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On Moving Ginzburg-Landau Vortices

Changyou Wang

In this note, we establish a quantization property for the heat equa-
tion of Ginzburg-Landau functional in R4 which models moving
vortices of surface types. It asserts that if the energy is sufficiently
small on a parabolic ball in R4 × R+ then there is no vortice in
the parabolic ball of 1

2 radius. This extends a recent result of Lin-
Rivière [LR3] in R3.

1. Introduction.

For n ≥ 2 and ε > 0, the heat equation for the Ginzburg-Landau functional
on Rn is

∂uε

∂t
− ∆uε =

1
ε2

(1 − |uε|2)uε, (x, t) ∈ Rn × R+, (1.1)

uε(x, 0) = gε(x), x ∈ Rn.

Here gε : Rn → R2 are given smooth maps. Notice that (1.1) is the negative
gradient flow for the Ginzburg-Landau functional:

Eε(v) =
∫

Rn

1
2
|Dv|2 +

1
4ε2

(1 − |v|2)2. (1.2)

Asymptotic behaviors for minimizers of Eε in dimension two was first studied
by Bethuel-Brezis-Hélein [BBH] (see also Struwe [S1] and recent important
works by Pacard-Rivière [PR] on steady solutions to (1.1)). Moreover, such
static theories were developed by Rivière [R1] [R2] and Lin-Rivière [LR1]
in higher dimensions in connection with codimension two area minimizing
currents. In particular, a crucial quantization property for steady solutions
to the equation (1.1) was proved by Lin-Rivière [LR2] for n = 3. The asym-
pototics for the equation (1.1) in dimension two was initiated by Lin [L1][L2]
and also by Jerrard-Soner [JS]. To study the limiting behavior for a sequence
of uε which are either static or time-dependent solutions to (1.1), one encoun-
ters the main difficulty that uε may vanish on sets, called Ginzburg-Landau
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vortices, where the equation (1.1) degenerates and uε
|uε| gives nontrivial topo-

logical obstruction. On the other hand, it is well-known that the existence
of vortices requires the Ginzburg-Landau energy at least of the order log 1

ε .
Since gε is usually assumed to have Eε(gε) = O(log(1

ε )), we have

Eε(uε(·, t)) ≤ O(log
1
ε

). (1.3)

From the analytic point of view, the size estimate for the bad set, Bε =
{(x, t) ∈ Rn×R+ : |uε|(x, t) ≤ 1

2}, plays a critical role for W 1,p compactness
for p ∈ (1, 2) (see [BBH] and [PR]). To obtain sharp size estimates of Bε,
one needs the so-called η-compactness property for uε which roughly says
that if Eε(uε) is of order η log 1

ε for sufficiently small η > 0 then there is
no interior bad points for uε. This has been established for (i) minimizers
of Eε by Rivière [R1] [R2] for n = 3 and by Lin-Rivière [LR1] for n ≥ 3;
and (ii) critical points of Eε by Lin-Rivière [LR2] for n = 3. Moreover, such
η-compactness property was also proved for solutions to the equation (1.1)
by Lin-Rivière [LR3] in the case n = 3. It was believed that their result still
holds for Rn with n ≥ 4. In this note, we confirm such a belief in the case
that n = 4. More precisely, we prove
Theorem A. For n = 4 and ε > 0, let uε : R4 × R+ → R2 be solutions
to the equation (1.1) satisfying |uε| ≤ 1 and |Duε| ≤ C0

ε . Then there exist
ε0 > 0 and η > 0 depending only on C0 such that if, for (x0, t0) ∈ R4 × R+,
0 < ρ <

√
t0, and ε ≤ ε0, it holds

1
ρ4

∫ t0

t0−ρ2

∫
R4

(
1
2
|Duε|2 +

(1 − |uε|2)2

4ε2
)e

|x−x0|2
4(t−t0) ≤ η log

ρ

ε
(1.4)

then
|uε|(x0, t0) ≥ 1

2
.

We would like to remark that the idea developed by Lin-Riviere [LR2]
[LR3] was to interpolate between the Lorentz spaces L2,1 and L2,∞ on generic
two dimensional slices which therefore work very well in R3, but it seems
unclear how to extend the idea of [LR2] to Rn with n ≥ 4. On the other
hand, there is the interpolation technique between L1 and L∞ developed by
Bethuel-Brezis-Orlandi [BBO] for the static case in Rn for all n ≥ 3, where
they made very clever use of the energy monotonicity formula for static
solutions to the equation (1.1). Our method starts with the observation that
there exists an energy monotonicity inequality for all time slice Rn × {t}
when n = 4, which enables us to adapt the main ideas from [BBO] and
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some of those ideas from [LR3]. Since one can always view solutions to
the equation (1.1) in R3 ×R+ as solutions to the equation (1.1) in R4 ×R+

which are independent of the fourth spatial variable, we also gives a different
proof of the main theorem of [LR3]. As an important consequence of the
η-compactness theorem, it can be shown that the vortice is moving by its
mean curvature in the generalized sense.

The paper is organized as follows. In §2, we derive the needed elliptic
type energy inequality in R4×{t}. In §3, we recall the parabolic type energy
monotonicity inequalities by Struwe [S2] and Lin-Rivière [LR3] and extract
a good time slice. In §4, we illustrate the main estimate by performing an
intrinsic Hodge decomposition on good time slices and prove theorem A.

Added in Proof. After the paper has been accepted for publication, the
author received a preprint by Bethuel-Orlandi-Smets [BOS] where theorem
A is proved for any dimension n ≥ 5 through a much more delicate method.

2. Euclidean monotonicity at time slice for n = 4.

This section is devoted to the slice monotonicity inequality (2.1) for uε :
Rn × R+ → R2 satisfying (1.1) for n = 4. For n ≥ 4, x ∈ Rn, r > 0, and
t > 0, we denote

Eε(x, r) :=
∫

Br(x)
(
1
2
|Duε|2 +

n(1 − |uε|2)2

4(n − 2)ε2
)(y) dy.

Then we have

Lemma 2.1. For n ≥ 4 and ε > 0, let uε : Rn × R+ → R2 be a solution to
(1.1). Then, for any (x, t) ∈ Rn × R+ and r > 0, we have

d

dr
(r2−nEε(x, r) +

r3−n

3 − n

∫
Br(x)

|∂uε

∂t
||∂uε

∂r
|)

≥ r2−n

∫
∂Br(x)

|∂uε

∂r
|2 +

(1 − |uε|2)2

2(n − 2)ε2
+

r3−n

3 − n

∫
∂Br(x)

|∂uε

∂t
||∂uε

∂r
|. (2.1)

Proof. We assume that x = 0 and denote u for uε. Multiplying (1.1) by
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x · Du, integrating over Br, and using integration by parts, we obtain∫
Br

utx · Du =
∫

Br

∆ux · Du − 1
4ε2

x · D(1 − |u|2)2

=
∫

Br

D · (Dux · Du) − Du · D(x · Du) − x · D (1 − |u|2)2

4ε2

= r

∫
∂Br

|∂u

∂r
|2 −

∫
Br

|Du|2

−
∫

Br

x · D(
1
2
|Du|2 +

(1 − |u|2)2

4ε2
)

= r

∫
∂Br

(|∂u

∂r
|2 − 1

2
|Du|2 − (1 − |u|2)2

4ε2
)

+ (n − 2)
∫

Br

(
1
2
|Du|2 +

n(1 − |u|2)2

4(n − 2)ε2
).

This yields

(n − 2)Eε(0, r) =
∫

Br

utx · Du + r

∫
∂Br

(
1
2
|Du|2 − |∂u

∂r
|2 +

(1 − |u|2)2

4ε2
).

Therefore

d

dr
(r2−nEε(0, r)) = (2 − n)r1−nEε(0, r) + r2−n

∫
∂Br

(
1
2
|Du|2 +

n(1 − |u|2)2

4(n − 2)ε2
)

= −r1−n

∫
Br

utx · Du + r2−n

∫
∂Br

(|∂u

∂r
|2 +

(1 − |u|2)2

2(n − 2)ε2
).

Observe that

−r1−n

∫
Br

utx · Du ≥ −r2−n

∫
Br

|ut||∂u

∂r
|

= − d

dr
(

r3−n

3 − n

∫
Br

|ut||∂u

∂r
|) +

r3−n

3 − n

∫
∂Br

|ut||∂u

∂r
|.

Hence

d

dr
(r2−nEε(0, r) +

r3−n

3 − n

∫
Br

|ut||∂u

∂r
|)

≥ r2−n

∫
∂Br

(|∂u

∂r
|2 +

(1 − |u|2)2

2(n − 2)ε2
) +

r3−n

3 − n

∫
∂Br

|∂u

∂t
||∂u

∂r
|.
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This completes the proof of (2.1).
Now we have the following slice energy monotonicty inequality for n = 4.

Proposition 2.2. For ε > 0, let uε : R4 × R+ → R2 be a solution to (1.1).
Then, for any (x, t) ∈ R4 × R+ and 0 ≤ r ≤ R < ∞, we have

r−2Eε(x, r) +
∫ R

r

dr

r2

∫
∂Br(x)

(
1
2
|∂uε

∂r
|2 + (4ε2)−1(1 − |uε|2)2

≤ 2R−2Eε(x,R) + 2
∫

BR(x)
|∂uε

∂t
|2. (2.2)

In particular,∫
BR(x)

|y − x|−2 (1 − |uε(y)|2)2

ε2
≤ 8R−2Eε(x,R) + 8

∫
BR(x)

|∂uε

∂t
|2. (2.3)

Proof. Write u for uε. It is clear that (2.2), with r tending to zero, gives
(2.3). Therefore, it suffices to prove (2.2). For n = 4, integrating (2.1) from
r to R, we have

R−2Eε(x,R)

≥ r−2Eε(x, r) + R−1

∫
BR(x)

|∂u

∂t
||∂u

∂r
| − r−1

∫
Br(x)

|∂u

∂t
||∂u

∂r
|

+
∫ R

r
s−2

∫
∂Bs(x)

(|∂u

∂r
|2 +

(1 − |u|2)2

4ε2
) −

∫ R

r
s−1

∫
∂Bs(x)

|∂u

∂t
||∂u

∂r
|.

For n = 4, we have the following estimate:

r−1

∫
Br(x)

|∂u

∂t
||∂u

∂r
| ≤ 1

2
r−2

∫
Br(x)

|∂u

∂r
|2 +

1
2

∫
Br(x)

|∂u

∂t
|2

≤ 1
2
r−2

∫
Br(x)

|∂u

∂r
|2 +

1
2

∫
BR(x)

|∂u

∂t
|2.

Applying the Young inequality, we also have, for r ≤ s ≤ R,

s−1

∫
∂Bs(x)

|∂u

∂t
||∂u

∂r
| ≤ 1

2
s−2

∫
∂Bs(x)

|∂u

∂r
|2 +

1
2

∫
∂Bs(x)

|∂u

∂t
|2

so that∫ R

r
s−1

∫
∂Bs(x)

|∂u

∂t
||∂u

∂r
| ≤ 1

2

∫ R

r
s−2

∫
∂Bs(x)

|∂u

∂r
|2 +

∫
BR(x)

|∂u

∂t
|2.
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Putting these inequality together, we obtain

R−2Eε(x,R) ≥ 1
2
r−2Eε(x, r) −

∫
BR(x)

|∂u

∂t
|2

+
∫ R

r
s−2

∫
∂Bs(x)

(
1
2
|∂u

∂r
|2 +

(1 − |u|2)2

4ε2
).

This implies (2.2).

3. Parabolic monotonicity and extracting a good time.

In this section, we gather together two more parabolic energy monotonicty
inequalities by Struwe [S2] and by Lin-Rivière [LR3]. The formula is valid
for all n ≥ 2.
Lemma 3.1 (Energy monotonicity). Let uε : Rn → R+ → R2 be solutions
to (1.1) and (x0, t0) ∈ Rn × R+. Then, for any 0 < ρ ≤ √

t0, we have

d

dρ
[

1
ρn

∫ t0

t0−ρ2

∫
Rn

(
1
2
|Duε|2 +

(1 − |uε|2)2

4ε2
)e

|x−x0|2
4(t−t0) ]

=
1

ρn+1

∫ t0

t0−ρ2

∫
Rn

[
1

2(t0 − t)
|(x − x0) · Duε + 2(t − t0)

∂uε

∂t
|2

(1 − |uε|2)2

2ε2
]e

|x−x0|2
4(t−t0) . (3.1)

Proof. It follows exactly the same lines of the proof of [LR3] Lemma 2.1.
The next identity indicates how the energy decays along the spatial in-

finity.
Lemma 3.2. Under the same notations as Lemma 3.1. For any t0 > 0 and
0 < ρ ≤ √

t0, the following holds:∫ t0

t0−ρ2

∫
Rn

{(1 +
|x|2

4(t0 − t)
)(

1
2
|Duε|2 +

(1 − |uε|2)2

4ε2
)

1
4(t0 − t)

|x · Duε + 2(t − t0)
∂uε

∂t
|2}e

|x|2
4(t−t0)

≤ ρ2

∫
Rn

∫
Rn×{t0−ρ2}

[
1
2
|Duε|2 +

(1 − |uε|2)2

4ε2
]e

−|x|2
4ρ2

+
∫ t0

t0−ρ2

x

4(t0 − t)
· Duε · [x · Duε + 2(t − t0)

∂uε

∂t
]e

|x|2
4(t−t0) . (3.2)
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Proof. It again follows from the same argument as that of [LR3] Lemma
2.2.

Now we describe the extraction of a good time slice as follows. We
follow [LR3] §2.2 closely and the reader may refer to [LR3] for the detail.
For simplicity, we assume that (x0, t0) = (0, 0) and (1.1) holds in R4 × R−.
Assume that (1.4) holds for some ρ > 0. Then, by integrating (3.1) from ε
to ρ and using the Fubini’s theorem, there exists a ρ1 = ρε ∈ (ε, ρ) such that

1
ρ4

1

∫ 0

−ρ2
1

∫
R4

jε(uε)e
|x|2
4t ≤ η. (3.3)

Here

jε(uε) ≡ 1
2|t| |x · Duε + 2t

∂uε

∂t
|2 +

(1 − |uε|2)2

2ε2
(3.4)

so that
1
ρ2

1

inf
ρ∈(

ρ1
2

,ρ1)

∫
R4×{−ρ2}

jε(uε)e
− |x|2

4ρ2 ≤ 2η. (3.5)

Denote

E =
1
ρ4

1

∫ 0

−ρ2
1

∫
R4

eε(uε)e
|x|2
4t (3.6)

where

eε(uε) ≡ (
1
2
|Duε|2 +

(1 − |uε|2)2

4ε2
).

Then (3.1) implies

E ≤ inf
ρ1
2
≤ρ≤ρ1

1
ρ4

∫ 0

−ρ2

∫
R4

eε(uε)e
|x|2
4t +

∫ ρ1

ρ1
2

ρ−5

∫
R4

jε(uε)e
|x|2
4t

≤ inf
ρ1
2
≤ρ≤ρ1

1
ρ4

∫ 0

−ρ2

∫
R4

eε(uε)e
|x|2
4t +

4
ρ4

1

∫ 0

−ρ2
1

∫
R4

jε(uε)e
|x|2
4t

≤ inf
ρ1
2
≤ρ≤ρ1

1
ρ4

∫
R4

eε(uε)e
|x|2
4t + 4η.

As in [LR3], we may assume

E >> Cη (3.7)

so that

inf
ρ1
2
≤ρ≤ρ1

1
ρ4

∫
R4

eε(uε)e
− |x|2

4ρ2 ≤ E ≤ 2 inf
ρ1
2
≤ρ≤ρ1

1
ρ4

∫
R4

eε(uε)e
− |x|2

4ρ2 . (3.8)
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Therefore, there exists a ρ0 ∈ [ρ1

2 , ρ1] such that

max{ 1
ρ4

0

∫ 0

−ρ2
0

∫
R4

jε(uε)e
|x|2
4t ,

1
ρ2

0

∫
R4×{−ρ2

0}
jε(uε)e

− |x|2
4ρ2

0 } ≤ Cη, (3.9)

1
ρ4

0

∫ 0

−ρ2
0

∫
R4

eε(uε)e
|x|2
4t ≤ E ≤ C

ρ4
0

∫ 0

−ρ2
0

∫
R4

eε(uε)e
|x|2
4t , (3.10)

1
ρ2

0

∫
R4×{−ρ2

0}
eε(uε)e

− |x|2
4ρ2

0 ≤ E ≤ C

ρ2
0

∫
R4×{−ρ2

0}
eε(uε)e

− |x|2
4ρ2

0 . (3.11)

These inequalities, combined with Lemma 3.2, also yield

1
ρ2

0

∫
R4×{−ρ2

0}

|x|2
|t| eε(uε)e

|x|2
4t ≤ CE. (3.12)

Observe that (3.9) and (3.11) also imply

∫
R4×{−ρ2

0}
|∂uε

∂t
|2e−

|x|2
4ρ2

0 ≤ CE. (3.13)

In particular, for any λ >> 1 to be chosen later, one has∫
B4λρ0

×{−ρ2
0}
|∂uε

∂t
|2 ≤ Ce4λ2

E. (3.14)

Hence, applying the monotonicity inequality (2.3) for uε at t = −ρ2
0, we

obtain the following key inequality:∫
B2λρ0

(x)×{−ρ2
0}
|y − x|−2 (1 − |uε|2)2

ε2
≤ Ce4λ2

E, ∀x ∈ B2λρ0 . (3.15)

On the other hand, (3.9) also yields

1
ρ2

0

∫
B4λρ0

×{−ρ2
0}

(1 − |uε|2)2

ε2
≤ Ce4λ2

η. (3.16)

Notice that (3.12) implies that

1
ρ2

0

∫
(R4\B λρ0

2

)×{−ρ2
0}

eε(uε)e
− |x|2

4ρ2
0 ≤ C

λ2
E. (3.17)
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This, combined with suitable choice of λ >> 1 according to the Fubini’s
theorem, gives

1
ρ0

∫
∂Bλρ0

eε(uε)e
− |x|2

4ρ2
0 ≤ C

λ3
E, (3.18)

1
ρ2

0

∫
Bλρ0

×{−ρ2
0}

eε(uε)e
− |x|2

4ρ2
0 ≥ E

3
. (3.19)

Together with the inequalities from (3.9) to (3.18), we can proceed estimating
E by estimating the left hand side of (3.19) as in §4 below.

4. An intrinsic Hodge decomposition to estimate uε × duε.

This section is devoted to the proof of theorem A. The main techinical part
is to obtain L2-estimate of uε × duε on Bλρ0 × {−ρ2

0}. To do it, we need an
intrinsic Hodge decompostion of uε × duε at t = −ρ2

0. For this purpose, we
adopt ideas from both [BBO] and [LR3]. In this section, we work on t = −ρ2

0

and denote u as uε.
First, define H : Bλρ0 → R2 by the auxillary Neumann problem:

∂

∂xi
(e

− |x|2
4ρ2

0
∂H

∂xi
) =

∂

∂xi
(e

− |x|2
4ρ2

0 u × ∂u

∂xi
), in Bλρ0 , (4.1)

∂H

∂r
= u × ∂u

∂r
, on ∂Bλρ0 . (4.2)

Observe that

| ∂

∂xi
(e

− |x|2
4ρ2

0 u × ∂u

∂xi
)| = e

− |x|2
4ρ2

0 |(−2ρ2
0

∂u
∂t + x · Du)
2ρ2

0

× u|

≤ e
− |x|2

4ρ2
0
| − 2ρ2

0
∂u
∂t + x · Du|
2ρ2

0

≤ 2ρ−1
0 e

− |x|2
4ρ2

0 (jε(uε))
1
2

so that we can establish the following estimate for DH.
Lemma 4.1 Under the same notations as above. There exists a Cλ > 0
such that

1
ρ2

0

∫
Bλρ0

|DH|2e−
|x|2
4ρ2

0 ≤ Cλρ−2
0

∫
Bλρ0

jε(uε)e
− |x|2

4ρ2
0

+
Cλ

ρ0

∫
∂Bλρ0

|∂u

∂r
|2e−

|x|2
4ρ2

0 . (4.3)
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In particular, we have

1
ρ2

0

∫
Bλρ0

|DH|2e−
|x|2
4ρ2

0 ≤ Cλη +
CE

λ2
. (4.4)

Proof. First, notice that (4.4) is the consequence of (4.3) and the inequali-
ties (3.9) and (3.18). Secondly, the proof of (4.3) can be obtained by copying
lines of arguments of [LR3] Lemma 2.4.

Observe that (4.1) and (4.2) can be rewritten as

∂

∂xi
(e

− |x|2
4ρ2

0 (
∂H

∂xi
− u × ∂u

∂xi
)IBλρ0

) = 0 (4.5)

in the sense of distributions on R4, here IBλρ0
denotes the characteristic

function of the ball Bλρ0 .
Define δ ∈ C∞(R+, R+) by δ(r) = r2 for 0 ≤ r ≤ 2λρ0, δ(r) = (4λρ0)2

for r ≥ 4λρ0, and (2λρ0)2 ≤ δ(r) ≤ (4λρ0)2 for r ∈ [2λρ0, 4λρ0]. Let

gij(x) = e
− δ(|x|)

4ρ2
0 δij be the new conformal metric on R4, which is readily seen

to be bilipschitzly equivalent to the standard metric on R4. Denote d∗g as the
adjoint of d with respect to g and ∆g ≡ d∗gd + dd∗g as the Laplace-Beltrami
operator with respect to g. Notice that (4.5) is equivalent to

d∗g((dH − u × du)IBλρ0
) = 0, in R4. (4.6)

Therefore, by the classical Hodge decompostion theory (see, e.g., Iwaniec-
Martin [IW]), there exists a 2-form α ∈ H1

g (R4, Λ2(R4)) such that

d∗gα = (dH − u × du)IBλρ0
, dα = 0, (4.7)

‖Dα‖L2
g(R4) ≤ C(‖Du‖L2

g(Bλρ0
) + ‖DH‖L2

g(Bλρ0
)). (4.8)

Here H1
g (or L1

g resp.) denotes H1 (or L2 resp.) with respect to g. Notice
that

‖Df‖2
L2

g(R4) =
∫

R4

|Df |2(x)e
− δ(|x|)

4ρ2
0 .

In order to estimate Dα in L2
g, we modify the approach of [BBO] as follows.

Let β ∈ (0, 1
2 be determined later, and f : R+ → [1, 1

1−β ] be a smooth
function such that f(t) = 1

t for t ≥ 1 − β, f(t) = 1 for t ≤ 1 − 2β, and
|f ′| ≤ 4. On R4, define the function a such that a(x) = f2(|u|(x)) on Bλρ0
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and a(x) = 1 elsewhere, so that 0 ≤ a − 1 ≤ 4β holds on R4. Observe that
f2(|u|2)u × du = f(|u|)u × d(f(|u|)u). Therefore, (4.7) implies

d(ad∗gα) = IBλρ0
d(f(|u|)u) × d(f(|u|)u)

+ f(|u|)u × du ∧ d|x|σg
∂Bλρ0

− d(IBλρ0
adH)

= ω1 + ω2 + ω3 (4.9)

where σg
∂Bλρ0

denotes the surface measure of ∂Bλρ0 with respect to the metric
g. Observe that if |u| ≥ 1−β then d(f(|u|)u)×d(f(|u|)u) = d( u

|u|)×d( u
|u|) =

0, otherwise we have 1 ≤ β−2(1 − |u|2)2 so that

|ω1|(x) ≤ Cε−2 ≤ Cβ−2 (1 − |u(x)|2)2

ε2
,∀x ∈ Bλρ0 . (4.10)

Using the fact that dα = 0, we get

∆gα = dd∗gα = d(ad∗gα)+d((1−a)d∗gα) = ω1+ω2+ω3+d((1−a)d∗gα) (4.11)

Denote G(x, y) = G(|x− y|) as the fundamental solution of ∆g on R4. Then
it follows from the bilipschitz equivalence between g and the euclidean metric
on R4 that there exists a C > 0 such that

Ce−4λ2|x − y|−2 ≤ G(x, y) ≤ Ce4λ2 |x − y|−2, |DyG(x, y)| ≤ Ce4λ2 |x − y|−3.
(4.12)

Let αi = G ∗ ωi for 1 ≤ i ≤ 3. Then α4 = α −∑3
i=1 αi solves

∆gα4 = d((1 − a)d∗gα). (4.13)

Direct calculations, using |a − 1| ≤ 4β and smallness of β, yield

‖Dα4‖2
L2

g(R4) ≤ Cβ
3∑

i=1

‖Dαi‖2
L2

g(R4). (4.14)

The main difficulty comes from the estimate of Dα1 which can be done as
follows, due to the monotonicity inequality (3.15) and (3.16). Indeed, by
the maximum principle, we have ‖α1‖L∞(R4) = ‖α1‖L∞(Bλρ0

) and, by (4.10),
(4.12), and (3.15),

‖α1‖L∞(Bλρ0
) ≤ sup

x∈Bλρ0

∫
Bλρ0

G(x − y)|ω1|(y)

≤ Cλβ−2 sup
x∈Bλρ0

∫
Bλρ0

|x − y|−2 (1 − |u(y)|2)2

ε2

≤ Cλβ−2E. (4.15)
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This, combined with (3.16), implies

‖Dα1‖2
L2

g(R4) ≤ ‖ω1‖L1(R4)‖α1‖L∞(R4) ≤ Cλβ−2ρ2
0ηE. (4.16)

For α3, using integration by parts and (4.4), we have

‖Dα3‖2
L2

g(R4) ≤ C‖DH‖2
L2

g(Bλρ0
) ≤ Cληρ2

0 +
Cρ2

0E

λ2
. (4.17)

For α2, we can modify the Lemma A1 of appendix in [BBO] to conclude
that

‖Dα2‖2
L2

g(R4) ≤ Cλρ0‖Du‖2
L2

g(∂Bλρ0
) (4.18)

this, combined with (3.18), gives

‖Dα2‖2
L2

g(R4) ≤
Cρ2

0

λ2
E. (4.19)

Putting these estimates for αi for 1 ≤ i ≤ 4 and Lemma 4.1 together, we
then obtain

1
ρ2

0

∫
Bλρ0

|u × du|2e−
|x|2
4ρ2

0 ≤ Cλη +
CE

λ2
+ Cλβ−2ηE. (4.20)

This, combined with the fact that 4|u|2|du|2 = 4|u × du|2 + |d|u|2|2 and the
following estimate (see (2.67) of [LR3] page 845)

1
ρ2

0

∫
Bλρ0

|D|u|2|2e−
|x|2
4ρ2

0 ≤ Cη
1
4 E + Cη

1
2 (4.21)
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implies

1
ρ2

0

∫
Bλρ0

|Du|2e−
|x|2
4ρ2

0

=
1
ρ2

0

∫
Bλρ0

(1 − |u|2)|Du|2e−
|x|2
4ρ2

0 +
1
ρ2

0

∫
Bλρ0

|u|2|Du|2e−
|x|2
4ρ2

0

≤ C

ρ2
0

∫
Bλρ0

(1 − |u|2)
ε

|Du|e−
|x|2
4ρ2

0

+
4
ρ2

0

∫
Bλρ0

(|u × du|2 + |D|u|2|2)e
− |x|2

4ρ2
0

≤ Cλ

ρ2

∫
Bλρ0

(1 − |u|2)2

ε2
e
− |x|2

4ρ2
0 + (Cλη + Cη

1
2 )

+ (λ−1 + Cλ−2 + Cλβ−2η + Cη
1
4 )E

≤ (λ−1 + Cλ−2 + Cλβ−2η + Cη
1
4 )E + (Cλη + Cη

1
2 ) (4.22)

Therefore, for any given δ > 0, we can first choose a sufficiently large λ > 1
and a sufficiently small β and then choose much smaller η so that

E ≤ Cδ (4.23)

so that, using the monotonocity inequality (3.1) again,

1
ε6

∫ 0

−ε2

∫
Bε(0)

(1 − |uε|2)2

ε2
e

|x|2
4t ≤ δ. (4.24)

This, combined with the fact that |Duε| ≤ Cε−1, yields |uε(0, 0)| ≥ 1
2 . There-

fore, the proof of theorem A is complete.
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