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Introduction.

The Kähler cone and its dual play an important role in the study of compact
Kähler manifolds. Therefore it seems natural to ask whether one can read
off the (dual) Kähler cone, whether the underlying manifold is projective or
not. A classical theorem of Kodaira says that a compact Kähler manifold
whose Kähler cone has an interior rational point, is projective. Indeed, a
multiple of such a point defines a Hodge metric on the manifold. But not
only the Kähler cone itself, also its dual in Hn−1,n−1(X) (1.7), where n is
the dimension of the Kähler manifold X, is of interest. This is parallel to
the projective theory, where both the ample cone and its dual cone NE,
the Mori cone of curves, play an important role. One of the basic questions
underlying this paper asks whether projectivity of Kähler manifolds can be
expressed in terms of the dual Kähler cone. This question was first posed and
treated for surfaces by Huybrechts [Hu99]; an geometric proof for surfaces
was given in [OP00]. To be precise, we consider the following

Problem 0.1. Let X be a compact Kähler manifold of dimension n and
suppose that the dual Kähler cone K∗(X) ⊂ Hn−1,n−1(X) contains a rational
interior point. How algebraic is X, i.e. what can be said about the algebraic
dimension a(X) of X?

Since this problems seems to be rather hard, we restrict ourselves to special
rational points, namely those represented by effective curves. Here is a rather
partial answer to the problem.

Theorem 0.2. Let X be a smooth compact Kähler threefold, C ⊂ X an
effective curve such that [C] ∈ IntK∗(X), the interior of the dual Kähler
cone. Then a(X) ≥ 2 unless X is simple non-Kummer.

The proof relies on classification theory of compact Kähler threefolds; the
term “simple” means that X does not admit a covering family of curves. It is
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expected that such a simple threefold should be Kummer, i.e. bimeromorphic
to a quotient of a torus by a finite group. This conjecture is however still far
from being proven, therefore we need to make the exception in the theorem.
It seems not impossible that Theorem (0.2) is actually sharp; in (3.2)-(3.4)
we give a potential procedure how to construct a Kähler threefold with
a(X) = 2 and admitting an irreducible curve which represents an interior
rational point of the dual Kähler cone.
Given a curve C ⊂ X, we would like to decide whether its class [C] is an
interior point of K∗(X) or a boundary point. Obvious examples for boundary
points are provided by curves contracted by maps φ : X → Y to Kähler
spaces. It seems therefore very reasonable to expect the following

Conjecture 0.3. If the normal bundle NC/X is ample, then [C]∈ IntK∗(X).

If some multiple of C moves in a family that covers X, then [C] ∈
IntK∗(X) by (4.13). Moreover we prove (0.3) for complete intersections
of hyperplane sections. Combining this with problem (0.1) we are lead to

Problem 0.4. Let C ⊂ X be a smooth curve in the compact Kähler mani-
fold X with ample normal bundle. How projective is X?

Our expectation - and we prove this in many cases - is that at least the
algebraic dimension a(X) ≥ 2; and similarly as in (0.2) there seem to be
examples where a(X) = 2. Of course a similar question can be asked for
submanifolds of larger dimension. We prove

Theorem 0.5. Let C ⊂ X be a smooth curve of genus g with ample normal
bundle NC in the compact Kähler manifold X. Then

(1) If g ≤ 1, then X is projective. The same holds for general g, if NC ⊗TC

is ample, where TC denotes the tangent bundle of C.

(2) If κ(X) ≤ 0, then X is projective or simple non-Kummer.

(3) The algebraic dimension a(X) �= 1.

(4) If dim X = 3 and C moves in a covering family, then X is projective.

Finally we investigate threefolds containing an elliptic curve C with am-
ple normal bundle. In particular we prove that either X is rationally con-
nected, so π1(X) = 0 or π1(X) = Z2, so that

Im(π1(C) → π1(X))

has always finite index. One might asks whether this holds in general for
submanifolds with ample normal bundle.
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1. Preliminaries.

Here we collect basic results and concepts which are essential for this paper.
If X is an irreducible reduced compact complex space, we denote by a(X) its
algebraic dimension. For this notion, for the notion of an algebraic reduction
and related stuff we refer e.g. to [Ue75],[GPR94]. We say that a meromorphic
map f : X ⇀ Y is almost holomorphic, if it is proper and holomorphic on
some open non-empty set U ⊂ X. This means that f has some compact
fibers, i.e. theses fibers do not meet the set of indeterminacies.

Definition 1.1. Let X be a compact Kähler manifold. X is called alge-
braically connected if there exists a family of curves (Ct) such that Ct is
irreducible for general t and such that every two very general points can be
joined by a chain of Ct’s.

Then we have Campana’s theorem [Ca81]

Theorem 1.2. Every algebraically connected compact Kähler manifold is
projective.

An immediate consequence of this theorem is

Corollary 1.3. Every algebraic reduction of a threefold with a(X) = 2 is
almost holomorphic.

Definition 1.4. A compact Kähler manifold X is simple, if there is no
proper positive-dimensional subvariety through a very general point of X.

Concerning the structure of simple compact Kähler threefolds one has
the

Conjecture 1.5. Every simple compact Kähler threefold is Kummer, i.e.
bimeromorphic to T/G, with a torus T and a finite group G acting on T.

For the relation to Mori theory in the Kähler case, see [Pe98].
We will need the following classification of compact Kähler threefolds

due to Fujiki [Fu83].

Theorem 1.6. Let X be a compact Kähler threefold with a(X) ≤ 1.
(1) If a(X) = 0 but not simple, then X is uniruled and moreover there exists
a holomorphic map f : X → S to a normal surface S with a(S) = 0, such
that the general fiber is P1.
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(2) If a(X) = 1 and if a holomorphic model of the algebraic reduction admits
a multi-section, then X is bimeromorphic to (A×F )/G, where A is a torus
or K3 with a(A) = 0, where F is a smooth curve and where G is finite
group acting on A and on F and acting on the product diagonally. The map
X ⇀ F/G is an algebraic reduction over the smooth curve F/G.
If no holomorphic model of the algebraic reduction admits a multi-section,
then f is holomorphic and the general fiber is a torus or K3.

Notations 1.7. Let X be a compact Kähler manifold of dimension n.
(1) The Kähler cone K(X) is the subset of H1,1 := H1,1(X) ∩ H2(X, R)
consisting of the Kähler classes of X. It is an open cone in H1,1.
(2) The dual Kähler cone K∗(X) is the dual cone in Hn−1,n−1 :=
Hn−1,n−1(X) ∩ H2n−2(X, R) with respect to the natural pairing H1,1(X) ×
H1,1(X) → R.

By K(X) we will denote the closure of the Kähler cone in H1,1 with
respect to the usual topology. In contrast,the dual Kähler cone is closed by
definition.
The following seems to be well-known, however we could not find an explicit
reference, so we give a short proof. A general good reference for the theory
of current is [Ha77].

Proposition 1.8. Let X be a compact Kähler manifold. Then K∗(X) is the
cone P(X) of classes of positive closed currents of bidimension (1, 1).

Proof. By Demailly-Paun [DP04], Corollary (0.3), K∗(X) is the closed cone
generated by classes of currents [Y ]∧ωp−1, where Y is an irreducible analytic
set of dimension p and ω a Kähler form. Of course, [Y ] is the current given
by integration over Y. Since all these currents [Y ]∧ωp−1, are positive, K∗(X)
is contained in the cone P(X). The other inclusion being clear, the assertion
follows. Q.E.D.

2. Blow-ups and Galois covers.

We investigate the behaviour of interior points of the dual Kähler cone under
blow-ups and special Galois covers. The results will be needed in sect. 3. In
this section X always denotes a compact Kähler threefold unless otherwise
stated.
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Proposition 2.1. Let π : X̂ → X be the blow-up along a submanifold Y. If
K∗(X) contains a rational interior point, then so does K∗(X̂).

Before giving the proof, we explain the idea in the simple case that the
rational interior point, which is in general represented by a positive closed
current, is represented by an effective curve. So let C =

∑
aiCi be an

effective curve, ai > 0 such that [C] ∈ IntK∗(X). In case Ci �= Y, we let
Ĉi ⊂ X̂ be the strict transform of Ci; if Ci = Y, we let Ĉi be a section of
π|E → Y.
Then

∑
ai[Ĉi] + m[l] is an interior point of K∗(X̂) for a suitable rational m.

Here l is a fiber of π|E if dim Y = 1 resp. a line in E 
 P2 if dim Y = 0.
In the general case however, the arguments get more involved since “strict
transforms of currents” cannot be defined in general [Me96,p.52/53]. This
surprising point was explained to us by J.P.Demailly.

Proof. Let α ∈ IntK∗(X) ∩ H4(X, Q) and represent α by a positive current
T. Let E = π−1(Y ) be the exceptional divisor and l either a line in E, if
dim Y = 0 or a ruling line, if dim Y = 1. We fix a section Ŷ ⊂ E in case E
is ruled. If E = P2, then we set formally Ŷ = 0.
We consider the canonical decomposition

T = χY T + χX\Y T ;

χY denoting the characteristic function of Y. All currents occuring in this
decomposition are closed. If dim Y = 0, then χY T = 0; if dim Y = 1, then
by Siu’s theorem [Si74], χY T = aTY , where a ≥ 0 and TY is the current
“integration over Y ”. In particular dχX\Y T = dχY T = 0. Let T ′ := χX\Y T
for simplicity. We will proceed in three steps.

1. π∗([T ′]) ∈ K∗(X̂) (possibly on the boundary);

2. α̂ := a[Ŷ ] + b[l] + π∗([T ′]) ∈ IntK∗(X̂) for b > 0;

3. α̂ can be chosen rational.

Starting with the proof of (1), let ω̂ be a Kähler form on X̂, and we need to
show

π∗([T ′]) · ω̂ ≥ 0. (∗)

Let S := π∗(ω̂); then S is a positive closed current on X̂ which is smooth
outside Y. We have

[ω̂] = π∗[S] + λ[E],
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with some negative number λ. Therefore

π∗[T ′] · ω̂ = π∗[T ′] · π∗[S] = [T ′] · [S].

We show that
[T ′] · [S] ≥ 0.

In fact, using Demailly’s regularization theorem, we can write [S] as a weak
limit of smooth positive closed forms Θε in the same cohomology class as T ′

such
Θε ≥ −λεu − O(ε)η,

where η is a positive (1, 1)−form, u a suitable semi-positive (1, 1)−form and
(λε) a decreasing family of non-negative smooth functions for 0 < ε < 1
converging pointwise to 0 on X \ Y and to the Lelong number ν(S, x) for
x ∈ Y. We conclude

[S] · [T ′] = [Θε] · [T ′] = T ′(Θε) ≥ −
∫

X
λεu ∧ T ′ − O(ε).

Then the monotone convergence theorem gives the claim since χY T ′ = 0.
(2) By (1) we know already that α̂ ∈ K∗(X̂). If it is not in the interior, then
there exists β̂ ∈ ∂K(X̂) such that

α̂ · β̂ = 0.

Hence
0 = a[Ŷ ] · β̂ + b[l] · β̂ + π∗([T ′]) · β̂. (a)

Since all summands are semi-positive, we conclude first

[Ŷ ] · β̂ = [l] · β̂ = 0. (b)

Now (b) implies that β̂ = π∗(β), with β ∈ K(X), as we shall see in a moment
(claim (c)). Since by (a) and (b) we have [T ′] · β = 0, and since [T ] is an
interior point of K∗(X), we conclude

[Y ] · β > 0

(this already settles the case dim Y = 0). But then [Ŷ ] · β̂ > 0 ( represent β
by a form), contradiction.
It remains to prove claim (c) in order to settle (2). It is clear by (b) that
β̂ = π∗(β), it only remains to show that β ∈ K(X). Notice that β · Y = 0.
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Assuming the contrary, there exists [T ] ∈ K∗(X), such that β · [T ] < 0. By
virtue of the decomposition

T = aTY + χX\Y T

we may assume χY T = 0. Hence by (1)

β̂ · π∗[T ] = β · [T ] < 0,

with π∗[T ] ∈ K∗(X̂), contradicting β̂ ∈ K(X̂). So (c) and therefore (2) are
proved.
(3) It remains to show that α̂ can be made rational by chosing b appro-
priately. This is however completely obvious, having in mind that π∗[T ] is
already rational. Q.E.D.

In case T is the integration over an effective curve, the proof of (2.1) also
shows - as already mentioned

Proposition 2.2. Let π : X̂ → X be as in (2.1), C ⊂ X an effective
curve. If [C] ∈ IntK∗(X), then there exists an effective curve Ĉ ⊂ X̂ with
π∗(Ĉ) = C as cycle such that [Ĉ] ∈ IntK∗(X̂).

The “converse” of (2.1) is also true:

Proposition 2.3. Let π : X̂ → X be as in (2.1). If K∗(X̂) contains an
interior rational point, so does K∗(X).

Proof. Let α ∈ IntK∗(X̂) ∩ H4(X̂, Q) and represent it by a positive current
T̂ . Let T = π∗(T̂ ). Then we claim that

[T ] ∈ IntK∗(X) ∩ H4(X, Q).

It is clear that [T ] is rational. Notice that

π∗ : Hq(X, R) → Hq(X̂, R)

is injective, since π is surjective. Hence π∗ maps K(X) into K(X̂), therefore

T (β) = T̂ (π∗(β)) > 0

for all β ∈ K(X) \ {0}, proving our claim. Q.E.D.

Again we have the following special case:
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Proposition 2.4. Let Ĉ ⊂ X̂ be an effective curve, C = π∗(Ĉ). If [Ĉ] ∈
IntK∗(X̂), then [C] ∈ IntK∗(X).

The same reasoning as in (2.3) actually shows (in all dimensions)

Proposition 2.5. Let f : X → Y be a surjective holomorphic map of com-
pact Kähler manifolds of positive dimension, let T be a positive closed cur-
rent of bidimension (1, 1) on X such that [T ] ∈ IntK∗(X). Then [f∗(T )] ∈
IntK∗(Y ).

Putting things together (including (2.1)) and applying [OP00], we obtain

Proposition 2.6. Let X be a compact Kähler threefold, S a smooth com-
pact surface and f : X ⇀ S a dominant meromorphic map. Suppose that
IntK∗(X) ∩ H4(X, Q) �= ∅. Then S is projective.

Finally we need also to consider very special singular threefolds. The
Kähler assumption on X we make is just that X has a Kähler desingulari-
sation. We do not try to define the closure of the Kähler cone and its dual
but just give the minimum amount of definition we need.

Definition 2.7. Let X be a normal compact complex space, dim X = 3.
Let π : X̂ → X be a desingularisation with X̂ Kähler. Let C ⊂ X be an
effective curve. We say that “C is in the interior of the dual Kähler cone of
X” iff there exists an effective curve Ĉ ⊂ X̂ such that π∗(Ĉ) = C and such
that [Ĉ] ∈ IntK∗(X̂).

By (2.2) and (2.4) this definition does not depend on the choice of the
Kähler desingularisation. The main point is now

Proposition 2.8. Let X be a compact Kähler manifold, Y a normal com-
pact complex space and h : X → Y a Galois covering with Galois group G,
étale in codimension 1. Let C =

∑
aiCi be an effective curve in Y such

that Ci �⊂ SingY for all i. Suppose that C is an interior point of the dual
Kähler cone of Y. Then there exists a G-stable effective 1-cycle C ′ ⊂ X with
h∗(C ′) = C set-theoretically such that [C ′] ∈ IntK∗(X).

Proof. First of all notice that Y admits a Kähler desingularisation π : Ŷ →
Y. The existence of C ′ with h(C ′) = C is clear; moreover we can make
it G-stable by averaging. Hence we may assume h∗(C ′) = C as cycles.
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Suppose [C ′] ∈ ∂K∗(X). Then we find some α ∈ K(X) \ {0} with C ′ ·α = 0.
Substituting possibly α by

α̃ =
∑
g∈G

g∗α ∈ K(X) \ {0},

we may assume from the beginning that α is G−invariant, and we still have
C ′ · α = 0 since C ′ is G-stable. Thus α is of the form

α = h∗(β).

We are going to show that this contradicts [C] to be an interior point of
K∗(Y ). By definition and our assumption that [C] is an interior point, we
have an effective curve Ĉ ⊂ Ŷ which is an interior point of K∗(Ŷ ) and
projects to C. On the other hand we claim

π∗(β) ∈ K(Ŷ ) \ {0}, (1)

and
Ĉ · π∗(β) = 0. (2)

This will give a contradiction.
To verify (1) we may assume that α is represented by a Kähler form ω (then
take closure). By averaging, we can write

ω = h∗(ω′),

where ω′ is a Kähler form on Yreg but ω′ extends to all of Y as explained now.
Fix a point y0 ∈ Y and a small neighborhood U and consider V = h−1(U).
Then on V we can write

ω = i∂∂φ

with a strictly plurisubharmonic function φ. By substituting φ by
∑

g∈G g∗φ
and observing ∂∂(g∗φ) = g∗∂∂φ, we may assume φ to be G-invariant, hence
we can write

φ = h∗(φ′)

with a plurisubharmonic function φ′ on U. Therefore

ω′ = i∂∂φ′

on Ureg with an extendable function φ′. From this description it immediately
follows that π∗(ω′) extends to a semipositive (1, 1)−form on all of Ŷ , proving
(1).
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(2) We choose a sequence of smooth blow-ups ρ : Z → X inducing a map
σ : Z → Ŷ such that

π ◦ σ = h ◦ ρ.

Choose an effective curve C̃ ⊂ Z with ρ∗(C̃) = C ′. Then h∗ρ∗(C̃) = C, hence
π∗σ∗(C̃) = C and thus Ĉ and σ∗(C̃) differ only by cycles supported on the
exceptional locus of π. Consequently

Ĉ · π∗(β) = C̃ · σ∗π∗(β) = C̃ · ρ∗(α) = Ĉ · α = 0,

proving (2). Q.E.D.

3. Interior points and algebraicity.

Here we investigate the influence of a curve which is an interior point of the
dual Kähler cone on the algebraicity on the underlying Kähler manifold.

Theorem 3.1. Let X be a compact Kähler threefold, C ⊂ X an effective
curve. If [C] ∈ IntK∗(X), then a(X) ≥ 2, unless X is simple non-Kummer.

Proof. Suppose that a(X) ≤ 1. We have to prove that X is simple non-
Kummer.
(1) Case a(X) = 0.
If X is not at the same time simple and non-Kummer, then by (1.6), X

is uniruled or Kummer. In the first case we have a meromorphic map
f : X ⇀ S to a smooth surface S with a(S) = 0, contradicting (2.6). So X
is Kummer, hence X is bimeromorphically equivalent to T/G with a torus
T and a finite group G. By (2.2) we may assume that there is a holomorphic
bimeromorphic map f : X → T/G. Then dim f(C) = 1. This is either seen
by desingularising T/G, making f again holomorphic and applying (2.2) or
by directly using the arguments of (2.8). Hence T contains a compact curve
which may be assumed G-stable. Since a(T ) = 0, T has the structure of
an elliptic fiber bundle h : T → T ′ to a torus T ′ with a(T ′) = 0. Now G
acts also on T ′ and we have a map T/G → T ′/G. In total we obtain a map
X → T ′/G contradicting (2.6).

(2) Case a(X) = 1.
Here we may assume that we have a holomorphic algebraic reduction f :
X → B to the smooth curve B. By (2.5), f(C) = B, so f has a multi-
section. By (1.6), X is therefore bimeromorphic to (A×F )/G =: X ′, where
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A is a torus or K3 with a(A) = 0, F is a smooth curve and G a finite group
acting diagonally on A × F . Thus we have a holomorphic map

(A × F )/G → A/G

and thus a meromorphic dominant map X ⇀ A/G. This contradicts Theo-
rem 2.5. It is also possible to avoid the use of 2.5 (and thus of [OP00]) and
argue directly by 2.8. Q.E.D.

We are now addressing the question whether it is possible to have a
compact Kähler threefold X with a(X) = 2 admitting a smooth curve C
such that [C] ∈ IntK∗(X). In this direction we prove

Proposition 3.2. Let f : X → S be a surjective holomorphic map having
connected fibers from the smooth compact Kähler 3-fold X to the smooth
projective surface S. Let C ⊂ S be an irreducible curve with C2 > 0. Suppose
that XC = f−1(C) is Moishezon and irreducible. Let B ⊂ XC be a general
irreducible curve. Then [B] ∈ IntK∗(X).

A general curve B ⊂ XC is understood to be the image of a general
hyperplane section B̂ ⊂ X̂C .

Proof. Suppose [B] ∈ ∂K∗(X). Then there exists a non-zero class α ∈ ∂K(X),
such that

α · B = 0.

We claim
α · XC = 0. (1)

Let i : XC → X denote the inclusion and let π : X̂C → XC be a desingular-
isation; set g = π ◦ i. Then

g∗(α) · g∗([B]) = 0.

Now we can write
g∗([B]) = [B̂] +

∑
aiEi

with ai ≥ 0 and Ei the exceptional curves of π. Hence we conclude that

g∗(α) · B̂ = 0.

Now g∗(α) ∈ K(X̂C), thus the ampleness of B̂ gives g∗(α) = 0, i.e. α·XC = 0,
proving (1).
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Since C2 > 0 and C is irreducible, some multiple mC is generated by global
sections (by a theorem of Zariski, see [Ha70,p.65]). So mC carries a metric
whose curvature form ω is semipositive and positive outside finitely many
curves. By (1) we obtain

α · f∗(ω) = 0,

so that
α · f∗(ω) · η = 0 (2)

for all Kähler forms η on X. In order to exploit this, we represent α by a
positive closed (1, 1)-current T. Let S0 be the maximal open subset of S
over which f is a submersion and let X0 = f−1(S0). Then a small local
calculation in X0 shows that f∗(ω) ∧ η is a strictly positive (2, 2)-form on
X0. By (2) we have

T (f∗(ω) ∧ η) = 0,

hence supp(T ) ⊂ X \X0. Since dim(X \X0) = 2, Siu’s well-known theorem
says that

T =
∑

λiZi,

where the Zi are irreducible components of X \X0, where λi > 0 and where
the right hand side of course means integration over the cycle. We fix a pos-
itive integer m such that mC is generated by sections and therefore defines
a map g : S → S′ to a normal projective surface S′. Now let C ′ ⊂ |mC| be
a general member. Then (2) yields∑

λiZi · XC′ = 0.

Since the support of both divisors
∑

λiZi and XC′ do not have common
components, it follows that Zi ∩XC′ = ∅ for all i. Now either dim f(Zi) = 0
or f(Zi) · C ′ = 0, whence f(Zi) has to be contracted by g. So

dim(g ◦ f)(Zi) = 0

for all i. This is incompatible with α =
∑

λi[Zi] ∈ K(X), and thus producing
a contradiction. In fact, we decompose

∑
λiZi into connected components

and write with the appropriate multiplicities:∑
λiZi =

∑
µjWj.

So the Wj are pairwise disjoint and are supported in fibers of g ◦ f so that
clearly all Wj are not nef (recall that the general fiber of g ◦f has dimension
1). So α �∈ K(X). Q.E.D.

With the same proof we can also deal with the case that XC is irreducible:
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Proposition 3.3. If in 3.2 XC is reducible, say XC = A1 ∪ . . . ∪ Ar, then
we take Bi ⊂ Ai general and put B =

∑
Bi. Again [B] ∈ IntK∗(X).

Corollary 3.4. Let X be a smooth compact Kähler 3-fold with a(X) = 2
with holomorphic algebraic reduction f : X → S to a smooth projective
surface S. Let

∆ = {s ∈ S|Xs singular, not multiple elliptic }.
Suppose ∆ contains an irreducible component C with C2 > 0. Then X car-
ries a (possibly reducible) curve B such that [B] ∈ IntK∗(X). If f−1(C) is
irreducible, i.e. the general fiber over C is irreducible (rational), then B can
be taken irreducible.

Proof. We only have to show that XC = f−1(C) is Moishezon. This however
is clear since XC is covered by rational curves, the fibers of f over C. Q.E.D.

Remark 3.5. (1) It remains to explicitly construct a Kähler 3-fold X with
a(X) = 2 (with holomorphic algebraic reduction; this can always be achieved
by blowing up X) fulfilling the requirements of (3.4). It seems unimaginable
that such a 3-fold should not exist; non-existence would simply mean that
any component C of ∆ (as in (3.4)) has C2 ≤ 0. On the other hand, an
explicit construction is not obvious. Of course there are projective elliptic
3-folds with a curve C ⊂ ∆ and C2 > 0. So one might try to deform X in a
non-algebraic Kähler 3-fold keeping the curve C.
(2) It is easy to construct elliptic Kähler 3-folds f : X → S of algebraic
dimension 2 admitting a curve C ⊂ ∆ such that C2 = 0. In fact, let f1 :
S1 → B be an elliptic Kähler surface with a(S1) = 1 and f2 : S2 → B a
projective surface. Suppose that f1 has some non-elliptic fibers and that the
singular loci of f1 and f2 in B are disjoint. Then

X = S1 ×B S2

is a smooth Kähler 3-fold with a(X) = 2 and algebraic reduction f : X → S2.
Now ∆f = ∆f1 ×B S2 so that ∆f contains of fibers of f2.
(3) Here is a possible way how to construct g : X → S as required in (3.4).
The procedure is as follows: we start with a fibration f : X → C from the
compact Kähler 3-fold X with a(X) = 2 to the smooth curve C. Suppose that
a(Xc) = 1 for the general fiber Xc of f such that the algebraic reduction
has non-elliptic singular fibers. Then we can form the relative algebraic
reduction X ⇀ S → C. Suppose that S is smooth and f : X ⇀ S is actually
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holomorphic. Then f is an elliptic fibration and S is projective. Moreover
“in general” ∆ should dominate C. This gives hope to find C ⊂ ∆ with
C2 > 0. The difficulty is to find a starting fibration g : X → C; the possible
most natural choice would be require Xc to be a Kummer surface and that
g is a submersion. Then the above construction will work and therefore we
are reduced to the following

Problem 3.6. Does there exist a compact Kähler threefold Z with a sub-
mersion h to a curve C such that the general fiber is a torus of algebraic
dimension 1?

It is not so difficult to construct a non-Kähler submersion Z → C such
that the general fiber is a torus of algebraic dimension 1, but the Kähler
property seems difficult to achieve.

Here is a mild restriction for Kähler 3-folds X containing a curve C which
is an interior point of the dual Kähler cone.

Proposition 3.7. Let X be a smooth compact Kähler 3-fold with algebraic
reduction f : X ⇀ S to the smooth projective surface S. Suppose IntK(X)
contains a (possibly reducible) curve. Then q(X) = q(S).

Proof. Assume q(X) > q(S). By considering a holomorphic model for f
and appyling the Leary spectral sequence, we see immdiately that q(X) =
q(S) + 1. Let q = q(S). If α : X → α(X) ⊂ Aq+1 and β : S → β(S) ⊂ Bq

denote the Albanese maps, then we conclude that α(X) cannot be projective,
otherwise we would have q(S) = q(X). Let γ : α(X) → β(Y ) be the induced
map. Since β(Y ) is projective, γ is not generically finite. It is important to
notice that dim γα(C) = 1 by (2.4).

We are thus left with the following cases:
(a)dim α(X) = 2. Then α(C) is a multi-section of γ, making α(X) projec-
tive.
(b) dim α(X) = 3. Then necessarily dim β(Y ) = 2 and now γ has a par-
tial multi-section α(X). But γ is the reduction of the canonical projection
Aq+1 → Bq which (up to finite étale cover) is an elliptic fiber bundle without
transverse curves; contradiction. Q.E.D.

4. Interior points and the normal bundle.

In this section we investigate curves in Kähler manifolds, their normal bun-
dles and the connection with the dual Kähler cone. Here it is not always
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necessary to restrict to low dimensions.

Conjecture 4.1. Let X be a compact Kähler manifold and C ⊂ X a smooth
curve with ample normal bundle. Then [C] ∈ IntK∗(X).

As a direct consequence of Theorem 3.1 in dimension three, we are lead
to

Conjecture 4.2. Let X be a compact Kähler manifold, Y ⊂ X a positive-
dimensional compact submanifold with ample normal bundle. Then a(X) ≥
dim Y + 1.

In our feeling, (4.2) seems more accessible than (4.1). Notice that (4.2)
holds for hypersurfaces.

In this section we verify (4.1) and (4.2) in special cases. First we notice
that (4.1) and (4.2) hold in the surface case, even without Kähler assumption.

Proposition 4.3. Let X be a smooth compact surface, C ⊂ X an effective
curve with ample normal bundle. Then X is projective and [C] ∈ Int K∗(X).

Proof. The first assertion is classical using Riemann-Roch and the fact that
Moishezon surfaces are projective.
The second assertion is clear if C is an ample divisor on X. If C is not ample,
C is big and nef, in particular C2 > 0. Now assume that [C] is not an interior
point of K∗(X). Then we find 0 �= α ∈ K(X) such that

C · α = 0.

Hence the Hodge Index Theorem for H1,1 yields α ≡ mC with a positive
real number m. So C · α = mC2 = 0, contradiction. Q.E.D.

Now we prove a special case of conjecture 4.1.

Theorem 4.4. (1) Let C ⊂ X be an effective curve in a smooth projective
threefold X. Suppose that there is a smooth ample surface S ⊂ X with C ⊂ S
such that NC|S is ample (e.g. C is a complete intersection C = S ∩ S′ with
ample S′). Then [C] ∈ Int K∗(X).
(2) Let C be a smooth complete intersection curve of hyperplane sections in
the projective manifold X. Then [C] ∈ Int K∗(X).
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Proof. (1) The inclusion i : S → X yields a map i∗ : K(X) → K(S). Since
S is ample, i∗ is injective. Take α ∈ K(X) \ {0} and represent it by a form
ω. Then

∫
C ω =

∫
C i∗(ω), and since [i∗(ω)] ∈ K(S), we conclude from (4.3)

that α · C =
∫
C ω > 0.

(2) follows now by induction. Q.E.D.

Concerning Conjecture 4.2 we prove

Theorem 4.5. Let C ⊂ X be a smooth curve with ample normal bundle
NC in the compact Kähler manifold X. Assume moreover that NC ⊗ TC is
ample. Then X is projective.

Proof. We check the projectivity of X by showing

H2(X,OX ) = H0(X, Ω2
X) = 0. (∗)

This is shown by adopting the method of [PSS99, 2.1]: by power series
expansion, one has the inequality

h0(X, Ω2
X) ≤

∞∑
k=0

h0(C,SkN∗
C ⊗ Ω2

X |C). (∗∗)

Taking
∧2 of the sequence

0 → N∗
C → Ω1

X |C → Ω1
C → 0,

we obtain a sequence

0 →
2∧

N∗
C → Ω2

X |C → Ω1
C ⊗ N∗

C → 0.

Tensoring with SkN∗
C for k ≥ 0, taking cohomology and having in mind our

ampleness assumptions, we obtain the vanishing

H0(C,SkN∗
C ⊗ Ω1 ⊗ N∗

C) = 0

for k ≥ 0 from which (*) follows by virtue of (**). Q.E.D.

We remark that in most cases in Theorem 4.5 it is easily seen that [C] ∈
IntK∗(X).

Corollary 4.6. Let X be a compact Kähler manifold, C ⊂ X a smooth
curve with ample normal bundle. If g(C) ≤ 1, then X is projective.
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Of course one can formulate more general versions of (4.5) e.g. for re-
duced locally complete intersection curves; we leave that to the reader. We
will prove more on the structure of X (in case C is elliptic and dim X = 3) in
sect.5. Observe that (4.5) and (4.6) hold also in the following more general
context: it is sufficient to assume that X is in class C, i.e. bimeromorphic
to a Kähler manifold. Then the conclusion is that X is Moishezon.

Theorem 4.7. Let X be a compact Kähler threefold and C ⊂ X a smooth
curve. Suppose that the normal bundle NC is ample.
(1) If κ(X) ≤ 0, then X is projective or X is simple non-Kummer.
(2) a(X) �= 1.

Proof. (I) We first show the following general statement. Suppose f : X → Y
is a surjective holomorphic map, then dim f(C) = 1.
In fact, suppose C ⊂ f−1(y) for some y ∈ Y. Let F be the complex-analytic
fiber over y. Now choose k maximal such that the k−th infinitesimal neigh-
borhood Ck is still a subspace of F. Then we obtain an exact sequence of
conormal sheaves

N∗
F/X |Ck → N∗

Ck/X → N∗
Ck/F → 0.

Restricting to C and observing that

N∗
F/X |C → N∗

Ck/X |C

does not vanish by the choice of k, the spannedness of N∗
F/X provides a non-

zero section of N∗
Ck/F |C. Thus SkN∗

C/X has a non-zero section, contradicting
the ampleness of NC .

(II) We next show that a(X) �= 1. We first claim that every resolution of
indeterminacies of the algebraic reduction f : X ⇀ B admits a multi-section.
In fact, otherwise f itself is holomorphic and would contract C contradicting
(I). Then by (1.6), X is bimeromorphically of the form (A × F )/G, with
a(A) = 0 and F a curve. So A is K3 or a torus. In case A is K3, we subsitute
A by the blow-down of all (−2)−curves. So we may assume that A does not
contain any curve at the expense that A may be singular. Therefore the
induced map

h : X ⇀ A/G

is actually holomorphic. In particular h contracts C which again contradicts
(I).
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(III) Now suppose κ(X) = −∞ and that X is not both simple non-Kummer.
Suppose moreover a(X) = 0. In that case we have by (1.6) a holomorphic
map f : X → S to a normal surface S with a(S) = 0, the general fiber of
f being a smooth rational curve. Arguing as in (II), we may assume that
S does not contain any curve. So f(C) is a point, contradicting (I). So
a(X) �= 0.
By (II) it therefore remains to exclude a(X) = 2. So suppose a(X) = 2
and let f : X ⇀ S be an algebraic reduction. By [CP00], X is uniruled,
so we can form the rational quotient h : X ⇀ Z of a covering family of
rational curves. The fibers of h being rationally connected, we conclude
that dimZ > 1, otherwise X would be projective. Therefore dim Z = 2
and since a(X) = 2, we must have a(Z) = 1. Using the algebraic reduction
Z → B we obtain a meromorphic map g : X ⇀ B. The general fiber of
g is bimeromorphically a P1-bundle over an elliptic curve, hence algebraic.
Again a holomorphic model of g cannot have a multi-section by (1.2), hence
g must be holomorphic and again provides a contradiction. Q.E.D.

(IV) We are left with κ(X) = 0 and suppose X is not both simple non-
Kummer. By [CP00], Theorem 8.1, X has a birational model X ′ which
admits a finite cover, étale in codimension 1, say X̃ , such that X̃ is either a
torus or a product of an elliptic curve with a K3 surface.
(a) a(X) = 0. Then X is bimeromorphically T/G with T a torus. If T
has no curves, then we actually have a holomorphic map h : X → T/G
and conclude by (I). If T admits a curve, we have an elliptic fiber bundle
structure g : T → T ′ to a 2-dimensional torus T ′ with a(T ′) = 0 and every
curve in T is a fiber of g. Then there is an induced map T/G → T ′/G, and
T ′/G has no curves, so that the meromorphic map X ⇀ T ′/G is actually
holomorphic. We conclude by (I).
(b) Since a(X) �= 1 by (II), we are left with a(X) = 2.
(b.1) Suppose first X̃ = W × E with W a K3-surface, a(W ) = 1 and E
elliptic. With X ′ = X̃/G, we note that the G−action on X̃ is diagonal,
hence we have by composing with the algebraic reduction h : W/G → C a
meromorphic map

g : X ⇀ C

to a rational curve C. Since h has no multi-sections, any multi-section of a
resolution of X → W/G must be mapped to a fiber of h. Hence g is almost
holomorphic, hence holomorphic. Since dim g(C) = 0, we conclude by (I).
(b.2) Suppose finally that X̃ is a torus. Then the algebraic reduction of X̃
provides an elliptic bundle structure X̃ → B̃ to an abelian surface without
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multi-sections. We obtain a map X̃/G → B̃/G without multi-sections and
X ∼ X̃/G. So the induced map X ⇀ B̃/G must be holomorphic and will
contract C, contradicting (I). Q.E.D.

Corollary 4.8. Let X be a compact Kähler threefold, C ⊂ X a smooth
curve. Assume that the normal bundle NC is ample. Then a(X) ≥ 2 unless
X is simple non-Kummer.

Corollary 4.9. Let C be a smooth curve in the compact Kähler threefold
with ample normal bundle. If KX · C < 0, then X is projective unless X is
simple non-Kummer with κ(X) = −∞.

Proof. It is sufficient to prove κ(X) = −∞; then we apply (4.7). This follows
essentially from [PSS99,2.1] and is parallel to the argument in (4.5). Namely,
we claim that for all t ∈ N and all k ∈ N the following vanishing holds

H0(C,SkN∗
C ⊗ Kt

X |C) = 0. (∗)

This is clear since NC is ample and KX |C is negative by adjunction. On
the other hand power series expansion gives

h0(X,Kt
X ) ≤

∞∑
i=0

h0(C,SkN∗
C ⊗ Kt

X |C).

Thus (*) gives κ(X) = −∞. Q.E.D.

For the cases κ(X) = 1, 2 we need a stronger assumption than just the
existence of the family (Ct).

Theorem 4.10. Let X be a compact Kähler threefold, C ⊂ X a smooth
curve with ample normal bundle. Suppose that C moves in a family (Ct)
that covers X. Then X is projective.

Proof. By (4.7) we may assume a(X) ≥ 2. So we have a meromorphic elliptic
fibration f : X ⇀ S to a projective surface S. Since g(Ct) ≥ 2, we conclude
dim f(Ct) = 1 for general t and therefore the Ct make X algebraically con-
nected, thus X is projective, contradiction. Q.E.D.

Example 4.11. In general curves in the interior of the dual Kähler cone of
course are far from having ample normal bundle. For a trivial example take
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a threefold X with b2(X) = 1 containing a (−1,−1)−curve, i.e. a smooth
rational curve C with normal bundle NC = O(−1) ⊕O(−1).

Another interesting class of curves are the connecting curves:

Definition 4.12. A family (Ct) of 1−cycles (say with general Ct reduced)
is a connecting family if and only if any general points x, y ∈ X can be joined
by a chain of curves of type Ct.

By (1.2), any variety X carrying a connecting family of 1−cycles is pro-
jective.

Theorem 4.13. Let X be a compact Kähler manifold, (Ct) a connecting
family, then [Ct] ∈ IntK∗(X).

For the proof, see [WK01].

Remark 4.14. Having in mind the results of sect.3, it is likely that there
exists a compact Kähler 3-fold X with a(X) = 2 carrying a smooth or at
least a locally complete intersection curve with ample normal bundle. The
difficulty of course is that in 3.4 the surface XC need not be projective.
Notice also the following. If C ⊂ X is a smooth curve with ample normal
bundle in a projective manifold, then M(Ĉ) is a finite-dimensional M(X)−
vector space, where Ĉ is the formal completion of X along C and M is the
sheaf of meromorphic functions. One says that C is G2 in X, see [Ha70].
A counterexample as above with ample normal bundle would indicate that
this property does no longer hold in the Kähler setting. In fact, it seems
likely that the ampleness of the normal bundle forces the field of formal
meromorphic functions along C should have transcendence degree 3 over
the complex numbers.

For some new results concerning Conjecture 4.1 we also refer to [BM04].

5. Structure of projective threefolds containing a smooth
elliptic curve with ample normal bundle.

Let X be a smooth projective threefold containing a smooth curve C with
ample normal bundle NC . If C is rational, then X is rationally connected
[KoMiMo92]. In this section we consider the case that C is elliptic and we
shall fix this situation unless otherwise stated. By [PSS99,2.1], see (4.5),
we have κ(X) = −∞, hence X is uniruled. Applying the minimal model
program, we find a birational rational map f : X ⇀ X ′, given by a sequence
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of birational contractions and flips, and a contraction g : X ′ → Y with
dim Y ≤ 2. Notice that in case dim Y = 2, Y has only rational singularities
and also that π1(X) = π1(X ′) = π1(Y ) (see e.g. [Ko95]). We have the
following structure theorem.

Theorem 5.1. (1) The irregularity q(X) ≤ 1.
(2) If q(X) = 0 then X is rationally connected. In particular we always have
π1(X) = 0.
(3) If q(X) = 1, then C is an étale multi-section of the Albanese map α :
X → A and α factor over the Albanese β : Y → A. The general fiber of α is
a rational surface. Moreover either β = id, or dim Y = 2, κ(Y ) = −∞ and
Y is a generic P1−bundle over A. In particular π1(X) = Z2; more precisely

α∗ : π1(X) → π1(A) = Z2

is an isomorphism and Im(π1(C) → π1(X)) has finite image.

Proof. (1) It is known in general that Alb(Z) → Alb(X) is surjective, if Z ⊂
X is a submanifold with ample normal bundle in X (see e.g. [Ha70,p.116]).
Applying this to Z = C, we get q(X) ≤ q(C) = 1.
(2) By [KoMiMo92], it is sufficient to show that

H0(X,StΩ2
X) = 0 (∗)

for all t ≥ 1 (actually t = 2 suffices). We verify this by the same method as
in (4.5). In fact, (*) will follow from

H0(C,SkN∗
C ⊗ StΩ2

X |C) = 0 (∗∗)

for all k ≥ 0 and all t ≥ 1. In order to verify (*), we use the sequence

0 → N∗
C → Ω1

X |C → Ω1
C = OC → 0

and take
∧2 to obtain

0 → detN∗
C → Ω2

X |C → N∗
C ⊗ Ω1

C → 0.

Hence Ω2
X |C is a negative vector bundle and thus (**) is clear.

(3) Suppose now q(X) = 1. Then C, having ample normal bundle, is not
contracted by α and therefore it is an étale multi-section of α. The existence
of β and the factorisation property are clear. If dim Y = 1, then we must
have Y = A and π1(X) = π1(A) = Z2. So let dim Y = 2. Notice that (**)
from (2) was independent of q(X) = 0, so it holds also in our context. This
implies κ(Y ) = −∞, whence our claim. Q.E.D.
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Remark 5.2. Notice that the proof of (5.1) yields actually the following.
Let X be a projective manifold, C ⊂ X an elliptic curve with ample normal
bundle. Then

H0(X,StΩk
X) = 0

for all t ≥ 1 and all k ≥ 2. In particular, X does not admit any rational map
to a variety Y with dim Y ≥ 2 and κ(Y ) ≥ 0.

In this context we notice the following very interesting result of Napier-
Ramachandran [NR98]:

Theorem 5.3. (Napier-Ramachandran) Let X be a projective manifold,
Y ⊂ X a submanifold of positive dimension with ample normal bundle
NY .Then

Im(π1(Y ) → π1(X))

has finite index.

Observe that the surjectivity Alb(Y ) → Alb(X), used already in the
proof of (5.1), means that

Im(H1(Y, Z) → H1(X, Z))

has finite index. This is the abelianized version of (5.3). If the Shafare-
vich conjecture holds (“the universal cover of a projective (compact Kähler)
manifold is holomorphically convex”), then by Kollár, see e.g. [Ko95], the
so-called Shafarevich map sh : X → Sh(X) exists which contracts exactly
those subvarieties Z ⊂ X for which Im(π1(Z) → π1(X)) has finite index.
Suppose π1(X) is not finite, i.e.Sh(X) is not a point - in that case (5.3) is
anyway trivial. Since NY is ample, it follows that dim sh(Y ) �= 0, hence
Im(π1(Y ) → π1(X)) is at least infinite. Of course we used the ampleness
here only in a very weak form, namely to conclude that dim sh(Y ) > 0.
Actually dim sh(Y ) = dim Y.
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