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Regularity of Entire Solutions to the Complex

Monge-Ampère Equation

S�lawomir Ko�lodziej

A regularity theorem for the solutions of the complex Monge-
Ampère equation in Cn with the right hand side having finite mass
is proved.

Introduction.

The aim of this paper is to study the regularity of those entire solutions to
the complex Monge-Ampère equation which have logarithmic growth. Such
solutions are obtained, after suitable normalization, when the right hand
side of the equation has finite total mass. As usual, we denote this class of
functions by L+ .

L+ := {ϕ ∈ PSH(Cn) : sup |ϕ(z) − log(1 + |z|)| < const.}.
It is known (see [T]) that if u ∈ L+ then

∫
Cn(ddcu)n = (2π)n. So the following

problem is well posed.

u ∈ L+

(ddcu)n = f dλ (dλ the Lebesgue measure )∫
f dλ = (2π)n, f ≥ 0,

(∗)

and the function f is given. It has been investigated in [BT3], [CK], [KL]
and discussed in [B]. The existence of continuous solutions to (∗) when
f ∈ Lp((1 + |z|2)−n−1 dλ(z)), p > 1, was shown in [KL]. It follows from
a generalized version of the Yau theorem.

Theorem. [Y] Let us consider a compact n-dimensional Kähler manifold
M with the fundamental form ω and the Monge-Ampère equation on M :

(ω + ddcφ)n = Fωn, (∗∗)
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where φ is the function we search such that ω + ddcφ is a non-negative (1,1)
form. The given non-negative function F ∈ L1(M) is normalized by the
condition ∫

M
Fωn =

∫
M

ωn.

If F > 0, F ∈ Ck(M), k ≥ 3, then there exists a solution to (∗∗) belonging
to Hölder class Ck+1,α(M) for any 0 ≤ α < 1.

In [KL] the existence part of this result has been extended to cover the
case F ≥ 0, F ∈ Lp(M), p > 1. Then one can apply this for (M,ω) =
(Pn, ω0), where the Fubini-Study form ω0 restricted to Cn (with standard
identification) equals to ω0(z) = (1/2)ddc log(1+|z|2) and the volume form is
ωn

0 (z) = n!(1 + |z|2)−n−1dλ. Setting F (z) = f(z)(n!)−1(1 + |z|2)n+1 we thus
obtain u(z) = ϕ(z)+(1/2) log(1+|z|2) which is continuous, plurisubharmonic
and solves (∗). The solution is unique up to an additive constant by [BT3].

Regularity of u when f is smooth follows from Yau’s theorem provided
f(z)(1 + |z|2)n+1 can be extended to a smooth positive function on Pn. In
particular, since F is bounded and positive on Pn :

c0(1 + |z|2)−n−1 ≤ f(z) ≤ c1(1 + |z|2)−n−1,

but obviously there are also other restrictions on the behavior of f and its
derivatives at infinity forced by smoothness of F.

Below we shall prove a stronger result.

Theorem 1. If f in (∗) is positive, C∞ smooth and for some positive
constants K > 1,K1 satisfies the inequalities

f(z) ≤ K(1 + |z|2)−n−1,

and
−∆f1/n(z) ≤ K1f

1/n(z),

then u ∈ C∞.

If we drop the assumption that f is positive and take f ≥ 0 instead
then we get u ∈ C1(Cn) (see Corollary to Theorem 2). Both inequalities
in the statement are obviously satisfied by every smooth positive f on any
bounded subset of Cn, so they can be viewed as ”boundary conditions” on
the hyperplane Pn \ Cn.

Due to a result of Riebesehl and Schulz [RS] and classical elliptic theory,
in order to prove Theorem 1 it is enough to ensure that the Laplacian of u
is locally bounded.
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For this we shall prove a priori estimates of ∆u when u is smooth.
Derivation of those estimates is different than in the existing literature
on the regularity of the complex Monge-Ampère equation (comp. [BT1],
[CKNS], [CY], [GT], [RS], [Y]). We seek local bounds for the operator
Tu(ε) = const.ε−2(uε −u) independent of ε, where uε is a regularizing family
for u. This is done by suitable application of the comparison principle and
an inequality relating Monge-Ampère measures of u and uε.

I would like to thank Z. B�locki for his comments on the present paper.

1. Preliminaries.

Let B(R) denote the ball in Cn centered at 0 of radius R. For any real
function f we denote throughout the paper, by fε the convolution of f with
the characteristic function of B(ε) multiplied by σn := (

∫
B(ε) dλ)−1.

fε(z) = σn

∫
B(ε)

f(z + w) dλ(w).

We refer to [BT1] or [K] for basic properties of the operator Tf (ε) :=
4(n + 1)ε−2(fε − f). In particular, if f ∈ C2(Cn), then Tf (ε) → ∆f locally
uniformly as ε → 0, and

−Tf (ε)(z) ≤ max
B(z,ε)

−∆f. (1)

The following proposition follows from Theorem 5.7 in [BT1].

Proposition 1. If (ddcuε)n = f(ε) dλ, then f(ε) ≥ [(f1/n)ε]n.

Let us denote by v the potential of Fubini-Study metric and by g the den-
sity of the Monge-Ampère mass of v. So, v(z) := (1/2) log(1+|z|2), (ddcv)n =
g(z) dλ, where g(z) = n!(1 + |z|2)−n−1. Note that the Laplacian of v is
bounded from above by n/8 since

∂2v

∂zj∂z̄j
= [2(1 + |z|2)]−1[1 − |zj |2(1 + |z|2)−1] < 1/2.

We shall need this fact in the proof of the next proposition.

Proposition 2. If u ∈ C2, (ddcu)n = f dλ, and f ≤ Kg then

(ddcu)n−1 ∧ ddcv ≥ c1(K,n)(∆u)1/(n−1)fdλ,

where c1(K,n) = (nn+1K)−1/(n−1).
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Proof. We shall use the notation ujk̄ := ∂2u
∂zj∂z̄k

. Since (ujk̄) is positive
semidefinite one can choose a coordinate system centered at a given point z
so that the matrix becomes diagonal. Set N := ∆u(z) = (1/4)

∑
ujj̄(z) and

suppose that u11̄(z) ≥ ujj̄(z) > 0, j = 2, 3, ..., n (if ujj̄(z) = 0 then f(z) = 0
and there is nothing to prove). So u11̄(z) ≥ 4Nn−1.

Observe that denoting by m the maximum of
vjj̄ (z)

ujj̄(z) we have the following
inequalities

mn−1 ≥
(∏n

j=1 vjj̄∏n
j=1 ujj̄

)
u11̄

v11̄
(z) ≥ gu11̄

fv11̄
(z) ≥ 8Ng

n2f
(z),

as u11̄(z) ≥ 4Nn−1 and v11̄ ≤ 4∆v ≤ n/2 (see the remark preceding the
statement). We thus get m ≥ [8Ng

n2f
(z)]1/(n−1) ≥ [ 8N

n2K
]1/(n−1). Using this one

arrives at the desired estimate

(ddcu)n−1 ∧ ddcv(z) = (2i)n(
∑

ujj̄(z)dzj ∧ dz̄j)n−1 ∧ (
∑

vjj̄(z)dzj ∧ dz̄j)

= 4n(n − 1)!(
∏

ujj̄(z))
∑ vjj̄

ujj̄

(z)dλ(z) = (1/n)f(z)
∑ vjj̄

ujj̄

(z)dλ(z)

≥ m

n
f(z)dλ(z) ≥ c1(K,n)(∆u(z))1/(n−1)f(z) dλ(z).

The proof is completed.

Finally, let us mention some basic facts about the function g.

Proposition 3. We have
∫

Cn g dλ = (2π)n and for any δ > 0 there exists
R > 0 such that

ε−2

∫
Cn\B(R)

{g − [(g1/n)ε]n} dλ < δ, ε ∈ (0, 1).

Proof. The first part follows by computation. To get the convergence of the
other integral set α := n+1

n , and compute

∆g1/n(z) = (n!)1/n∆(1 + |z|2)−α

= (4α)(n!)1/n(1 + |z|2)−α−2[(2 − n + n−1)|z|2 − n].

Using (1) and the above formula one obtains

ε−2[g1/n(z) − (g1/n)ε(z)] ≤ const.(n)(1 + |z|2)−α−1.

Hence

ε−2{g − [(g1/n)ε]n}(z) ≤ ε−2[g1/n − (g1/n)ε]ng(n−1)/n(z)

≤ const.(n)n(1 + |z|2)−n−2.

The result follows by integration of the above inequality.
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2. Proofs of main results.

The key element of our proof is the following a priori estimate of second
order derivatives of the solution.

Lemma. Suppose f ∈ C3(Cn), n > 1,
∫

f dλ = (2π)n, 0 < f ≤ Kg,

−∆f1/n ≤ K1f
1/n, (2)

and f = ag on Cn\B(R0) for some a,K1 > 0,K > 1. Let u ∈ PSH∩C2(Cn)
solve

(ddcu)n = f dλ

and satisfy inf(2u − v) = 0. Then

∆u ≤ c(K,K1, n) + 2u − v

on B(R0), where for c(K,K1, n) one may take (3nn)n+1K[4n + K1]n.

Proof. By the theorem of Yau u ∈ C4(Cn). The use of Yau’s theorem is
justified since from the hypothesis f = ag on Cn \ B(R0) it follows that
F in Theorem from Introduction equals to a constant in a neighborhood of
H = Pn \ Cn and thereby F ∈ C3(Pn). Fix c(K,K1, n) as in the statement
and set M = c(K,K1, n) − 3. Suppose Lemma were not true and

E := {∆u > M + 3 + 2u − v} ∩ B(R0) �= ∅. (3)

Fix δ > 0 satisfying

2δ <

∫
E

f dλ.

Use Proposition 3 to find R > R0 with

3na

∫
Cn\B(R)

g dλ + ε−2a

∫
Cn\B(R)

{g − [(g1/n)ε]n} dλ < δ, ε ∈ (0, 1). (4)

Fix ε ∈ (0, min(1/(2K1), 1/2)) such that

δ <

∫
E∩{f(ε)<3nf}

f dλ, (5)

||hε − ∆u||B(R) < 1, where hε := 4(n + 1)ε−2(uε − u), (6)

and
||∆uε − ∆u||B(R) < 1, (7)
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(which is possible since f(ε) converges a.e. to f when ε tends to 0; and then
hε → ∆u and ∆uε → ∆u uniformly on B(R) as ε → 0 , see [BT1], [K]).
Furthermore one can assume, using (1) and (2) that

|f1/n − (f1/n)ε| ≤ (2n)−1K1ε
2f1/n on B(R). (8)

Set
E(ε) := {2u − v < hε − (M + 2)}.

By (6) (see also (3) ) we have

E ⊂ E(ε). (9)

Apply the comparison principle [BT2] to obtain∫
E(ε)

[ddc(ε−2uε + v)]n ≤
∫

E(ε)
(ε−2 + 2)n(ddcu)n.

Hence, using the positivity of the forms involved and the inequality ε < 1/2
we have

ε−2n

∫
E(ε)

(ddcuε)n + nε−2(n−1)

∫
E(ε)

ddcv ∧ (ddcuε)n−1

≤ ε−2n

∫
E(ε)

(ddcu)n + 3nε−2(n−1)

∫
E(ε)

(ddcu)n.

Upon regrouping the terms and multiplying by ε2(n−1) one gets

n

∫
E(ε)

ddcv ∧ (ddcuε)n−1 ≤ 3n

∫
E(ε)

f dλ + ε−2

∫
E(ε)

(f − f(ε)) dλ,

where f(ε) dλ = (ddcuε)n. The integrand on the right hand side of this in-
equality is obviously negative whenever f(ε) ≥ 3nf > 0, so the inequality
remains valid if we integrate only over the set

E1(ε) := E(ε) ∩ {f(ε) < 3nf}.
Next we apply Proposition 1 to the last term and obtain

n

∫
E1(ε)

ddcv ∧ (ddcuε)n−1 < 3n

∫
E1(ε)

f dλ + ε−2

∫
E1(ε)

{f − [(f1/n)ε]n} dλ.

To estimate the right hand side use (4) , (8) and the inequality

ε−2{f − [(f1/n)ε]n}(z) ≤ ε−2|f1/n − (f1/n)ε|nf (n−1)/n(z).
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Then

n

∫
E1(ε)

ddcv ∧ (ddcuε)n−1 < 3n

∫
E1(ε)∩B(R)

f dλ

+ ε−2

∫
E1(ε)∩B(R)

{f − [(f1/n)ε]n} dλ + δ

≤ [3n + K1]
∫

E1(ε)∩B(R)
f dλ + δ.

Finally, by (5) and (9)

n

∫
E1(ε)

ddcv ∧ (ddcuε)n−1 < [3n + 1 + K1]
∫

E1(ε)∩B(R)
f dλ. (10)

From (6) , (7) and the condition inf(2u − v) = 0 it follows that

E(ε) ∩ B(R) ⊂ {∆uε > M} ∩ B(R).

So applying Proposition 2 (note that f(ε) < 3nKg on E1(ε)) we get

∫
E1(ε)

ddcv ∧ (ddcuε)n−1 ≥
(

M

3nnn+1K

)1/(n−1) ∫
E1(ε)∩B(R)

(ddcuε)n dλ.

To give a lower bound for the right hand side use Proposition 1, (8) and the
inequality ε < min(1/2K1, 1/2). Then∫

E1(ε)
ddcv ∧ (ddcuε)n−1

≥
(

M

3nnn+1K

)1/(n−1) ∫
E1(ε)∩B(R)

[f1/n(1 − K1ε
2)]n dλ

≥
(

M

(3nn)n+1K

)1/(n−1) ∫
E1(ε)∩B(R)

f dλ.

(11)

Combining (10) and (11) one obtains M ≤ (3nn)n+1K(3n + 1 + K1)n−1

which contradicts the choice of M . Thus the lemma follows.

Theorem 2. Suppose f ∈ C1(Cn), n > 1, satisfies the following assump-
tions:

∫
f dλ = (2π)n, 0 ≤ f ≤ Kg,

−∆f1/n ≤ K1f
1/n,
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for some K > 1,K1 > 0. Then normalizing the solution of (ddcu)n = f dλ
by inf(2u − v) = 0 one obtains

∆u ≤ c0(K,K1, n) + 2u − v. (12)

Proof. First we assume that f ∈ C3(Cn). We shall approximate f by a
sequence of functions fj which fulfil the hypothesis of the lemma with the
uniform constants K,K1, and then we shall prove that u inherits the a priori
estimate from solutions uj corresponding to fj.

Let us choose a sequence of smooth functions ϕj : [0,∞) → [1/j,∞)
enjoying the following properties:

ϕj tend uniformly to identity,
x < ϕj(x) < 2x, for x > 1/(2j)
0 ≤ ϕ′

j(x) < 1,

0 ≤ ϕ′′
j (x),

ϕj(x) = 1/j for x ∈ [0, 1/(2j)].

(13)

For any positive integer define the numbers sj, tj putting

sj = [(jK)n/(n+1) − 1]1/2, tj = [(2jK)n/(n+1) − 1]1/2.

Then
1/j = Kg1/n(sj, 0, 0, ..., 0) = 2Kg1/n(tj, 0, 0, ..., 0) (14)

and tj − sj > sj/2. Due to the last inequality one can also choose, for j
big enough (say j > j0), a function χj ∈ C∞

0 (Cn) such that χj(| · |) is
non-decreasing, χj = 0 on B(sj), χj = 1 on the complement of B(tj) and
|∇χj(z)| < 1, |∆χj(z)| < 1.

Now we can define the sequence fj setting:

f
1/n
j = (1 − χj)ϕj(f1/n) + 2Kχjg

1/n, j > j0.

Then by (13) and the hypothesis we have

f
1/n
j ≤ 2(1 − χj)f1/n + 2Kχjg

1/n ≤ 2Kg1/n.

Still using the properties of ϕj one can estimate the Laplacian of f
1/n
j

on B(sj) as follows.

−∆f
1/n
j = −∆ϕj(f1/n) = −ϕ′

j(f1/n)∆f1/n − ϕ′′
j (f1/n)〈∇f1/n,∇f1/n〉

≤ K1f
1/n ≤ K1ϕj(f1/n) = K1f

1/n
j
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It is easy to compute that one can increase j0 so that |∇g1/n(z)| < g1/n, and
|∆g1/n(z)| < g1/n outside B(sj0). It then follows, by the relevant properties
of χj, the Cauchy-Schwarz inequality and (14) that for j > j0 the following
estimate holds on B(tj) \ B(sj) :

−∆f
1/n
j = (1/j)∆χj − 2Kg1/n∆χj − 2Kχj∆g1/n − 4〈∇g1/n,∇χj〉

≤ 1/j + 8Kg1/n ≤ 9/j ≤ 9f
1/n
j .

Finally, on the complement of B(tj) we have

−∆f
1/n
j = −2K∆g1/n ≤ 2Kg1/n = 2Kf

1/n
j .

Thus we have proved that

f
1/n
j ≤ 2Kg1/n and − ∆f

1/n
j ≤ K2f

1/n
j . (15)

Note that, by the construction, fj ≥ f. So, choosing αj = (2π)n(
∫

fj dλ)−1

and denoting f̃j = αjfj one concludes that f̃j also satisfies the estimates
(15). Let uj be the solutions of (∗) corresponding to f̃j. Then applying
Lemma we get

∆uj ≤ 2uj − v + c(2K,K2, n), (16)

with the constant independent of j.
From [KL, Chapter 2, Secion 3] we know that |uj − v| is uniformly

bounded by a constant which we denote by A0. By Lemma 2.2.1 in the
same paper uj → u := (lim sup uj)∗ in L1

loc(C
n) and u solves (ddcu)n = f dλ.

To deduce (12) from (16) fix a ball B = B(x, r) and define A to be the
supremum of v(z)+2A0 +c(2K,K2, n) over B. Then by (16) and the Jensen
formula (see [BT1], [K])

Tuj (ε) ≤ A

on B(x, r − ε). From the convergence uj → u we get (uj)ε(z) → uε(z) as
j → ∞, and thus Tu(ε) ≤ A on B(x, r − ε). Letting ε to 0 we conclude that
∆u ≤ A on B. Since we can take arbitrarily small r it follows that setting

c0(K,K1, n) := 2A0 + c(2K,K2, n)

we get (12). Thus the theorem follows for f ∈ C3(Cn). To get the general
case fix a radially symmetric smoothing kernel ω ∈ C∞

0 (Cn) and put ωj(z) :=
(1/j2n)ω(z/j). Set f

1/n
j = f1/n ∗ ωj. Since

−∆f
1/n
j = −(∆f1/n) ∗ ωj ≤ K1f

1/n ∗ ωj = K1f
1/n
j
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the regularizing sequence fulfills the hypothesis of Theorem 2 (with uniform
constants) and so by repeating the argument from the preceding paragraphs
we get the result.

Now, a classical reasoning (see e.g. [BT1], [K]) leads to the following
corollary to the theorem above.

Corollary. If f is as in Theorem 2 then the solution u has its second order
derivatives in Lp

loc for any p ∈ [1,∞). In particular, by Sobolev’s injection,
u is of class C1.

End of proof of Theorem 1.

If ∆u is locally bounded then from positivity of ddcu it follows that all
mixed second order (complex) derivatives are locally bounded. So, hav-
ing f > 0, one can apply [RS, Theorem 1] for the approximating sequence
(so that the solutions are smooth) to conclude that also third order mixed
derivatives of the functions uj from formula (16) are uniformly bounded on
compact sets. In particular, the sequence ∆(∂uj/∂zk) is locally uniformly
bounded for any k. Then regularity theory of Poisson’s equation (see [GT])
says that u belongs to C2,α for 0 < α < 1, and further, the application
of Schauder estimates gives u ∈ Ck+2,α when f ∈ Ck,α. Thus the theorem
follows.
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tion on Cn. Sèminaire P. Lelong, P.Dolbeault, H.Skoda (Anal-
yse) 1981/1983, Lecture Notes in Math. 1028 , 318-328, Springer-
Verlag, Berlin Heidelberg New York 1983.

[Y] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold
and the complex Monge-Ampère equation, Comm. Pure and Appl.
Math. 31 (1978), 339-411.

Jagiellonian University, Institute of Mathematics

Reymonta 4, 30-059 Kraków, Poland

kolodzie@im.uj.edu.pl

Received August 21, 1997.



1184 S�lawomir Ko�lodziej


