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On a Multi-particle Moser-Trudinger Inequality

Hao Fang

We verify a conjecture of Gillet-Soulé. We prove that the determi-
nant of the Laplacian on a line bundle over CP1 is always bounded
from above. This can also be viewed as a multi-particle general-
ization of the Moser-Trudinger Inequality. Furthermore, we con-
jecture that this functional achieves its maximum at the canonical
metric. We give some evidence for this conjecture, as well as links
to other fields of analysis.

1. Introduction.

For a compact complex curve C with a Hermitian metric, gC , and a line
bundle l over C, with associated Hermitian metric, gl, the determinant of
the ∂-aplacian over O(l) is defined by the method of zeta-regularization. We
denote its logarithm as A(gC , gl), a functional of gC and gl.

In [3], Gillet and Soulé posed the following:

Conjecture 1.1 (Gillet-Soulé). A(gC , gl) is bounded from above by a con-
stant independent of choice of gC and gl.

Conjecture 1.1 is motivated by the Arithmetic Riemann-Roch theorem;
its bounded-ness will imply the one-side bounded-ness of the modified arith-
metic Betti number, first introduced by Gillet and Soulé. We point out that
the original conjecture of [3] is more general; however, we only concentrate
on this simple case in this paper.

From an analytic point of view, A(gC , gl) is a spectral invariant that
is naturally linked to the quantization problem of Toeplitz operators. The
conjecture can also be viewed a natural holomorphic extension of the classical
Szegö limit theorem, which was originally stated for S1 [4]. See Section 5
for more details.

On each smooth closed curve C, there exists a canonical metric with
constant curvature, gC

0 , which in turn induces a canonical metric on l, gl
0.

By the Uniformization Theorem, general metrics on C and l are conformal
to gC

0 and gl
0, respectively. According to the Serre Duality, one only needs to

consider ample line bundles over the curve; hence, it also can be interpreted
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as an analytic torsion associated to the line bundle l (See Section 2 for
more details). A simple application of the family Riemann-Roch theorem
of Bismut-Gillet-Soulé [1] then gives the anomaly formula of the regularized
determinant in terms of the anomaly of the Quillen metric and the L2-metric.
Furthermore, by a similar computation, gC can be fixed (see [3] for details);
hence, it is enough to prove the conjecture for gC = gC

0 and gl = exp ϕ gl
0.

In the same paper, Gillet and Soulé considered the case of C being ra-
tional. They proved the conjecture under the condition that the metric gl

is endowed with an additional rotational symmetry. The proof is a delicate
extension of the original proof of Moser for the famous Moser-Trudinger
Inequality for two-sphere [9].

In this paper, we remove the special condition and prove the conjecture
for the rational curve case in general:

Theorem 1.2. Conjecture 1.1 holds for any holomorphic line bundle over
CP1.

Naturally, we consider the problem of exact upper bound. We conjecture
that

Conjecture 1.3. A(gC
0 , gl) achieves its sharp upper bound only when gl is

the standard metric gl
0.

See Conjecture 5.2 for an equivalent but more concrete statement.
We have some partial results verifying Conjecture 1.3 in special cases:

It holds for a function ϕ with large L2 norm (see Theorem 3.2); also,
constant functions are local maximal points of the determinant functional
A(gC

0 , gl); i.e., Conjecture 1.3 holds for function ϕ with very small energy.
In this paper, we will give several interpretations of this conjecture.
Firstly, it can be viewed as sharp form of a multi-particle generalization

of the Moser-Trudinger inequality [9]. In fact, Theorem 1.2 can be viewed as
the first step of an attempt to emulate Moser’s original proof of the original
Moser-Trudinger Inequality; the special case solved by Gillet and Soulé in
[3] is a delicate extension of the Moser’s original approach. We remark that
Jost-Wang considered a different type of extension of the Moser-Trudinger
inequality relating to the Toda system [7].

Secondly, it is a S2 holomorphic extension of the classical Szegö limit
theorem, which was stated for S1 in the frame work of Fourier analysis.
Notice that Okikiolu extended a weak form of Szegö limit theorem to S2

and S3 [10]. However, our conjecture is a sharp inequality for all finite
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natural number n, and we consider a holomorphic version. See Section 5 for
more details.

Thirdly, it can be viewed as a problem related to the quantization of the
Toeplitz operator on S2. It is thus closely related to earlier works of Boutet
de Monvel-Guillemin [2] and Uribe [13].

Finally, it relates to a limit theorem when interpreted as a configuration
problem of random variables on S2. This is partly inspired by the Kac’s
probabilistic approach to the Szegö limit theorem [8], and its generalization
by Johansson [6].

This paper is organized as follows. In Section 2, we set up the problem
and state the result of Gillet-Soulé. In Section 3, we prove Theorem 1.2.
In Section 4, we establish the local maximality of the constant function for
the log determinant functional. In Section 5, we pose the new conjecture on
the sharp bound and give several formulations of the problem, relating it to
different classical results.
Acknowledgement The author would like to thank Paul Yang for bringing
this problem to his attention. Thanks are also due to Sun-Yung Chang,
Xianzhe Dai, Kate Okikiolu and Paul Yang for discussions. Part of this
work was done during the author’s stay in MSRI in 2001.

2. Set-up.

In this Section, we define the related geometric objects and state the previous
results of [3].

From now on, we fix C = CP1 = C ∪ {∞} with z being the complex
coordinate function. Let

µ =
√−1dzdz

2π
(

1 + |z|2
)

2
(2.1)

be the Kähler form of the standard Fubini-Study metric such that
∫
C µ = 1.

Notice that, with our notation, the celebrated Moser-Trudinger Inequal-
ity reads as [9]

log
∫

C
exp(ϕ)µ − 1

4

∫
C
|∇ϕ|2µ −

∫
C

ϕµ ≤ 0. (2.2)

Fix a positive integer n. O(n) denotes the holomorphic line bundle over
C of degree n. For a real C∞ function ϕ over C, we can define the following
metric gϕ on O(n):

< s, t >ϕ=
∫

C

st

(1+ |z| 2)n
(exp ϕ)µ, (2.3)
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where s and t are two sections of O(n). We then have the relation gϕ =
(exp ϕ)g0.

We consider the following chain complex

0 → Λ0,0(C,O(n)) ∂→ Λ0,1(C,O(n)) → 0. (2.4)

The metric gϕ, and the constant curvature metric of C, gC
0 , naturally

induce metrics on Λ0,0(C,O(N)) and Λ0,1(C,O(N)). Hence, we define the
adjoint of ∂̄, ∂̄∗

ϕ. Now we may define

∆ϕ = ∂̄∂̄∗
ϕ + ∂̄∗

ϕ∂̄ : Λ0,0(C,O(N)) → Λ0,0(C,O(N)) (2.5)

to be the Laplacian operator with respect to the metric gϕ. Since ∆ϕ is
a well-defined elliptic operator, its regularized determinant can be defined
by the method of zeta regularization. The following functional gives the
difference of the determinant with respect to the conformal change of the
metric:

Definition 2.1.

An(ϕ) = log(
det ∆ϕ

det ∆0
). (2.6)

In order to present An more concretely, we consider the kernel of ∆,
which consists of all the polynomials of z of degree at most n; thus, it is a
complex linear space of dimension n + 1 and has an othonormal basis with
respect to the g0 metric as follows:

αi =

√
(n + 1)

(
n

i

)
zi, i = 0, 1, · · · , n. (2.7)

Because C is one dimensional, by the Serre Duality, A (ϕ) can also be
viewed as analytic torsion associated to chain complex (2.4). Thus, by the
the anomaly formula of Bismut-Gillet-Soulé [1], the following variational
formula is obtained by Gillet-Soulé [3]:

Proposition 2.2.

An(ϕ) = −1
2

∫
|∇ϕ|2µ− (n+ 1)

∫
ϕµ+ log det (< αi, αj >ϕ)n+1,n+1. (2.8)
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Notice the similarity of An with the left hand side of the Moser-Trudinger
Inequality (2.2), which can be viewed as the log determinant of the scalar
Laplacian on the sphere (without the involvement of the line bundle), and
whose proof is related to the Yamabe problem of S2.

It is a simple observation that the value of this functional is invariant
when a constant function is added to ϕ; that is, for any constant c ∈ R,

An(ϕ) = An(ϕ + c).

Hence, by subtracting a suitable constant, we may assume that
∫

ϕµ = 0.
For future convenience, we define the following functional

Bn(ϕ) = log det (< αi, αj >ϕ)n+1,n+1, (2.9)

which is the L2 contribution of the anomaly formula; this is also the fully
non-linear term of the functional An.

In [3], by a complicated generalization of original estimates of Moser,
Gillet and Soulé proved the following

Theorem 2.3. (Gillet-Soulé) If ϕ is rotationally symmetric (with respect
to a given standard coordinate system on C = S2), then

Bn(ϕ) ≤ (
1
2
− εn)

∫
|∇ϕ|2µ + (n + 1)

∫
ϕµ + Cn,

where εn > 0 and Cn are constants depending only on n; in particular, An(ϕ)
is bounded by a constant independent of ϕ.

3. Bounded-ness of the functional A(ϕ).

The main goal of this Section is to prove Theorem 1.2, which is a gener-
alization of Theorem 2.3. Our strategy is to simplify the general case to
the case which has been treated by Gillet and Soulé. Our approach involves
symmetrization of various geometric quantities and their estimates, where
the difficulty is to treat the highly non-linear term Bn.

First, we prove the following algebraic lemma.

Lemma 3.1. Let dλ be a finite positive measure of space C. Let 0 ≤ a0 <
· · · ≤ an be n + 1 real numbers. For any σ ∈ Sn+1, define

Sσ,λ = Sσ =
n∏

i=0

∫
C
|z|ai+aσ(i)dλ, (3.1)
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then we have
Sσ ≤ Sid. (3.2)

Proof. This is just an extension of the Cauchy-Schwartz Inequality. We run
an induction argument on n. The statement is obviously true for n = 1,
in which case it is just the usual Cauchy-Schwartz Inequality. Suppose it
is true for 1, · · · , n − 1. Fix a σ ∈ Sn. If σ can be written as product of
two shorter cycles, we can apply the induction hypothesis. Without loss of
generality, we may assume

σ = (0, i1, i2, · · · , in).

To further simplify the notation, we assume that ai = i. (Notice that the
proof of general case follows similarly). Let

σ′ = (i1, i2, · · · , in)

be a reduced (n − 1)-cycle. Then we have,

log(Sσ/Sσ′) = log
∫

|z|i1dλ + log
∫

|z|indλ − log
∫

|z|i1+indλ − log
∫

1 dλ.

(3.3)
Simple calculation shows that

u(t) def= log
∫

|z|i1+in−tdλ + log
∫

|z|tdλ (3.4)

is an increasing function for t ∈ [0, i0+in
2 ]. Apply this fact to 0 = t1 < t2 =

min{i1, in} ≤ i1+in
2 , we get

Sσ ≤ Sσ′ .

Now we can apply the induction hypothesis to prove that

Sσ ≤ Sid.

Thus we have finished the induction proof. �

Lemma 3.1 allows us to estimate the terms appearing in the determinant
Bn by the diagonal term. Now we state the main theorem of this section:

Theorem 3.2.

Bn(ϕ) ≤ (
1
2
− εn)

∫
|∇ϕ|2µ + (n + 1)

∫
ϕµ + Cn; (3.5)

where εn > 0 and Cn are constants depending only on n; in particular, A(ϕ)
is bounded from above by a constant independent of ϕ.
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Theorem 1.2 is then an easy corollary of Theorem 3.2.
From an analytic point of view, Theorem 3.2 can be viewed as a multi-

particle Moser-Trudinger Inequality, generalizing the original inequality
(2.2) of Moser and Trudinger [9]. We comment that the coefficient of the
energy in (5.3) has a uniform upper bound independent of n, making it a
very precise inequality. In the next sections, we will also discuss its sharp
form.

Finally, we give the proof of Theorem 3.2.

Proof. First, by Lemma 3.1 and the definition of the determinant, we have

|det(< αi, αj >ϕ)| ≤
∑

σ∈Sn+1

Sσ,λ ≤ n!Sid,λ, (3.6)

where dλ = exp(ϕ)
(1+|z|2)n µ.

Notice that l = {z : |z| = 1} is a closed geodesic on C, with respect to
the standard metric. Because of the rotational invariance of C = S2, with
out loss of generality, we assume that maxz∈C ϕ(z) is obtained at a point on
l. Then, we discuss the rotational re-arrangement of ϕ, following [12]. Define
ϕ∗ as the rotationally symmetric increasing re-arrangement of ϕ for |z| ≤ 1
and the rotationally symmetric decreasing re-arrangement function of ϕ for
|z| ≥ 1. Hence, we have

ϕ∗(0) = min
|z|≤1

ϕ(z),

ϕ∗(∞) = min
|z|≥1

ϕ(z),

ϕ(1) = max
S2

ϕ(z).

It is easy to see that ϕ∗ is continuous. By [12],∫
C
|∇ϕ|2µ ≥

∫
C
|∇ϕ∗|2µ, (3.7)∫

C
ϕµ =

∫
C

ϕµ. (3.8)

Hence, ϕ∗ ∈ C0(C) ∩ W 1,2(C).
For |z| ≥ 1, define, for i = 0, · · · , n,

Pi =
|z|2i

(1 + |z|2)n
,

P ′
i =

1
(1 + |z|2)n−i

.
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Then, for |z| ≥ 1, we have

Pi ≤ P ′
i ≤ 22iPi ≤ 22nPi. (3.9)

Notice that both P ′
i and ϕ∗ are non-increasing for |z| ≥ 1, it is easy to check

that

log
∫
|z|≥1

Pi exp(ϕ)µ ≤ log
∫
|z|≥1

P ′
i exp(ϕ)µ ≤ log

∫
|z|≥1

P ′
i exp(ϕ∗)µ

≤ log
∫
|z|≥1

Pi exp(ϕ∗)µ + 2n log 2. (3.10)

By the reflection symmetry of C = S2 and the definition of ϕ∗, similarly we
have

log
∫
|z|≤1

Pi exp(ϕ)µ ≤ log
∫
|z|≤1

Pi exp(ϕ∗)µ + 2n log 2. (3.11)

By (3.6) (3.10) and (3.11), we have, with C(n) a constant depending only
on n,

log det (< αi, αj >ϕ)n+1,n+1 ≤ C(n) + log det (< αi, αj >ϕ∗)n+1,n+1. (3.12)

Combine (3.7), (3.8) and (3.12), we have proved

A(ϕ) ≤ A(ϕ∗) + C(n). (3.13)

Finally, by applying Theorem 2.3, we have proved the theorem. �

4. 0 is a local maximum.

Now that the functional An is bounded by Theorem 3.2, it is natural to
examine the sharp upper-bound of An. In this Section we show that the
functional An has a local maximal point at constant function, 0, for any
fixed n. This stability result indicates that the maximum of functional An

should be achieved at the constant function.
We begin with some notations. For simplicity, we define the following

local (n + 1) × (n + 1) matrices: for ϕ, f ∈ C∞(C, R), write

(Mϕ)ij = < αi, αj >ϕ,

M ′
ϕ(f) = < fαi, αj >ϕ,

M ′′
ϕ(f) = < f2αi, αj >ϕ,

(Mϕ)ij = (Mϕ)−1.

First, we give the following first variation formula:
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Lemma 4.1 (First Variation of An). If gϕ is an extreme metric for the
functional An, then

tr(M−1
ϕ [

αiαj

(1+ |z| 2)n
]ij) + ∆ϕ − (n + 1) = 0. (4.1)

In particular, the constant function 0 is a critical point of An for any n.

Proof. The derivation of the above Euler-Lagrange equation is standard,
which we omit here. To verify that 0 is critical, use the fact that M0 = Id,
by (4.1), we only need to show

n + 1 =
n∑

i=0

αi · αi

(1 + |z|2)n
; (4.2)

or,

n + 1 =
n∑

i=0

(n + 1)
(n

i

) |z|2i

(1 + |z|2)n
,

which is obvious. �

We then proceed to compute the second variation of An.

Lemma 4.2. For ϕ, f ∈ C∞(C, R), the following holds

d2

d2t
|t=0A(ϕ+tf)=tr[M−1

ϕ M′′
ϕ(f)]−tr[M−1

ϕ M′
ϕ (f) M−1

ϕ M′
ϕ (f)]−

∫
|∇f|2 exp ϕµ.

(4.3)

The proof of (4.3) is standard, so we omit it here.
Finally, we state the main result of this section.

Theorem 4.3. 0 is a local maximal point of the functional An.

Proof. By (4.3), we need to show the following inequality for any f ∈ C∞(C),

∑
i

∫
C

f2αijµ −
∑
i,j

|
∫

C
fαijµ|2 ≤

∫
C
|∇f |2 µ, (4.4)

where, for notational simplicity, we denote

αij =
αiαj

(1+ |z| 2)n
.
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Using the fact that {αi} is an orthonormal basis, the left hand side of
(4.4) can be re-written as∫∫

C×C

∑
ij

(f2(x)αij(x)αij(y) − f(x)f(y)αij(x)αij(y))µyµx (4.5)

=
∫∫
C×C

1
2

∑
i,j

αij(x)αij(y)(f(x) − f(y))2µxµy

=
∫∫
C×C

(n + 1)2

2
(f(x) − f(y))2

∑
i,j

(
n

i

)(
n

j

)
zi
xzj

xzi
yz

j
y

(1 + |zx|2)n(1 + |zy|2)n
µxµy

=
∫∫
C×C

(n + 1)2

2
(f(x) − f(y))2(

|1 + zxzy|2
(1 + |zx|2)(1 + |zy|2)

)nµxµy

=
∫∫
C×C

(n + 1)2

2
(f(x) − f(y))2 cos2n(

√
πdµ(x, y))µxµy,

where dµ(·, ·) is the distance function of C = S2 with respect to the metric
µ. To do the local computation, sometimes we switch to the standard metric
of S2 ⊂ R3, which has radius one and volume form dv = 4πµ. If we use d(·, ·)
to denote the distance function with respect to the standard metric, then

d =
√

4πdµ. (4.6)

We continue our computation. By (4.5), (4.4) is equivalent to the following∫∫
C×C

(n + 1)2

2
(f(x) − f(y))2 cos2n(

d(x, y)
2

)µxµy ≤
∫

|∇f |2 µ. (4.7)

Let dl be the induced measure on embedded curves in C from dv. For fixed
points x, y ∈ C, let l(x, y) be the shortest geodesic connecting x and y. Then,
the following estimate holds

|f(x) − f(y)|2 ≤ (
∫

l(x,y)

|∇f(p)| · | cos δ(p, x, y)|dlp)2

≤ d(x, y)
∫

l(x,y)

|∇f(p)|2 cos2 δ(p, x, y)dlp, (4.8)

where δ(p, x, y) denotes the angle between the direction of l(x, y) and ∇f(p).
Obviously, for generic (p, x, y), δ can be determined only by p and x; hence,
it can also be written as δ(p, x).
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Fix x ∈ C and write µy = 1
4π sin θdθdϕ, with θ = d(x, y), ϕ ∈ [0, 2π), θ ∈

[0, π] being the spherical coordinates. Hence, if l = d(p, x),∫∫
C×C

|f(x) − f(y)|2 cos2n(
d(x, y)

2
)µxµy (4.9)

≤
∫

x

1
4π

∫ 2π

0

∫ π

0
cos2n(

θ

2
)θ sin θ

∫ θ

0
|∇f(p)|2 cos2 δ(p, x)dlpdθdϕµx

=
1

4π

∫
x

∫ 2π

0

∫ π

0
(
∫ π

l
cos2n(

θ

2
)θ sin θdθ) cos2 δ(p, x) |∇f(p)|2 dldϕµx.

Thus, if we define

G(l) =
∫ π

l
cos2n(

θ

2
)θ sin θdθ), (4.10)

The last expression of (4.9) can be written as

1
4π

∫
x

∫ 2π

0

∫ π

0
cos2 δ(x, p) |∇f(p)|2 G(l)

sin l
sin l dldϕµx

=
1

4π

∫
x

∫
p

∫ π

0
cos2 δ(x, p) |∇f(p)|2 G(l)

sin l
µpµy

=
∫

p
|∇f(p)|2 µp(

∫
G(d(x, p))
sin d(x, p)

cos2 δ(x, p)µx). (4.11)

Hence, to prove (4.4), it is sufficient to prove the following

(n + 1)2

2

∫
G(d(x, p))
sin d(x, p)

cos2 δ(x, p)µx < 1. (4.12)

We parameterize x ∈ C by l = d(x, p) and δ = δ(x, p), such that µx =
1
4π sin l dldδ. Hence, the left hand side of (4.12) equals

(n + 1)2

2
(
1
4

∫ π

0

G(l)
sin l

sin ldl) =
(n + 1)2

8

∫ π

0
G(l)dl

=
(n + 1)2

8

∫ π

0
cos2n(

θ

2
)θ2dθ.

By a change of variable t = θ
2 and use the integration by part trick, we get

(n + 1)2

8

∫ π

0
cos2n(

θ

2
)θ2dθ = 2(n + 1)

∫ π
2

0
t cos2n+2 t dt.
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Define

Jn = 2(n + 1)
∫ π

2

0
t cos2n+2 t dt. (4.13)

Then (4.12) is equivalent to the following claim:

Claim 4.4.
Jn < 1, for n ∈ N.

Proof. By integration by part, it is easy to get the following recursive formula

Jn = − 1
2n + 2

+
2n + 1

2n
Jn−1. (4.14)

To prove the claim, we make the following statement

Jn−1 ≥ 3n + 2
3n + 3

. (*)

Obviously (*) is wrong for n = 1. If this is the case for all n, then the claim
is proved. Otherwise, let N be the smallest positive integer such that (*) is
true. Then, by (4.14),

JN − 3N + 5
3N + 6

≥ − 1
2N + 2

+ (
2N + 1

2N
)
3N + 2
3N + 3

− 3N + 5
3N + 6

=
4

6N(N + 1)(N + 2)
> 0.

Thus, easy to show by induction that (*) holds for all n ≥ N. Therefore, by
(4.14),

Jn − Jn−1 =
Jn−1

2n
− 1

2n + 2
≥ 3n + 2

(2n)(3n + 3)
− 1

2n + 2

=
1

3n(n + 1)
> 0;

in other words, by induction, Jn is monotone increasing for n ≥ N.
On the other hand, applying a standard stationary phase argument to

(4.13), it is easy to see that

lim
n→∞Jn = 1.

Hence, for n < N, Jn ≤ 3n+2
3n+3 < 1; for n ≥ N, Jn ≤ Jn+1 ≤ · · · < 1. The

claim is proved. �
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In summary, we have finished the proof of Theorem 4.3. It is also clear
from (4.8) that the equality holds if and only if |∇f | = 0 almost everywhere;
i.e., f is a constant function. �

5. Conjectured sharp inequality and
its different formulations.

Inspired by earlier computations, we pose the sharp inequality of our prob-
lem, and point out its links to different classical results.

5.1. Conjecture on the sharp 2-D Szegö problem.

We now discuss the classical Szegö limit theorem. Let z be the complex
coordinate function on C, S1 ⊂ C be the standard circle of radius 1, and ds
be the regular unit length measure on S1. For a function ϕ ∈ C∞(S1, R),
define

αij
def= zizj = zi−j ,

Bn(ϕ, S1) def= log det[
∫

S1

αij(exp ϕ)ds](n+1)×(n+1). (5.1)

As a consequence of the strong Szegö Limit Theorem, Szegö showed:

Theorem 5.1. Bn(ϕ, S1) is non-decreasing with respect to n. Furthermore,

Bn(ϕ, S1) ≤ 1
2

∫
|∇ϕ|2ds + (n + 1)

∫
ϕds. (5.2)

Equality holds iff ϕ is a constant.

Noticing the similarity between (5.1) and (5.2) with our current problem,
we pose the following conjecture for the standard two sphere:

Conjecture 5.2. For any ϕ ∈ L2(S2, R), we have

An(ϕ) ≤ 0,

or, equivalently,

Bn(ϕ) ≤ 1
2

∫
|∇ϕ|2µ + (n + 1)

∫
ϕµ; (5.3)

equality holds iff ϕ is a constant function.



1168 Hao Fang

Conjecture 5.2 equivalent to Conjecture 1.3.

Remark 5.3. The coefficient of the energy in (5.3) is twice that of (2.2),
the original Moser-Trudinger inequality. Thus, as pointed out by Gillet and
Soulé, the above conjecture is true for n = 0, 1.

Remark 5.4. By Theorem 3.2, Conjecture 5.2 holds for ϕ with large energy
for general n. It also holds for ϕ with very small energy by Theorem 4.3.

Remark 5.5. Due to the non-linear nature of our problem, for fixed ϕ, it is
not clear if Bn (ϕ) is monotone with respect to n. Notice that monotonicity
is the key ingredient in Szegö’s approach of Theorem 5.1.

Remark 5.6. Okikiolu extended a weak form of Szegö limit theorem to S2

and S3. In [10], she proved similar asymptotic results as that of Szegö for the
determinant of the Toeplitz operator Mexp ϕ (see the next subsection for the
notation) restricted to spherical harmonics of degree less than or equal to n.
See Guillemin-Okikiolu [5] for an extension to the Zoll manifolds and Okiki-
olu [11] for a survey with further results and the probabilistic intepretation.
However, Conjecture 5.2 is a holomorphic extension, in which we consider
only the “holomorphic” part of the spherical harmonics.

This conjecture can also be viewed as the sharp form of the multi-particle
Moser-Trudinger Inequality proved in Theorem 3.2. Actually, the proof of
the original (sharp) Moser-Trudinger Inequality goes as follows: First, prove
that an analogue of Theorem 1.2 holds; i.e., the functional has a univer-
sal upper bound. Then, get the sharp upper bound by analysis the Euler
equation as a PDE. However, this strategy is hard to follow to prove Con-
jecture 5.2 since the Euler equation (4.1) for our multi-particle problem is
highly non-linear and is not even a PDE.

5.2. Toeplitz operator point of view.

The functional Bn has appeared in classical analysis in another form. Boutet
de Monvel and Guillemin have considered the quantization problem for the
Toeplitz operator in the framework of the pseudo-differential operator [2].

Let F = exp ϕ. Let the Toeplitz operator MF be the multiplication
operator with respect to F. MF acting on Γ(O (n)) can be viewed as a
quantization of F :

MF = F · : Γ(O (n)) → Γ(O (n)).
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Since {αi}n
i=0 forms a basis of Γ(O (n)),

Bn(ϕ) = log det
∫

C
< MF αi, αj > µ

is the so-called Toeplitz determinant. A special case of a theorem of Boutet
de Monvel-Guillemin and a result of Uribe can be stated as follows:

Theorem 5.7. 1. (Boutet de Monvel-Guillemin) For n >> 1, Bn(ϕ) has
the following asymptotic expansion:

Bn(ϕ) = (n + 1)
∫

C
ϕµ +

N∑
i=1

Di(ϕ)
(n + 1)i

+
D̃N+1(n,ϕ)
(n + 1)N+1

,

where N ∈ N, Di(ϕ)’s are functionals independent of n and dependent
of ϕ only, D̃N+1(n,ϕ) is bounded independent of n;

2. (Uribe, [13]) furthermore,

D0(ϕ) =
1
2

∫
C
|∇ϕ|2 µ.

Theorem 5.7 shows that Conjecture 5.2, with a fixed ϕ, is asymptotically
correct for n >> 1.

Notice that Uribe also gave an inductive method to compute all the
Di(ϕ)′s. However, it is not clear that the complete asymptotic expansion
would lead to the sharp Moser Inequality.

5.3. Probability formulation of functional Bn.

Using symmetries of C = CP1 = S2, we can reformulate the problem and
give it a probabilistic interpretation. More precisely, we prove the following

Proposition 5.8. For (z0, · · · , zn+1) ∈ Cn+1, define

Kn(z0, · · · , zn+1) =
(n + 1)n+1

(n
0

) · · · (nn)
(n + 1)!

∏
0≤i<j≤n

(sin
d(zi, zj)

2
)2. (5.4)

Then, ∫
Cn+1

Kn

∏
µzi = 1, (5.5)

B(ϕ) = log
∫

Cn+1

exp(ϕ(z0) + · · · + ϕ(zn))Kn

∏
µzi . (5.6)
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Proof. It is easy to see that (5.5) follows from (5.6) (by taking ϕ = 0). Thus,
we only need to prove the latter. For simplicity, we write µi = µzi . Notice

exp B(ϕ)=det
[∫

C

αij exp ϕµ

]

=
(n+1)n+1

(n
0

) · · · (nn)
(n + 1)!

∫
Cn+1

exp(
∑

ϕ(zi))

∑
σ∈Sn

(−1)|σ|
∏

zi
iz

σ(i)
i

∏
(1 + |zi|2)n

∏
µi

=
(n + 1)n+1

(
n
0

) · · · (nn)
(n + 1)!

∫
Cn+1

exp(
∑

ϕ(zi))

∏
i<j

|zi − zj|2

∏
(1 + |zi|2)n

∏
µi.

(5.6) then will be obvious considering the following simple fact on S2 :

|zi − zj |2
(1 + |zi|2)(1 + |zj |2)

= sin2 d(zi, zj)
2

. (5.7)

We have finished the proof. �

From Proposition 5.8, our study of the functionals A and B can be viewed
probabilistically. Considering the (n + 1)-random variables {zi}n

i=0 on the
standard sphere S2, with joint distribution given by Kn,

exp Bn (ϕ) = E
(

exp
(∑

ϕ(zi

))
(5.8)

is the expectation of the random variable exp (
∑

ϕ(zi)). Hence, for n very
large, our Conjecture 5.2 can also be related to a limit theorem of the given
probability problem. This direction is partly motivated by the works of
Kac [8] and Johansson [6] on the probabilistic approach to the Szegö limit
theorem.
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