surfaces, and
plays a crucial role in Taubes’s proof of SW = Gr explained above.
In the 3-dimensional situation, this relationship is used to compute
the Seiberg-Witten-Floer homology of Σ × S1 (with respect to Spinc-
structures pulled back from Σ, a closed surface), which is the first non-
trivial Seiberg-Witten-Floer homology computed. Generalizing this
relationship, Mrowka-Ozsvath-Yu [32] computed the Seiberg-Witten-
Floer homology for Seifert-fibered 3-manifolds.

• In §3.3, we prove that admissible Seiberg-Witten solutions on an MEE
approximate solutions on R3 polynomially outside a compact region.
This enables use to define the notion of the “vortex number” of a
solution as the vortex number of the limit. The estimate is crucial for
the Fredholm theory and gluing.

• In section 4, we define the configuration space C and construct its quo-
tient space Q under the gauge group action. We show that Q has
a Banach manifold structure. This requires more care than the usual
gauge theories as the base manifold is not compact. We find the appro-
priate Banach spaces that work as the domain of the elliptic operators
in our theory, and restrict our attention to subsets of the total configu-
ration space containing the moduli spaces, that are Banach manifolds
modeled on these Banach spaces. The cases of nontrivial vortex num-
bers cause additional complications by the fact that the curvature FA
is not L2. This difficulty is overcome by subtracting off fixed configu-
rations and we show eventually that in these cases the quotient space
has the structure of a fibered space, with Sobolev-space fibers.

• In section 5 we formulate the Fredholm theory of the relevant defor-
mation operator Dc. We find the appropriate Banach spaces as the
domain and range of Dc. The case when t = 0 or when t > 0 and
the vortex number is zero is dealt with in §5.2, while the case of non-
zero vortex numbers is discussed in the rest of the section. These two
cases are completely different (cf. the discussion in §1.3). In the first
case, the index of Dc is zero, while in the second case the index grows
arbitrarily large with the vortex number.

• In §6.1 we follow the standard procedure to show that the moduli
spaces are smooth finite-dimensional manifolds and enjoy some invari-
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ance properties by cobordism arguments. When the moduli spaces
are non-compact, which is often the case in the situation considered
in this paper, these standard invariance properties are useful (e.g. for
the purpose of defining gauge-theoretic invariants) only when we also
have an explicit description of the ends of the moduli spaces. In the
rest of section 6, we give a recursive description of these ends: namely,
the ends of higher vortex numbers are described in terms of moduli
of lower vortex number numbers. For example, the end of the vortex
number 1 piece of the moduli space consists of finite copies of R3\B(R),
where B(R) denotes a 3-ball of large radius. This enables one to de-
fine 3-manifold invariants using these moduli spaces, in spite of their
non-compactness. (Cf. [23] section 7).

1.3. Methods and historical background.

Here we shall attempt to offer a brief explanation how our theory differs from
the more familiar methods of gauge theory. The “philosophical” remarks
here should become clear in later sections.

The more-familiar type of gauge theory on non-compact manifolds is
that on cylindrical manifolds Σ×R, where Σ is compact, or more generally
on manifolds with cylindrical ends. This situation arises naturally in Floer
theory, and in product or surgery formulae for gauge-theoretic invariants.
Though analysis of this type can sometimes be rather complicated, the basic
framework has by now become standard since the work of Floer, Taubes, and
Mrowka. A standard reference for this type of techniques is [30]. Among
other things, in this situation the gauge-theory equation is regarded as a
formal L2-gradient flow of a functional on the configuration space over Σ, and
one attempts to establish an exponential decay towards the critical manifolds
via estimates involving the functional and the gradient. This allows one to
set up a Fredholm context of the theory via exponentially weighted Sobolev
norms.

In the Euclidean situation considered in this paper, the story is quite
different. There has been historically less study of gauge theories in this
situation; the only references known to the author are papers by Taubes and
Floer on Yang-Mills-Higgs theory on asymptotically Euclidean 3-manifolds
in the 80s. Particularly relevant to our work are [39, 6, 7]. Aside from mo-
tivation from physics, a major reason for studying Yang-Mills-Higgs theory
on Euclidean manifolds was the triviality of the theory on compact manifolds
(which was also partly what motivated us). More recently, Kronheimer and
Mrowka studied Seiberg-Witten theory on 4-manifolds with conical ends,
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where the conical ends are “symplectizations” of contact 3-manifolds [20].
Very roughly, since the usual Sobolev spaces typically do not work when

the underlying manifold is non-compact, the key to such theories is to find
suitable normed spaces such that the relevant differential operators in the
theory have the desired invertibility or Fredholm properties. Furthermore,
the norms have to be coarse enough so that the normed-spaces may include
the moduli spaces, but they also have to be fine enough so that the nonlin-
ear part of the gauge-theory equations is suitably small with respect them.
How these norms should be chosen depends crucially on the asymptotic be-
haviors of the configurations in the theory. We find that in our t = 0 case,
the configuration is asymptotically trivial, which is also the case with the
Yang-Mills-Higgs theory studied by Taubes and Floer. Thus a suitable mod-
ification of the norms in [6, 7] works in our situation. Basically, the relevant
operators in these case look like −∇2 or ∂/ asymptotically, and the domain
and range spaces are essentially completions of C∞

0 with respect to the norm
‖∇ · ‖2 and L2. When t > 0, in the case of zero vortex number the Higgs
field is asymptotically a non-zero constant; in this case the basic model for
the relevant operators is −∇2 + C, C > 0, or a similar Dirac-type opera-
tor. This is the case when the usual Sobolev spaces work, and it is also the
situation that occurs in [20]. The case when both t and the vortex number
are positive is the most complicated. We know that the configurations are
asymptotically pull-backs of vortex solutions (§3.3), and the basic model for
the relevant operator is −∇2 + V , where V is a function which is almost
constant except for a few “tunnels” in the x3-direction. The more familiar
exponentially-weighted Sobolev norms actually work for the Fredholm the-
ory here; however they are either too fine to describe the moduli spaces, or
too coarse for the nonlinear aspects. The main reason is, even though we
take the metric to be Euclidean except for a compact set, the associated ad-
missible 2-form (which is used as our perturbation) in general approximates
t ∗ dx3 only polynomially at infinity. As a consequence, the Seiberg-Witten
solutions approximates pull-backs of vortex solutions only polynomially as
well. We therefore need polynomially weighted norms. The Fredholm the-
ory is reduced to the Fredholm theory of a standard R3 case by a typical
excision argument. On R3, we observe following [43] that the deformation
operator may be decomposed into two parts: one roughly looks like ∂/∂x3,
and the other, iN ′, is self-adjoint and depends only on x1, x2. The relevant
sections over R3 may be regarded as functions of x3 taking values in the
space of sections over R2 (R3 → R2 : (x1, x2, x3) �→ (x1, x2)). This can be
decomposed via the decomposition of the above space of values into CokerN ′

and its L2-orthogonal complement. (CokerN ′ is nontrivial precisely when
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the vortex number is non-zero.) The deformation operator preserves this
decomposition. Over the part taking value in the orthogonal complement,
it is invertible between polynomially-weighted norms of the same weights.
Over the part taking value in CokerN ′, the deformation operator looks like
∂/∂x3 and is Fredholm between polynomially weighted norms of different
weights. Our choice of norms is a combination of the two. The parameter
for the weight, ε below, is in this case taken to be a number between 1 and
3/2: it has to be larger than 1 because the weight for the range has to be
one-less than that for the domain, while still has to be positive; it also has to
be smaller than 3/2, because the associated space has to contain the moduli
space, which can be guaranteed by our decay estimate (Proposition 3.3.3)
only when ε > 3/2. Long after this work was completed, we discovered while
working on another project that Floer has used similar norms for pseudo-
holomorphic disks ending at degenerate Lagrangian intersection points in
[8].

On the other hand, the Fredholm theory in the t = 0 case and the vortex
number zero case when t > 0 works by a modification of the techniques in
[39], which is also what was done in [20].

We also briefly comment on the proof of the decay estimates (Proposition
3.3.3). Again it is very different from the cylindrical situation; it is however
simpler and uses the nice pointwise estimates via maximum-principle-type
arguments that are particular to Seiberg-Witten theory. This is also the case
with [20]. However, though the proof of the analogous decay estimate in [20]
has the same starting point as ours, what they did was to first estimate
all invariant quantities (under gauge group action) via maximum-principle-
type arguments, and then choose a gauge with nice asymptotic behavior. In
comparison, we only use maximum-principle-type arguments to estimate the
magnitude of β and its derivatives. To get estimates for other quantities, we
use the R-action on R3 which is intrinsic to our situation. Namely, we use the
Seiberg-Witten equations in a “temporal” gauge to relate the derivative of
these quantities in the x3-direction to the magnitude of β and its derivatives;
then integrate over x3. (Cf. §3.3. step 3).

Finally, some history about this work itself. The author began working
on this project since the summer of 1995; at that time there was no literature
on Seiberg-Witten theory on 3-manifolds, and we had to start from scratch.
The case t > 0, vortex number zero, which is the simplest case in this paper
and is in several places similar to the analysis in [20], was done long before
the preprint of [20] was available. In the long process of revising this paper,
we have tried to eliminate any part that is now in the existing literature.
Except for abridgement, expository and stylistic improvements, there has
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been basically no change in mathematical content since the version of 1998.
That this work has taken so long to see publication is due to a combination
of many unfortunate factors.

To shorten this paper, we have in several places omitted standard argu-
ments; the reader may consult the earlier version of this paper [23] for more
details. We have also omitted the section that defines gauge-theoretic in-
variants from the moduli spaces obtained here, and the proof of Proposition
2.2.7. They were respectively, section 7 and Appendix 1 in [23].

1.4. Notation and conventions.

The reader is advised to first browse through this subsection for a guide to
the conventions, then return later for reference of notation.

Throughout this paper we let C, C ′, or Ci, i ∈ Z+ denote positive con-
stants of order 1 varying with the context. Similarly, ε, ε′, εi will denote
some small positive constants.

In contrast, the plain epsilon ε parameterizes the weight on the norms,
ε ∈ [0, 3/2).
〈·, ·〉 or 〈·, ·〉2 usually denotes the L2-product of two functions, while

(η, χ), or η ·χ denotes the pointwise inner product of the functions η and χ.
| · | denotes the Euclidean norm of a vector in Rn.

We denote the trivial R-bundle or C-bundle on a manifold by R or C.
Γ(M,E) denotes the space of sections of the bundle E over the manifold

M . L2(M,E) denotes the space of L2 sections of E. Similar notation is
used for for the completions with respect to other norms. When M is the
3-manifold with a Euclidean end under discussion in this paper, we often
omit M in the notation, and denote the spaces as Γ(E) etc. Ωk := Ωk(M)
is the space of k-forms on M .

Unless otherwise specified, any norm in this paper is a norm of functions
or sections on the 3-manifold M . We use notation such as ‖·‖L2

k(C) to denote
norms of functions on a different space (in this case, C).

Regarding the different notions of adjoint operators used in this paper:
we shall use D∗,D†,Dt to denote, respectively, the formal L2-adjoint, formal
L2
ε -adjoint, and the adjoint in the sense of [16] of the differential operator D.

We shall often omit subscripts or superscripts when there is no danger
of confusion.

The objects in our theory (e.g. configuration spaces, moduli spaces) are
typically indexed by t, which is the real parameter in the perturbation (2.4);
n, which is the vortex number, and l, which indicates the differentiability.
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Other notation or conventions will be specified along the way.
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2. Preliminaries.

This section contains the set-up of this work.

2.1. Review of Seiberg-Witten theory on 3-manifolds.

Here we quickly review elements of 3-dimensional Seiberg-Witten theory,
and fix some notation to be used. Some references for the theory on compact
3-manifolds or 4-manifolds are [28, 25, 29].

Seiberg-Witten theory is concerned with an oriented 3-manifold M en-
dowed with a fixed Spinc-structure s. (All orientable 3-manifolds are Spinc

[17]). A “spinor bundle” S associated to a Spinc-structure is a rank 2 her-
mitian bundle. An “associated line bundle” is L := detS.

A pair (A,ψ) is usually called a configuration, where A is a unitary
connection on L (or equivalently a Spinc connection on S—we shall often
confuse the two), and ψ is a section of S.

Given a harmonic 2-form θ (which will be our perturbation later on), its
action on the spinor bundle by Clifford multiplication has eigenvalues ±i|θ|;
away from the zeroes of θ, this gives rise to a splitting of the spinor bundle
into a pair of complex line bundles

S = E ⊕E′, where E′ := E ⊗K−1. (2.1)

Here K−1 is the sub-bundle of TM (away from the zeroes of θ) whose fibers
consist of tangent vectors annihilated by ∗θ. θ endows K−1 with a complex
structure J : For two tangent vectors w, v in a fiber of K−1, 〈w, Jv〉 :=
θ
|θ|(v,w). We shall often identify K−1 with the HomC(K−1; C) component
of T ∗M ⊗ C.

Wherever the splitting (2.1) makes sense, we denote by AE the connec-
tion on E induced by A. Given θ and a metric on M , A can be equivalently
specified by AE . In general, with respect to the decomposition (2.1), the
Spinc connection will have off-diagonal components depending on the metric
and θ.
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On 3-manifolds the Seiberg-Witten equations read{
∂/Aψ = 0
ρ(FA) = iσ(ψ,ψ) + iρ(ω),

(2.2)

where ∂/A is the Dirac operator and σ as usual denotes the map C× C̄→ su2

(v,w) �→ i
(wv† + vw†

2

)
0
, (2.3)

where the subscript 0 denotes the traceless part. And for F ∈
∧2 T ∗M , ρ(F )

stands for the su2 representation of F via its action on the spinor bundle
by Clifford multiplication. In 3-dimensions, elements in

∧1 T ∗(M) act by
Clifford multiplication on the same rank two spinor bundle. We will denote
the representation by the same notation ρ, taking ρ(dx1 ∧ dx2) = ρ(dx3).

In these equations, ω is a closed 2-form usually called “perturbation”. In
this paper it takes the form:

ω = − t
2
θ + w, (2.4)

where θ is an “admissible form” defined below, and w is small in the sense of
section 6. We take w = 0 in sections 2-5 of this paper unless otherwise spec-
ified. In this paper, a “Seiberg-Witten solution” always refer to a solution
of (2.2) with perturbation (2.4) on an MEE, which will be defined next.

Solutions of the Seiberg-Witten equations can be regarded as minima of
the “energy functional”:

E(A,ψ) =
∫
M
|∂/Aψ|2 +

1
2

∫
M
|ρ(FA)− iσ(ψ,ψ) − iρ(ω)|2. (2.5)

2.2. Analysis on manifolds with Euclidean ends.

Part (A) below defines MEE’s and admissible metrics and 1-forms on them.
Part (B) introduces some useful norms on MEE’s and their basic properties.

(A) MEE’s and admissible pairs on them

Notation 2.2.1. B(R) denotes an open 3-ball of radius R; D(R) denotes
an open disc of radius R.

Definition 2.2.2. A 3-manifold with a Euclidean end, (M,g), (or a
“MEE” for short) is a complete, orientable manifold with a metric g in
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L2
l,loc(Sym2 T ∗M) for some l ≥ 4 such that there is a � ∈ R+ and an injec-

tive smooth map
Ω : R3\B(�)→M,

so that: (1) M� := M\Ω(R3\B(�)) is compact; (2) on Ω−1(M\M�), Ω∗g−
g0 = 0, where g0 is the Euclidean metric on R3.

A metric satisfying the above is called an (l-)admissible metric.

Note that in the above L2
l,loc is defined with respect to a fixed smooth

metric; however it is independent of the choice.

Notation 2.2.3. We will often use the same notation to denote a function
or a section on R3\B(�) with its corresponding function or section onM\M�
induced by Ω. For x ∈M\M�, |x| makes sense via Ω in a similar way. For
any R > �, we define the open set MR := {x ∈M : |x| < R}.

Notation 2.2.4. Let χ1 be a smooth cutoff function on R3 which is 1 for
|x| ≤ 1, and 0 for |x| ≥ 2. Generalizing, we use χR to denote a cutoff
function on M such that χR(x) = χ1(Ω−1(x)/R) on M\M�, and 1 on M�.

Notation 2.2.5. Let (x1, x2, x3) be the Cartesian coordinates of x ∈ R3.
Later we will combine x1, x2 as z := x1 + ix2, and write x = (z, x3). On
M\M� ∼ R3\B(�), we will often decompose a configuration as: (A,ψ) =
((Az , A3), (α, β)), where α, β are components in the splitting (2.1) of S.

Definition 2.2.6. For any integer l ≥ 4, and a fixed l-admissible metric g,
we call a 2-form θ (l-)admissible (with respect to g) if it is C l−3, harmonic
(with respect to g), and over M\M�, q := Ω∗(∗θ)− dx3 satisfies:

l−3∑
k=0

(
|x|(3+k)|∇kq|

)
≤ C. (2.6)

When θ is coexact with ∗θ = df , we call the harmonic function f (l-
)admissible if over M\M�,

l−2∑
k=0

(
|x|(2+k)|∇k(Ω∗f − x3)|

)
≤ C ′. (2.7)

An (l-)admissible pair is a pair of an l-admissible metric and a corre-
sponding admissible form.
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We shall choose the constant � in Definition 2.2.2 so that C < 1 in (2.6),
and C ′ < 1 in (2.7).

In fact admissible pairs exist in plenty as the following proposition shows.
Versions of this proposition have appeared in the literature (e.g. [10].) A
proof can be found in Appendix 1 of [23].

Proposition 2.2.7. For an arbitrary admissible metric on a 3-manifold
with a Euclidean end, there exists a unique corresponding admissible func-
tion. Furthermore, in either the L2

l or C∞ category, the admissible function
corresponding to a generic admissible metric is Morse.

We shall from now on until section 6 fix an admissible pair (g, θ) on an MEE
M . Since ∗θ is always exact on M\M� ⊂ R3, there is a function f over
M\M� satisfying (2.7). Such a function will suffice for our later purposes,
and we shall also call such a function an admissible function, though it is
not necessarily globally defined on M .

(B) Some useful Banach spaces on MEE’s.

Definition 2.2.8. Let V be a Euclidean or hermitian bundle over an MEE
M , and let A be a metric-preserving connection on V . Define Lp(V ),
V p
k/A(V ), and Lpk/A(V ) to be the completions of C∞

0 (V ) (the space of com-
pactly supported smooth sections), with respect to the following norms re-
spectively:

‖ξ‖pp :=
∫
M

(ξ, ξ)p/2,

‖ξ‖p;k/A :=
k∑
i=1

‖∇A · · · ∇A︸ ︷︷ ︸
i

ξ‖p,

where ∇A is a metric-preserving connection induced from A and the Levi-
Civita connection, and

‖ξ‖p,k/A := ‖ξ‖p + ‖ξ‖p;k/A.

Notation 2.2.9. Later on we will often omit the subscript A. For example,
‖·‖ = ‖·‖·/A if A is imposed with certain asymptotic conditions such that the
Banach spaces defined are independent of the different choices of A (which
is often the case). Furthermore, in these cases we have the inequality

C‖ξ‖·/A ≤ ‖ξ‖·/A′ ≤ C ′‖ξ‖·/A (2.8)
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for different connections A, A′ satisfying the asymptotic conditions and some
constants C, C ′ depending on A, A′. (cf. Lemma 4.2.2, Lemma 4.3.3).
Therefore, if an inequality involving ‖ · ‖A holds, a similar formula (which
differ only in some constants) holds for ‖·‖A′ , for any connection A′ satisfying
the same conditions. Another case to drop the subscript A is when V is
trivial (with a fixed trivialization) or a bundle derived from T ∗M ; in this
case A is assumed to be obvious choice, namely, the trivial connection or the
connection induced from the Levi-Civita connection.

V 2
k will be often denoted by Vk.

Definition 2.2.10. Let λ′1 be a cutoff function on R so that λ′1(s) = 1 for
|s| < 1 and λ′1(s) = 0 for |s| > 2. Let λ′R(s) := λ′1(s/R).

Let ς be a real function on M defined by:

ς := λ′R ◦ f + (1− λ′R ◦ f)|f |/R (2.9)

In the above we take R > � to be large enough such that ‖∇ς‖∞ ≤ C/R� 1,
where C is a positive constant.

Definition 2.2.11. (weighted version of 2.2.8) Let ξ,A be as in Definition
2.2.8 and let ε ∈ R, ε ≥ 0. We define the following norms:

‖ξ‖p:ε := ‖ςεξ‖p.
‖ξ‖p;k:ε/A := ‖ςε∇Aξ‖p + · · ·+ ‖ςε∇k

Aξ‖p.
‖ξ‖p,k:ε/A := ‖ςεξ‖p + ‖ςε∇Aξ‖p + · · ·+ ‖ςε∇k

Aξ‖p.

Define the weighted Banach spaces Lpε(V ), V p
k:ε/A(V ), Lpk:ε/A(V ) as the com-

pletions with respect to the above three norms similarly to Definition 2.2.8.

Note that when ε = 0, the norms and their corresponding Banach spaces re-
duce to the unweighted case in Definition 2.2.8. When p = 2, Lpε is equipped
with a Hilbert space structure:

〈ξ, v〉2:ε := 〈ςεξ, ςεv〉2

The Hölder inequality in the weighted norms takes the form

‖fg‖b:ε ≤ ‖f‖p:ε1‖g‖q:ε2 , (2.10)

for b−1 = p−1 + q−1 and ε1 + ε2 = ε. In particular, if f ∈ Lpε and g ∈ Lqε ,
then the right hand side is bounded by ‖f‖p:ε‖g‖q:ε.

We have the following versions of Sobolev inequalities on an MEE.
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Lemma 2.2.12. ([6], Lemmas 13 & 14, with errors corrected) Let V,A be

as in Definition 2.2.8. Let p ∈ (1, 3) and V̂ p
1/A

(E) be the space of sections ξ

of V satisfying ‖∇Aξ‖p <∞. Then we have embedding V̂ p
1/A(V ) ↪→ Lqloc(V )

for q ≤ p̄ ≡ 3p
3−p . Moreover, there exists a constant Cs depending on p and

V but not on A, and a continuous map µ : V̂ p
1/A(V ) → [0,∞) that factors

through the map ξ → |ξ|, such that

1. µ−1(0) = V p
1/A(E);

2. ‖|ξ| − µ(ξ)‖p̄ ≤ Cs‖∇ξ‖p. (2.11)

If moreover ‖∇Aξ‖p,1 <∞, then

lim
R→∞

sup
|x|≥R

(|ξ ◦Ω| − µ(ξ)) = 0. (2.12)

Also if 1 < p < 3 < q <∞, we have for any ξ ∈ C∞
0 (E),

‖ξ‖∞ ≤ C‖ξ‖q,1/A; (2.13)
‖ξ‖∞ ≤ C ′(‖∇Aξ‖p + ‖∇Aξ‖q). (2.14)

For example, when ε = 0 and E is a trivial real line bundle, ξ may be
identified with a scalar function f . In this case (2.11), (2.12) simply says
that for all ξ ∈ Lp1,loc with ∇f ∈ Lp, there exists a constant c = µ(f) ≥ 0,
such that f − c ∈ Lp̄ and such that f → c uniformly at infinity.

3. Properties of Seiberg-Witten solutions.

In §3.1 we define admissible configurations and discuss some basic properties
of admissible Seiberg-Witten solutions. In §3.2 we show that all admissible
Seiberg-Witten solutions on R3 with the standard perturbation arise as pull-
backs of vortex solutions up to gauge transformations. §3.3 contains a crucial
decay estimate of Seiberg-Witten solutions.

3.1. Seiberg-Witten solutions on 3-manifolds with Euclidean ends.

We mentioned that the Seiberg-Witten theories on MEEs corresponding to
the t = 0 case and the t > 0 case are very different. The following observation
is a first manifestation of this fact. When integration by parts is applicable,
the Weitzenböck formula implies that in the t = 0 case, a finite energy
solution has L2-integrable ∇Aψ, FA, and |ψ|2. This is no longer true in
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the t > 0 case (cf. especially the R3 example in §2.2). Instead, we shall
introduce configurations of finite “vortex numbers” for which FA, ∇Aψ are
only L2-integrable over generic hypersurfaces in M .

Let A0 be a reference connection on L such that FA0 ∈ C∞
0 , and let

(A,ψ) be a configuration on a MEE M . Then A−A0 is a 1-form on M .

Definition 3.1.1. In the above notation, a configuration (A,ψ) is admissi-
ble if it satisfies:

1. (A−A0, ψ) ∈ L2
2/A0,loc

.

2. There exists a real number R > 0, such that |ψ(x)| is bounded on
M\MR.

3. If t = 0, then (A−A0, ψ) ∈ V2/A0
.

If t > 0, then: (i) on M\M�, β := (ρ(θ)|θ| − i)ψ ∈ V1/A(S); (Note that
on M\M�, the splitting of S (2.1) makes sense.); (ii) there exists a
positive constant R > � such that for any real number C, |C| ≥ R,
the integral of |FA|2 + |∇Aψ|2 over the plane PC in M\M� ∼ R3\B(�)
given by x3 = C is finite.

Note that the above definition does not depend on the choice of A0. In
the t = 0 case, conditions 1 and 3 imply condition 2 by lemma 2.2.12. In
the t > 0 case, condition 3 (ii) is an alternative way of saying that the
configuration has finite “vortex number” (cf. Definition 3.3.8).

In this paper, we shall always assume that the configurations are admis-
sible.

By the Sobolev embedding theorem, we have:

Lemma 3.1.2. If (A,ψ) is an admissible configuration, then ψ ∈ L∞ for
any t.

Lemma 3.1.3. Suppose that M is an MEE with a (l+6)-admissible metric;
l ≥ 3, and w ∈ L2

l (hence ω ∈ L2
l,loc in (2.4)). Then the following holds for

any admissible Seiberg-Witten solution

1. (A−A0, ψ) ∈ C2.

2. For any small ε > 0, there exists an ε-dependent constant R > 0, such
that |ψ|2(x) ≤ z + ε in the region where |x| > R, where z := ‖ω‖∞ in
the t > 0 case, and z := 0 when t = 0.
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Note that conversely, statements 1 and 2 in this lemma obviously imply
condition 1 and 2 in Definition 3.1.1.

Proof. The first claim follows from part (1) of the next lemma by the Sobolev
embedding theorem. The second claim follows from Proposition 3.3.3 below
in the t > 0 case, and in the t = 0 case it follows from part (2) of the next
lemma and lemma 2.2.12. �

Lemma 3.1.4. Let (A,ψ) be as in the previous lemma. Then (1) (A,ψ) ∈
L2
l+1/A0,loc

; (2) in the t = 0 case, (A,ψ) ∈ Vl+1/A0
.

Proof. Both (1) and (2) follow from an elliptic bootstrapping argument sim-
ilar to that in [29] section 5.3, using the L∞-bound on ψ. �

Thus we have the following finer uniform L∞-bound on ψ when (A,ψ)
is a Seiberg-Witten solution.

Lemma 3.1.5. Let (A,ψ) be as in lemma 3.1.3 and z′ := ‖sup(−s, 0)‖∞,
where s is the scalar curvature of M . Then |ψ(x)|2 ≤ z := ‖ω‖∞ + z′ for all
x ∈M . Via (2.2), this gives a L∞-bound for FA.

This follows easily from lemma 3.1.3 and a standard argument via a
Weitzenböck formula (cf. [19]).

3.2. Solutions on R3.

The theory on R3 is the simplest example and will be the building block for
later sections. In this case the Seiberg-Witten equations can be completely
solved.

First notice that when t = 0 and w = 0, (2.5), the Weitzenböck formula
and Definition 3.1.1 tell us that the only solution (up to gauge equivalence)
is the trivial one: FA ≡ 0, ψ ≡ 0. So we quickly move on to the t > 0 case.

In the fundamental representation of su(2), the Lie algebra is spanned
by the basis 1

γ1 =
( 0 i
i 0

)
, γ2 =

( 0 1
−1 0

)
, γ3 =

( i 0
0 −i

)
. (3.1)

On R3, we choose the Euclidean coordinates and metric, and choose the
perturbing harmonic 2-form to be −tθ/2, θ := dx1 ∧ dx2 = ∗dx3. Since

1We adopt the convention in quantum mechanics, where γ2 differs by a sign with
that in many mathematical literature.
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|θ|(x) > 0 for all x ∈ R3, θ splits the spinor bundle into two trivial complex
line bundles (cf. §2.1). Denote according to the splitting ψ = (α, β). The
Euclidean coordinates and metric induce a canonical trivialization of S (com-
patible with the above splitting), with respect to which the Spin-connection
is trivial (as a matrix-valued 1-form). A general Spinc-connection with re-
spect to the same trivialization is

A =
(
AE 0
0 AE

)
. (3.2)

Working in the temporal gauge and letting z := x1 + ix2, (2.2) reduces to:{
2FE12 = −i/2(t− |α|2 + |β|2),
2∂3A

E
z̄ = −αβ̄, (3.3)

where AEz̄ = AE1 + iAE2 , and{
∂3α+ 2∂AEβ = 0,
−∂3β + 2∂̄AEα = 0.

(3.4)

For t > 0, (3.3), (3.4) can be reduced to the t = 1 case by rescaling:

δt(x) := t−1/2x; ψ = t1/2(α1, β1). (3.5)

We will hence concentrate on the t = 1 case for the rest of this subsection.
There is an obvious family of solutions: we simply take β ≡ 0; the

Seiberg-Witten equations then require α, AE to be independent of x3, and
their dependence on z is described by the equations{

∂̄AEα = 0,
2FE12 = − i

2(t− |α|2). (3.6)

When t = 1 this is exactly the vortex equations on C, whose solutions are
described in e.g. [40] and [15]. We refer the reader to the Appendix for a
list of some of their important properties which are frequently used in this
paper. The solutions for the case t > 0, t �= 1 will be called “t-rescaled
vortex solutions”. The prefix “t-rescaled” will be often omitted when it is
clear from the context.

Note that since the vortex solutions (A,α) have nonzero L2(C)-norms for
FA and ∇AEα, the family of Seiberg-Witten solutions described above have
infinite L2(R3)-norms for the curvature and ∇Aψ unless the vortex number
is zero.
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Proposition 3.2.1. The above solutions are the only admissible solutions
of (3.3), (3.4) for t > 0 in temporal gauge.

Proof. It suffices to show that if (A,ψ) be an admissible solution, then β ≡ 0,
because (3.4) then implies that ∂3α = ∂̄AEα ≡ 0, and hence the conclusion
of the Proposition.

The Seiberg-Witten equations imply(
− 2∇2

AE +
1
2
(1 + |α|2 + |β|2)

)
β = 0. (3.7)

Let χR be the cutoff function in Definition 2.2.4. Taking L2-product of (3.7)
with χRβ, we have〈

χRβ, (−2∇2
AE +

1
2
(1 + |α|2 + |β|2))β

〉
= 0

=
〈
2∇AE(βχR),∇AEβ

〉
+
〈
χRβ,

1
2
(1 + |α|2 + |β|2)β

〉
=
〈
2β∇χR,∇AEβ

〉
+
〈
2χR∇AEβ,∇AEβ

〉
+
〈
χRβ,

1
2
(1 + |α|2 + |β|2)β

〉
. (3.8)

Now

|〈β∇χR,∇AEβ〉| ≤ ‖β‖6‖∇χR‖3‖∇AEβ‖2,R → 0 as R→∞,

since by scaling ‖∇χR‖3 = ‖∇χ1‖3. (Cf. [15] lemma VI.3.3.) Here ‖ · ‖2,R
denotes L2-norm over the space outside the sphere of radius R, as ∇χR is
supported on the annulus of R ≤ |x| ≤ 2R. If β ∈ V1/AE , by lemma 2.2.12
‖β‖6 ≤ ‖∇AEβ‖2 < ∞. As both 〈χR∇AEβ,∇AEβ〉 and 〈χRβ, 1

2(1 + |α|2 +
|β|2)β〉 are positive, taking the limit R→∞ in (3.8), we obtain β ≡ 0. �

Thus there is a 1-1 map, j, from the space of vortex solutions on C to
the space of admissible Seiberg-Witten solutions on R3,

j((A,α)) := δ∗t (2p
∗A, (t1/2p∗α, 0)), (3.9)

where p is the projection from R3 to C: x �→ z (cf. Notation 2.2.5). We call
therefore these Seiberg-Witten solutions the “pull-backs of vortex solutions”.

3.3. Asymptotics of the Solutions.

Throughout this subsection we restrict our attention to M\M� ∼ R3\B(�).
The goal of this subsection is to establish a pointwise asymptotic estimate
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(Proposition 3.3.3 for t > 0; Proposition 3.3.11 for t = 0) which tells us that
a Seiberg-Witten solution approximates a “reference configuration” (§4.1).
To obtain better estimates, we shall use an non-Euclidean coordinate system.

3.3.1. An atlas on M\M2�. We will describe an atlas on M\M2� ∼
R3\B3(2�), induced by the gradient flow of f . Let U± := {(z, x3) ∈ R3 :
±x3 > � or |z| > �} ⊂M\M�. M\M2� ⊂ U+ ∪U−; we will specify coordi-
nate systems on U+, U− respectively.

Since df is never zero on this region, f is a good coordinate function. The
level surfaces of f form a 2-dimensional foliation of M\M�, and the Clifford
action of df induces a complex structure on these surfaces. The gradient flow
of f induces diffeomorphisms between level surfaces when f > � or f < −�;
furthermore, the direct limits of the systems of level surfaces f → ±∞
exist and are diffeomorphic to C, which we shall denote as P±∞. (This
follows directly from the asymptotic condition on f (2.7), which implies, for
example, that if the distance δ between two points on the f = Λ > � level
surface is small, then the distance between their images under the gradient
flow on the P+∞ is between δeCΛ−3

and δe−CΛ−3
.) Let ∂± : U± → P±∞

be the differentiable maps induced by forward and backward gradient flows
respectively, and let z± be the complex coordinates on P±∞ = C. Using the
same notation for its pull-back via ∂±, z± together with f form a coordinate
system on U±. Of course, in this coordinate system the metric gij �= δij .

Note that on M\M� ⊃ U+ ∪ U−, the complex structure on K−1 (whose
fibers are tangent spaces to the level surfaces) is given by the Clifford action
by df described in §2.1. We let ∂ denote the corresponding complex differ-
entiation on the level surfaces, which is not equal to ∂

∂z± . However in the
f → ±∞ limits, they coincide because of the asymptotic conditions of the
metric g and the function f .

3.3.2. E and T ∗M as pull-backs over U±. A trivialization of E
∣∣∣
U±

induces an isomorphism E
∣∣∣
U±
→ ∂∗±C

∣∣∣
C

(the latter denotes the pullback of

the Higgs bundle over C = P±∞).
On the other hand, over M\M� we will often write:

T ∗M = K−1 ⊕ R,

where R denotes the trivial R bundle spanned by df . On U±, the connections
induced from the Levi-Civita connection identify both components on the
right hand side as pull-backs: K−1 � ∂∗±TC (Regarding K−1 as a sub-bundle
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of the tangent bundle); similarly R � ∂∗±N , where N is the normal bundle
of C× {0} ⊂ C× R.

3.3.3. The decay estimate for t > 0. Let t > 0 from now on until 3.3.11.
Let λ1 : R → [0, 1] be a smooth cutoff function, which is 1 on [1,∞) and
vanishes on (−∞,−1]. Let λd(x) := λ1(x/d).

Given two t-rescaled vortex solutions a, b ∈ Γ(T ∗C⊕C) and a real number
0 < d ≤ �/2, with respect to a trivialization of E on M\M2� we define the
following pair of connection and section on E

∣∣∣
M\M2�

:

v(a, b) := λd(f)a(z+) + (1− λd(f))b(z−) ∈ Γ(K−1 ⊕ E). (3.10)

This makes sense according to 3.3.2, because support(λd◦f)∩M\M2� ⊂ U+

and support((1 − λd) ◦ f) ∩M\M2� ⊂ U− on which we adopt respectively
the coordinate systems on U+, U− described above.

Proposition Let M be an MEE with a k-admissible metric, k ≥ l + 5,
k, l ∈ Z+, and let t > 0, w = 0. Let (A,ψ) = (A, (α, β)) be an admissible
Seiberg-Witten solution on M .

Then for a large enough R ≥ � and d, R/2 > d � 0 (which may
be chosen independently of (A,ψ)), there exist t-rescaled vortex solutions
v+, v− ∈ C∞(T ∗C ⊕ C) such that (AE0 , α0) := v(v+, v−), regarded as a pair
of connection and section on E via a trivialization of E

∣∣
M\MR

with respect

to which AE(∇f) = 0, satisfies
l∑
i=0

|∇i
AE′β|+ |x|−1

( l∑
i=0

|∇i(AE −AE0 )|+
l∑
i=0

|∇i
AE (α− α0)|

)
≤ C|x|−4,

(3.11)
on M\MR, where C is a positive constant dependent on R, d, but not on the
configuration (A,ψ).

It will be clear from the proof that though v+, v− depend on the choice of
trivialization above, the connection and section (AE0 , α0) does not. Also,
obviously we could have chosen the number � in Definition 2.2.2 to be as
large as the R in this Proposition. To simplify notation, we shall let � = R
in later sections.

Proof. The proof will occupy the rest of this section and is divided into 3
steps. The first step starts with Definition 3.1.1 condition 3 and introduces
pointwise estimates for β and its derivatives. At Step 2 we deduce the
existence of the limits of

(
A(z±, f), ψ(z±, f)

)
as f → ±∞. At Step 3 we

deduce the estimates for quantities involving AE −AE0 and α− α0.
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Step 1. Estimating β. We will repeatedly make use of the following
version of the maximum principle, whose proof is very similar to the proof
of Proposition 3.2.1 earlier.

Lemma 3.3.4. ([15] Proposition VI.3.2, weak maximum principle.) Let M
be as in the previous Proposition and let V := M\MR ∼ R3\B(R) ⊂ R3,
where R ≥ �. Suppose that

1. u is a L2
1 function on V such that ∇u ∈ L2(V ), and u < 0 on ∂V .

2. For all compactly supported function ξ, 0 ≤ ξ ∈ L2
1(V ), the following

holds: ∫
V

(
(∇ξ) · (∇u) + cξu

)
≤ 0,

where c is a positive function.

Then u ≤ 0 in V .

The original statement in [15] is in fact stronger: in the above we replaced
the original Lp (p = 6 in our case) condition for u by V1, which implies the
former by Lemma 2.2.12, and is easier to verify in our case.

Notation 3.3.5. We let on or oni , i ∈ Z+ denote a positive polynomially
decaying function on ≤ C|x|−n for some positive constant C, which varies
with the context. Because f = x3+o3, z± = z+o2, we see that on exhibits the
same decaying behavior in the new coordinates: on ≤ C ′(|z±|2 + |f |2)−n/2.

To start the ball rolling, project the equation ∂/2
Aψ = 0 to the β component

by inner producting with β as in [42]:

1
2
d∗d|β|2 + |∇Aβ|2 +

1
2
|β|2(|β|2 + t|∇f |+ |α|2) ≤ o41|β|2 + o42|∇AEα||β|,

where the functions o41 and o42 has the designated decay because of the asymp-
totic condition of g, θ (cf. Definitions 2.2.2, 2.2.6). Using the triangle in-
equality, one gets

1
2
d∗d|β|2 + |∇Aβ|2 +

1
2
|β|2(|β|2 + t|∇f |+ |α|2) ≤ ε|β|2 + o83|∇AEα|2. (3.12)

Where |x| = r > R is large enough; ε is a small positive number depending
on R. To get rid of the undesired |∇AEα|2 term, perform a similar estimate
for |α|2:
1
2
d∗d|α|2 + |∇AEα|2 +

1
2
|α|2(|α|2− t|∇f |+ |β|2) ≤ ε′|α|2 + o84|∇Aβ|2. (3.13)
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We may find a constant C such that by adding Cr−8 times (3.13) to (3.12),
and using the L∞-bound for ψ, we have with

ν0 := |β|2 + Cr−8|α|2, (3.14)

1
2
d∗dν0 +

1
2
(|α|2 + |β|2 + t|∇f |)ν0 ≤ ε1ν0 + o8.

Take a comparison function

h := C ′(t)r−8, (3.15)

and let u := ν0 − h. We choose the constant C ′(t) in (3.15) such that u < 0
where r = R and 1

2d
∗du+C1u < 0 for another constant C1. To apply Lemma

3.3.4 for u, we need only verify ∇u ∈ L2. This holds because h is evidently
in V1, and ν0 ∈ V1 by Lemma 3.3.6 below. Lemma 3.3.4 thus implies that
ν0 ≤ o8 and therefore

|β| ≤ o42. (3.16)

Next we show by induction that

|∇i
AE′β| ≤ o4; |∇i

AEα| ∈ L∞ for i ≤ l + 1. (3.17)

Note first that (3.17) holds for i = 0 by previous arguments. Assume that
(3.17) holds for all i < k. We will show that (3.17) holds for i = k as well.

Let ∇k
AE′ acts on the β component of the equation ∂/2

Aψ = 0. Then
inner product with ∇k

AE′β. Let πβ denote the projection to the β compo-
nent. Note that the commutator [∇k

AE′ , πβ∇∗
A∇A] yields terms involving

FA, FAK ,∇ω and their derivatives. Using the Seiberg-Witten equations, FA
and its derivatives may be substituted by terms involving α, β, and their
derivatives; the derivatives of FAK ,∇ω are o4 by the decay conditions in the
definition of admissible pairs. Summing up, we thus have

1
2
d∗d|∇k

AE′β|2 + |∇k+1
AE′β|2 +

1
2
|∇k

AE′β|2(|β|2 + t|∇f |+ |α|2)

≤ (C3t+ o45)|∇k
AE′β|2 + |∇k

AE′β|(o46|∇k
AEα|+ o47|∇k+1

AE α|+ o4)

by the induction hypothesis. Using the triangle inequality again, the above
inequality may be simplified as

1
2
d∗d|∇k

AE′β|2 + |∇k+1
AE′β|2 +

1
2
|∇k

AE′β|2(|β|2 + t|∇f |+ |α|2)

≤ (C4 + ε2)|∇k
AE′β|2 + o88|∇k

AEα|2 + o89

+o810|∇k+1
AE′α|2 (3.18)
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Again to get rid of the unwanted |∇k+1
AE α|2 term, we perform a similar esti-

mate for |∇k
AEα|:

1
2
d∗d|∇k

AEα|2 + |∇k+1
AE α|2 +

1
2
|∇k

AEα|2(|β|2 − t|∇f |+ |α|2)

≤ (C5t+ ε3)|∇k
AEα|2 + o812|∇k

AEβ|2 + o813

+o814|∇k+1
AE′β|2. (3.19)

Again we may choose constants C, C ′ and C6 such that by the induction
hypothesis, letting

νk := |∇k
AE′β|2 + Cr−8|∇k

AEα|2 + C6|∇k−1
AE′β|2 + C ′r−8|∇k−1

AE α|2, (3.20)

we obtain by summing up suitable multiples of (3.18), (3.19) and r−8 times
of their k − 1 versions:

1
2
d∗d(νk) +

t

2
νk(|β|2 + |∇f |+ |α|2) ≤ ε4νk + o820.

Thus by the comparison principle, using a comparison function h′ of the
same form as (3.15), we may apply Lemma 3.3.4 to conclude that νk ≤ o8,
provided that νk ∈ V1. This is verified in Lemma 3.3.6. Thus we obtain

|∇k
AEβ| ≤ o4; (3.21)

|∇k
Aα| ≤ C7 (3.22)

for large enough r, verifying (3.17) for i = k, and by induction (3.17) is
proved up to Lemma 3.3.6.

Lemma 3.3.6. Let ν0 and νk be as in (3.14) and (3.20) respectively. Then
for 0 ≤ k ≤ l + 1, νk ∈ V1(M\MR).

Proof. We first show that ν0 ∈ V1. By Definition 3.1.1, condition 3, we need
only to show that

|∇AEα|/r8 ∈ L2(M\MR). (3.23)

To show this, let χΛ be the family of cutoff functions given in Notation
2.2.4 (parameterized by Λ, Λ > R), and let λΛ := (1 − χR)χΛ. Then for
n ∈ Z+:

0=
〈∂/A(λΛψ)

rn
,
∂/Aψ

rn

〉
=
〈
λΛ
∇Aψ

rn
,
∇Aψ

rn

〉
+
〈
λΛ

ψ

rn
, s
ψ

rn

〉
+

1
2

∑
i,j

〈
λΛψ,∇j

( 1
r2n

)
[γj , γi]∇Aiψ

〉
+
〈
λΛ

ψ

rn
, ρ(FA)

ψ

rn

〉
+
〈
∇λΛ

ψ

rn
,
∇Aψ

rn

〉
. (3.24)
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Now using the L∞-bounds of s (scalar curvature) and FA, and applying the
triangle inequality, we have∥∥∥λ1/2

Λ

∇Aψ

rn

∥∥∥2

2
≤ (C +C2/Λ)

∥∥∥λ1/2
Λ

ψ

rn

∥∥∥2

2
+ ε
∥∥∥λ1/2

Λ

∇Aψ

rn

∥∥∥2

2
+ C3(ψ),

where C3(ψ) is a positive constant dependent on ψ, ε, but not on Λ, that
comes from integrals over compactly supported integrands involving ψ. Now
taking Λ→∞, this means that (1−χR)1/2 ∇Aψ

rn ∈ L2 when n ≥ 2. Combined
with the fact that ψ ∈ L2

1,loc, this implies that ∇Aψ
rn ∈ L2(M\MR) for n ≥ 2,

which implies (3.23).
In fact, arguing in a similar fashion with the equality (j ∈ Z+)

0 =
〈∇j−1

A ∂/A(λΛψ)
rn

,
∇j−1
A ∂/Aψ

rn

〉
,

we see by induction that

∇j
Aψ

rn
∈ L2(M\MR), for 1 ≤ j ≤ l + 3. (3.25)

Next, to show that νk ∈ V1(M\MR) when k > 0, it suffices to show that

(i) |∇k
AE′β|2 ∈ V1(M\MR) and (3.26)

(ii) r−8|∇k
AEα|2 ∈ V1(M\MR) for all k ∈ Z+, k ≤ l + 1. (3.27)

To show (3.26), we multiply (3.18) by λΛ|∇k
AE′β|2 and integrate over M ,

then take Λ→∞. We obtain

‖(1− χR)1/2d|∇k
AEβ|2‖22

≤C
(
‖(1 − χR)1/4∇k

AE′β‖44 + ‖(1 − χR)1/2r−4∇k
AE′β‖22

)
+ C ′‖(1 − χR)1/4∇k

AE′β‖24
(
‖(1− χR)1/4r−4∇k

AEα‖24

+ ‖(1− χR)1/4r−4∇k+1
AE α‖24

)
+ C1(β).

By Lemma 2.2.12, and (3.25), this is finite if

∇j

AE′β ∈ L2(M\MR) for all j ∈ Z+, 1 ≤ j ≤ l + 2. (3.28)

To verify this, we multiply (3.18) by λΛ and integrate over M . Then take
Λ→∞. This gives

‖(1− χR)1/2∇k+1
AE′β‖22 ≤ C

(
‖(1− χR)1/2∇k

AE′β‖22 + C ′

+‖(1− χR)1/2r−4∇k
AEα‖22 + ‖(1− χR)1/2r−4∇k+1

AE α‖22
)
, (3.29)
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By (3.25), the right hand side is finite except perhaps for the first term.
Note that the j = 1 case of (3.28) holds by Definition 3.1.1. By induction,
(3.29) implies that (3.28) holds in general. Thus (3.26) is proved.

To show (3.27), we multiply (3.19) by λΛr
−16|∇k

AEα|2 and integrate over
M . Then take Λ →∞. This gives

‖(1 − χR)1/2r−8d|∇k
AEα|2‖22

≤ C1‖(1− χR)1/6r−4∇k
AEα‖36‖(1− χR)1/2r−5∇k+1

AE α‖2
+C2‖(1 − χR)1/2r−12∇k

Aψ‖22 + C3(ψ)

+C ′‖(1− χR)1/4r−4∇k
Aψ‖24

( k∑
i=[k/3]

‖(1− χR)1/4r−4∇i
Aψ‖24

+‖(1− χR)1/4r−4∇k+1
A ψ‖24

)
, (3.30)

which is finite by Lemma 2.2.12 and (3.25). This implies (3.27). Lemma
3.3.6 is proved. �

Step 2. Appearance of vortex solutions and vortex numbers.

Lemma 3.3.7. With respect to the trivialization of E specified in Propo-
sition 3.3.3, (AE(z±, f), α(z±, f)) converge pointwise to (A±(z±), α±(z±))
uniformly (in z±) as f → ±∞. Moreover, (A±(z±), α±(z±)) are both t-
rescaled vortex solutions.

Proof. With respect to this trivialization, AE(∇f) = 0, so AE = (AE)(1,0) +
(AE)(0,1) is fully encoded in the anti-holomorphic 1-form (AE)(0,1) ∈ K−1.
We shall often drop the superscript (0, 1) when it is clear from the context.
The Seiberg-Witten equations implies

|∇f |∂fα = −2∂AEβ + o4; (3.31)

2|∇f |∂f (AE)(0,1) = −ᾱβ. (3.32)

by the asymptotic condition of θ and the L∞-boundedness of ψ. Note that
had we adopted the Cartesian coordinates, the right hand side of last equa-
tion would have involved an additional o3-term, leading to less desirable
estimates.

In Step 1 we established the o4 decay of |β| and |∂AE′β|; furthermore∣∣∣|∇f |−1
∣∣∣ ≤ o3, therefore both ∂fα, ∂fAE decay as o4. By integrating along

the gradient flow lines, we see that the equations imply that both AE(z±, f)
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and α(z±, f) converge uniformly to A±(z±) and α±(z±) respectively as f →
±∞. On the other hand, the rest of the Seiberg-Witten equations

2∂̄AEα = |∇f |∂fβ + o4;

2FE∗df + i
1
2
(t− |α|2) = −i1

2
|β|2 + o3

(FE∗df denoting the ∗df component of FE) tell us that

2∂̄A±α± = 0;

2(FA±)12 + i
1
2
(t− |α±|2) = 0. (3.33)

Namely, the limits solve the t-rescaled vortex equations (3.6) on C. �

3.3.8. Digression on Vortex Numbers. The convergence in the last
lemma allows us to introduce the notion of “vortex number” of a Seiberg-
Witten solution:

Definition The vortex number of a Seiberg-Witten solution (A,ψ) is the
vortex number (cf. Appendix pt. 1) of the vortex solutions (A+, α+) or
(A−, α−) from the previous lemma.

It is justified below that the vortex numbers of (A+, α+) and (A−, α−) are the
same, so we have an unambiguous definition of vortex numbers for Seiberg-
Witten solutions.

The vortex numbers have an alternative description as Chern numbers.
First observe the simple fact:

Lemma Let (A+, α+) be as the above. Then (i) the vortex number of
(A+, α+) is finite, and (ii) sup|z+|=d|FAE (z+, f)| → 0 uniformly in f as
d→∞.

The U− versions of the above statements are true by the same reason.

Proof. By differentiating (3.32) with ∂ and by the estimates (3.16), (3.21),
(3.22) and the L∞-bound on ψ, we have

|∂f |FE∗df || ≤ |∂fFE∗df | ≤ o4. (3.34)

Claim (ii) of the lemma follows from integrating the above over gradient
flow lines of f , and using the exponential decay (with |z+|) of curvature of
the vortex solution (A+, α+) (Appendix pt. 3) when claim (i) is true, plus
(3.32).
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To prove claim (i), by Appendix pt. 1 we only have to show that∫
C

(|FA+ |2 + |∇A+α+|2)dz+dz̄+

≤
∫∫∫

{(z+,f):x3(z+,f)≥Λ>>�}
∂f (|FE∗df |2 + |∇AEα|2)dz+dz̄+df

+(1 + CΛ−3)
∫

C

(|FE |2 + |∇AEα+|2)dzdz̄

is finite. But this is true because on the right hand side, the integrand of
the first term is o4 by (3.34) and a similar estimate for ∂f |∇AEα|, and the
second term is finite by Definition 3.1.1 condition 3. �

Let H be a surface in U+ such that ∂+

∣∣∣
H

is surjective and f(H) is

bounded. Then the above lemma implies: (i)
∫
H

iF
AE

2π is the relative Chern

number of E
∣∣∣
H

, and thus an integer; (ii) by the Bianchi identity this integral

is the same for any two such surfaces; (iii) therefore all such integrals equal
the f → ∞ vortex number of the Seiberg-Witten solution. Obviously, the
analogous statements for the U− region and the f → −∞ limit hold also.

Now If one deforms the surface H out of U+, the above Chern number
changes only when the surface sweeps across points in M� where θ vanishes
(at which the splitting of the spin bundle (2.1) fails). However, the f → ±∞
vortex numbers are the same, because FA is well-defined on the whole M ,
and by the Bianchi identity, last lemma, (2.1), and the asymptotic condition
on θ,

lim
L→∞

i

2π

∫
P±L

FA = lim
L→∞

(
2i
2π

∫
P±L

FAE +
i

2π

∫
P±L

FAK )

= 2× (the f → ±∞ vortex number),

where PL is the level surface f = L in M . End of the digression.

Step 3. Estimating a and η. Let v+ := (A+, α+) and v− := (A−, α−)
and define (AE0 , α0) := v(v+, v−) as in the statement of the proposition. We
shall now derive the estimates for a := AE − AE0 and η := α − α0 in the
proposition. In fact, below we will only focus on estimates for a, since those
for η are entirely parallel.

Note that ∂fAE0 is supported in the region where |z| ≥ �, which is in
U+ ∩ U−. In this region z− can be expressed as a function of z+, and vice
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versa. By (3.32)

|∂fAE0 (z+, f)| ≤ |∇λd(f)| |A+ −A− ◦ z−|(z+)

≤ |∇λd(f)|
∫

R

|∂fAE(z+, f)|df ≤ C|z|−3|∇λd(f)|;

also from (3.32):

|∂fa| ≤ | − ᾱβ|+ |∂fAE0 | ≤ o4 + C|z|−3|∇λd(f)|. (3.35)

From the construction of (AE0 , α0), we know a and η approach zero as |f | →
∞; we may integrate over the gradient flow lines using the fact that ∂f |a| ≤
|∂fa| to obtain |a| ≤ o3.

To obtain pointwise estimates for the derivatives of a, we first differenti-
ate (3.32), and argue similarly as above using the estimates for |α|, |β|, and
their derivatives obtained in step 1.

This completes the proof of the proposition. �

The following corollary has important applications in sections 4 and 5.

Corollary 3.3.9. In the notation in Proposition 3.3.3:
(1) (AE −AE0 , (α−α0, β)) is bounded in the weighted Sobolev norm L2

l:ε for
0 ≤ ε < 3/2.
(2) Let Θc be the operator defined by (A.1) (the deformation operator of
the vortex equations at c). Let πv± be the projection from L2(T ∗C ⊕ C) to
Ker Θv± ⊂ L2(T ∗C⊕ C). Then regarding (AE − AE0 , α − α0) as a family of
functions in z± parametrized by f , f ∈ R, |f | > R, πv±(AE − AE0 , α − α0)
gives a Cn-valued function over f since Ker Θv± � Cn (cf. Appendix, point
6). Proposition 3.3.3 implies that |πv±(AE −AE0 , α− α0)| ≤ C|f |−3.

(3)
∑l

i=0 |∇iv+ −∇iv−| ≤ C±|z±|−3, where C± are positive constants inde-
pendent of (A,ψ).

Proof. The proof for (1) is immediate from the proposition. For (2), using
the exponential decay property of elements in Ker Θc (Appendix, point 6)
we may bound |πv±(AE −AE0 , α− α0)| by:

C
∣∣∣ ∫ |x|−3e−γ|z±|dz±dz̄±

∣∣∣ ≤ C1

|f |3
∣∣∣ ∫ e−γ|z±|dz±dz̄±

∣∣∣ ≤ C±|f |−3.

(3) is a by-product of Step 3 of the proof for the proposition. �
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We remark that in section 4, we work in another gauge d∗(A − A0) +
i Imψ0 · (ψ−ψ0) = 0. (ψ0 = (α0, 0); A0 is the connection on L associated to
AE0 .) By Proposition 3.3.3, that gauge is asymptotic to the present gauge in
the sense that in the present gauge, |d∗(A−A0) + i Imψ0 · (ψ − ψ0)| ≤ o3.

Definition 3.3.10. The “centers” of vortex solutions on C mean the zero
loci of their Higgs fields (which consist of points in this case, cf. Appendix).
Similarly, the “centers” of perturbed Seiberg-Witten solutions (t > 0) are
the zero loci of the spinor fields (which consist of paths that are asymptotic
to lines in the x3-direction where x3 → ±∞).

3.3.11. The t = 0 version. Note that in the proof of Proposition 3.3.3
above, we did not actually use the condition t > 0 except at Step 2. When
t = 0, the proof of Lemma 3.3.7 still works, but now (3.33) implies that
α± ≡ 0; A±(z±) = idξ±(z±) are flat connections. We then may define
α0 ≡ 0, and

AE0 := idξ0, where ξ0 := λd(f)ξ+(z+) + (1− λd(f))ξ−(z−),

interpreted as with (3.10).

Proposition Let t = 0. Under the same assumptions as Proposition 3.3.3,
an admissible Seiberg-Witten solution (A,ψ) in this case also satisfies (3.11),
with (AE0 , α0) reinterpreted as above.

4. The configuration space and the quotient space.

In §4.1, we define the relevant norms for the purpose of proving sliceness
of the configuration spaces under the gauge group actions. We construct
the configuration spaces and establish the Banach manifold structure of the
quotient space in the t = 0 case and the t > 0 case in §4.2, 4.3 respectively.

4.1. Analytical preliminaries.

Suppose that M is an MEE with a k-admissible pair (g, θ), k ≥ l + 5.

4.1.1. The Reference Configurations. It turns out that the configura-
tion spaces we consider will be contained in some coordinate patches based
on certain reference configurations. Before we define them, let us fix some
notation. Let

Anl ⊂ L2
l (C, T

∗C)× L2
l,loc(C,C)
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be a neighborhood (in the L2
l sense) ofMn

vortex–the embedding of the moduli
space of vortex solutions with vortex number n described in the Appendix.
We shall take the neighborhood to be small enough for our purposes. In
particular, Θc (cf. (A.1)) is invertible when c ∈ Anl . An element in Anl is
called an approximate vortex solution.

Definition (1) In the t = 0 case, c0 = (A0, ψ0) is a reference configuration
if there is a trivialization of E

∣∣∣
M\M�

with respect to which (AE0 , ψ0) = (0, 0)

on M\M�.
(2) In the t > 0 case, a reference configuration ca1a2 = (A0, ψ0) associated

to two approximate vortex solutions a1, a2 ∈ Anl is a configuration such that
over M\M�, (AE0 , ψ0) = (AE0 , (α0, 0)) where (AE0 , α0) = v(a1, a2) defined in
(3.10).

We next introduce some useful norms and discuss their properties.

Definition 4.1.2. Let M be an MEE, and let V be a Euclidean/hermitian
bundle over M constructed from S and/or T ∗M . (V may be trivial.) Let c =
(A,ψ) be a reference configuration. Let ∇A denote the covariant derivative
of V derived from the Levi-Civita connection on T ∗M and/or A. (When V
is trivial, ∇ is the ordinary derivative.) Let ξ ∈ C∞

0 (V ). Define

‖ξ‖2c := ‖∇Aξ‖22:ε + ‖ξ|ψ|‖22:ε,

ε being zero for the t = 0 case and ε ∈ [0, 3/2) in the t > 0 case. Let

‖ξ‖Zl,c
:=
{
‖ξ‖2,l/A + ‖ξ‖6/5 in the t = 0 case;
‖ξ‖2,l:ε/A in the t > 0 case.

If V is a trivial C-bundle or R-bundle and l ∈ Z+, l ≥ 2, define

‖ξ‖Xl,c
:=

⎧⎨⎩
‖ξ‖c + ‖∇∇ξ‖2,l−2 + ‖ − ∇2ξ + ξ|ψ|2‖6/5 when t = 0;
‖∇ξ‖c + ‖ξψ‖c when t > 0, l = 2;
‖∇ξ‖c + ‖ξψ‖c + ‖∇∇2ξ‖2,l−3:ε when t > 0, l ≥ 2.

For another configuration c′, with (a, η) := c′ − c and l ≥ 1, define the
following norm in the tangent space to the configuration space

‖(a, η)‖Yl,c
:=

⎧⎨⎩
‖a‖c+‖∇a‖2,l−1+‖η‖c+‖∇Aη‖2,l−1/A

+‖d∗a+ i Imψ · η‖6/5 in the t = 0 case;
‖a‖c+‖∇a‖2,l−1:ε+‖η‖c+‖∇Aη‖2,l−1/A:ε in the t > 0 case.

Denote by Hc(V ), Zl,c(V ), Xl,c, Yl,c, the corresponding completions.
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Remark 4.1.3. (1) These norms are obviously defined for more general
configuration c. Later we will encounter versions of these norms for a general
c in the configuration space C (cf. §4.2, 4.3).

(2) The norms are chosen so that some invertibility results (Proposition
4.1.8, Lemma 4.2.5 below) needed for the existence of the quotient spaces
hold. The reason why the norms needed in the t > 0 and t = 0 cases are
so different was briefly discussed in §1.3. (3) When V is not specified, it is
implied to be a trivial bundle. It is clear from the definition that in this case
Zl,c does not depend on c. Furthermore, we shall see from lemmas 4.1.4,
4.2.2, 4.3.3 that these spaces in fact do not depend on the choice of the
reference configuration c. We will then drop the subscript c.

These spaces have many equivalent definitions according to the following
lemma:

Lemma 4.1.4. Let V , c, ξ be as in Definition 4.1.2. Then there exist (c-
dependent) constants µc, µ

′, νc such that:

µc‖ξ‖2,1:ε/A ≤ ‖ξ‖c ≤ µ′‖ξ‖2,1:ε/A; in the t > 0 case, (4.1)

‖ξ‖2;1/A ≤ ‖ξ‖c ≤ νc‖ξ‖2;1/A in the t = 0 case. (4.2)

Consequently, in the t > 0 case, Hc(V ), Yl,c, Zl,c(V ) and Xl,c are commen-
surate with L2

l:ε/A(V ), L2
l:ε/A(iT ∗M ⊕ S), L2

l:ε/A(V ) and L2
l:ε respectively. In

the t = 0 case, by Lemma 2.2.12, Hc is commensurate with V1/A; ‖ξ‖Xl,c
is

bounded above and below by multiples of ‖ξ‖2;l/A + ‖∇2ξ‖6/5; ‖(a, η)‖Yl,c
is

bounded above and below by multiples of ‖(a, η)‖2;l/A + ‖d∗a‖6/5.

Proof. The inequality ‖ξ‖c ≤ µ′‖ξ‖2,1:ε/A in the t > 0 case follows from
the L∞-bound on ψ by the definition of reference configurations, and the
inequality ‖ξ‖c ≥ ‖ξ‖2;1/A in the t = 0 case follows immediately from the
definition. We still need to show:

‖ξ‖c ≥ µc‖ξ‖2,1:ε/A for the t > 0 case, and (4.3)

‖ξ‖c ≤ νc‖ξ‖2;1/A in the t = 0 case. (4.4)

(4.4) is proved by lemma 2.2.12, as

‖ξ‖c ≤ ‖∇Aξ‖2 + ‖ξ|ψ|‖2 ≤ ‖∇Aξ‖2 + ‖ψ‖3‖∇Aξ‖2,

and ‖ψ‖3 is finite because by the definition of the reference configuration,
ψ ∈ C∞

0 .
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We use a partition of unity argument for (4.3). Say c = ca1a2 for two
approximate vortex solutions a1, a2. Let ξ = ξ1 + ξ2, where ξ1 = χRξ;
ξ2 := (1 − χR)ξ. Here we choose R = R(c) > � to be large enough so that
when |f | ≤ d (d is as in Proposition 3.3.3), the zero locus of ψ lies in the
region where |x| < R/2, and that R is much larger than the distance of the
centers of a1, a2 from origin.

Since c is a reference configuration, on the support of ξ2 (which is in R3)
c := ((AE , α), β) := (λd(f)a1(z+)+ (1−λd(f))a2(z−), 0) with respect to the
trivialization of E specified earlier. In this case, we separate the variables
x = (z±, f) and use the following similar result in 2-dimensions.

Sublemma 4.1.5. Let (a, φ) be an approximate vortex solution on C; let q
be a C∞

0 function on C. Then

‖∇aq‖22 + ‖q‖22 ≤ C(‖∇aq‖22 + ‖q|φ|‖22)

for some positive C depending only on the vortex number of (a, φ).

This is the key inequality for proving the invertibility of the operator Θ
in (A.1). When (a, φ) is an honest vortex solution this is well-known (an
analogue is Lemma 4.6 in [43]); according to our definition it is also true
for approximate vortex solutions. Roughly speaking, the proof follows from
the fact that |φ|(z) is almost constant where |z| > R,R � 0 [40, 15], and
that the zero locus of φ is compactly supported. (Use a partition of unity
argument similar to (4.7) below.) �

Accordingly,

‖ξ2‖2c = ‖∇Aξ2‖22:ε + ‖ξ2|ψ|‖22:ε
≥ (1−CR−3)

∫
dfς2ε(‖∇Aξ2‖22,z± + ‖ξ2|ψ|‖22,z±) (4.5)

≥ C ′
∫
dfς2ε(‖∇Aξ2‖22,z± + ‖ξ2‖22,z±) (4.6)

≥ C ′′(‖∇Aξ2‖22:ε + ‖ξ2‖22:ε),

where ‖ · ‖2,z± means the L2 norm is taken over the 2-dimensional space
parameterized by z± (the sign ± is determined by the sign of f). Note that
to go from (4.5) to (4.6), we used the above sublemma where |f | > d, and
we need the condition on R to obtain a lower bound for |ψ| where |f | ≤ d
on the support of ξ2.

On the other hand, ξ1 also satisfies

‖ξ1‖2c ≥ ν2(‖∇Aξ1‖22:ε + ‖ξ1‖22:ε)
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for some positive constant ν because it is compactly supported: ‖ξ1‖2 =
‖χ2Rξ1‖2 ≤ C‖χ2R‖3‖∇Aξ1‖2. Thus

‖∇Aξ‖22:ε + ‖|ψ|ξ‖22:ε = ‖∇A(ξ1 + ξ2)‖22:ε + ‖|ψ|(ξ1 + ξ2)‖22:ε
= ‖∇Aξ1‖22:ε + ‖∇Aξ2‖22:ε + ‖|ψ|ξ1‖22:ε + ‖|ψ|ξ2‖22:ε

+2Re〈|ψ|ξ1, |ψ|ξ2〉2:ε − 2‖(∇χR)ξ‖22:ε
+2Re〈(∇χR)ξ, (1− 2χR)∇ξ〉2:ε + 2〈χR∇Aξ, (1 − χR)∇Aξ〉2:ε

≥ C1

2
(‖∇Aξ‖22:ε + ‖ξ‖22:ε)− C2‖ςε∇χR‖23‖∇ξ‖22
−C3‖ςε(∇χR)(1− 2χR)‖3‖∇Aξ‖22,

≥ C4(‖∇Aξ‖22:ε + ‖ξ‖22:ε)− C5‖∇Aξ‖22:ε (4.7)

where C2, C3 are positive constants independent of c. Rearranging we get
the desired inequality. �

Remark 4.1.6. In the t > 0 case, Lemma 4.1.4 in fact holds for any c ∈ Cl
(cf. §4.3) by combining the above proof with Lemma 2.2.12.

Lemma 4.1.7. In the t = 0 case, 〈ζ, η〉 ≤ C‖ζ‖Zl,c
‖η‖c for some c-

independent constant C.

Proof. 〈ζ, η〉 ≤ ‖η‖6‖ζ‖6/5 ≤ C‖η‖c‖ζ‖Zl,c
. �

The norms in Definition 4.1.2 are useful due to the following Lemma.

Lemma 4.1.8. Let V in Definition 4.1.2 be a trivial R-bundle or C-bundle.
Then for either the t = 0 or the t > 0 cases, and for any l ≥ 1, the operator

Lc ≡ −∇†∇+ |ψ|2

is an isomorphism between Xl+1,c and Zl−1, where ∇† denotes the formal
L2
ε -adjoint of ∇.

Proof. The continuity of Lc is obvious for the t > 0 case by lemma 4.1.4. Lc
is continuous in the t = 0 case by the following estimate:

‖ − ∇2u+ u|ψ|2‖Zl−1

≤ ‖ −∇2u+ u|ψ|2‖6/5 + ‖ψ‖∞‖uψ‖2 + C‖u‖2;l+1 + ‖u‖2;l‖ψ2‖2;l
≤ C ′‖u‖Xl+1,c

for constants C, C ′ depending on c.
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To construct an inverse for Lc, for each ξ ∈ Zl−1, we use a standard
variational argument (cf. e.g. [6] p.55) using the functional Sξ(u) = ‖u‖2

c
2 +

〈u, ξ〉2:ε on Hc to produce a uξ ∈ L2
3,loc minimizing Sξ; Lcuξ = ξ almost

everywhere. This uξ is the candidate for L−1
c ξ, but we still need to obtain

some bounds on uξ to show that uξ ∈ Xl+1,c.
For this purpose, note that since by the definition of uξ, ‖uξ‖2c = 〈uξ, ξ〉,

‖uξ‖c ≤ C‖ξ‖Zl−1
(4.8)

by lemma 4.1.7 (the case t = 0) and lemma 4.1.4 (the case t > 0). To prove
that ‖uξ‖Xl+1,c

is bounded by ‖ξ‖Zl−1
, in the t = 0 case it follows from the

following two additional estimates: Firstly,

‖Lcuξ‖6/5 = ‖ξ‖6/5 ≤ ‖ξ‖Zl−1
;

secondly, we show by induction that

‖∇iuξ‖2 ≤ C‖ξ‖Zl−1
(4.9)

for all i ∈ Z+, i ≤ l + 1. For i = 1, this is true by (4.8); for i ≥ 2, by the
induction assumption and via integration by parts

‖∇i−2∇∇uξ‖2 = ‖∇i−2∇†∇uξ‖2
= ‖∇i−2(Lcuξ − uξ|ψ|2)‖2
≤ ‖ξ‖2,l−1 + C‖uξ‖2;i−1‖|ψ|2‖3,i−2

≤ C ′‖ξ‖Zl−1
.

Therefore Lc has a bounded inverse.
In the t > 0 case, (4.8) and an estimate similar to (4.9) do the job. �

4.2. Configurations and gauge group action: the case t = 0.

In this subsection we concentrate on the case t = 0, though some lemmas
will be proved for both cases t = 0 and t > 0.

(A) The configuration space.

We start with some general discussions. Let W0 be the vector bundle

W0 := iT ∗M ⊕ S, (4.10)
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where S is the spinor bundle. Most generally, the (total) configuration space
C̃ should consists of all admissible configurations in L2

2,loc(W0), with the
(total) gauge group G̃ = L2

3,loc(Aut(L)) acting on it by

g(c) = (A− (dg)g−1, g1/2ψ), (4.11)

where c = (A,ψ) ∈ C̃, A is a connection of the auxiliary line bundle L which
we may identify with an element of L2

2,loc(T
∗M) by subtracting off a fixed

connection; ψ is a section of S. Given the topology of the local Sobolev
spaces on C̃ and G̃, we can endow the quotient space Q̃ := C̃/G̃ with the
quotient topology (Lemma 4.2.4 below shows that it is Hausdorff) and that
in turn induces a topology on the moduli space by regarding the moduli
space as a subset of the quotient space. In these topologies, Lemma 3.3.7
defines two continuous maps ∂± from the (t > 0) Seiberg-Witten moduli
space to the moduli space of vortices on C given by the f → ±∞ limits
of the solution. However, as the local Sobolev spaces that C̃, G̃ model on
are quite intractable, this is not sufficient to ensure Banach space structures
on the quotient space and the moduli space, and we need to restrict our
attention to a better behaved subset. On the other hand, as we are mainly
concerned with the moduli space of the Seiberg-Witten equations in Q̃, it
suffices to look at neighborhoods of the space of solutions: Cl ⊂ C̃.

We start with a fixed configuration c0 close to the solution space:

Definition 4.2.1. Set t = 0. Let c0 = (A0, ψ0) be a reference configuration.
Define the configuration space Cl, l ∈ Z+ in this case as:

Cl :=
{
c = (A,ψ) ∈ L2

l,loc(W0) : ‖(a, η)‖Yl,c0
<∞

}
, (4.12)

where (a, η) := (A,ψ)−(A0, ψ0). Define the topology on Cl by the Yl,c0-norm.

Note that Cl defined this way does not depend on the choice of the refer-
ence configuration: suppose c1 and c2 are two reference configurations, then∣∣∣‖c− c1‖Yl,c1

− ‖c− c1‖Yl,c2

∣∣∣+ ‖c1 − c2‖Yl,c2
depends on finite integrals over

a compact space; also Yl,c1, Yl,c2 are commensurate by lemmas 2.2.12 and
4.1.4. In fact,

Lemma 4.2.2. For any k ∈ Z+, the norms Vk/A are commensurate for
different reference configurations c = (A,ψ) and any k ∈ Z+. The spaces
L2
k/A are commensurate for different c ∈ Cl if k ≤ l, and inequalities of the

type of (2.8) hold.

Henceforth we drop the subscript A (cf. Remark 2.2.9).



Seiberg-Witten Equations on Three-manifolds with Euclidean Ends 39

(B) The gauge group action and the quotient manifold.

Let Gl+1 ⊂ G̃ be the stabilizer of Cl ⊂ C̃. It follows immediately from
(4.11) that the action of Gl+1 on Cl is free except at configurations of the
form (A, 0), which we call reducible configurations.

Let C∗l (M) ∈ Cl denote the set of irreducible configurations; we aim to
describe the local structure of the quotient Q∗

l := C∗l (M)/Gl+1 ⊂ C̃/G̃.
We begin by enumerating some simple facts.
The linearization of the gauge group action at the configuration c is dc,

dcξ := (−∇ξ, 1
2
ξψ); (4.13)

where ξ is an imaginary function and ξ acts on ψ by complex multiplication.
We take the pointwise (real) inner product of (a, η) and (b, χ) to be

(a, η) · (b, χ) = a · b+ 2Re η · χ. (4.14)

dc then has the formal L2-adjoint

d∗c(a, η) = −d∗a− i Imψ · η.

As usual, we construct a slice for the action of Gl+1 by fixing a gauge.
For technical reasons we choose a less conventional gauge d∗c(a, η) = 0.

Theorem 4.2.3. Let t = 0. Then the quotient Q∗
l above is a Banach man-

ifold covered by local coordinate patches modeled on

Ql,c :=
{

(a, η) ∈ Γ(W0) : ‖a‖2;l + ‖η‖2;l/A <∞, d∗c(a, η) = 0
}
, (4.15)

where c = (A,ψ) is an irreducible reference configuration.

Proof. The proof of theorem 4.2.3 is an adaptation of the standard proce-
dures.

First we note the following lemma which shows that C̃/G̃ is Hausdorff.
Since Q∗

l ⊂ C̃/G̃ and has finer topology than the induced topology from C̃/G̃,
this implies that Q∗

l is Hausdorff as well.

Lemma 4.2.4. (both cases t = 0 and t > 0) The map

G̃ × C̃ → C̃ : (g, c) → g(c) (4.16)

with g(c) defined in (4.11) is continuous in the topology of the local Sobolev
norms. Moreover, the action of G̃ on C̃∗ has a closed graph. That is, let
(cn) ⊂ C̃∗ and (gn) ⊂ G̃ be sequences so that cn → c and gn(cn) → c′ in C̃∗.
Then there is a subsequence gn → g in G̃ with g ∈ G̃ satisfying g(c) = c′.
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This lemma is proved by a standard argument via Sobolev embedding (cf.
e.g. [9] p.50, Appendix A).

Next, to prove sliceness we need an invertibility lemma.

Lemma 4.2.5. (both cases t = 0 and t > 0) Let c be a reference configura-
tion. Then the linear maps dc, d

∗
c :

Xl+1,c
dc−→Yl,c

d∗c−→Zl−1 (4.17)

are continuous, and Ker d∗c ⊂ Yl,c is commensurate with the Banach space
Ql,c, the tangent space of Ql. Moreover, d∗cdc is an isomorphism.

Proof. For the t > 0 case the continuity is obvious from lemma 4.1.4. The
continuity for the t = 0 case follows from the following routine estimates

‖d∗a+ i Imψ · η‖Zl−1

≤ ‖∇a‖2,l−1 + ‖|ψ|η‖2,l−1 + ‖d∗a+ i Imψ · η‖6/5
≤ C‖(a, η)‖Yl,c

; (4.18)

‖(−2∇ξ, ξψ)‖Yl

≤ 2‖∇ξ‖2,l + C ′‖ξ‖2;l+1‖ψ‖2;l+1/A + 3(‖ξ‖2;l + ‖ξ‖c)‖ψ‖∞ + ‖Lcξ‖6/5
≤ C‖ξ‖Xl+1,c

. (4.19)

For the t = 0 case and the ε = 0 case of the t > 0 case, the isomorphism
between Xl+1,c and Zl−1 is the direct consequence of Lemma 4.1.8, as d∗cdc =
−Lc. When ε > 0, the isomorphism still holds because d∗cdc differs from −Lc
by a small perturbation (∼ 2ες−1∂3ς, cf. Definition 2.2.10). �

Remark 4.2.6. The claims in this lemma in fact hold for any c ∈ Cl when
t > 0 (cf. §4.3).

We now define the Banach Lie group GXl+1
⊂ Gl+1 for the t = 0 case. Let

Xl+1 := Xl+1,c for some reference configuration c. (Note that the definition
of Xl+1 does not depend on the choice of c, cf. lemma 4.1.4.)

First we note that the exponential map exp : iΩ0 → Aut(L) is a bijection
on a neighborhood UX of 0 ∈ Xl+1.

Lemma 4.2.7. The exponential map above extends to the whole Xl+1. Its
image, denoted GXl+1

, is a Banach Lie group with Banach Lie algebra Xl+1,
and acts smoothly on Yl,c by g[y] = g(c+ y)− c.
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Proof. The infinitesimal action of Xl+1 on Yl,c is

φ : (ξ, (a, η)) �→ (−∇ξ, ξ
2
ψ) + (0,

ξ

2
η). (4.20)

The Yl,c-norm of the first term is bounded by the Xl+1-norm of ξ by lemma
4.2.5; the Yl,c-norm of the second term can be bounded by

µ‖∇A(ξη)‖2,l−1+‖ξReψ · η‖6/5
≤µ‖dξ‖3,l−1‖∇Aη‖2;l+C(‖dξ‖2,l−1+C ′‖dξ‖4,l−1)‖∇Aη‖2,l−1

+ ‖ξ‖6‖ψ‖2‖η‖6
≤C2‖η‖Yl,c

‖ξ‖Xl+1
,

so the infinitesimal action is continuous.
The rest of proof is standard. (Cf. e.g. [23].) �
The implicit function theorem plus Lemma 4.2.5 imply via a standard

argument (cf. e.g. [2] chapter 4) that

Lemma 4.2.8. When t = 0, C∗l /GXl+1
is a Banach manifold covered by local

coordinate patches modeled on Ql,c given in (4.15).

This is not quite what we want yet, since our Q∗
l := C∗l (M)/Gl+1 is the

quotient space by Gl+1 (the stabilizer of Cl) instead. However, we observe:

Lemma 4.2.9. GXl+1
is the component of Gl+1 containing 1.

Proof. As Gl+1/GXl+1
acts freely on C∗l /GXl+1

, if Gl+1/GXl+1
is not discrete,

by the local model for C∗l /GXl+1
given in the previous lemma, there exists a

nonzero ξ ∈ L2
3,loc which satisfies d∗cdcξ = 0, which, by the unique continua-

tion theorem, is impossible if c is irreducible. �
The above two lemmas thus complete the proof of Theorem 4.2.3. �

Remark 4.2.10. From basic algebraic topology (cf. [37] §8.1), Gl+1 has
H1(M ; Z) components.

4.3. Configurations and gauge group action: the case t > 0.

Throughout this subsection, let t > 0. For the case of positive vortex-
numbers we need an extra fibration construction. As we have seen in §3.2
for the case of R3, the Seiberg-Witten solutions with t > 0 and positive
vortex numbers have L2-unbounded curvature, thus to apply the analysis in
the previous subsection we must subtract off some fixed configuration.
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(A) The configuration space Cl.
Recall from §4.1 the definition of Anl as a neighborhood of the moduli

space of the vortex equations. Let Gl+1 be the gauge group for the vortex
equations; we take it to be a Banach Lie group modeled on L2

l+1(C, iR).
Denote Ξnl = Anl /Gl+1 and Ξ :=

∐∞
n=0 Ξnl .

Definition 4.3.1. Given a1, a2 ∈ Anl , let ca1a2 be a reference configuration
associated with a1, a2.

For t > 0, let Cl,a1a2 be the following subspace in C̃.

Cl,a1a2 := {ca1a2 + e : e ∈ Yl,ca1a2
}.

The configuration space Cl in this case is defined by Cnl :=
⋃
a1,a2∈An

l
Cl,a1a2 ;

Cl :=
⋃
n≥0,n∈Z

Cnl .

Note again that the space Cl,a1a2 depends only on (a1, a2) ∈ Anl × Anl , not
the choice of the reference connection ca1a2 .

Notation 4.3.2. The above constructions depend on the parameters t and
ε. We shall add the subscripts t, ε when we want to emphasize the depen-
dence.

Generalizing Definition 4.1.1, we may define H, X, Y , Z norms associated
with any configuration in Cl.

Lemma 4.3.3. The norms Yl,c1, Yl,c2 are commensurate for any c1 =
(A1, ψ1) ∈ Cnl,t1 , c2 = (A2, ψ2) ∈ Cnl,t2. Similarly, any pairs Xl+1,c1 , Xl+1,c2

are also commensurate. In fact, L2
k/A1:ε, L

2
k/A2:ε

are commensurate if k ≤ l,

or if k = l + 1 and k ≥ 2. Again an inequality of the form of (2.8) holds.

Proof. We shall only present the proof for the Y -norms since the proof for
the other norms are similar.

Let e := c2−c1. We need to show that for all ξ ∈ Yl,c1, there is a constant
C(e) depending on e, such that∣∣∣‖ξ‖Yl,c2

− ‖ξ‖Yl,c1

∣∣∣ ≤ C(e)‖ξ‖Yl,c1
. (4.21)

(4.21) holds in general if it holds for the following special cases: (i) when
c1, c2 ∈ Cnl,t1 have the same left and right limits, (ii) when c1 ∈ Cnl,t1 and
c2 ∈ Cnl,t2 are both reference configurations.

For case (i), note first that in this case e ∈ Yl,c1, and (4.21) follows from
routine estimates using Lemma 2.2.12. For case (ii), it follows from the fact
that e ∈ L∞ in this case. �
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Thus we shall drop c and A from the subscript.

Remark 4.3.4. We fix the admissible pair (g, θ) in this section. However,
by the same arguments we can see that the norms for different (g, θ) are
commensurate. In fact, by the asymptotic property of θ, the configuration
space does not depend on the admissible pair either.

The previous lemma and the definition of Cnl implies that Cnl is the trivial
product Yl × (Anl ×Anl ), and taking the right and left-hand limits gives the
following fibration:

Cl,a1a2 −→ Cnl
∂+×∂−−→ Anl ×Anl , (4.22)

where ∂+, ∂− are defined respectively by taking the f → +∞, f → −∞
limits of the configuration.

We take the topology of Cnl to be the product topology. This makes Cnl
(and hence Cl) a Banach manifold.

Note that Proposition 3.3.3 and Corollary 3.3.9 guarantee that all
Seiberg-Witten solutions lie in Cl (modulo gauge transformations). As we
will be looking at the moduli space of the Seiberg-Witten equations eventu-
ally, Cl is sufficient for our purpose.

(B) The gauge group action and the quotient manifold.

In the t > 0 case, we define the subgroup, Gl+1, of the total gauge group
G̃ in the following steps:

1. Embed Gl+1 ×Gl+1 → G̃ in the following way: Let g1, g2 be any two
elements in Gl+1. Write g2 = e−ivg1 ∈ Gl+1, where v ∈ L2

l+1(C,R).
Define an element hg1g2 in the total gauge group G̃ out of g1, g2 as
follows: let

hg1g2 = eiλd(f)vg2 (4.23)

on M\M�. (λd is as in 3.3.3). It is not hard to see that we may
extend hg1g2 over M� (continuously with respect to g1, g1) to define an
element in G̃.

2. Similarly to the t = 0 case, let Gl+1,a1a2 be the stabilizer of the fiber
Cl,a1a2 , and let GXl+1

be the exponential ofXl+1. An analogue of lemma
4.2.7 shows that GXl+1

is a Banach Lie group. Here in the t > 0 case,
we can see directly that GXl+1

is the component of Gl+1,a1a2 containing
unity: here it requires ‖(−2∇ξ, ξψy)‖Yl

< ∞ for ξ ∈ TeG to stabilize
Yl, which is exactly the requirement for ξ to be in Xl+1. Note that this
implies that Gl+1,a1a2 is independent of a1, a2.
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GXl+1
acts on Ca1,a2 smoothly. The relevant estimate here is

‖ξη‖Yl
≤ ‖ξη‖2,l:ε

≤ ‖ξ‖3,l:ε‖η‖2,l + (C‖∇ξ‖2 +C ′‖∇ξ‖4)‖∇l
Aη‖2:ε

≤ C‖ξ‖Xl+1
‖η‖Yl

. (4.24)

3. Define the gauge group Gl+1 to be the subgroup of G̃ generated by
Gl+1,a1a2 together with the image of the embedding of Gl+1 × Gl+1

constructed in point 1 above.

Gl+1 � Gl+1 ×Gl+1 × Gl+1,a1a2 (4.25)

Note that the definition of Gl+1 does not depend on the choice of λd
or how we extend hg1g2 over M� in point 1.

From the above construction, we observe that Gl+1 and G̃ have the same
orbits in Cl ⊂ C̃. (Note that Cl is not Gl+1 invariant.) Letting Qnl ⊂ Q̃ be
the image of Cnl under the quotient by Gl+1, we have the following fibration

Ql,a1a2 := Cl,a1a2/Gl+1,a1a2 −→ Qnl
∂+×∂−−→ Ξnl × Ξnl , (4.26)

where we have used the same notation ∂+ × ∂− to denote the map induced
from the fibration map Cnl → Anl ×Anl .

Let Ql :=
⋃
nQnl .

In the t > 0 case, lemma 4.1.8 generalizes to state that d∗c is an isomor-
phism between Yl,c and Zl−1 for any c ∈ Cl. Using the implicit function
theorem as in §4.2 we thus obtain:

Theorem 4.3.5. Let t > 0. In this case, for each y = (a1, a2) ∈ Ξnl × Ξnl ,
Ql,y is a Hilbert manifold modeled on

Ql,c :=
{
f : f ∈ Yl, d∗cf = 0

}
, (4.27)

for any c ∈ Cl,y.
The quotient manifold Qnl is a fiber-bundle over Ξnl × Ξnl with fibers

Ql,y. Endowed with the product topology, Qnl (and hence Ql) is a Hilbert
manifold modeled on

Q̂l,c :=
{

(b1, b2, f) : b1, b2 ∈ L2
l (C, T

∗C⊕ C), f ∈ Yl,

d∗cf = 0, δ1a1b1 = δ1a2b2 = 0.
}

(4.28)
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Here c is an arbitrary configuration in Cnl , and a1, a2 are images of c under
the maps ∂+, ∂− respectively.

δ1 is the gauge condition for vortex solutions given in (A.2).

In fact, we can define a global gauge slice (∗):

Definition 4.3.6. We say that a configuration c ∈ Cl is in the ∗-gauge if

c = ca1a2 + e, (4.29)

where: (i) a1, a2 are both in the gauge slice (vor). (cf. Appendix). (ii)
e ∈ Yl satisfies the gauge constraint d∗ca1a2

e = 0.

5. Fredholm theory.

Here we deal mainly with the t > 0 case. The t = 0 case is similar but
simpler; it will be discussed briefly in §5.2.

5.1. The deformation operator Dc.

From the discussion in 3.3.2, over U±, the trivialization of E specified in
3.3.3 identifies W0 = iT ∗M⊕S with the pull-back i(∂∗±TC⊕∂∗±N)⊕ (∂∗±C⊕
(∂∗±C⊗ ∂∗±TC)). It is often more convenient to regroup this as:

W0 = ∂∗±(iTC⊕ C)⊕ ∂∗±(iN ⊕ (C⊗ TC)). (5.1)

For example, with respect to the same trivialization, a reference configura-
tion has vanishing second component in the above over U±.

Definition 5.1.1. We define the space Vl as follows:

(a) In the t = 0 case, Vl := L2
l (M,W0).

(b) In the t > 0 case, Vl ⊂ L2
l,loc(M,W0),

Vl :=
{
F (v1, v2) + e : e ∈ L2

l:ε(M,W0);

v1, v2 ∈ L2
l (C, iN ⊕ (C ⊗ TC))

}
(5.2)

� L2
l (C, iN ⊕ (C ⊗ TC))⊕2 ⊕ L2

l:ε(M,W0), (5.3)

where

F (v1, v2)(x) :=
(
0, (1 − χ�)(x)

(
λd(f)v1(z+) + (1− λd)(f)v2(z−)

))
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with respect to the decomposition (5.1). The above expression makes
sense because it is supported on M\M�, over which we have the in-
terpretation for W0 noted above. The direct sum decomposition (5.3)
endows a norm on Vl.

Consider the map S : Cl → Vl−1,

S(A,ψ) :=
(
∗ (FA − iρ−1 ◦ σ(ψ,ψ) − iω), ∂/Aψ

)
. (5.4)

The zero set S−1(0) ⊂ Cl is the space of Seiberg-Witten solutions. Its image
under the quotient by Gl+1, Ml ⊂ Ql, is the moduli space of Seiberg-Witten
solutions.

The above definition of the moduli space seems to depend on the choice
of l, ε, but actually it is sufficiently universal considering the following fact:

Lemma 5.1.2. If the metric g is (k + 5)-admissible, k ∈ Z+, and the per-
turbation ω is given by (2.4) with w ∈ L2

k−1, then in the t > 0 case,
Ml:ε = Ml′:ε′ for arbitrary l, l′ ∈ Z+, 1 < l, l′ ≤ k, and ε, ε′ ∈ [0, 3/2).
Similarly, in the t = 0 case, Ml = Ml′ .

Proof. We present the proof for the t > 0 case. The t = 0 case is similar.
Suppose l ≤ l′, ε ≤ ε′. Then by definition Ml′:ε′ ⊂ Ml:ε. The converse
Ml:ε ⊂ Ml′:ε′ is also true by elliptic bootstrapping (cf. Lemma 3.1.4) and
Proposition 3.3.3. These together imply the lemma. �

We will henceforth drop the subscripts and denote the moduli space by
M. Without loss of generality, for the rest of this paper let l = 2, and drop
the subscript l in Cl, Ql, etc. For the case of positive vortex numbers, ε will
be a fixed number ε ∈ (1, 3/2) (cf. Corollary 3.3.9 and Lemma 5.3.4 for the
reasons of this choice). All discussion below may be easily generalized to
higher l cases.

To study the local structure of the moduli space, we need to consider
the linearization of S. Formally, the linearization of S at c is a map from
Γ(M,W0) to itself given by:

Dc(a, η) =
(
∗ (da− 2iρ−1 ◦ σ(η, ψ)), ∂/Aη +

ρ(a)
2
ψ
)
. (5.5)

A straightforward computation shows that when c is a Seiberg-Witten solu-
tion, Dc fits into the elliptic complex:

iΩ0(M) dc−→iΩ1(M)⊕ Γ(S) Dc−→iΩ1(M)⊕ Γ(S)
d∗c−→iΩ0(M). (5.6)
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Let W1 be the bundle iR ⊕ W0 over M . It has a Euclidean metric by
direct summing the one on W0 given by (4.14), and the standard one on R.

By a standard construction, from this elliptic complex we obtain a for-
mally L2-selfadjoint operator (see lemma 5.2.3), Dc, from Γ(M,W1) to itself:

Dc(γ, q) := (0, dcγ) + (d∗cq,Dcq). (5.7)

Following (5.1), over M\M�, we shall also decompose W1 alternatively as(
K−1 ⊕ E

)
⊕
(
iC⊕ (E ⊗K−1)

)
, (5.8)

where the trivial bundle C := R ⊕ iR consists of the Rdf component from
T ∗M , and the iR component in W1 complementing W0. Again over U± this
can be identified with a pull-back bundle.

The goal of this section is to prove the Fredholmness of Dc.
To make the definition of Dc precise, we need to specify its domain and

range in different cases. Before doing so we need the following digression.

5.1.3. A Decomposition of Dc on R3. Let c be a Seiberg-Witten solution
on R3 with vortex number n. We have seen in §3.2 that c = (v, 0) with
respect to the decomposition (5.1).

It is straightforward to see that in this case Dc decomposes into the
horizontal and normal parts T ′, N ′, each involving only the x3 and z variable
respectively: Dc = i(T ′ +N ′), where

T ′ :=
(
∂3 0
0 −∂3

)
; (5.9)

N ′ :=
(

0 −Θ∗
v

Θv 0

)
(5.10)

as endomorphisms of Γ(W1) with respect to (5.8).
It is clear from (5.10) that the kernel and cokernel of N ′ both consist

precisely of elements of the form (k(z, x3), 0) where k(z, x3) ∈ Ker Θv � Cn

for fixed x3. (n is the vortex number of c). So these can be regarded as
sections of a trivial Cn-bundle over R (parameterized by x3), which we call
Kc. Let L2

ε(Kc) be the space of L2
ε sections of Kc regarded as a subspace of

L2
ε(W1) as above. We let L2

ε(W1;Kc) denote the L2
ε -orthogonal complement

of L2
ε (Kc) in L2

ε(W1).
Let Πc denote the projection from L2

ε (W1) onto L2
ε(Kc).
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5.1.4. Generalizations of this decomposition. For our later partition
of unity argument, we need to generalize the above definitions on R3 to the
case where f , c come from extending restrictions to M\MR in the following
sense.

Let f be an k-admissible function on M (recall that k ≥ l+5); we define
f̃ to be a function which extends f

∣∣∣
M\MR

(R ≥ �) over the whole R3, such

that ‖f̃ − x3‖Ck
≤ ε(R). Note that f̃ is no longer harmonic, and we may

choose R large enough so that ε is as small as we want. We can then use f̃
to decompose W1 as in (5.8) over the whole R3, and both (z+, f) and (z−, f)
are good coordinate systems on R3.

Let c be a configuration on R3 of the form (v, 0) with respect to (5.8) and
the trivialization on E and K−1 described above. For any fixed value of f ,
we assume that v(z±, f) ∈ Γ(C, TC⊕C) is an approximate vortex solution.
(The condition of being an approximate vortex solution is the same for either
coordinate z± if ε is small enough.)

In this case, T ′, N ′, Kc, Πc have straightforward generalizations: T ′, N ′

are given by the same formulas, except that ∂3 is replaced by |∇f |∂f , and
∂ in (A.1) now is respect to the complex structure on K−1. Kc is still a
Cn-bundle over R; the fiber over the surface f = C is Ker Θv|f=C

. However,
D′
c is only “approximately” decomposable:

D′
c := i(T ′ +N ′) +R′, (5.11)

where R′ comes from the off-diagonal terms of the Spinc and Riemannian
connections and involves only (matrix) multiplication; ‖R′‖Ck−2

≤ Cε.
For general M and c, Πc is partially defined as follows.

Definition 5.1.5. Let c ∈ Ct(M), t > 0, and let λ′ := λ′R as in Definition
2.2.10. For any u ∈ L2(W1) such that u = (v, h) over M\M� according to
(5.8), we define

Πc

(
(1−λ′(f))(v, h)(x)

)
:=

⎧⎪⎨⎪⎩
(P∂+cv(z+, f), 0) in the region where f >R,
(P∂−cv(z−, f), 0) in the region where f <−R,
0 for the rest of M ,

where P∂±c denotes the projection from L2(C, TC⊕ C) to Ker Θ∂±c respec-
tively.

In §5.3 case (i), the above definition of Πc agrees with that in 5.1.4 when the
parameter R is large enough.
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5.1.6. Domain and Range of Dc: the case t = 0 and the case t >
0, n = 0. In the t = 0 case, Dc maps V2(M,W1) to L2

1(M,W1). 2

In the t > 0 case, however, the domain and range of Dc have fibration
structures due to the fibration of C. We start with the n = 0 case (n being
the vortex number). Since we want Dom(Dc) to include TcC, a natural choice
of Dom(Dc) is:{
q(v1, v2) + e(x) : v1, v2 ∈ L2

2(C, TC⊕C), e ∈ L2
2:ε(M,W1)

}
⊂ L2

loc(M,W1),
(5.12)

where

q(v1, v2) := (1− χ�)(x)
(
λd(f)v1(z+) + (1− λd)(f)v2(z−), 0

)
,

in the decomposition (5.8) according to the usual interpretation. Corre-
spondingly, since N ′ is off-diagonal, Range(Dc) is given by the same formula
as the right hand side of (5.2), but with W0 replaced by W1, and N replaced
by the trivial bundle C.

It is obvious from the definition that in this case,

Dom(Dc) � L2
2(C, TC ⊕C)⊕2 ⊕ L2

2:ε(M,W1);
Range(Dc) � L2

1(C,C⊕ C⊗ TC)⊕2 ⊕ L2
1:ε(M,W1).

If a1, a2 are respectively ∂+c and ∂−c, then in these decompositions,

Dc(v1, v2, e) = (Θa1v1,Θa2v2,D′
ce) + (0, 0,Xc), (5.13)

where Xc is the remainder term

Xc(v1, v2, e) := σD(−dχ�)
(
λdv1

+ (1− λd)v2, 0
)

+ σD(dλd)
(
(1− χ�)(v1 − v2), 0

)
(5.14)

+ (1− χ�)
(
λd(Dc −D(a1,0))(v1, 0) + (1− λd)(Dc −D(a2,0))(v2, 0)

)
according to the usual interpretation. In the above, to simplify notation we
identify λd, v1, v2 with their composition with f, z+, z− respectively; also σD
denotes the principal symbol of Dc. D′

c is an operator of the form (5.7) from
L2

2:ε(W1) to L2
1:ε(W1).

2Recall that we have set l = 2.
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5.1.7. Domain and Range of Dc: the case t > 0, n > 0. In this case, the
spaces above are not good enough for the purpose of Fredholm theory, and
we need to extend the domain of Dc a little. The trick is to replace the e in
the formula (5.12) with elements in a larger space, K2,c, L2

2:ε ⊂ K2,c ⊂ L2
2:ε−1.

(From this point on we assume ε > 1.) The moduli space corresponding to
K2,c will include M2:ε, yet be included by M2:ε−1. By Lemma 5.1.2, this
moduli space is isomorphic to M2:ε = M2:ε−1. Thus it does not matter to
work with the K2,c norm. 3

Below we define the space Kl,c for general l ∈ Z ∪ {0}.

Definition Let ε ∈ (1, 3/2), and let c := (A,ψ) ∈ Cn for n > 0 be a
configuration in the t > 0 case. Let l ∈ Z+ ∪ {0}. Let Πc, λ′ be as in
Definition 5.1.5.
(1) For ζ ∈ C∞

0 (M,W1), define the Kl,c-norm of ζ as

‖ζ‖Kl,c
:=

{
‖∇ζ‖2,l−1:ε + ‖(1 −Πc)((1− λ′ ◦ f)ζ)‖2:ε + ‖ζ‖2:ε−1 if l > 0;
‖(1−Πc)((1 − λ′ ◦ f)ζ)‖2:ε + ‖ζ‖2:ε−1 if l = 0.

Let Kl,c be the completion of C∞
0 (M,W1) with respect to the above norm.

(2) Define the space Rl,c to be the completion of C∞
0 (M,W1) with respect

to the norm:

‖ξ‖Rl,c
:=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
‖ξ‖2,l:ε + ‖∂f (Πc(1− λ′ ◦ f)ξ)‖2:1+ε

+
∑l

i=2 ‖∂if (Πc(1− λ′ ◦ f)ξ)‖2:2+ε if l > 1,
‖ξ‖2,l:ε + ‖∂f (Πc(1− λ′ ◦ f)ξ)‖2:1+ε if l = 1,
‖ξ‖2:ε if l = 0.

From now on, we let D′
c denote the operator between K2,c and L2

1:ε(W1)
given by (5.7), and let Dc be the operator (5.13) from L2

2(C,C
2)⊕2 ⊕ K2,c

to L2
1(C,C

2)⊕2 ⊕ L2
1:ε(M,W1). The (formal L2

ε -) adjoint of D′
c, D

′†
c , will

map from R2,c to K1,c. More generally, we may regard D′
c as an operator

between Kl,c and L2
l−1:ε(W0), andD

′†
c as an operator between Rl,c andKl−1,c.

However unless otherwise specified, we take l = 2. Note that when we take
n = 0 above, Kl,c, Rl,c both reduce to L2

l:ε, and thus the domain and range
of Dc defined in Definition 5.1.7 agree with the previous simpler definition
for the n = 0 case.

3Alternatively, one can rework §4.3 using more complicated norms corresponding
to K2,c.
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5.1.8. Similar to the case in 5.1.6, Dc is more naturally interpreted as
an operator from K̂1 to L̂2

1:ε(W1), which are defined below via an obvious
modification of (5.12):

Definition (1) Let K̂1 be the space defined by (5.12), but with L2
2:ε(M,W1)

replaced by K2,c in the formula. In the notation there, we define the norm
on K̂1 as:∥∥∥q(a1, a2) + e

∥∥∥
K̂1

:= ‖a1‖L2
2(C,TC⊕C) + ‖a2‖L2

2(C,TC⊕C) + ‖e‖K2,c . (5.15)

(2) Let K̂ := K̂1∩Γ(M,W0), often regarded as a subspace of L2
2,loc(W0).

It inherits a norm from K̂1.
(3) Let V be a Euclidean or hermitian bundle over M with a chosen

trivialization on M\M�, then again we may identify V = ∂∗±V ′ on U±
correspondingly, where V ′ is the trivial Rr or Cr bundle over C (depending
on whether V is Euclidean or hermitian; r is the rank of V ). L̂pk:ε(V ) will
denote the space given again by (5.12), but with a1, a2 now in Lpk(C, V

′) and
e ∈ Lpk(M,V ); and q(a1, a1) is given by the same formula, but without the
second component (i.e. 0). The norm on this space is defined in the usual
way.

Notation 5.1.9. In particular, when V is a trivial R-bundle, we often de-
note L̂2

3:ε(V ) by X̂ in light of Lemma 4.1.4. We shall sometimes also abuse
notation and use L̂2

k:ε(W1) to denote the analogue of (5.12), with e there
replaced by an element in L2

k:ε. Similarly, we shall write L̂2
k:ε(W0) for

L̂2
k:ε(W1) ∩ Γ(W0).

We shall often confuse elements in Γ(W0) with their images in Γ(W1)
under the natural embedding Γ(W0) ↪→ Γ(W1).

Now we are ready to state the main result in this section. Though we
shall only need the result for l = 2, we state the Fredholmness result for
general l because we shall use an induction argument in l.

Theorem 5.1.10. Let t > 0 and l ∈ Z+. For k ≥ max(l, 2), let c ∈ Cnl:ε.
Then:
(0) D′

c and D
′†
c are bounded (uniformly in c) with respect to the domains

and ranges specified in 5.1.6, 5.1.7.
(1) D′

c is Fredholm between Kl,c and L2
l−1:ε(W1) for ε ∈ (1, 3/2) and l ∈ Z+.

Its index does not depend on l or ε.

(2) The formal L2
ε -adjoint of D′

c, D
′†
c , is also Fredholm of index − Ind(D′

c)
between Rl,c and Kl−1,c.
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(3) If n = 0, we have in addition that for ε = 0 (unweighted case), D′
c is

Fredholm between L2
l (W1) and L2

l−1(W1) and has index 0; in fact, D′
c is a

self-adjoint operator between L2
1 and L2.

The version for the case t = 0 may be found in the end of §5.2.
The proof of Theorem 5.1.10 is divided into two parts. The first part

is contained in §5.2, and deals with the simpler case ε = 0, n = 0. The
approach adopted in this part is different from the ε > 0 cases and may
be readily adapted to the t = 0 case. The second part occupies §5.3–5.4,
and deals with the ε > 0 cases via excision and a separation of variables
argument which appeared in [43].

The extension to Dc is a consequence of Theorem 5.1.10, and is presented
in §5.5.

5.2. Fredholmness via admissibility.

In this subsection, we prove Theorem 5.1.10 in the unweighted case (i.e.
t > 0, ε = 0—this requires the vortex number n = 0 also). The same method
yields the analogous result for the case t = 0 (Theorem 5.2.5 below).

First, we note that the boundedness of D′
c and D

′†
c in this case follows

from routine estimates.
Next, we observe that the l > 1 case of the Fredholmness assertion may

be reduced to the l = 1 case by elliptic regularity, since a straightforward
computation shows that

‖∇k+1ξ‖22 ≤ C(‖∇kD′
cξ‖22 + ‖ξ‖22,k) (5.16)

for k < l, c ∈ Cl:0 and ξ ∈ L2
k+1(W1). We shall therefore take l = 1 for the

rest of this subsection.
To show Fredholmness in this situation, we follow the index theory on

Euclidean spaces developed in [39].
Similar to [39] and [20], we define “admissible operators” as follows.

Definition 5.2.1. If V is a Euclidean/hermitian bundle over an MEE M ,
and D is a first order, elliptic operator from Γ(V ) to Γ(V ). Let D∗ be the
formal L2-adjoint of D. We say that D is admissible if D satisfies:

(1) Both quadratic forms 〈D(·),D(·)〉2, and 〈D∗(·),D∗(·)〉2 may be writ-
ten in the form

〈·, ·〉Q + 〈·,R(·)〉2, (5.17)

where the first term is an inner product on Γ(V ) defined as

〈·, ·〉Q := 〈∇A(·),∇A(·)〉2 + 〈q(·), q(·)〉2,
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where A is a metric-preserving connection on V , and q, R are some endo-
morphisms of L2(V ).

(2) R in (5.17) satisfies: for any ε > 0, there exists R ∈ R+, R ≥ � such
that if χR is a characteristic function of M\MR, then

|〈ζ, (1− χR)R(η)〉2| ≤ ε〈ζ, ζ〉1/2Q 〈η, η〉1/2Q . (5.18)

Denote the Q, q,R in (5.17) corresponding to 〈D(·),D(·)〉2 by
QD, qD,RD. Likewise denote those corresponding to 〈D∗(·),D∗(·)〉2 by
QD∗ , qD∗ ,RD∗ .

Define the QD-norm for ζ ∈ Γ(V ) by

‖ζ‖QD
:= 〈ζ, ζ〉1/2QD

,

and let QD also denote the completion of C∞
0 (V ) with respect to this norm.

Define QD∗ likewise. Then

Proposition 5.2.2. If D is an admissible operator, then D is Fredholm
between QD and L2(V ).

For a proof see [19] Proposition 3.6 and [39] Proposition 7.2.
To apply the above Proposition to our situation, we need to check (5.17),

(5.18) for both D′
c and D′∗

c ; the following lemma however shows that they
need only be checked for D′

c.

Lemma 5.2.3. Dc is formally L2-self-adjoint.

The proof follows from direct computation.
We now check the admissibility of D′

c. Let ζ := (f ′, a′, η′), ξ := (f, a, η) ∈
iΩ0(M)⊕ iΩ1(M)⊕ Γ(S); note that

〈D′
cζ,D′

cξ〉 = 〈df ′, df〉+ 〈da′, da〉 + 〈d∗a′, d∗a〉

+1/2
∫
M

(a′ · a+ f ′f)|ψ|2+
∫
M

(
2Tr[σ(ψ, η′)σ(ψ, η)] + Im(ψ · η) Im(ψ · η′)

)
+ 2〈∂/Aη′, ∂/Aη〉+ cross-term1 + cross-term2 , (5.19)
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where the cross terms are given by

cross-term1
= 〈−∂/M,−2iσ(ψ, η) + i Imψ · η〉+ 〈Mψ, ∂/Aη〉

= −Re
∫

(Tr[(η† ⊗ ψ)∂/M ]) + 〈Mψ, ∂/Aη〉

= −Re
∫

Tr(M∂/(η† ⊗ ψ)) + Tr(M(ψ† ⊗ ∂/Aη))

= −Re
∫

Tr(M [η† ⊗ ∂/Aψ]) + 2Re〈a∗ · ∇Aψ, η〉 + i Im〈Mψ, ∂/Aη〉

= −Re〈Mη, ∂/Aψ〉+ 2Re〈a∗ · ∇Aψ, η〉 + i Im〈Mψ, ∂/Aη〉, (5.20)

and similarly

cross-term2 = −Re〈∂/Aψ,Nη′〉+ 2Re〈aη′,∇Aψ〉
+i Im〈∂/Aη′, Nψ〉,

where N := ρ(a) + fI; M := ρ(a′) + f ′I. By the Weitzenböck formula we
have among the diagonal terms

〈da′, da〉 + 〈d∗a′, d∗a〉+ 2〈∂/Aη′, ∂/Aη〉
= 〈∇a′,∇a〉+ 〈∇Aη

′,∇Aη〉+ 2〈η′, κη〉
−〈η′, ρ(FA)η〉, (5.21)

where κ is a linear combination of the components of the curvature of the
manifold M .

We now see that 〈D′
cζ,D′

cξ〉 is of the required form (5.17), with

q(f, a, η) :=
(
− 2iσ(ψ, η) + i Im η · ψ, ρ(a) + fI

2
ψ
)
;

〈ζ,Rξ〉 := 〈η′, (2κ − ρ(FA))η〉 + cross-terms.

Furthermore, the QD-norm here is commensurate with the L2
1-norm as some

computation shows

‖ζ‖2QD = ‖∇Aζ‖22 +
1
2
‖|ψ|ζ‖22.

It follows from lemma 4.1.4 that

µ′‖ζ‖22,1 ≥ ‖ζ‖2QD ≥ µ‖ζ‖22,1.
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It remains to show that R satisfies

|〈(1 − χR)ζ,Rξ〉| ≤ ε‖ζ‖2,1‖ξ‖2,1

for some R depending on ε, for any small ε > 0. As (1− χR)R is hermitian
it suffices to show that for all ζ ∈ L2

1:ε,

|〈(1− χR)ζ,Rζ〉| ≤ ε‖ζ‖22,1.

To show this, note that from (5.21), (5.20)

〈ζ, (1− χR)Rζ〉 = 〈η, (1 − χR)(2κ − ρ(FA))η〉

−Re(〈Nη, (1 − χR)∂/Aψ〉+
∫

2(1 − χR)Re(a∗ · 〈∇Aψ, η〉)

+similar terms from cross-term2.

As κ is compactly supported (since M is an MEE), we have

|〈η, κ(1 − χR)η〉| ≤ ‖η‖3‖κ(1 − χR)‖2‖∇Aη‖2 ≤ ε‖η‖22,1

for any small ε > 0, if we choose R large enough. For the term 〈η, (1 −
χR)ρ(FA), η〉, take R > � so that we can work on R3, and note that

|〈η, ρ(FA)(1 − χR)η〉| ≤ ‖(1− χR)ρ(FA)‖2‖η‖22,1

can also be made arbitrarily small by taking R large enough. The terms
involving ∇Aψ and ∂/Aψ can be bounded in the same manner. Note that here
we used the L2-integrability of FA and ∇Aψ for n = 0 solutions (since the
only vortex solution on C with vortex number 0 consists of flat connection
and constant Higgs field), which is not true for n > 0. This concludes
the proof of Fredholmness in the l = 1 case, which actually implies the
Fredholmness for all l as explained.

5.2.4. The calculation of index in this case (ε = 0, t > 0) follows from
the next lemma. (The lemma calculates the index for the l = 1 case; since
the index does not depend on l, this gives the index for any l.)

Lemma In the notation of Theorem 5.1.10, D′
c is a self-adjoint operator

between L2
1(W1) and L2(W1). Thus Ind(D′

c) = 0.

Proof. To prove that D′
c is actually self-adjoint, it suffices to show that

Dom(D′t
c ) ⊂ Dom(D′

c), where D′t
c is the adjoint of D′

c in the sense of [16].
Let ζ ∈ Dom(D′t

c ), that is, ζ ∈ L2(W1), with D′t
c ζ a distribution in L2(W1).
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As D′
c is proved to be Fredholm, Range(D′

c) is closed and we can ap-
proximate ζ by elements in C∞

0 . But for these elements D′t
c ζ = D′

cζ, and we
know from (5.19) that

‖∇Aζ‖2 ≤ ‖D′
cζ‖2 + C‖ζ‖2 <∞. (5.22)

This shows that Dom(D′t
c ) ⊂ L2

1 = Dom(D′
c) and the lemma is proved. �

This proves assertion (3) of Theorem 5.1.10 in this case, and thus con-
cludes the proof of Theorem 5.1.10 in the case ε = 0 completely.

The case t = 0 only needs minor modifications of the above arguments.

Theorem 5.2.5. Let c be a reference configuration for t = 0. Then Dc is
uniformly bounded (in c) and is Fredholm between Vl(W1) and L2

l−1(W1).
Its index is zero.

The index calculation in the above theorem follows from a standard ex-
cision argument (See also (5.38)–(5.41) and the proof of Proposition 6.3.1
assertion 2), and the elementary fact that elliptic operators on compact odd-
dimensional manifolds have zero index. (See for example [21]). �

5.3. Boundedness and Fredholmness of D′
c: the weighted case.

This subsection contains the first half of the proof of Theorem 5.1.10 in the
case ε > 0: we prove assertion (0) and assertion (1) in the case l = 1. In
fact, we shall only show the boundedness of D′

c, since the proof for D
′†
c is

similar. The second half is in the next subsection.
We shall start with special cases, then generalize step by step: Case (i)

deals with some standard configuration c on R3 via a separation-of-variables
argument; case (ii) generalizes this to certain special configurations c over a
general MEE by excision4 ; Case (iii) is the completely general case obtained
via perturbing case (ii).

Case (i). Let f and c = (v, 0) be as in 5.1.4, with c satisfying the following
additional condition: there exists some real number d ≥ �, so that ∂fv = 0

wherever |f | > d, and ∀C ∈ R, ‖∂fv
∣∣∣
f=C

‖1,∞ < ε for a small enough number

ε independent of c. This condition will be useful in lemma 5.3.3.

4however this method does not tell us about the index of the Fredholm operator.
To obtain information on the index, further refinement using gluing theory is needed.
See Proposition 6.3.1 for an example.



Seiberg-Witten Equations on Three-manifolds with Euclidean Ends 57

5.3.1. To show that D′
c is bounded in case (i), it suffices to show that

T ′ +N ′ is bounded. Given any ζ ∈ K2,c, decompose ζ as ζ = u+ w, where
u ∈ L2

2:ε(W1;Kc); w ∈ L2
2:ε−1(Kc). Note that in this case, ‖ζ‖K2,c is bounded

above and below by multiples of ‖u‖2,2:ε + ‖∇Aw‖2,1:ε + ‖w‖ε−1.
A direct computation shows that ‖(T ′ +N ′)u‖2,1:ε ≤ C‖u‖2,2:ε and Since

(T ′ + N ′)w = T ′w, ‖(T ′ + N ′)w‖2,1:ε ≤ ‖∇Aw‖2,1:ε. These together imply
that ‖(T ′ +N ′)ζ‖2,1:ε ≤ C ′‖ζ‖K2,c for a c-independent constant C ′. �

5.3.2. Fredholmness of D′
c with l = 1 in case (i).

Proposition Let c be as above, and ε ∈ (1, 3/2). Then D′
c is Fredholm

between K1,c and L2
:ε, of index −2n, and has trivial kernel.

Proof. The first step is the following standard lemma which defines a partial
right inverse for D′

c.

Lemma 5.3.3. Let c, ε be as above. Then for any h ∈ L2
ε(W1), there is a

pair of b(h) ∈ L2
ε (Kc) and u(h) ∈ L2

2:ε(W1;Kc) such that D′
cD

′†
c u(h) − h =

b(h). Furthermore, there are c-independent constants C, C ′, such that

‖u(h)‖2,2:ε ≤ C‖h‖2:ε; (5.23)
‖b(h)‖2:ε ≤ C ′‖h‖2:ε. (5.24)

Proof. Try minimizing the functional f : L2
ε(W1;Kc) → R,

f(µ) :=
1
2
‖D′†µ‖22:ε − 〈µ, h〉2:ε. (5.25)

It is easy to see that f is bounded and convex, so to prove that there exists
an unique minimum, it suffices to establish a coercive lower bound.

We first find a lower bound for

‖(N ′† + T
′†)µ‖22:ε = ‖N ′†µ‖22:ε + ‖T ′†µ‖22:ε + cross-terms.

The cross terms above may be bounded as follows. (i) Notice that T
′† =

−T ′ + m, where m = −iς−2ε|∇f |−1∂f (|∇f |ς2ε)γ3 (cf. (3.1) for γ3), and
N

′† = −N ′. So σT ′σN ′† + σN ′σT ′† = 0, where σT means the principal
symbol of the operator T . Thus the cross terms vanish at the symbol level.
(ii) Since ‖m‖∞ is small by Definition 2.2.10, the other non-vanishing cross
terms in ‖D

′†
c µ‖22:ε can be estimated such as:

|〈µ,N ′mµ〉2:ε| ≤ ε0(‖N ′µ‖22:ε + ‖u‖22:ε),
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where ε0 is a small positive number. (iii) The norms of terms involving ∂f c
can be bounded by ε1‖µ‖22:ε since |∂f c| is small by the definition of c.

Using the fact that ‖∂̄Aα‖2:ε is small (since (A,α) ∈ An is an approximate
vortex solution) and the orthogonality of µ to L2

ε(Kc), we then are able to
estimate

‖D′†
c µ‖22:ε ≥

1
2
‖(T ′ +N ′)†µ‖22:ε − ε0‖µ‖2:ε′

≥ C(ε‖(|∇f |∂f )†µ‖22:ε + ‖∇z,Aµ‖22:ε + ‖αµ‖22:ε)− ε2‖µ‖22:ε (5.26)

≥ C1(ε‖|∇f |∂fµ‖22:ε + ‖∇z,Aµ‖22:ε + ‖µ‖22:ε)− C ′ε‖|∂fm|1/2µ‖22:ε (5.27)

≥ C ′′(‖∇Aµ‖22:ε + ‖µ‖22:ε), (5.28)

where ε is a small positive number depending only on ς, C ′′ is c-independent,
and from (5.26) to (5.27) we have used a generalization of sublemma 4.1.5.
Finally, we have

|〈µ, h〉2:ε| ≤ ‖µ‖2:ε‖h‖2:ε ≤ ε′‖µ‖2:ε + C2‖h‖2:ε (5.29)

for a small positive ε′. Putting (5.26)–(5.29) together, we thus obtained
the desired coercive lower bound for the functional f for µ ∈ L2

ε(W1,Kc) ∩
L2

1:ε(W1), and it has a unique minimum at, say, u, which satisfies

〈D′†
c µ,D

′†
c u〉2:ε − 〈µ, h〉2:ε = 0, (5.30)

∀µ ∈ L2
ε(W1,Kc); hence there exists a b ∈ L2

ε(Kc) such that

D′
cD

′†
c u− h = b. (5.31)

We still need to verify the estimates (5.23), (5.24) for u and b. Sub-
stituting µ = u into (5.30), we have the following inequality from (5.28),
(5.29):

‖∇Au‖22:ε + ‖u‖22:ε ≤ ζ‖h‖22:ε (5.32)

for some c-independent constant ζ. Now (5.30), (5.32) ensure that the pro-
jection of D′

cD
′†
c u onto L2

ε(W1,Kc) is finite. To show that D′
cD

′†
c u is L2

ε(W1)-
integrable, we estimate 〈D

′†
c µ,D

′†
c u〉2:ε for all µ ∈ L2

ε (Kc) ∩ L2
1:ε(W1). First

note that because Πcµ = µ, Πcu = 0, and N
′†µ = 0, we can write (cf. (5.11)

for notation)

〈D′†
c µ,D

′†
c u〉2:ε

= 〈T ′†Πcµ, (T
′† +N

′†)u〉2:ε + terms involving R′

= 〈[T ′†,Πc]µ,D
′†
c u〉2:ε + 〈T ′†µ, [Πc, T

′†]u〉2:ε + terms involving R′,
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the absolute value of which may be bounded using the definition of c by

C‖µ‖2:ε‖u‖2,1:ε ≤ C ′‖µ‖2:ε‖h‖2:ε.

This implies that the L2
ε(Kc) component of, and hence the whole of

‖D′
cD

′†
c u‖2:ε also, is bounded by ‖h‖2:ε. By (5.31) this implies (5.24).

(5.23) is verified by (5.32) and the following estimate:

‖∇A∇Au‖22:ε ≤ ‖D′
cD

′†
c u‖22:ε + C‖u‖22,1:ε ≤ C‖h‖22:ε.

�
Define Pc(h) := D

′†
c u(h); this is the desired partial right inverse. Note

that when c is a Seiberg-Witten solution on R3 given in §3.2, Pc maps from
L2
ε(W1;Kc) to L2

1:ε(W1;Kc), and D′
cPc = 1−Πc. This is not true for a general

c in case (i), since in general [Πc,D′
c] �= 0.

The previous lemma then reduces the problem to (partially) inverting
D′
c on L2

ε(Kc) ⊂ L2
ε (W1). More precisely, we decompose

h = u+ b

with u ∈ L2
ε(W1;Kc); b ∈ L2

ε(Kc). We look for a q such that

D′
cq = h (5.33)

(at least partially). Write q := v+w, v ∈ L2
ε (W1;Kc), w ∈ L2

ε−1(Kc). (Note
that by our definition of c, K2,c = L2

ε(W1;Kc)⊕L2
ε−1(Kc)). Projecting (5.33)

onto L2
ε (W1;Kc) and L2

ε(Kc) respectively, we have:

(1−Πc)D′
cv = i[Πc, T

′]w + u+ (1−Πc)R′w; (5.34)
i[Πc, T

′]v + iΠcT
′w + ΠcR

′q = b. (5.35)

From (5.34) we get an expression of v in terms of w using lemma 5.3.3 (i.e.,
v = Pc(i[Πc, T

′]w+u+ (1−Πc)R′w)); substituting into (5.35) we obtain an
equation for w:

|∇f |∂fw − γ3(i[Πc, iT
′]w + i[Πc, T

′]v − b+ ΠcR
′(v + w)) = 0. (5.36)

To solve (5.36), we identify elements in L2
ε (Kc) with R2n-valued functions

over R, and appeal to the obvious generalization of the following lemma to
R2n-valued functions. From the asymptotic conditions on f and the fact
that [Πc, T

′] is supported on a bounded interval in R, we see that the left
hand side of the above equation is indeed an example of the operators in
assertion 2 of the next lemma. Proposition 5.3.2 is then proved. �
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Lemma 5.3.4. Let ς be a function of 1-variable (f) defined by (2.9). Let
L2
k:ε be the completion of the following weighted norms for R-valued functions

(Note that L2
0:ε = L2:ε): Let u(f) ∈ C∞

0 (R),

‖u‖L2
k:ε

:=
k∑
i=0

‖ςi+ε∇if‖2.

Then for ε > 1,

1. The operator d
df is Fredholm between L2

k+1:ε−1 and L2
k:ε of index −1. It

has trivial kernel, and a 1-dimensional cokernel spanned by the function
ς−2ε.

2. Let ν(f) be a Ck function such that
∑k

i=0 |∇(i)ν|(f) ≤ Cς3. By per-
turbation, operators of the form d

df + ν(f) are also Fredholm between

L2
k+1:ε−1 and L2

k:ε with index −1.

3. The formal L2
ε -adjoint of d

df is also Fredholm between L2
k+1:ε−1 and

L2
k:ε, and has index 1.

4. d
df may be extended to be a Fredholm operator, d̂, between L̂2

k+1:ε−1

and L2
k:ε, where

L̂2
k+1:ε−1 :={λdc++(1−λd)c−+e : c+, c− ∈ R; e ∈ L2

k:ε}�R2×L2
k+1:ε−1,

with the product Banach structure. This extended operator has index
1: it has a 1-dimensional kernel consisting of the constant functions,
and null cokernel. In fact, it has a bounded right inverse.

Proof. 1. We will deal with the k = 1 case only; the k > 1 case follows from
the k = 1 case via elliptic regularity (cf. §5.4).

We first change the variable from f to s :=
∫ f
−∞ ς(u)du. Let ẽ(s) :=

ς(f(s)). Note that by the definition of ς and s, ẽ(s) = Ce|s|/R for all s with
large |s|. (R here is as in (2.2.5).) Let L̃k:ε be the conventional exponential
weighted Sobolev spaced defined by the norm:

‖f‖L̃k:ε
:=

k∑
i=0

‖ẽε∇if‖2.

We see that after the change of variables, L2
1:ε−1 becomes L̃1:ε−1/2; L2

0:ε

becomes L̃0:ε+1/2, and the operator d
df becomes ẽ−1 d

ds . In other words, we
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need only examine the operator d
ds between L̃1:ε−1/2 and L̃0:ε−1/2, which is

well-known to be Fredholm. For example, by identifying L̃k:ε−1/2 with L2
k

via multiplication by ẽε−1/2, this can be seen by translating to the problem
of d

ds − (ε − 1/2)ẽ−1 dẽ
ds between L2

1 and L2, where ẽ−1 dẽ
ds = ±R−1 for all s

with large enough |s|.
The statement about the kernel and cokernel is easy to check. Espe-

cially, it is easy to see that d
df has a bounded inverse on the L2

0:ε-orthogonal
complement of the cokernel when R is large enough. Because of the Fred-
holmness, it suffices to verify that ‖u‖L2

1:ε−1
≤ C‖dudf ‖L2

0:ε
for all u ∈ C∞

0 .
Now write u = ς−εg; The above follows from the fact that in this case
‖g′ − ες ′ς−1g‖22 ≥ ‖g′‖22 + ε2‖ς−1g‖22 modulo small terms which may be ab-
sorbed to the first term.

2. is obvious. 3. is similar to 1.
4. The Fredholmness and the index calculation is obvious from the def-

inition. For the assertion about the kernel/cokernel, note that d̂λ has non-
trivial component in the cokernel of d

df . The boundedness of the right inverse
follows from this and the last paragraph of the proof of 1. above. �

Assertion 4 above together with Lemma 5.3.3 imply:

Corollary 5.3.5. (a) When f = x3 and c is an admissible Seiberg-Witten
solution described in §3.2, then Dc has a uniformly (in c) bounded right
inverse, and its kernel is Cn.

(b) More generally, if in 5.1.4, R is large enough so that f̃ is close enough
to x3, and if c(z+, f̃) = (v(z+), 0) with respect to (5.1), where v is a vortex
solution on C, then the same statements hold.

The uniform boundedness of the right inverse in part (a) above follows from
the boundedness of d̂ in the previous lemma, the c-independence of the con-
stant C in (5.23), and the uniform boundedness of D

′†
c . The only difference

of (b) from (a) is that here instead of d̂, we have d̂+|∇f |−1ΠcR
′(1+v′). This

is still bounded uniformly, because by assumption ‖R′‖Ck−2
≤ Cε is small.

We remark that the uniform boundedness of the right inverse obtained in
this Corollary will be important for the proof of the gluing theorem in §6.2.

Case (ii). Let c be a configuration on M whose restriction to M\MR agrees
with a configuration c1 on R3 of the form in case (i) above.

Let χ2 := χR; χ1 := 1 − χ2. Also let ϕ2 := χ2R; ϕ1 := 1 − χR/2. Note
that ϕi, i = 1, 2, are smooth cutoff functions of value 1 on the supports of
χi respectively.
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5.3.6. The uniform boundedness of D′
c in case (ii) is due to the

following inequality:

‖D′
cζ‖2,1:ε ≤ ‖D′

c(χ1ζ)‖2,1:ε + ‖D′
c(χ2ζ)‖2,1:ε

≤ C1‖χ1ζ‖K2,c1
+ C2‖χ2ζ‖K2,c′

≤ C‖ζ‖K2,c , (5.37)

where C is a constant depending on c1, c′, but not on ζ.

5.3.7. To show Fredholmness of D′
c for l = 1 in case (ii), we may

construct a parametrix Qc of D′
c by defining

Qc := ϕ1Q1χ1 + ϕ2Q2χ2, (5.38)

where Q1 is a parametrix for D′
c1 on R3 constructed in case (i) and Q2 is

a parametrix for the compact piece, which may for example be constructed
as follows: We may always extend M2R to a compact closed manifold, say
X. The spinor bundle S

∣∣∣
M2R

extends trivially over X. We may also extend

the configuration c
∣∣∣
M2R

smoothly over X (we call it c2.) Because of the

compactness of X and the ellipticity of D′
c2 , there is a parametrix to D′

c2 on
X, which we call Q2.

One may check that Qc is a parametrix for D′
c on M by noting that

the difference of D′
cQc or QcD′

c from the identity are sums of terms which
are products of a compact operator with a bounded operator, which are
still compact. (Note that the commutators of D′

c and the cutoff functions
have compact supports, and therefore are compact.) For example, a direct
computation shows that

D′
cQc = Id +Rc, (5.39)

where

Rc :=σD′(dφ1)Q1χ1 + σD′(dφ2)Q2χ2 + φ1R1χ1 + φ2R2χ2

+ φ1(D′
c −D′

c1)Q1χ1 + φ2(D′
c −D′

c2)Q2χ2,
(5.40)

where R1, R2 are compact operators defined by the formulae

D′
c1,2

Q1,2 = 1 +R1,2. (5.41)

Note the term φ1(D′
c −D′

c1)Q1χ1 is compact because Q1χ1 is bounded, and
φ1(D′

c − D′
c1) is supported on the region where R ≤ |x| ≤ 2R. This proves

the Fredholmness of D′
c between K1,c and L:ε(W1) in case (ii).
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Case (iii): The general case. The configuration in case (ii) is not a
general configuration, but it is close because for any configuration c′ ∈ C(M),
there is a configuration c in the form of case (ii), such that

c′ = c+ q, where q ∈ Y .

In fact, we can choose c such that q = (1 − χR/2)q. Also note that the two
parameters d and R in the definition of c are mutually independent. We
shall later take R→∞, but leave d fixed (depending only on a1, a2).

5.3.8. The boundedness of D′
c′ in the general case follows from the

inequality

‖D′
c′ζ −D′

cζ‖2,1:ε ≤ ‖qζ‖2,1:ε
≤ C‖q‖3,1:ε‖∇(ςζ)‖2,1 ≤ C ′‖q‖Y ‖ζ‖K2,c . (5.42)

5.3.9. To show the Fredholmness of D′
c for l = 1 in the general

case, note that similarly to (5.42), we have

‖D′
c′ζ −D′

cζ‖2:ε ≤ C‖q‖Y1‖ζ‖K1,c .

Here ‖q‖Y1 = ‖(1−χR/2)q‖Y1 ≤ ε(R), where ε(R) is an R-dependent positive
number which may be made arbitrarily small by taking R sufficiently large.
(In particular, when c′ is a Seiberg-Witten solution or a reference configura-
tion, q ≤ o3, and therefore in this case ‖(1 − χR/2)qζ‖2:ε ≤ CR−3‖ζ‖K1,c .)

We may then appeal to [16], IV.5.22, which implies that D′
c′ is Fredholm.

The proof of Theorem 5.1.10 assertion (0) and assertion (1) in the l = 1
case is now complete.

5.4. Fredholmness for D
′†
c and generalization to l > 1: the

weighted case.

This subsection contains the second half of the proof of Theorem 5.1.10. We
shall first show that D

′†
c is Fredholm for l = 1, then show that by elliptic

regularity, this together with the Fredholmness of D′
c for l = 1 proved in the

last subsection imply the Fredholmness of both D′
c and D

′†
c for all l.

5.4.1. The Fredholmness of D
′†
c for l = 1. We first review some termi-

nology and facts.
Let D be a linear differential operator mapping Γ(V ) to itself for some

bundle V . Let E and F be two Hilbert spaces containing C∞
0 (V ) (typically
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both taken to be L2(V )), such that E contains the domain of D and F
contains the range of D. There are many possible choices for the domain
of D; the following are two common choices: Dommin(D), or equivalently
the minimal extension, is the completion of C∞

0 (V ) in E with respect to the
norm:

‖ζ‖2D := ‖Dζ‖2F + ‖ζ‖2E .
The other choice, Dommax(D), or equivalently the maximal extension, con-
sists of all elements ζ ∈ E for which Dζ makes sense as a distribution in F .
It follows almost immediately (cf. [16]) from the definitions that if we let
D : Dommin(D) → F , and Dt : Dommax(D†) → E (here D† is the formal
adjoint of D; Dt is the adjoint of D in the sense of [16]), then Dt is Fredholm
if D is, and Ind(Dt) = − Ind(D).

For our application here, taking D = D′
c, E = K0,c and F = L2

ε(W1),
the Fredholmness of D

′†
c for l = 1 thus follows from the following lemma.

Lemma (a) K1,c coincides with the completion of C∞
0 with respect to the

norm ‖D′
cζ‖2:ε + ‖ζ‖K0,c (the minimal extension).

(b) The subspace in L2
ε(W1) where D

′†
c is defined as a distribution in K0,c

(the maximal extension) coincides with R1,c.

Proof. The arguments are similar to the self-adjointness proof in §5.2. (cf.
also [20] section 3, and [16] p.167.) Similar to §5.3 above, we may reduce the
general case to case (i) on R3, since the excision and perturbation arguments
in steps (ii)&(iii) can be easily modified.

For the rest of this proof, let c be a configuration on R3 as in §5.3 case
(i).

To show (a), we need to establish the inequality

‖ζ‖K1,c ≤ C
(
‖D′

cζ‖2:ε + ‖ζ‖K0,c

)
. (5.43)

(The other direction is true by the continuity of D′
c between K1,c and L2

ε .)
Similar to §5.3 case (i), decompose

ζ = v + w,

where v ∈ L2
ε (W1,Kc) and w ∈ L2

ε−1(Kc). (5.43) then follows from a combi-
nation of the following two inequalities:

‖v‖2,1:ε ≤ C1(‖v‖2:ε + ‖D′
cv‖2:ε),

which is obtained by a straightforward computation similar to the arguments
for (5.16), and

‖w‖K1,c ≤ C2

(
‖T ′w‖2:ε + ‖w‖2:ε−1

)



Seiberg-Witten Equations on Three-manifolds with Euclidean Ends 65

(which follows easily from the definition of K1,c), plus the fact that the cross
term

|〈D′
cv,D′

cw〉2:ε|
=
∣∣∣〈D′

cv, [T
′,Πc]w〉2:ε + 〈[T ′,Πc]v,D′

cw〉2:ε

+〈D′
cv,R

′w〉2:ε + 〈R′v, i(T ′ +N ′)w〉2:ε
∣∣∣

≤ ε(‖D′
cv‖22:ε + ‖D′

cw‖22:ε) +C(‖v‖22:ε + ‖w‖22:ε−1)

for some small number ε.
To show (b), let D′t

c denote the adjoint of D′
c in the sense of [16]. Then D′t

c

is Fredholm since D′
c is, and Ind(D′t

c ) = − Ind(D′
c). We want to show that

Dom(D′t
c ) ⊂ R1,c. (The other direction follows from the continuity of D

′†
c ).

Let ξ ∈ Dom(D′t
c ) ⊂ L2

ε(W1). Approximate ξ by ξi ∈ C∞
0 → ξ, i = 1, 2, . . ..

By the Fredholmness of D′t
c , ‖D′t

c ξi‖K0,c → ‖D′t
c ξ‖K0,c . The left hand side is

easier to estimate, since for ξi ∈ C∞
0 , D′t

c ξi = D
′†
c ξi, and integration by parts

is applicable. So without loss of generality, we may assume that ξ ∈ C∞
0 .

Again decompose
ξ = h+ t,

where h ∈ L2
ε(W1;Kc) and t ∈ L2

ε(Kc). The relevant estimate,

‖ξ‖R1,c ≤ C(‖D′†ξ‖K0,c + ‖ξ‖2:ε),

then follows from combining the inequalities (5.44), (5.45) below.

‖∇h‖2:ε ≤ C
(
‖D′†

c h‖2:ε + ‖h‖2:ε
)

(5.44)

is established in (5.28). Also, note that

T
′†t = −(|ς|2|∇f |∂f t+ (2ε|ς| + o1)t)

where |f | � R; so

‖∂f t‖2:1+ε ≤ C ′
∥∥∥T ′†t− (2ε|ς| + o1)t

∥∥∥
2:ε−1

≤ C ′′
(
‖T ′†t‖2:ε−1 + ‖t‖2:ε

)
. (5.45)

We have now completed the proof that D
′†
c is Fredholm between R1,c and

K0,c. �
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5.4.2. Generalizing to higher l. Similar to §5.2, the next “elliptic
regularity”-type of lemma shows that if D′

c or D
′†
c are Fredholm for l = k,

then they are also Fredholm for l = k + 1. Together with the l = 1 case al-
ready proved, this proves the claims of Theorem 5.1.10 (1), (2) for all l ∈ Z+.
Furthermore, the kernel, cokernel, and hence the index are independent of l.
And since by 5.4.1 IndD

′†
c = − IndD′

c in the l = 1 case, this holds for all l.

Lemma For any l ∈ Z+,
(a) if ζ ∈ Kl,c, D′

cζ ∈ L2
l:ε(W1), then ζ ∈ Kl+1,c;

(b) if ξ ∈ Rl,c; D
′†
c ξ ∈ Kl,c, then ξ ∈ Rl+1,c.

Proof. The lemma follows from the following inequalities:

‖∇l+1ζ‖22:ε ≤ C(‖∇lD′
cζ‖22:ε + ‖ζ‖2Kl,c

);

‖∇l+1ξ‖22:ε + ‖∂l+1
f (Πc(1− λ)ξ)‖22:2+ε ≤ C ′(‖∇lD′†

c ξ‖22:ε + ‖ξ‖2Rl,c
).

These formulae can be verified by direct computation similar to the proof of
Lemma 5.4.1. �

End of the proof of Theorem 5.1.10.

5.5. Boundedness and Fredholmness of Dc.

Theorem 5.1.10 has the following extension as a consequence:

Theorem 5.5.1. Let t > 0, c ∈ C. Then Dc is bounded (uniformly in c)

and Fredholm between K̂1 and L̂2
1:ε(W1), with index 4n+ Ind(D′

c).

Proof. Recall the decomposition of Dc from (5.13) (and adopt the notation
therein).

To show the boundedness of Dc, we only need to show that Xc is bounded.
By inspection, the L2

1:ε norm of the first and second terms in (5.14) are both
bounded by C

R (‖v1‖L2
1(C,TC⊕C)+‖v2‖L2

1(C,TC⊕C)), and the L2
1:ε norms of third

and fourth terms are bounded by

C ′(d1/2‖a1 − a2‖L2
2,R(C,TC⊕C) + ‖q‖2,2:ε,R)‖vi‖L2

1(C,TC⊕C)

for i = 1, 2 respectively. (The notation ‖ · ‖·,R means the norm is taken
outside of the disc or ball of radius R at the center.)

As for the Fredholmness, since we know that Θai (i = 1, 2) and D′
c

are Fredholm, from (5.13) we may conclude that Dc is Fredholm of index
4n + Ind(D′

c) (because Ind(Θai) = 2n) if (0, 0,Xc) can be regarded as a
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perturbation. This holds because from the form of (5.14), the operator
norm of Xc may be made arbitrarily small if R (the parameter in the cutoff
function χ = χR) is taken to be large enough.

This finishes the proof of Theorem 5.5.1. �

6. The moduli space.

Armed with the results obtained in previous sections, in §6.1 we apply the
standard arguments to deduce the usual smoothness and invariance proper-
ties of the moduli spaces. In §6.2 we discuss the compactness of the moduli
spaces. In the t > 0 case, the moduli space has non-compact components,
and we also need an explicit description of the “ends” of the moduli space.
This is provided in §6.3, 6.4. Using these results one may define some gauge-
theoretic invariants of 3-manifolds. An outline of the definition, and a pre-
liminary example of them was in [23] section 7.

Throughout this section we let l = 2. Higher l versions of the results are
straightforward (yet unnecessary, in view of lemma 5.1.2) generalizations.

We will be mainly dealing with the t > 0 case. The t = 0 case is similar
and relatively simple.

6.1. Smoothness and invariance.

Recall from §5.1 the definition of the moduli space M as S−1(0)/G ⊂ Q,
where S : C → V is given by (5.4). Note that for S to be zero, ω has to be
closed.

It is well-known that (cf. [2] Proposition 4.2.23) a local model of M at
[c] ∈ M is given by f−1

c (0)/Γc, where fc is a map from KerDc = H1 to
CokerDc = H2 (Hi are the i-th cohomology of the elliptic complex (5.6))
which vanishes at first order, and Γc is the stabilizer of the gauge action
at c. Thus M is smooth at c when CokerDc = ∅ and Γc = {1}, and
its dimension is Ind(Dc). Singularities occur in two occasions. The first
kind of singularities has a cone-like neighborhood and comes from reducible
configurations (Γc �= {1}). It is in a sense more fundamental because it
is already present at the level of Q and is usually difficult to get rid of
by perturbations. The second kind of singularities appear at c ∈ S−1(0),
when Dc has a non-trivial cokernel (since fc vanishes at first order). As
usual, the second kind of singularities can be killed by putting in a generic
perturbation 2-form w. (Recall the definition of w and ω from (2.4). We let
w ∈ L2

1:ε(
∧2 T ∗M).
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In our case, the first kind of singularities disappears also too when w is
introduced. More explicitly, for a reducible Seiberg-Witten solution (A, 0),
we have FA + iω = 0. Integrating over a surface H described in the end of
3.3.8,

vortex number =
∫
H

i

2π
FA = −

∫
H

ω

2π

if (A, 0) solves the Seiberg-Witten equation (2.2). Thus for a generic ω with
−
∫
H

ω
2π �= vortex number, reducible solutions do not occur, and we are

happily in the situation where the moduli space is a smooth manifold. In
particular, for an admissible θ, θ is not even in L2

ε(
∧2 T ∗M); thus for the

t > 0 case, reducible Seiberg-Witten solutions never occur. If t = 0 and
b1(M) > 0, we can choose a small w = ω such that

∫
Z ω �= 0 for some

compact cycle Z to get rid of singularities.

Remark 6.1.1. In the previous sections, we assumed w = 0. When w
is introduced, the corresponding Seiberg-Witten solutions might no longer
satisfy the pointwise estimates in Proposition 3.3.3. However, they still lie
in the configuration space C defined in section 4 if w is small.

In this section, we fix θ, and denote the moduli space corresponding to
the admissible metric g and perturbation ω = −t θ2 +w as Mg,w,t. We show
below that these moduli spaces are cobordant.

Let Met be the Banach manifold of admissible metrics whose tangent
space H is L2

9(Sym2 T ∗M�) with respect to a smooth metric. (Though the
L2

9-norm depend on g, by lemma 2.2.12 the L2
9-space does not.) The topology

of Met is defined using the L2
9-norm. The space of (minor) perturbation 2-

forms, B, is L2
1:ε(
∧2 T ∗M), ε ∈ (1, 3/2). (For higher l cases, Met is modeled

on L2
k(Sym2 T ∗M�), k ≥ l + 6, and B is L2

l−1:ε(
∧2 T ∗M).)

Define the map S̃ : Met×B × C → V by S̃(g,w, c) := Sg,w(c), where
Sg,w is given by (5.4) with the metric g, and with ω given by (2.4). (Note
that by routine estimates, C,V do not depend on the metric g.) The quotient
M̃t := S̃−1(0)/G is called the parameterized moduli space. The next theorem
shows that M̃t is smooth and thus forms a cobordism between different
moduli spaces.

Theorem 6.1.2. For any t, the map S̃ is smooth and zero is a regular value.

Therefore for the t > 0 case, M̃t =
∐∞
n=0 M̃n

t where each M̃n
t is a Banach

manifold, and the projection

� : M̃n
t ⊂ Q×H× B −→ H× B
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is Fredholm of index equal to Ind(Dc). Here n is the vortex number of the
elements in each component. As a consequence, for generic (g,w) ∈ H × B,
Mn

g,w,t = �−1(g,w) is a smooth manifold.
Similarly in the t = 0 case, for an MEE with b1 > 0 and for generic

(g,w), the moduli space Mg,w,0 is a 0-dimensional smooth manifold.

Proof. First note as before that for the t > 0 case, we don’t have to worry
about the reducible solutions. For the t = 0 case, we need the extra condition
b1 > 0 on M to guarantee the nonexistence of reducible solutions for generic
(g,w).

Below we prove the theorem for the t > 0 case. The t = 0 case is similar.
The smoothness of S̃ follows from the boundedness of Dc (Theorem 5.1.10

(0)) (hence Dc = dS is bounded). For the regularity at 0, it suffices to prove

that the restriction, S ′, of S̃ to B × C S′
−→V has zero as a regular value5.

Let c be a solution to the Seiberg-Witten equations (2.2). Note that since
Dc has closed range (being Fredholm), Im(Dc) ⊂ Ker(d∗c) ⊂ V is closed.
On the other hand, dS ′(v, e) = Dce + (−iv, 0) ∈ Γ(T ∗M ⊕ S); thus its
image is the sum of two closed subspaces). Therefore it suffices to show that
Coker(dcS ′) = ∅.

Since dS ′ surjects to the L2
1(C, iN ⊕C⊗TC)⊕2 component of V (because

the moduli space of vortex solutions on C are smooth), we need only to con-
sider the L2

1:ε(W0) component of V. However, a by-now standard argument
(cf. e.g. [29]) shows that there is no (F,χ) ∈ L2

1:ε(W0) in the cokernel of dS ′.
Thus dS ′ (and hence dS̃) is surjective at zero and therefore S̃−1(0) is a Ba-
nach manifold. By Theorem 4.3.5, M̃t = S̃−1(0)/G is a Banach submanifold
of Q.

As a consequence, � : M̃t → H× B is Fredholm of index Ind(Dc) by a
standard argument (cf. e.g. [9], p.60). It follows then from the Sard-Smale
theorem that Mg,w,t = �−1(g,w) is a smooth manifold for generic (g,w). �

As a simplest example of M,

Corollary 6.1.3. The moduli space for Seiberg-Witten solutions on R3

with perturbation t ∗ dx3 (t > 0) is smooth; in fact, it is diffeomorphic
to
∐
n≥0 Symn C.

Proof. This is obvious from the work in §3.2. In fact, the embedding of
the moduli in the configuration space C in the ∗-gauge is given simply by
(A, (α, 0)), where (A,α) is a vortex solution on C in the (vor) gauge. The

5Let Y be replaced by K2,c ∩Γ(W0) (identifying Γ(W0) with its natural embed-
ding in Γ(W1)). cf. §5.1, footnote 3.
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diffeomorphism to
∐
n≥0 Symn C is then given by taking the centers of the

vortex solution (A,α). The smoothness follows from Corollary 5.3.5. �
We say that (g,w) is a good pair if the corresponding moduli spaceMg,w,t

is smooth.
The following corollary is useful for showing that the Seiberg-Witten

invariants of MEE’s are independent of metric and perturbations.

Corollary 6.1.4. (a) Fix the parameter t > 0. The moduli spacesMg1,w1,t,
Mg2,w2,t corresponding to any two good pairs of (g1, w1), (g2, w2) are cobor-
dant in the quotient space Q.

When t = 0, the same holds with the additional requirement that
b1(M) > 1.

(b) Now fix a good pair (g,w) and let t vary. The moduli spaces Mg,w,t

patch up to form a (non-compact) cobordism:

M̂g,w
π−→R+,

with π−1(t) = Mg,w,t, t ∈ (0,∞). Furthermore, when the vortex number
n = 0 and ε = 0 (note that ε = 0 is allowed only when n = 0), elements in
M0

g,w,t converge in L2
1,loc to points in Mg,w,0 as t goes to zero.

Remark 6.1.5. Note that Q0 and Qt, t > 0 have different topologies so
the convergence Mg,w,t →Mg,w,0 can only happen at the L2

1,loc level. Also,
Mg,w,t, t > 0 do not converge to the whole Mg,w,0. For example, when M
is the connected sum of R3 and a Seifert fibered manifold with b1 = 0, we
expect (by the correspondence between Seiberg-Witten solutions and sets of
gradient flow lines explained in §1.1 (A)) that the limit of Mg,w,t, t → 0
consists only of flat connections on M , while there might be other t = 0
Seiberg-Witten solutions in view of the computation in [32].

Proof. Part (a) is standard. The proof of part (b) follows the same strategy,
but some preliminary work is required: since the moduli spaces Mg,w,t for
different t’s lie in different spaces Qt, we need to construct a bigger ambient
space in which M̂g,w lies. This is done by a “fibration argument” similar to
that in §4.3. Recall the construction of the configuration space Ct as

⋃
n Yt×

Ant ×Ant . We showed in Lemma 4.3.3 that the space Yt does not depend on t.
In addition, though Ant does depend on t, Ant1 and Ant2 are isomorphic for any
t1, t2 ∈ R+ by the isomorphism (a, α)(z) �→ (

√
t2/t1a,

√
t2/t1α)(

√
t1/t2z).

Thus the union
Ĉ :=

⋃
t∈R+

Ct
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has the product structure Ct×R+, and its quotient is Q̂ := Ĉ/G = Qt×R+.
The rest of the proof then follows the standard argument. �

6.2. Compactness, and the ends of the moduli.

We have the following version of compactness results.

Lemma 6.2.1. Let (g,w) be a good pair. Then:

(a) When t = 0, Mg,w,t is compact.

(b) When t > 0, the projection map ∂+ × ∂− : Mn
g,w,t → Symn(C) ×

Symn(C) is proper.

Proof. We shall only prove the t > 0 case, since the t = 0 case is entirely
similar, using Proposition 3.3.11 instead of Proposition 3.3.3.

Let t > 0. We first assume that w = 0 in ω. Suppose {c1, c2, . . .} is a
sequence of elements inMn such that ∂+×∂−(c1), ∂+×∂−(c2), . . . converges
to a ∈ Symn(C)×Symn(C). Given the L∞ bound on ψ established in Lemma
3.1.5, by a standard elliptic bootstrapping argument (cf. [19, 31, 29]) one
concludes that:

Over any compact subset U of M , we may choose suitable rep-
resentatives of ci in C, denoted by cUi , so that a subsequence
of {cUi } converges over this subset.

(6.1)

Therefore: (1) one may choose representatives of ci in C, denoted still by
ci, so that restricted to M2R, R ≥ 2�, a subsequence of {ci} converges in
the L2

2 norm. Furthermore, by Proposition 3.3.3 and (6.1) again, a diagonal
argument shows that: (2) there is another subsequence of {ci} (without
loss of generality, we assume it is {ci} itself) so that over M\MR there
are eiξi ∈ G such that {eiξici} converges in the L̂2

2:ε-norm on M\MR. (Cf.
Definition 5.1.8 for the notation).

By (1) and (2), there exists still another subsequence of {ci}, so that
{ei(1−χR)ξici} converges in the L̂2

2:ε norm over the whole M . The lemma is
proved for w = 0.

Now when w �= 0, we may choose a large enough R so that (g,w′) is still
good with w′ = χRw, and Mg,w′,t is cobordant to Mg,w,t. Now Proposition
3.3.3 still applies with (g,w′) because on M\M2R, w′ = 0. The properness
for Mg,w′,t implies the properness for Mg,w,t. �
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Remark 6.2.2. (a) In fact, both ∂+ and ∂− are proper in the t > 0 case.
This follows from Corollary 3.3.9 (3), and an argument similar to the above
proof. We shall henceforth call ∂−1

+ (Symn(C)\K) “the end of Mn” when

K = {(z1, z2, . . . , zn) ∈ Symn C : zi ∈ C,
n∑
i=1

|zi|2 ≤ R}

for some large R� �. The properness of ∂+ means that the complement of
the end of the moduli is compact.

(b) In the t = 0 case, Lemma 6.2.1 together with Theorem 6.1.2 implies
that one may define a version of Seiberg-Witten invariant of 3-manifolds
(for b1 > 1) as the Z2-count of the points in the moduli space. That this is
independent of g,w is guaranteed by Corollary 6.1.4. The story for the t > 0
case is more involved due to the noncompactness of the moduli. We need
a more detailed description of the end of the moduli via gluing theory (cf.
Theorem 6.3.3 below), to which we devote the rest of this section. In [23]
section 7, the product structure of the end (Corollary 6.3.5 below) was used
to construct a series of Seiberg-Witten invariants from the t > 0 moduli.

6.3. Local description of the moduli via gluing.

The main goal of the rest of this section is to state and prove Theorem
6.3.3. This theorem describes parts of the moduli space for t > 0 Seiberg-
Witten solutions by gluing solutions on R3 and some known solutions. This
partially describes the higher-vortex-number strata in terms of the lower-
vortex-number ones; in particular, by Lemma 6.2.1 this determines the ends
of the moduli.

The result is obtained in four standard steps. The first three steps, (A),
(B), (C) below, occupy the rest of this subsection. The last step, i.e. proving
that the gluing map is a diffeomorphism, is in the next subsection.

For the rest of this section, let t > 0, and (g,w) be a good pair.

(A) Constructing the approximate solutions.

This is done in the following steps.

1. Let R be a real number; R > 2�. Let C1 > C2 > C3 > C4 be positive
constants independent of R.

Let γR(x) be a smooth cutoff function which is |z|-dependent-only on
M\M�, and is supported in {x ∈ M : |z| < C2R} with value 1 on
{x ∈M : |z| < C3R}; γR(x) := 1 when x ∈M�.
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Let y be a vortex solution of on C in the (vor)-gauge (cf. Appendix).
Suppose its vortex number is n (n = 0 is possible), whose centers fall
in the region where |z| > C1R. Let y+(z+, f) := (y(z+), 0) in the
decomposition (5.1) be a configuration on U+ ⊂ R3.

Let N ⊂M be a closed ball of radius ρ about [v0] ∈Mm, which may
be represented as a subset in the gauge slice {v0 + e : e ∈ TC; d∗v0e =
0} ⊂ C, where v0 is in the ∗-gauge defined in the end of §4.3. Let v
be an element in the above subset. We require ρ = ρ(R) to be small
enough such that the centers of all such v fall within the region where
|z| < C4R, and that there exist a continuous family of right inverses Pv
of Dv with ‖Pv‖ ≤ C5 ∀v, for a constant C5 independent of v,R. (Note
that Pv exists by the smoothness of N , and it is uniformly bounded
by the compactness of N .)

2. Identify the spinor bundles over U+ andM on the support of γR(1−γR)
by requiring the α-components of the spinor fields in y+ and v to be
parallel. (Note that these components never vanish in this region by
Proposition 3.3.3 and Appendix, point 3.)

We define the configuration c := y#v := (Ã, ψ̃) ∈ C as follows:
(i) Let c be y+ on the region M\ support(γR) ⊂ U+.
(ii) On M\ support(1− γR), let c = v.
(iii) On the support of γR(1− γR), let

c := v + (1− γR)(y+ − v). (6.2)

We will use y to denote either a point in Symn(C\D(R)) or a correspond-
ing vortex solution in the (vor)-gauge indiscriminantly. Similarly, we will use
the same notation v for an element inN or the corresponding Seiberg-Witten
solution.

The above patching-up construction thus defines a smooth map

# : Symn(C\D(R))×N → C(M)

by #(y, v) := y#v. We denote by Gl := Symn(C\D(R))×N “the space of
gluing parameters”.

(B) Error estimate and uniform invertibility.

Proposition 6.3.1. Let c := y#v, where y, v are as in part (A) 1 above.
Then there exists a R0 such that for R > R0, the map # : Gl → C(M) is
smooth and the following hold:
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1. ‖S(y#v)‖V ≤ CR−3/2+ε + ‖w‖2,1:ε.

2. Dc is right invertible for c = y#v; Ind(Dc) = 2n + Ind(Dv); and the
right inverse Gc is uniformly bounded with respect to c.

Proof. The smoothness may be checked by routine estimates.
To verify assertion 1, write v = (A′, ψ′), y+ = (A,ψ), and (Ã, ψ̃) := y#v.
We omit the subscript R of the cutoff function and write it as γ below.
Let’s begin with the special case when w = 0.
It is easy to check that in this case

∂/Ãψ̃ = ρ(dγ)(ψ′ − ψ) − γ(1 − γ)ρ(A′ −A)(ψ′ − ψ) + (1− γ)o3; (6.3)

FÃ−ρ
−1 ◦ σ(ψ̃, ψ̃) = dγ(A′ −A) + (1− γ)o3

+ γ(1 − γ)[σ(ψ,ψ′ − ψ)− σ(ψ′, ψ′ − ψ)].

Thus we see that the two L2
1(C, iN ⊕ C ⊗ TC) components of S(y#v) (ac-

cording to the decomposition of V in (5.3)) are bounded by

‖dγ(∂±v − ∂±y+)‖L2
1(C,TC⊕C) + ‖γ(1 − γ)(∂±v − ∂±y+)2‖L2

1(C,TC⊕C),

which decays exponentially with R for large R by Appendix, point 3.
As for the L2

1:ε(W0) component, a direct computation shows that it is
bounded by

‖dγ(v−v1)‖2,1:ε+2‖γ(1 − γ)(y+ − v1)(v−v1)‖2,1:ε+‖γ(1− γ)(v − v1)2‖2,1:ε
+2‖λd ◦ f(1−λd ◦ f)γ(1− γ)(∂+v ◦ z+ − ∂−v ◦ z−)2‖2,1:ε+‖(1 − γ)o3‖2,1:ε

where v1(x) := λd◦f∂+v◦z++(1−λd◦f)∂−v◦z−, with the usual interpreta-
tion. Recall from Proposition 3.3.3 that we have |v−v1|+|∇(v−v1)| < C|x|−3

for large enough |x|. Together with Appendix pt. 6, this implies assertion 1.
When w �= 0, ‖w‖2,1:ε is small, we may regard w as a perturbation and

use lemmas 6.3.2, 6.3.7 below to establish assertion 1.
To prove the right invertibility in assertion 2, notice that for large R,

f
∣∣∣
M\MR

and y+ can be extended to the whole R3 as 5.1.4 and Corollary 5.3.5.

(We shall denote the extensions by the same notation.) From Corollary 5.3.5
(b), we know thatDy+ has a uniformly bounded right inverse. By assumption
Dv also has a uniformly bounded right inverse. We denote the right inverses
of Dy+ and Dv by P1, P2 respectively. Combine these Pi’s via partition of
unity to construct an operator Q similar to (5.38):

Q := φ1P1γ1 + φ2P2γ2, (6.4)
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where γ1 := γ; γ2 := (1−γ), and φ1, φ2 are as usual, smooth cutoff functions
with value 1 over the supports of γ1, γ2 respectively. Then just like the
computations in section 5, we have DcQ = 1 +R, where the operator R is
given by the same formula (5.40) but with the cutoff function χ is replaced
by γ here. We see then that the operator norm of R goes to zero as R→∞,
because ‖σD(dφi)‖∞ ≤ C1/R; ‖γ1γ2(y+ − v)‖∞ ≤ C2/R

3, where C1, C2 are
independent of y and v. Therefore 1+R is invertible when R is large enough,
and we may take the desired right inverse of Dc to be Pc := Q(1 + R)−1,
which is uniformly bounded because of the uniform boundedness of P1 and
P2.

To prove the claim about the index of Dc in assertion 2, note that
Coker(Dc) is trivial since Dc is right-invertible. On the other hand, Ker(Dc)
is isomorphic to

Ker(Dy)⊕Ker(Dv) � R2n ⊕ TN ,

by mapping (k1, k2) ∈ Ker(Dy)⊕Ker(Dv) to

γ1k1 + γ2k2 − Pc
(
σD(dγ)(k1 − k2) + γ1γ2(Dy −Dv)(k1 − k2)

)
.

�

(C) Perturbation.

The key of this part is the next well-known lemma. It can be easily
derived from the contraction mapping principle. Similar versions can be
found in, for example, [2] Lemma 7.2.23 or [7].

Lemma 6.3.2. Let f be a smooth map between two Banach spaces E and
F which has an expansion as f(q) = η + Lq + B(q) where L is a linear map
with a right inverse G, and B is a quadratic form6 satisfying the estimate:

‖B(Gh1)−B(Gh2)‖ ≤ k(‖h1‖+ ‖h2‖)‖h1 − h2‖ (6.5)

for any h1, h2 ∈ F and some positive constant k. Then if ‖η‖ ≤ 1
10k ,

there exists a unique h(η) ∈ F , ‖h(η)‖ ≤ 1/(5k), such that f(Gh(η)) = 0.
Moreover, ‖h(η)‖ ≤ 2‖η‖, and h(η) varies smoothly with η.

Theorem 6.3.3. Let t > 0; N be as in Part (A). Then there exists R′
0 ∈ R+

such that for R > R′
0, and any c ∈ #(Gl), the following hold.

6We will use the same notation for its associated bilinear form.
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(1) There exists a unique q(c) ∈ K̂ such that S(c + q(c)) = 0,
and ‖q(c)‖K̂ ≤ C‖S(c)‖V ≤ C ′R−3/2+ε. Thus this defines a map Υ :
Symn(C\D(R)) ×N →Mn+m,

Υ(y, v) := [y#v + q(y#v)] ∈ Q.

(2) Υ is smooth and injective. Actually, it describes the local structure
of the moduli space in the following sense. Let U ⊂ Symn(C\D(R))×N be
an open subset, and let

U(d) :=
{
c′ ∈ C : ∃c ∈ #(U), ‖c′ − c‖K̂ < d; ‖S(c′)‖V < CDd

}
,

where CD is a constant larger than the operator norm of D. Then there exists
a small positive number ν depending on R and U , such that U(ν) ∩Mn is
diffeomorphic to a neighborhood of U in Symn(C\DR)×N .

Remark 6.3.4. If in the pre-gluing construction in Part (A), v is allowed to
have centers in {x ∈ M : |z| > C1R} in addition to those in {x ∈ M : |z| <
C4R}, then part (1) of the above theorem still holds, and the same arguments
define a smooth map Υ, which however may no longer be injective.

Υ is usually called the gluing map.

Corollary 6.3.5. (1) The end of the vortex number 1 stratum of the moduli
space for any MEE consists of finite copies of C\D(R).

(2) Any point in the end of Mn (cf. Remark 6.2.2) has a neighborhood
with a product structure N ×R, where N is a neighborhood in Mp, p < n,
and R is a neighborhood in Symn−p(C). In particular, any non-compact
component of the moduli space has dimension at least 2.

Proof. (1) Lemma 6.2.1 says that the vortex number 0 stratum consists of
finite points. Taking this as N and taking U to be (C\D(R1))×N , R1 > R,
Theorem 6.3.3 shows that the end of M1 contains (C\D(R1))×N . On the
other hand, this already describes the whole end for the following reasons.
By Lemma 6.2.1, any Seiberg-Witten solution corresponding to an element
in the end have a single center far away from MR1 . Let v1 be such a Seiberg-
Witten solution on M with vortex number 1, and let y0 be the unique vortex
number 0 solution on R3. By Remark 6.3.4, y0#v1 approximates a vortex
number 0 solution on M, say v0. Thus any such v1 approximates a vortex
number 0 solution v0 inside the cylinder |z| = R. This together with the
proof of Proposition 6.3.1 implies that v1 ∈ U(ν) and by Theorem 6.3.3 (2),
this means that v1 ∈ Υ((C\D(R1)×N ) for all such v1.
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(2) Let c be a configuration representing this point in Mn. let
r1, r2, . . . , rn be the distances of the n zeroes of ∂+c to the origin; we or-
der them such that r1 ≤ r2 ≤ · · · ≤ rn. Since c lies on the end of Mn,
we may assume r21 + r22 + · · · + r2n ≥ (10R)2n3, where R > � is the same
as that in Theorem 6.3.3. If r1 > R, then by applying Theorem 6.3.3 and
Remark 6.3.4 in the manner of (1), the claim holds for p = 0. Otherwise
maxni=1(ri+1 − ri) > R; say the maximum occurs at i = p. Then Theorem
6.3.3 again shows that c = Υ(x, y), where x ∈Mp and y ∈ Symn(C\D(R)),
and a neighborhood of c is N ×R, where N is a neighborhood of x, and R
is a neighborhood of y. �
Proof of Theorem 6.3.3 (1). For the existence of the map Υ, apply Proposi-
tion 6.3.1 and Lemma 6.3.2.

It is not hard to see by the proof of Lemma 4.1.8 that for any h in K̂ or
V, it can be uniquely decomposed as

h = q + dcγ,

for some q ∈ Ker d∗c . Let the projection operator π′ be

π′(h) := q.

Note that (cf. §5.1) when c is a Seiberg-Witten solution, Ker(d∗c) = Im(Dc).
Here c is only an “approximate solution”; however we shall show that
π′Dc

∣∣∣
Ker(d∗c )

is still right-invertible). We take in Lemma 6.3.2

f(q) := π′S(c+ q) = π′S(c) + π′Dcq +B(q). (6.6)

Lemma 6.3.6. Lc := π′Dc has a uniformly bounded right inverse, Gc. In
other words, LcGc = Id; π0 := GcLc defines a projection operator that
decomposes K̂ = ImGc ⊕KerLc.

Proof. By Proposition 6.3.1, Dc has a uniformly-bounded right inverse Pc.
Decomposing its domain and range as

iΩ0 ⊕ iΩ1 ⊕ Γ(S) = iΩ0 ⊕Ker(d∗c)⊕ Im(dc),

Dc has the following form with respect to the decomposition:⎛⎝ 0 0 d∗c
0 Lc ∗
dc ∗ ∗

⎞⎠ (6.7)
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where ∗ denote some operators with small operator norms (which goes to
0 as R → ∞; especially, these ∗ are replaced by 0 if c is a Seiberg-Witten
solution). The blocks dc and d∗c in (6.7) are isomorphisms. Thus Lc has a
uniformly bounded right inverse since Dc does. �

On the other hand, denoting q := (a, η),

B(q) := π′
(
− iσ(η, η),

ρ(a)
2
η
)
.

A routine computation confirms that B(q) satisfies the estimate (6.5) (using
the bound on the operator norm of Gc). To apply Lemma 6.3.2, we now only
need to estimate η := π′S(c), which is done in Proposition 6.3.1. Lemma
6.3.2 together with the following lemma then show that c+ q satisfies S(c+
q) = 0.

Lemma 6.3.7. If π′S(c+q) = 0 and q is small enough then (1−π′)S(c+q) =
0.

Proof. Write (1− π′)S(c+ q) =: dcξ. Then

d∗cdcξ = d∗cS(c+ q) = i Im〈η, ∂/A+a(ψ + η)〉. (6.8)

Now if π′S(c+ q) = 0, then S(c+ q)− dcξ = 0, and thus ∂/A+a(ψ+ η) = ξψ.
Substitute this back to (6.8), we have

d∗cdcξ = i Im〈η, ξψ〉.

This implies, via a straightforward extension of Lemma 4.1.8,

‖ξ‖X̂ ≤ C‖d∗cdcξ‖L̂2
1:ε
≤ C ′‖ξ‖L̂2

2:ε
‖η‖L̂2

2:ε

by the L∞-bounds on ψ and ∇Aψ. Thus ξ = 0 if ‖η‖L̂2
2:ε
≤ C1‖q‖K̂ is very

small. �
The proof of Theorem 6.3.3 (1) is now complete; assertion (2) will be

proved in the next subsection.

6.4. The gluing map is a diffeomorphism.

This subsection contains the last step of the proof of Theorem 6.3.3: showing
that the gluing map Υ is a diffeomorphism (assertion (2)).

First, we note that the smoothness of Υ follows from the smoothness
of: (a) #, (b) Gc with respect to c, (c) the term h(η) with respect to η in
Lemma 6.3.2, which all may be verified by direct computations.
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On the other hand, the contraction mapping theorem argument in
Lemma 6.3.2 shows that c + q(c) are the only Seiberg-Witten solutions in
U(d) having the form c+Gc(h). To show that all Seiberg-Witten solutions
in U(d) are of this form, we need the following gauge-fixing lemma.

6.4.1. A gauge-fixing result. Since U ⊂ Symn(C\D(R)) × N is open,
there is a positive number ν such that (∂#(Symn(C\D(R))×N ))∩U(ν) = ∅.
Proposition Let ν be the positive number described above. Then every el-
ement in U(ν) has the form u(c + Gc(h)) for some c ∈ Im(#), u ∈ G, and
h ∈ Ker d∗c ⊂ V.

Proof. We follow [2] Chapter 7 and use the continuity method to show that
given an element c′ ∈ U(ν), we may find h, c, and u as in the statement of
the proposition so that

Gch = u−1c′ − c. (6.9)

Since c′ ∈ U(ν), we can find a c(0) ∈ #(U) such that ‖c′− c(0)‖K̂ < ν. Let’s
look at a path in U(ν) interpolating c′ and c(0):

c′(t) = tc′ + (1− t)c(0). (6.10)

Let J ⊂ [0, 1] be the set of all t for which there exists u(t) =: eξ(t) ∈ G,
c(t) ∈ Im# ⊂ C(M) and h(t) ∈ V, such that

e−ξ(t)c′(t) = c(t)−Gc(t)(h(t)), and (6.11)

‖h‖V < ε, ν � ε� 1. (6.12)

Since 0 ∈ J , if we can prove that J is both closed and open, then J = [0, 1]
and the proposition is proved.

To prove that J is closed, we establish some a priori bounds. Since we
have h = f(Gh) − f(0) − B(Gh) from (6.6), by the Definition of U(ν) and
Proposition 6.3.1 (1),

‖h‖V ≤ CDν + C1R
−3/2+ε + C ′‖h‖2V .

For R−3/2+ε � ν � ε, this togther with (6.12) implies that ‖h‖V ≤ ε
2 ,

which is a closed condition though we started with the open condition (6.12).
Given a sequence in J , say {ti}, this implies that there is a subsequence (also
denoted {ti}) such that the corresponding {h(ti)} has a weak limit in V. On
the other hand, both {c′(ti)} and {c(ti)} converge too (after further taking
subsequences): the former because of the compactness of the parameter
space [0, 1]; the latter, {c(ti)}, converges because (6.11) implies that the
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centers of c(t) are bounded, and because of the local compactness of the
space of gluing parameters Gl. Lastly, {u(ti)} also has a weak limit in X̂
by (6.11) and the convergence of h(ti), c(ti), c′(ti). Furthermore, the limits
satisfy (6.11) again, which implies that J is closed.

To show the openness, consider the linearization at t of c′(t) = u(t)(c(t)+
Gc(t)h(t)) (without loss of generality, set u(t) = 1):

T(u,c,h)(ξ, τ, ζ) = dcξ + l(τ) + (∂τGc)h+Gcζ + ξGch, (6.13)

where ξ ∈ iΩ0(M), τ ∈ T Gl; l denotes the linearization of the gluing map
#, and ζ ∈ Ker d∗c ⊂ V. Note that our choice of ν makes sure that for all
t ∈ J , c(t) �∈ ∂ Im(#).

We shall show that T is surjective, which implies that J is open.
We begin with some definitions for ξ, ζ, τ . Define the norms

‖(ξ, ζ)‖B1 := ‖ξ‖X̂ + ‖ζ‖V ;
‖(ξ, τ, ζ)‖B2 := ‖(ξ, ζ)‖B1 + |τ |.

T is then a bounded linear operator between B2 and K̂.

Lemma 6.4.2. In the notation above,

T1(ξ, ζ) := dcξ +Gcζ (6.14)

is a Fredholm operator between B1 and K̂ with index − IndDc, and it has
null kernel.

Proof. The closed range property and the triviality of the kernel is guaran-
teed by the following two estimates: (i) By acting on both sides of (6.14) by
π′Dc, we get

‖ζ‖V ≤ ‖π′DcT1(ξ, ζ)‖V + ‖π′Dcdcξ‖V
≤ C(‖T1(ξ, ζ)‖K̂ +R−3‖ξ‖V),

where we have used estimates for ‖Dcdc‖∞ obtained from (6.3).
(ii) Also, by an extension of lemma 4.2.5, we have

‖ξ‖X̂ ≤ C‖dcξ‖L̂2
2:ε

≤ C ′‖dcξ‖K̂ ≤ C ′‖T1(ξ, ζ)‖K̂ + C ′‖Gcζ‖K̂
≤ C ′‖T1(ξ, ζ)‖K̂ + C ′′‖ζ‖V ,
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Combining the above two inequalities, we see then when R is large

‖(ξ, ζ)‖B1 ≤ C‖T1(ξ, ζ)‖K̂ .

Next we turn to the Fredholmness and the index calculation. This is easy
due to the observation that if the domain and range of T1 are decomposed
as iΩ0 ⊕Ker d∗c and Im dc ⊕Ker d∗c respectively, T1 has the following matrix
form: (

dc 0
0 Gc

)
,

where the block dc is an isomorphism. Thus T1 is Fredholm as Gc is, and
has the same index, namely − IndDc. �

Now to continue the proof of the proposition, decompose T =: T1 + T2 +
T3 + T4, where

T2(τ) := l(τ);
T3(τ) := (∂τGc)h;
T4(ξ) := ξGch.

Since h is small, both T3 and T4 can be regarded as perturbation. For exam-
ple, T3 is small by the following observation. By the relationship between Gc
and Pc, we can find a constant C such that ‖(∂τGc)h‖K̂ ≤ C‖(∂τPc)h‖K̂1 ;
so we can try to estimate ‖(∂τPc)h‖K̂1 instead (for notation cf. Definition
5.1.8). ∂τ (Pc)h can be directly computed from the gluing construction of Pc
in Proposition 6.3.1 (see the paragraph following (6.4), cf. also [2]), which
enables us to find ‖(∂τPc)h‖K̂1 ≤ C|τ |‖h‖V .

Note that T2 has null kernel by the gluing construction: that is, there
exists a positive constant C such that ‖(1−π0)T2(τ)‖K̂ ≥ C|τ |. Decompose
T2 as T2 = π0T2 + (1− π0)T2. By Proposition 6.3.1,

‖π0T2(τ)‖K̂ = ‖GcLcl(τ)‖K̂ ≤ C ′‖Lcl(τ)‖V ≤ ζR−3/2+ε|τ |, (6.15)

is very small; therefore (1− π0)T2 is the dominant term.
With these facts understood, we argue that T has null kernel. Suppose

the contrary. Then there exists (ξ, τ, ζ), τ �= 0 (since T1 has null kernel and
T3,T4 are small perturbations), such that

T (ξ, τ, ζ) = dcξ +Gcζ + l(τ) + T3(τ) + T4(ξ) = 0. (6.16)

Without loss of generality, we assume |τ | = 1. Since π′DcT (ξ, τ, ζ) = 0, we
have

π′Dcdcξ + ζ + π′Dcl(τ) + π′Dc(T3(τ) + T4(ξ)) = 0; so
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‖ζ‖V ≤ ε1(|τ |+ ‖ξ‖X̂). (6.17)

Similarly, letting d∗c act on (6.16), we obtain

‖ξ‖X̂ ≤ ε‖(ξ, τ, ζ)‖B2 . (6.18)

Substituting (6.17), (6.18) into (6.16), we get

|τ | ≤ C‖l(τ)‖K̂ ≤ ε < 1,

which contradicts with the assumption on τ . Hence Ker T = ∅.
On the other hand, by Proposition 6.3.1, Ind(D) = dimGl, and therefore

T has index zero. This implies that T is surjective, and therefore J is open
and can not be anything but [0, 1]. End of the proof of the proposition. �

6.4.3. Finishing the proof of Theorem 6.3.3: injectivity of Υ. Propo-
sition 6.4.1 and the proof of Theorem 6.3.3 (1) in §6.3 show that Υ is an
immersion that surjects over M∩ U(ν). To show that Υ is actually a dif-
feomorphism, it thus remains to show that it is injective.

Suppose the contrary, then there exist c1, c2 ∈ Im# , h1 ∈ Ker d∗c1 ,
h2 ∈ Ker d∗c2 , u ∈ G such that

c1 +Gc1h1 = u(c2 +Gc2h2). (6.19)

Since the terms Gc1h1, Gc2h2 are small (with respect to the K̂ norm), (6.19)
implies c1 ∼ uc2. By construction of the # map, this means u ∼ 1; c1 ∼ c2.
Thus we can approximate (6.19) by its linearization.

−l(τ) = dc2ξ + ξGc2h2 + ∂τ (Gc2h) + o(ξ, τ), (6.20)

where τ := c2 − c1. To simplify notation, we will henceforth denote c := c2;
h := h2.

From the proof of Proposition 6.4.1, we saw that

‖(ξ, τ, ζ)‖B2 ≤ C‖dcξ +Gcζ + l(τ) + T3(τ) + T4(ξ)‖K̂ .

Letting h = ζ = 0 in the above inequality and combined with (6.20), we
have

‖ξ‖X̂ + |τ | ≤ C‖dcξ + l(τ)‖K̂ ≤ C ′‖∂τ (Gch) + ξGch‖K̂ + o(ξ, τ)
≤ C ′‖∂τ (Gch)‖K̂ + ε‖ξ‖X̂ + o(ξ, τ). (6.21)



Seiberg-Witten Equations on Three-manifolds with Euclidean Ends 83

where ε is a small number, and we have therefore

‖ξ‖X̂ + |τ | ≤ C2‖∂τ (Gch)‖K̂ . (6.22)

To estimate the right-hand side of the above, note that

‖∂τ (Gch)‖K̂ ≤ ‖(∂τGc)h‖K̂ + ‖Gc(∂τh)‖K̂ .

As we have already estimated: ‖(∂τGc)h‖K̂ < ε′|τ | in the proof of Proposi-
tion 6.4.1, we may concentrate on the term ‖Gc(∂τh)‖K̂ ≤ C‖∂τh‖V . ‖∂τh‖V
may be estimated by differentiating π′S(c) = h+ π′B(Gch,Gch):

∂τπ
′S(c) = ∂τh+ 2π′B

(
Gc(∂τh) + (∂τGc)h,Gch

)
, (6.23)

which implies ‖∂τh‖V ≤ ε2|τ |. Summing up, ‖∂τ (Gch)‖K̂ ≤ ε|τ |; this to-
gether with (6.22) gives ‖ξ‖X̂ + |τ | ≤ ε1|τ |, with ε1 � 1. This implies
|τ | = ‖ξ‖X̂ = 0. That is, Υ is injective. This finishes the proof of Theorem
6.3.3. �

Appendix: Review of Vortex Solutions on C.

We recapitulate some useful properties of the vortex solutions on C, which
we apply extensively in this paper. More details may be found in [40, 15],
and [43] section 2, [42] section 4.

Let z be a complex coordinate on C.

1. The vortex solutions on C are classified by the integer n =
∫

C

i
2πFAE ,

usually called the “vortex number”. This integer coincides with the
number of points (counted with multiplicity) where the “Higgs field” α
vanishes, and it is finite iff FA, ∂̄Aα are both L2-integrable. We always
assume this is true.

2. For a vortex solution (A,α), α has the following L∞-bound: |α| ≤ 1,
where the equality happens only when n = 0, and in that case |α| ≡ 1.

3. For a vortex solution (A,α), |FA|, (1 − |α|2) and |∇AEα| decay expo-
nentially far away from the zeros of α.

4. The gauge group Map(C, U(1)) acts on the space of vortex solutions
as follows:

eiξ(A,α) = (A− idξ, eiξα).

The moduli space of vortex solutions under this gauge action is isomor-
phic to

∐
n∈N Symn C, where n is the vortex number. The isomorphism

is obtained by assigning a vortex solution the zeros of α.
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5. The moduli space of vortex solutions may be embedded as a gauge
slice in the configuration space Ω1(C)×C∞(C,C) such that the Higgs
field α satisfies

α = fzn

when z is large enough. Here f is a positive function. In this paper
we call this gauge (vor), and the image of the moduli space under this
embedding Mvortex.

6. The following operator on iΩ1(C)×C∞(C,C) is the composition of the
linearization of the vortex equation with a gauge fixing condition: for
c = (A′, α′),

Θc(b, λ) = (−4∂b+ ᾱ′λ, 2∂̄A′λ+ bα′). (A.1)

Here (A′, α′) is a solution to the vortex equation, and the gauge con-
dition named is

δ1c (b, λ) := 2d∗b+ i Im(ᾱ′λ) = 0. (A.2)

Θc is a bounded Fredholm operator between L2
1 and L2, with null cok-

ernel and Ker Θc = Cn, n being the vortex number of c. Furthermore,
if t ∈ Ker Θc, then both |t| and |∇t| decay exponentially with |z|, for
large enough |z|. KerΘc may be identified with the tangent space to
the moduli space of vortex solutions at c, under the previously men-
tioned embedding. (Point 5 above.)
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