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Genuine Deformations of Submanifolds

Marcos Dajczer and Luis A. Florit

We introduce the concept of genuine isometric deformation of an
Euclidean submanifold and describe the geometric structure of the
submanifolds that admit deformations of this kind. That an iso-
metric deformation is genuine means that the submanifold is not
included into a submanifold of larger dimension such that the de-
formation of the former is given by a deformation of the latter.
Our main result says that an Euclidean submanifold together with
a genuine deformation in low (but not necessarily equal) codimen-
sions must be mutually ruled, and gives a sharp estimate for the
dimension of the rulings. This has several strong local and global
consequences. Moreover, the unifying character and geometric na-
ture, as opposed to a purely algebraic one, of our result suggest
that it should be the starting point for a deformation theory ex-
tending the classical Sbrana - Cartan theory for hypersurfaces to
higher codimensions.

The isometric deformation problem for a given isometric immersion
f : Mn → Rn+p of a Riemannian manifold into flat Euclidean space with
codimension p and a positive integer q is to describe all possible isometric
immersions f̂ : Mn → Rn+q. A satisfactory answer to the local version of
the problem for every hypersurface (p = 1) and q = 1 going back almost
a century is due to Sbrana [19] and Cartan [4]. However, basic questions,
like the existence of Sbrana-Cartan hypersurfaces of the discrete type or the
possibility of smoothly attaching different types of these deformable hyper-
surfaces, were answered positively only recently; see [10] and also [3] for a
special case. The global version of the problem for hypersurfaces was solved
in [11] and [18].

Nothing similar to the Sbrana-Cartan theory for codimensions q = p
higher than one has yet been obtained. Nevertheless, the classical Beez-
Killing rigidity theorem for hypersurfaces, the starting point for the theory,
has several generalizations; see [1], [2], [5] and [20]. All these results provide
generic algebraic conditions on the second fundamental form of the isometric
immersion that imply isometric rigidity, that is, any other isometric immer-
sion must differ by an isometry (rigid motion) of the ambient space.
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There is a large set of isometric deformations once we allow codimension
q > p since one can always compose f : Mn → Rn+p with (local) isometric
immersions of Rn+p into Rn+q. In [7] we found generic algebraic conditions
on the second fundamental form that assure that compositions of this kind
are the only possible deformations. Such a composition for q = p is just an
isometric congruence, and thus the result in [7] reduces to the rigidity one
in [5].

Since a submanifold of a deformable one is also deformable, to go deeper
into the deformation problem one has to discard those deformations that
arise this way, in particular, through compositions as above. Our goal in
this paper is twofold. First to introduce the concept of genuine deformation,
and then to give the geometric structure of the submanifolds that admit
deformations of this kind. As a consequence, we have several applications
for a new rigidity concept that extends the ones already discussed.

We say that a pair f : Mn → Rn+p and f̂ : Mn → Rn+q of isometric
immersions extends isometrically when there are an isometric embedding
j : Mn ↪→ Nm into a Riemannian manifold Nm with m > n and isometric
immersions F : Nm → Rn+p and F̂ : Nm → Rn+q such that f = F ◦ j and
f̂ = F̂ ◦ j. In other terms, the following diagram commutes:

Mn Nm (1)

Rn+p

Rn+q

f

f̂

F

F̂

j
�

�




�

	

We called f̂ in [7] a composition if m = n + p and p ≤ q because Nn+p is
flat and, if f is an embedding, there is an isometric immersion h into Rn+q

of an open neighborhood of f(M) in Rn+p such that f̂ = h ◦ f . Clearly, the
concept of composition for p = q reduces to the standard one of congruence.

Definition. An isometric immersion f̂ : Mn → Rn+q is a genuine deforma-
tion of a given isometric immersion f : Mn → Rn+p if there is no open subset
U ⊂Mn along which the restrictions f |U and f̂ |U extend isometrically.

In this paper, we prove that any pair of submanifolds in low codimen-
sions determined by a genuine deformation is mutually ruled (with the same
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rulings) and give a sharp estimate for the dimension of the rulings. In addi-
tion, we show that the relation discussed in the sequel between the normal
bundles and second fundamental forms that exists for any pair of mutually
ruled submanifolds must satisfy strong additional conditions.

Recall that an isometric immersion f : Mn → Rn+p is d-ruled , or more
specifically, Dd-ruled, if Mn has a (not necessarily maximal dimensionwise)
nontrivial integrable d-dimensional distribution Dd ⊂ TM whose leaves are
mapped diffeomorphically by f to (open subsets of ) affine subspaces of Rn+p.
At each point x ∈M there is an associated orthogonal splitting of the normal
bundle T⊥

f M = LD ⊕ L⊥
D of f , where

LD(x) = span{α(Z,X) : Z ∈ Dd(x) and X ∈ TxM}

is given in terms of its second fundamental form α : TM × TM → T⊥
f M .

Assume that �D = dimLD is constant, and let f̂ : Mn → Rn+q be another
Dd-ruled isometric immersion. Then, by the Gauss equation for f and f̂ ,
there is a unique vector bundle isometry T

D
: LD → L̂D satisfying

α̂|D×TM = T
D
◦ α|D×TM .

Here and elsewhere we mark with a hat any object that refers to f̂ . Then
T

D
may neither preserve second fundamental forms (fully) nor the induced

connections on LD and L̂D. In other words, it may not hold that α̂L̂D
=

T
D
◦αLD

or that T
D

is parallel, where αS = πS ◦α and πS : T⊥
f M → S stands

for the orthogonal projection onto a subbundle S ⊂ T⊥
f M . The following is

an immediate consequence of our main result.

Theorem 1. Let f̂ : Mn → Rn+q be a genuine deformation of f : Mn →
Rn+p with p + q < n and min {p, q} ≤ 5. Then, along each connected
component of an open dense subset of Mn, the immersions f and f̂ are
mutually Dd-ruled with

d ≥ n− p− q + 3 �D,

and TD is a parallel bundle isometry that preserves second fundamental
forms.

Theorem 1 generalizes the one on compositions in [7] (see Theorem 24
below) which extended, beside the result on isometric rigidity in [5], the one
on compositions in [13]. We recall that [5] implies Allendoerfer’s rigidity
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theorem [1] until codimension p ≤ 5 and, in particular, the classical Beez-
Killing rigidity theorem for hypersurfaces, which is also immediate from
ours.

Theorem 1 also generalizes known results on isometric extensions. This
is the case of Theorem 5 in [12] and Theorem 2 in [14]. The former deals with
deformable submanifolds in the special case p = q = 2. In this situation, we
would have from Theorem 1 that �D ≤ 1 and, even for �D = 1, it follows that
the index of relative nullity (i.e., the dimension of the nullity of the second
fundamental form α) of both immersions satisfies ν ≥ n−4. Therefore, if as
in [12] one of the immersions has index ν ≤ n− 5 everywhere, we conclude
that they extend isometrically to either flat or Sbrana-Cartan hypersurfaces.

The following example shows that the estimate in Theorem 1 is sharp
even for p �= q.

Example 2. There exist local isometric immersions of the round sphere
Sn into R2n−1 that cannot be obtained as a composition of the inclusion
in : Sn ↪→ Rn+1 with a local isometric immersions of Rn+1 into R2n−1; see
[15]. These immersions cannot be compositions since they have no umbilical
direction. Hence, given isometric immersions gnj : Snj → R2nj−1 as such,
the product immersion

g = gn1 × · · · × gnp × id : Sn1 × · · · × Snp × Rk → Rn+q,

where n = k +
∑p

i=1 ni, is a genuine deformation of the product in1 × · · · ×
inp× id of inclusions, and satisfies that k = n−p−q is the maximal dimension
of the rulings of g.

The need for assumptions on rulings or nullity bounds in several of the
aforementioned results was not quite well understood at the time but has now
been completely clarified by our constructions; see Theorem 24 below. This
shows that a deeper understanding in the study of basic rigidity questions
can be reached in the broader framework of this paper.

Theorem 1 has several local and global rigidity consequences dealing with
the rigidity concept that arises from the notion of genuine deformation.

Definition. An isometric immersion f : Mn → Rn+p is genuinely
rigid in Rn+q for a fixed integer q if for any given isometric immersion
f̂ : Mn → Rn+q there is an open dense subset U ⊂ Mn such that f |U and
f̂ |U extend isometrically.

The first and immediate consequence is a sharp general rigidity result.
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Corollary 3. Let f : Mn → Rn+p be an isometric immersion and q a pos-
itive integer with p + q < n. If min {p, q} ≤ 5 and f is not (n−p−q)–ruled
on any open subset of Mn, then f is genuinely rigid in Rn+q.

Rather simple arguments give the following three corollaries.

Corollary 4. Let f : Mn → Rn+p be an isometric immersion of a compact
manifold and q a positive integer with p + q < n. If min {p, q} ≤ 5, then
there is an open subset U ⊂Mn such that f |U is genuinely rigid in Rn+q.

In a more general setting where isometric extensions are allowed to be
singular, it was shown in [12] for p = q = 2 in Corollary 4 that f itself is
genuinely rigid. Counterexamples to this result if only regular extensions
are allowed can be constructed; see Example 29. We take this opportunity
to observe that the unproved last assertion of Theorem 1 in [12] is not clear.

Corollary 5. Let f : Mn → Rn+p be an isometric immersion and q a pos-
itive integer such that p + q < n. If min {p, q} ≤ 5 and the Ricci curvature
of Mn is positive then f is genuinely rigid in Rn+q.

Example 2 for p = 1 and k = 0 shows that in the preceding result the first
bound for the codimensions is sharp. The following immediate consequence
of Theorem 1 gives Theorem 3 in [13] and Theorem 1 in [14]. Both results
deal with the characterization of Riemannian manifolds that admit isometric
immersions in two space forms of different sectional curvatures.

Corollary 6. Let f : Mn → Sn+p ⊂ Rn+p+1 be an isometric immersion
and q a positive integer such that p+ q + 1 < n. If min {p+ 1, q} ≤ 5, then
f is genuinely rigid in Rn+q.

We conclude with the following topological criteria for genuine rigidity
that follows easily from Theorem 25 below, and relates to the result for
p = q = 2 given in [12].

Theorem 7. Let Mn be a compact manifold whose first Pontrjagin class
satisfies that [p1]2 �= 0. If n > p + q and p + q ≤ 6, then any analytic
immersion f : Mn → Rn+p is (with the induced metric) genuinely rigid in
Rn+q.

It seems quite possible that the assumption in Theorem 1 that
min {p, q} ≤ 5 cannot be dropped. In that sense, we observe that the key
Lemma 16 does not hold for dimensions higher than five; see [8]. Neverthe-
less, we have a result that includes the case min {p, q} = 6; see Theorem
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14 below. To conclude, we observe that it is straightforward to extend our
results to ambient spaces of arbitrary constant sectional curvature.

The authors would like to acknowledge valuable comments by D. Gro-
moll. The first author is grateful to the people of the Stony Brook Mathe-
matical Department for their kindness and hospitality.

A class of ruled extensions.

In this section we provide conditions that allow to extend to mutually ruled
isometric submanifolds a pair of isometric immersions of a given Riemannian
manifold.

Let f : Mn → Rn+p and f̂ : Mn → Rn+q be a pair of isometric immer-
sions, and let

T : L ⊂ T⊥
f M → L̂ ⊂ T⊥

f̂
M

be a vector bundle isometry. Assume that the vector subspaces

D = N (αL⊥) ∩ N (α̂L̂⊥) ⊂ TM

have constant dimension on Mn, and that the pair (T ,D) satisfies the con-
ditions:

⎧⎨⎩ (C1) The isometry T is parallel and preserves second fundamental forms;

(C2) The subbundles L and L̂ are parallel along D in the normal connections.
(2)

Throughout this paper, given a bilinear form β : V n×Um → W between
finite dimensional real vector spaces we denote by S(β) ⊂ W the subspace
generated by the image of β, that is,

S(β) = span{β(X,Y ) : X ∈ V n and Y ∈ Um},

and by N (β) ⊂ V n the (left) nullity space of β defined as

N (β) = {X ∈ V n : β(X,Y ) = 0 for all Y ∈ Um}.

Let φ : (TM ⊕ L)× TM → L⊥ × L̂⊥ be the bilinear form given by

φ(Y + ξ,X) =
(
(∇̃X(Y + ξ))L⊥ , (∇̃X(Y + T ξ))

L̂⊥

)
, (3)
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and assume further that the vector subspaces

∆ = N (φ) ⊂ TM ⊕ L

have constant dimension on Mn. By condition (C1) the vector bundle isom-
etry defined as T0 = I⊕T : f∗TM⊕L→ f̂∗TM⊕L̂ is parallel in the connec-
tions induced by the Euclidean ambient spaces. It follows that T0 |∆ : ∆ → ∆̂
is a parallel vector bundle isometry, and hence, we may identify ∆̂ with ∆.

Lemma 8. The distribution D ⊂ ∆ is integrable and ∆ ∩ TM = D holds.

Proof: By assumption ∇̃Zµ ∈ L⊥ for all µ ∈ L⊥ and Z ∈ D. The integrabil-
ity of D now follows easily from R̃(Y,Z)µ = 0 for any Y,Z ∈ D and µ ∈ L⊥

or L̂⊥, where R̃ stands for the flat curvature tensor of the Euclidean ambient
spaces. If Y ∈ ∆ ∩ TM and X ∈ TM , then 0 = (∇̃XY )L⊥ = αL⊥(Y,X),
and similarly α

L̂⊥(Y,X) = 0. Thus Y ∈ D, and therefore ∆ ∩ TM = D. �

Consider the vector bundle π : Λ = Λ̂ →Mn determined by the orthog-
onal splitting ∆ = D⊕Λ, and define F : N → Rn+p as the restriction of the
map

λ ∈ Λ �→ f(π(λ)) + λ

to a tubular neighborhood of the 0-section j : Mn ↪→ N ⊂ Λ of Λ along
which F is an immersion. Similarly, define F̂ : N → Rn+q. Henceforth,
L⊥ and ∆ will be understood as vector bundles over N ⊂ Λ by means of
L⊥(λ) = L⊥(π(λ)) and ∆(λ) = ∆(π(λ)).

Proposition 9. The immersions F and F̂ are isometric ∆-ruled extensions

of f and f̂ . Moreover, there are smooth orthogonal splittings

T⊥
F N = L ⊕ L⊥ and T⊥

F̂
N = L̂ ⊕ L̂⊥ (4)

and a vector bundle isometry T : L → L̂ such that

∆ = N (αFL⊥) ∩ N (α̂F̂L̂⊥), (5)

and the pair (T,∆) satisfies conditions (C1) and (C2) in (2).

Proof: It follows from F̂∗ = T0 ◦ F∗ that F and F̂ are isometric. To see that
both immersions are ∆-ruled it suffices to check that ∆ is constant along the
leaves of D. This follows easily from R̃(Y,X)δ = 0 for any Y ∈ D, X ∈ TM
and δ ∈ ∆. The proof of (4) is straightforward. Moreover, taking T = T0|L
we obtain (C1) for F and F̂ .
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Condition (C2) and the inclusion “⊂” in (5) are immediate. For the
opposite inclusion observe that αF

L⊥ |TjM×TjM = αL⊥ , and similarly for F̂
and f̂ . We easily obtain from TjN = TM ⊕Λ that equality is satisfied along
j(M). To conclude the proof observe that the dimension of the right hand
side of the inclusion can only decrease along N from its value on j(M) if N
is taken small enough. �

Observe that the ruled extensions F and F̂ are trivial (i.e., dimN = n)
if f and f̂ are already D-ruled.

Remark 10. The assumptions that the subspaces D and ∆ have constant
dimension are not essential for local purposes. In fact, without them the
same result holds for f and f̂ restricted to connected components of an open
dense subset of Mn.

The structure.

In this section, we study the structure of the tangent and normal bundles
of a pair of isometric submanifolds of Euclidean spaces. Our goal is to give
conditions that allow the construction of isometric ruled extensions.

In the sequel, we define pointwise several vector subspaces as either im-
ages or kernels of certain tensor fields on a submanifold. To avoid cumber-
some repetition, for the remaining of the paper we agree that we are always
working restricted to a connected component of an open dense subset of the
submanifold where all these subspaces have constant dimensions, and hence
form smooth vector subbundles.

Given a pair of isometric immersions f : Mn → Rn+p and f̂ : Mn →
Rn+q with second fundamental forms α and α̂, respectively, we endow the
vector bundle T⊥

f M ⊕ T⊥
f̂
M with the indefinite metric of type (p, q) given

by
〈〈 , 〉〉T⊥

f M⊕T⊥
f̂
M = 〈 , 〉T⊥

f M − 〈 , 〉T⊥
f̂
M .

Set α ⊕ α̂ : TM × TM → S(α) ⊕ S(α̂) ⊂ T⊥
f M ⊕ T⊥

f̂
M , and let Ω ⊂

S(α)⊕S(α̂) be the vector bundle with null fibers Ω = S(α⊕ α̂)∩S(α⊕ α̂)⊥.
Accordingly, there are orthogonal splittings

S(α) = Γ⊕ Γ⊥ and S(α̂) = Γ̂⊕ Γ̂⊥,

where Γ = S(α) ∩ Ω⊥ and Γ̂ = S(α̂) ∩ Ω⊥, and an isometry J : Γ⊥ → Γ̂⊥
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such that
Ω = {(η,J η) : η ∈ Γ⊥} ⊂ Γ⊥ ⊕ Γ̂⊥

and α̂
Γ̂⊥ = J ◦ αΓ⊥ . From now on we identify Γ⊥ with Γ̂⊥ by means of J ,

and hence
α̂Γ̂⊥ = αΓ⊥ . (6)

Define β : TM × TM → Γ⊕ Γ̂ as β = αΓ ⊕ α̂
Γ̂

and a vector subbundle
Θ ⊂ TM by

Θ = N (β).

The vector subbundle S ⊂ Γ⊥(= Γ̂⊥) defined by

S = S(α|Θ×TM )

satisfies Θ = N (αS⊥) ∩ N (α̂
Ŝ⊥). Now define a vector subbundle S0 ⊂ S by

S0 =
⋂

X∈TM
kerK(X),

where K(X) ∈ Λ2(S) for any X ∈ TM denotes the skew-symmetric tensor
given by

K(X)η = (∇⊥
Xη)S − (∇̂⊥

Xη)S .

Then define vector subbundles L� ⊂ S0 and Dd ⊂ Θ as

L� = {δ ∈ S0 : ∇⊥
Y δ ∈ S and ∇̂⊥

Y δ ∈ Ŝ for all Y ∈ Θ}

and
Dd = N (αL⊥) ∩N (α̂

L̂⊥),

and let T : L� → L� be the induced vector bundle isometry given by

T = J |L : L� ⊂ T⊥
f M → L� ⊂ T⊥

f̂
M.

Theorem 11. Let f : Mn → Rn+p and f̂ : Mn → Rn+q be isometric im-
mersions. Then, along each connected component of an open dense subset
of Mn the pair (T ,Dd) satisfies (C1) and (C2) in (2). In particular, f
and f̂ have (possibly trivial) isometric ruled extensions F : N → Rn+p and
F̂ : N → Rn+q satisfying the conclusions of Proposition 9. Therefore, if f is
a genuine deformation of f̂ , then f and f̂ are mutually Dd-ruled.

We will make use of the following result.

Lemma 12. The tensor K : TM → Λ2(S) satisfies:
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(i) K(Z) = 0 for all Z ∈ Θ;

(ii) K(X)α(Y,Z) = K(Y )α(X,Z) for all Z ∈ Θ and X,Y ∈ TM .

Proof: Comparing the Codazzi equation for f and f̂ for Z1, Z2 ∈ Θ or Z3 ∈ Θ
yields

K(Z1)α(Z2, Z3) = K(Z2)α(Z1, Z3). (7)

Denote 〈K(X1)α(X2,X3), α(X4,X5)〉 = (X1,X2,X3,X4,X5). If Z1, Z2,
Z3 ∈ Θ, then

(Y,Z1, Z2, Z3,X) = −(Y,Z3,X,Z1, Z2) = −(X,Z3, Y, Z1, Z2)
= (X,Z1, Z2, Z3, Y ) = (Z2, Z1,X,Z3, Y )
= −(Z2, Z3, Y, Z1,X) = −(Z3, Z2, Y, Z1,X)
= (Z3, Z1,X,Z2, Y ) = (Z1, Z3,X,Z2, Y )
= −(Z1, Z2, Y, Z3,X) = −(Y,Z1, Z2, Z3,X).

Thus 〈K(Z1)α(Z2, Y ), α(Z3,X)〉 = 0, and this proves (i). The proof of (ii)
is (7). �

The next result implies that the distribution Θ is integrable if K vanishes.
The shape operator Aξ : TM → TM for a normal vector ξ is defined by

〈AξX,Y 〉 = 〈α(X,Y ), ξ〉.

Lemma 13. Let Θ0 ⊂ Θ be the vector subbundle defined as

Θ0 = N (αS⊥
0
) ∩ N (α̂

Ŝ⊥
0
).

Then [Θ0,Θ] ⊂ Θ.

Proof: Clearly S(β)∩S(β)⊥ = S(β)∩S(α⊕α̂)⊥ and S(α⊕α̂−β) ⊂ Ω ⊂ S(α⊕
α̂). In particular, S(β) ⊂ S(α⊕ α̂), and hence S(β)∩S(β)⊥ ⊂ Ω ⊂ Γ⊥⊕ Γ̂⊥.
We conclude that the metric induced on S(β) ⊂ Γ⊕ Γ̂ is nondegenerate.

Taking the inner product of the Codazzi equation (∇⊥
Z1
α)(Z2,W ) =

(∇⊥
Z2
α)(Z1,W ) with µ ∈ S⊥ ⊂ T⊥

f M for Z1, Z2 ∈ Θ and any W ∈ TM
yields

〈∇⊥
Z1
α(Z2,W )−∇⊥

Z2
α(Z1,W ), µ〉 = 〈αS⊥([Z1, Z2],W ), µ〉, (8)

and an analogous equation holds for f̂ . On the other hand, the difference
between the Codazzi equations of f and f̂ for δ ∈ S is

A∇⊥
Z δ
Y − Â∇̂⊥

Z δ
Y = A∇⊥

Y δ
Z − Â∇̂⊥

Y δ
Z.
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In the last equation, choose Z = Z1 ∈ Θ and δ = α(Z2,W ) ∈ S for Z2 ∈ Θ.
The inner product with X ∈ TM and Lemma 12–(i) give

〈∇⊥
Z1
α(Z2,W ), αS⊥(X,Y )〉 − 〈∇̂⊥

Z1
α̂(Z2,W ), α̂

Ŝ⊥(X,Y )〉
= 〈α(Z1,X),K(Y )α(Z2,W )〉.

The right hand side vanishes if either Z1 or Z2 belong to Θ0. Then we have
using (8) for both immersions that

〈αS⊥([Z1, Z2],W ), αS⊥(X,Y )〉 − 〈α̂Ŝ⊥([Z1, Z2],W ), α̂Ŝ⊥(X,Y )〉 = 0.

We obtain that 〈〈β([Z1, Z2],W ),S(β)〉〉 = 0, and the statement follows using
that S(β) is nondegenerate. �
Proof of Theorem 11: The isometry T preserves the second fundamental
forms by (6) and it is parallel since J |S0 is parallel. The definition of S
yields

S(αL⊥∩S |Θ×TM
) = L⊥ ∩ S. (9)

It follows from the Codazzi equation, Lemma 13 and the definition of L�

that
(∇⊥

Y αL⊥∩S0
(Z,X))S⊥ = (∇⊥

ZαL⊥∩S(Y,X))S⊥ (10)

for all Z ∈ Θ0, Y ∈ Θ and X ∈ TM , and a similar result holds for f̂ . Since
the left hand side of (10) vanishes if Z ∈ Dd and X ∈ TM , we obtain from
(9) and the definition of L� that S and Ŝ are both parallel along Dd in the
normal connections.

We define S1 ⊂ S by the orthogonal splitting S = S0 ⊕ S1. The skew-
symmetry of the K(X) gives

S1 = span{K(X)S1 : X ∈ TM}. (11)

By the Ricci equation, 〈R⊥(X,Z)δ, µ〉 = 〈R̂⊥(X,Z)δ, µ〉 for all δ, µ ∈ S. It
follows easily from the definitions of R⊥ and S0 that

〈∇⊥
Zδ,∇⊥

Xµ〉 − 〈∇̂⊥
Zδ, ∇̂⊥

Xµ〉 = 〈∇⊥
Xδ,∇⊥

Zµ〉 − 〈∇̂⊥
Xδ, ∇̂⊥

Zµ〉

for all δ ∈ S0 and µ ∈ S1. We now obtain from Lemma 12–(i) and the
parallelism of S and Ŝ along Dd that 〈∇⊥

Zδ, K(X)µ〉 = 0 for all Z ∈ Dd,
X ∈ TM , δ ∈ L� and µ ∈ S1. It follows from (11) that

∇⊥
Zδ ∈ S0 for all Z ∈ Dd and δ ∈ L�. (12)
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The Ricci equation for Z ∈ Dd, Y ∈ Θ, δ ∈ L� and ξ ∈ S⊥, yields

0 = 〈R⊥(Y,Z)δ, ξ〉 = 〈∇⊥
Y∇⊥

Zδ, ξ〉,

where for the second equality we have to use (12), Lemma 13 and the par-
allelism of S along Dd. ¿From the definition of L� we conclude that L� and
L̂� are parallel along Dd in the corresponding normal connections. �

The main result.

In this section, we show that for pairs of isometric submanifolds of low
codimension the foliation Dd is nontrivial by giving an estimate that implies
the one in Theorem 1.

With the notation of the last section we now state the main result of this
paper.

Theorem 14. Let f̂ : Mn → Rn+q be a genuine deformation of f : Mn→
Rn+p with p+q < n and min {p, q} ≤ 6. Then f and f̂ are mutually Dd-ruled
along each connected component of an open dense subset of Mn with

d ≥ n− p− q + 3�,

unless min {p, q} = 6 and � = 0 in which case d ≥ n − p − q − 1, and the
bundle isometry T : L� → L� satisfies (C1) and (C2) in (2).

Notice that Theorem 14 provides more information than Theorem 1, in
particular, because L� in the former can be larger than LD in the latter
for the same rulings. Moreover, already for p = q = 2, we may have that
LD = L� but the rulings Dd in Theorem 1 that one considers can be smaller
than the ones determined by Theorem 14.

The proof of the theorem will be made in several steps. First, we ob-
tain some estimates of the dimension of the nullity space of a vector valued
bilinear map.

Given a bilinear form β : V n × Um → W , we call a vector Y ∈ Um a
(right) regular element of β if the map BY = β(Y, · ) satisfies

dimBY (V n) = max{dimBZ(V n) : Z ∈ Um}.

It is easy to see that the subset RE(β) ⊂ Um of regular elements of β is
open and dense and that

S(β|kerBY ×Um) ⊂ BY (V n) for any Y ∈ RE(β). (13)
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Therefore,
S(β) = S(β|R×Um) (14)

if the subspace R ⊂ V n satisfies V n = R⊕ kerBY ; see [6] or [17] for details.

Lemma 15. Let β : V n×Um →W be a nonzero bilinear form and let Lk ⊂
Um be a vector subspace of minimal dimension k such that S(β|V n×Lk) =
S(β). Then there is an integer ρ satisfying 1 ≤ ρ ≤ dimS(β) − k + 1 such
that

dimN (β|V n×Lk) ≥ n− k(ρ− 1)− 1.

Proof: Take ρ = dimBY (V n) for Y ∈ RE(β). If Lk = span{Y1, . . . , Yk} for
Yj ∈ RE(β), 1 ≤ j ≤ k, then BYi(V

n) �= BYj(V
n) if i �= j, and an easy

argument using (13) gives the proof in this case. To obtain the proof for an
arbitrary Lk observe that there is a sequence Lkj → Lk such that each Lkj
satisfies the assumption and is spanned by vectors in RE(β) as before. �

Let W p,q be a (p+q)–dimensional vector space endowed with a possibly
indefinite inner product of type (p, q). We call a subspace U ⊂W p,q degener-
ate if the restriction of the metric of W p,q to U is degenerate, and denote by
rankU the rank of the induced metric. Thus rankU = dimU −dimU ∩U⊥.
We call null the degenerate subspace U if rankU = 0, and thus U = U ∩U⊥.
A bilinear form β : V n × Um →W p,q is said to be flat when

〈β(X,Y ), β(Z, T )〉 − 〈β(X,T ), β(Z, Y )〉 = 0

for all X,Y ∈ V n and Z, T ∈ Um. It follows from (13) that

S(β|kerBY ×Um) ⊂ BY (V n) ∩BY (V n)⊥ if Y ∈ RE(β). (15)

The proof of Theorem 3 in [7] on flat symmetric bilinear forms stated
below gives the following slightly stronger result.

Lemma 16. Let β : V n × V n →W p,q be a flat symmetric bilinear form. If
min{p, q} ≤ 6 and S(β) is nondegenerate, then

dimN (β) ≥ n− dim Im BY − dimS(β|kerBY ×TM)− δ 6
min {p,q}

for any Y ∈ RE(β).

Corollary 17. ([7]) Let β : V n × V n → W p,q be a flat symmetric bilinear
form. If min{p, q} ≤ 6 and S(β) is nondegenerate, then dimN (β) ≥ n −
dimS(β)− δ 6

min {p,q}.
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To our surprise, we recently constructed in [8] a family of examples that
shows not only that the last two results are false for min{p, q} = 6 without
the Kronecker symbol in the estimates, but also that there is no linear esti-
mate in p and q. Since Lemma 16 is a key point in the argument, there can
be no linear estimate for d in Theorem 14 for higher codimensions as well.

Lemma 18. Under the assumptions of Theorem 14 we have that

dim Θ ≥ n− p− q + 2τ + τ0 − δ0, (16)

where τ = dimS, τ0 = dimS0 and δ0 = δ 6
min{dim Γ,dim Γ̂}.

Proof: It follows from Corollary 17 and that S(β) is nondegenerate (see the
proof of Lemma 13) that

dim Θ ≥ n− p− q + 2τ − δ0. (17)

To prove the better estimate (16) we have to work with the more elab-
orate flat bilinear form defined next, and make strong use of the fact that
the deformation is genuine.

Let φ : (TM ⊕ S0)× TM → S⊥ × Ŝ⊥ be the bilinear form given by

φ(X + ξ, Y ) = β′(X,Y ) + ψ(ξ, Y ),

where ψ : S0 × TM → S⊥ ⊕ Ŝ⊥ is defined as

ψ(ξ, Y ) = ((∇⊥
Y ξ)S⊥ , (∇̂⊥

Y ξ)Ŝ⊥)

and β′ : TM × TM → S⊥ ⊕ Ŝ⊥ by

β′ = αS⊥ ⊕ α̂Ŝ⊥ .

Notice that S(β′) is degenerate if S �= Γ⊥. A long but straightforward
computation using the Gauss, Codazzi and Ricci equations for f and f̂ and
the definitions of S0 and S gives that φ is flat. Now a key observation is that
there is no local section X0+ξ0 ∈ TM⊕S0 with ξ0 �= 0 such that the subspace
φ(X0 + ξ0, TM) is null. This is so because this is the precise condition for
the maps F (x, t) = f(x) + t(X0 + ξ0) and F̂ (x, t) = f̂(x) + t(X0 + ξ0) to be
local isometric extensions of f and f̂ in Mn × (−ε, ε), for some ε > 0.

Set CY = φ( · , Y ) and B′
Y = β′( · , Y ) for Y ∈ RE(φ). By (15) and the

flatness of φ the subspace S(φ|kerCY ×TM) is null. It follows using the above
that kerCY = kerB′

Y . Therefore,

dim Im CY = dim Im B′
Y + τ0. (18)
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Set K = kerBY and K ′ = kerB′
Y , where now Y ∈ RE(φ) ∩ RE(β). The

subspaces Im CY and S(β′|K ′×TM ) are orthogonal by the flatness of φ. In
particular,

dim Im CY + dimS(β′|K ′×TM ) ≤ p+ q − 2τ. (19)

The Gauss equation for f and f̂ and (6) give that β = αΓ ⊕ α̂Γ̂ is flat. By
Lemma 16 and since S(β) is nondegenerate, we have

dimΘ ≥ n− dim Im BY − dimS(β|K×TM)− δ0. (20)

We obtain from (18), (19), (20) and dim Im B′
Y + dimK ′ = dim Im BY +

dimK that

dim Θ ≥ n− p− q − δ0 + 2τ + τ0 + dimS(β′|K ′×TM )
− dimS(β|K×TM ) + dimK − dimK ′.

Since K ′ ⊂ K, then (16) follows unless K ′ � K and

dimS(β′|K ′×TM )− dimS(β|K×TM) + dimK − dimK ′ < 0.

In the latter situation the null subspace S(β0) �= 0, where β′ = β ⊕ β0.
Moreover, we can assume that β′|K ′×TM �= 0 since, otherwise, K ′ = N (β′) ⊂
N (β) and we easily obtain (16) from (18). It follows that

min{p, q}− τ0 > dimS(β|K×TM ) > dimS(β′|K ′×TM)+dimK−dimK ′ ≥ 2,

where the first inequality follows from the fact that S(β|K×TM ) ⊂ Γ ⊕ Γ̂
is a null subspace, and that τ0 ≤ dimS < dimΓ⊥ because β0 �= 0. But
min{p, q} ≤ 6 by assumption, and hence τ0 ≤ 2. Corollary 17 now yields

dimΘ+δ0 ≥ n−dimS(β) ≥ n−p−q+2τ+2dimS(β0) ≥ n−p−q+2τ+τ0,

as we wished. �

Lemma 19. Let f : Mn→ Rn+p and f̂ : Mn → Rn+q be isometric immer-
sions satisfying min {p, q} ≤ 6. Then,

dimΘ0 ≥ dimΘ− τ1 − δ 6
τ1 , (21)

where τ1 = dimS1.
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Proof: We only have to argue for τ1 ≥ 1. Set VZ = γ(TM,Z) ⊂ S1 and
m = dimVZ , where γ = αS1 |TM⊕Θ and Z ∈ RE(γ) ⊂ Θ. We claim that
1 ≤ m ≤ [τ1/2], where [ · ] denotes the entire part function. Observe that
S1 = S(γ), and take the minimal number of elements Z1, . . . , Zk0 ∈ RE(γ)
such that

S1 = S(γ|TM×span{Z1,...,Zk0
}) =

k0∑
j=1

VZj . (22)

Suppose that m > [τ1/2]. Then k0 ≤ τ1 − m + 1 ≤ [(τ1 + 1)/2]. Since
τ1 ≤ 6, we easily see that L0 =

⋂k0
j=1 VZj ⊂ S1 satisfies L0 �= 0. On the

other hand, Lemma 12–(ii) easily gives 〈K(X)α(Y,Z), α(T,Z)〉 = 0 for any
Z ∈ Θ. Equivalently, K(X)VZ ⊂ V ⊥

Z ⊂ S1 for any Z ∈ Θ and X ∈ TM . It
follows using (22) that K(X)L0 ⊂

⋂k0
j=1 V

⊥
Zj

= 0 for any X ∈ TM . Hence,
L0 ⊂ S0 ∩ S1 = 0. This is a contradiction and proves the claim.

Notice that Θ0 = N (αS1 |Θ×TM ). For L(X) = γ(X, · ) : Θ → S1 this is
equivalent to

Θ0 =
⋂

X∈TM
kerL(X). (23)

Fix Z ∈ RE(γ). Then (14) gives S1 =
∑m

i=1 Im L(Xi), where X1. . . . ,Xm ∈
TM are such that VZ = span{γ(Xi, Z), 1 ≤ i ≤ m}. Let {Y1, . . . , Ym0} ⊂
{X1, . . . ,Xm} be a subset with the minimum number of elements satisfying

S1 =
m0∑
j=1

Im L(Yj). (24)

We show that (23) can be replaced by

Θ0 =
⋂

1≤j≤m0

kerL(Yj). (25)

In fact, from (11) and (24) we easily obtain S1 =
∑m0

j=1 Im K(Yj). Equiva-
lently, we have ⋂

1≤j≤m0

kerK(Yj) = 0. (26)

Since Z ∈
⋂m0
j=1 kerL(Yj) if and only if K(X)γ(Yj , Z) = K(Yj)γ(X,Z) = 0

for all X ∈ TM and 1 ≤ j ≤ m0, then (25) follows from (23) and (26).
We show that (21) holds without the Kronecker symbol when a nonsin-

gular K(Y ) exists. By (26) this is the case when m0 = 1. We have,

K(Y )γ(X, kerL(Y )) = K(X)γ(Y, kerL(Y )) = 0.
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Thus, kerL(Y ) ⊂ Θ0, and dim Θ0 ≥ dim kerL(Y ) ≥ dim Θ − τ1 as wished.
Since [τ1/2] ≥ m ≥ m0, it suffices to argue for τ1 ≥ 4 and the K(Y ) are all
singular. Assume m0 = 2. After taking linear combinations, if necessary,
we obtain from (26) that there are Y1, Y2 such that rankK(Yj) = 4. Thus
τ1 ≥ 5, and dimkerL(Y1) ≥ dim Θ− τ1 +1 since Im L(Y1) �= S1 by (24). On
the other hand,

K(Y1)γ(Y2, kerL(Y1)) = K(Y2)γ(Y1, kerL(Y1)) = 0,

and (21) follows from (25) and (26). If m0 = 3, then τ1 = 6 and
dim Im L(Yj) ≤ 4. Moreover, dim kerK(Y1) ∩ kerK(Y2) ≤ 1, and now (21)
follows similarly. �

Proof of Theorem 14: If L = S then (9) gives Dd = Θ0 = Θ, and the
estimate for d follows from (16). Thus, we may assume that αL⊥∩S |Θ×TM

does not vanish and apply Lemma 15. By (9) there is a subspace V k0
0 ⊂ TM

of minimal dimension such that

S(αL⊥∩S |Θ×V0
) = L⊥ ∩ S, (27)

and such that Θ′ = N (αL⊥∩S |Θ×V0
) ⊂ Θ satisfies

dimΘ′ ≥ dimΘ− k0(ρ− 1)− 1 (28)

with 1 ≤ k0 ≤ τ0 + τ1 − �− ρ+ 1 and 1 ≤ ρ ≤ τ0 + τ1 − � ≤ 6.
We first show that D0 = Θ′ ∩Θ0 satisfies

dimD0 ≥ n− p− q + 2 �+ τ0. (29)

We have by (28) that

dimD0 ≥ dimΘ0 − k0(ρ− 1)− 1. (30)

It follows from the definition of Θ0 that D0 = N (αL⊥∩S0
|Θ0×V0

). In partic-
ular,

dimD0 ≥ dimΘ0 − k0(τ0 − �). (31)

By obtain form (30) and (31) that

dimD0 ≥ dim Θ0 −min{k0(ρ− 1) + 1, k0(τ0 − �)}.

Now we use that the deformation is genuine. We have from (16) and (21)
that

dimD0 ≥ n− p− q + τ1 + 3τ0 − δ0 − δ 6
τ1 −min{k0(ρ− 1) + 1, k0(τ0 − �)}.
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To prove (29) we have to verify that

min{k0(ρ− 1) + 1, k0(τ0 − �)} ≤ 2(τ0 − �) + τ1 − δ0 − δ 6
τ1 , (32)

where 1 ≤ k0 ≤ τ0 + τ1− �− ρ+ 1 and 1 ≤ ρ ≤ τ0 + τ1− � ≤ 6. First observe
that δ0 = 0 since we are assuming τ1 ≥ 1. Moreover, δ 6

τ1 = 1 only if τ1 = 6
and τ0 = � = 0, and then (32) holds. The remaining of the argument is
a straightforward verification that can be done, for instance, with a simple
computer script.

We claim that D0 = Dd, and then the estimate follows since τ0 ≥ �.
Clearly, Dd ⊂ D0. On the other hand, since the left hand side of (10)
vanishes if Z ∈ D0 and X ∈ V0, we have from (27) and the definition of L�

that S and Ŝ are parallel along D0 in the normal connections. Now (10)
yields ∇⊥

Y αL⊥∩S0
(Z,X) ∈ S for all Y ∈ Θ, Z ∈ D0 and X ∈ TM for both

immersions. From the definition of L� we have that αL⊥∩S0
(Z,X) = 0 for

all Z ∈ D0 and X ∈ TM , that is, D0 ⊂ Dd, and the claim follows. �

Proof of Theorem 1: The result follows from LD ⊂ L by definition of LD.�
Remarks 20. (1) Two important facts can be added to the conclusions of
Theorem 1. It can easily be proved using LD ⊂ L� that

Dd = N (αL⊥
D
) ∩ N (α̂

L̂⊥
D
).

Moreover, we saw in Theorem 11 that L� is parallel in the normal connections
along the leaves of Dd. This also holds in Theorem 1 for LD since, by the
Codazzi equation, any Dd-ruled submanifold has that property.

(2) That T
D

in Theorem 1 is parallel can be proved directly by comparing
the Codazzi equations of both immersions.

(3) Without the assumption that the deformation is genuine in Theorem 14
we still have the estimate d ≥ n− p− q+ 2�. To see this we use (17) instead
of (16) in its proof.

(4) Theorem 14 does not assume that the second fundamental form of one of
the immersions spans the full normal space as it is usually asked for rigidity
results. On the other hand, we see from the proof that we can replace p and
q in the estimate of d by dimS(α) and dimS(α̂). Of course, everything just
said holds for Theorem 1.

Further applications.

In this section, we give several applications of our main result beside the ones
already stated in the introduction that are now proved. The corresponding
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statements for the case min {p, q} = 6 are straightforward.

Our first an immediate application extends Corollary 3 in the introduc-
tion. We define the (local) index νR(f) for f : Mn → Rn+p by

νR(f) = max{d− 3�D : f |U is Dd-ruled for some open subset U ⊂Mn}.

Corollary 21. Let f : Mn → Rn+p be an isometric immersion and let q be a
positive integer such that p+q < n and min {p, q} ≤ 5. If νR(f) ≤ n−p−q−1,
then f is genuinely rigid in Rn+q.

Even for submanifolds with very degenerate second fundamental form
one can have genuine rigidity. In fact, we show in [9] that there is a large
class of n-dimensional submanifolds in codimension 2 with constant index of
relative nullity ν = n− 2 that are genuinely rigid in Rn+2.

Proof of Corollary 4: If the function h(x) = ‖f(x)‖2 reaches a maximum at
x0 ∈Mn, then ξ0 = f(x0) ∈ T⊥

x0
M and Aξ0 is definite. Hence, Aξ is definite

in a neighborhood U of x0 for a given smooth extension ξ of ξ0. Therefore,
f |U must be genuinely rigid in Rn+q because, otherwise, f would be Dd–
ruled with d ≥ n−p− q > 0 on an open dense subset, and thus Aξ|D×D = 0.
�

The following result extends Corollary 5 in the introduction. Example 2
shows that the bound given for µ is sharp.

Corollary 22. Let f : Mn → Rn+p be an isometric immersion and let q
be a positive integer such that p + q < n and min {p, q} ≤ 5. If Mn has
nonnegative Ricci curvature and the dimension of nullity of the curvature
tensor µ satisfies µ < n− p− q, then f is genuinely rigid in Rn+q.

Proof: If otherwise, then f is (n − p − q)–ruled on an open subset. By
the Gauss equation and the assumption on the Ricci curvature the rulings
belong to the relative nullity of the immersion, and hence to the nullity of
the curvature tensor. �

Corollary 23. Let f̂ : Mn → Rn+q be a genuine deformation of an isometric
immersion f : Mn → Rn+p such that p+q < n and min {p, q} ≤ 5. If Mn has
nonpositive sectional curvature, then f and f̂ have common relative nullity
of dimension ν ≥ n− p− q + 2�.

Proof: It was shown in Proposition 8 in [16] that if α has nonpositive sec-
tional curvature and an asymptotic subspace Dd, i.e., α|D×D = 0, then
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ν ≥ d − s, where s = dim γ(D,Y ) with Y ∈ RE(γ) and γ = α|D×D⊥ . By
Theorem 14 we have S(γ) ⊂ L�, and we obtain the estimate for ν from the
one for d. Observe that the relative nullity contained in Dd must be shared
by f̂ since it coincides with the set of vectors in Dd that belong to the nullity
of the curvature tensor of Mn. �

The s-nullity νfs (x) of f : Mn → Rn+p at x ∈ Mn for 1 ≤ s ≤ p is
defined by

νfs (x) = max{dimN (αV s(x)) : V s ⊂ T⊥
f(x)M}.

The following result was proved in [7] by a different argument.

Theorem 24. ([7]) Let f : Mn → Rn+p be an isometric immersion and q ≥
p a positive integer. Suppose p ≤ 5, and assume that f satisfies everywhere

νfs ≤ n+ p− q − 2s− 1 for all 1 ≤ s ≤ p.

For q ≥ p+ 5 assume further that νf1 ≤ n− 2(q − p) + 1 everywhere. Then

any isometric immersion f̂ : Mn → Rn+q is a composition on connected
components of an open dense subset of Mn.

Proof: Theorem 1 applies and gives (possibly trivial) local isometric ∆-ruled
extensions F and F̂ of maximal dimension defined on a manifold Nn+r with
0 ≤ r ≤ p. It remains to show that r = p. It is easy to see from the
hypothesis on the s-nullities that L⊥ = 0, that is, α̂F̂ = αF ⊕ γ, and that
dim ∆ ≥ n + 2p − q. If r < p, then take a normal vector field η �= 0 to
F and conclude that f satisfies 〈AηD,D〉 = 0 along points in Mn, where
D = ∆ ∩ TM . Since dimD ≥ dim ∆ − r ≥ n − (q − p) + 1, then νf1 ≥
n− 2(q − p) + 2, and this is a contradiction with our assumptions on νf1 . �

We conclude this section with the following intrinsic criteria for genuine
rigidity.

Theorem 25. Let f : Mn → Rn+p be an isometric immersion and q a pos-
itive integer such that p + q < n and min{p, q} ≤ 6. If there is a genuine
deformation of f into Rn+q, then the k-th Pontrjagin form pk of Mn vanishes
for

k ≥

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if p+ q ≤ 3,

2 if 4 ≤ p+ q ≤ 6,

(p+ q − 2)/2 if 7 ≤ p+ q ≤ 13,

(3(p + q)− 17)/4 if p+ q ≥ 14.
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In particular, when Mn is compact and the k-th Pontrjagin class [pk] does
not vanish, then any analytic isometric immersion of Mn in Rn+p is genuinely
rigid in Rn+q in the C∞-category if p, q and k are related as above.

For the proof of the last result we need the following fact.

Proposition 26. If the immersion f : Mn → Rn+p is d-ruled, then the k-th
Pontrjagin form pk of Mn vanishes for any k such that 4k > 3(n − d).

Proof: Let {e1, . . . , en} be an orthonormal tangent frame of Mn and
{w1, . . . , wn} its dual frame. For 1 ≤ a, b ≤ n we have the curvature 2-
forms Ωab =

∑n
r,s=1Rabrswr ∧ ws, where Rabrs are the components of the

curvature tensor in the given frame. Then, the Pontrjagin form pk has the
local expression

pk =
∑
(i)

Θ2k
(i) ∧Θ2k

(i),

where Θ2k
(i) =

∑
(j) δ

(j)
(i) Ωj1j2 ∧ Ωj2k−1j2k

. Here, (i) = (i1, · · · , i2k) and (j) =
(j1, · · · , j2k) run over all the 2k-uples of distinct elements in {1, . . . , n}, and
δ
(j)
(i) is +1 (resp., −1) if (j1, · · · , j2k) is an even (resp., odd) permutation of

(i1, · · · , i2k) and zero otherwise. Therefore, pk is a sum (up to a constant
factor) of terms of the form

Ωj1j2 ∧ · · · ∧ Ωj2k−1j2k
∧ Ωj′1j

′
2
∧ · · · ∧ Ωj′2k−1j

′
2k
, (33)

with {j1, · · · , j2k} = {j′1, · · · , j′2k}. By the Gauss equation

Ωab =
1
2

n∑
r,s=1

〈α(ea, er), α(eb, es)〉 wr ∧ws.

We assume that en−d+1, . . . , en belong to the rulings. If a ≥ n−d+1 (resp.,
b ≥ n− d+ 1), then r (resp., s) in the last equation runs only up to n − d.
Thus, if 2k > n − d, then (33) is a linear combination of terms of the form
wr1 ∧ · · · ∧ wr2k

∧ wr′1 ∧ · · · ∧ wr′2k
, where at least 2k − n + d of the ri’s and

also of the r′i’s are less or equal than n−d. We conclude that all terms must
vanish if 2(2k − n+ d) > n− d. �
Proof of Theorem 25: If f has a genuine deformation, then the immersions
must have the structure given by Theorem 14. It follows that either f is
(n−p−q+3� )-ruled if min{p, q} ≤ 5 or � ≥ 1, or its index of relative nullity
satisfies ν ≥ n− p− q − 1 if min{p, q} = 6 and � = 0. In the first case, it is
easy to see that ν ≥ n−(�+1)(p+q−3�). The result is then a consequence of
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Proposition 26 and that pk = 0 if 4k > n− ν, since the Pontrjagin forms are
curvature forms and the relative nullity spaces are contained in the nullity
of the curvature tensor. �

Proof of Theorem 7: We use Theorem 25 and that pk = pk1 since at least one
of the immersions has codimension at most three. �

Final comments.

First we argue that the estimate d ≥ n− p− q + 3� in our main result does
not come as a complete surprise. The bilinear form φ defined by (3) for
(T ,Dd) given by Theorem 11 is flat. In fact, nothing changes if φ is replaced
with

φ′ = φ|(D⊥⊕L)×TM : (D⊥ ⊕ L)× TM → L⊥ × L̂⊥

since φ(D,TM) = 0. Take a vector field X ∈ RE(φ′) and set BX = φ′( · ,X).
If a section Y0 + ξ0 ∈ kerBX satisfies ξ0 �= 0 everywhere, then the maps
F (x, t) = f(x)+t(Y0+ξ0) and F̂ (x, t) = f̂(x) + t(Y0 + ξ0) are local isometric
extensions of f and f̂ in Mn×(−ε, ε), for some ε > 0. But this is not possible
if f̃ is a genuine deformation of f . Observe that

dimkerBX ≥ n− d− p− q + 3�,

and hence, we cannot conclude that kerBX �= 0 if d satisfies our estimate.
Next we show that isometric extensions is indeed a matter for pairs of

submanifolds even for codimensions as low as p = q = 2. In fact, in (1)
we may have different extensions F for different isometric deformations f̂
of f . Moreover, it may happen that the given pair f and f̂ does extend
isometrically but there exists an isometric deformation of f that is genuine.
To see that all this is possible, consider the following examples.

Example 27. Let i : Mn = Nn+1
1 ∩Nn+1

2 ↪→ Rn+2 be the transversal inter-
section of two distinct Sbrana-Cartan hypersurfaces. Assume that the index
of relative nullity of i takes its generic value n−4 everywhere. Now consider
two additional isometric immersions gj : Mn → Rn+2 determined by isomet-
ric deformations N̂n+1

j of Nn+1
j . One can prove that the isometric extension

of the pair of immersions i and gj of Mn recreates Nn+1
j and N̂n+1

j , and
thus the extension of i also depends on gj . Moreover, g2 must be a genuine
deformation of g1 since, otherwise, their second fundamental forms would
have to coincide on a normal subbundle, and that is not possible.
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Example 28. We showed in [9] that a nonholomorphic isometric immer-
sion of rank two and codimension two of a simply connected and nowhere
flat Kaehler manifold is the intersection of a one-parameter family of (non
isometric) deformable hypersurfaces.

Our ruled extensions are always nonsingular by definition and trivial if
the pair of isometric immersions we start with are mutually ruled. Never-
theless, there are situations where it is convenient to consider more general
ruled extensions. In fact, this is the case of the extensions in Examples 28
and the ones in [12]. In the latter case, it was shown that the subset of sin-
gular points of a so called Generalized Sbrana-Cartan hypersurface Nn+1 in
Rn+2 is a hypersurface Nn

0 ⊂ Nn+1 with index of relative nullity ν = n−2 as
a submanifold of Rn+2. Moreover, deformations of Nn+1 yield deformations
of Nn

0 that preserve the relative nullity distribution. Given such an isometric
deformation of Nn

0 , we thus have an example of a pair of submanifolds in
codimension two that satisfies the conclusion of Theorem 1 whose “isometric
extensions” are singular. In fact, one can show that their unique (possibly
singular) isometric extensions are immersions of Nn+1 in Rn+2, and hence
the condition ∆ ∩ TM = D is no longer satisfied. In particular, we obtain
the following example that relates to Corollary 4.

Example 29. A deformation of a compact hypersurface Mn ↪→ Nn+1 that
contains an open subset of Nn

0 as above given by a deformation of Nn+1 can
not be extended isometrically and regularly along connected components of
an open dense subset.
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