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On the First Twisted Dirichlet Eigenvalue

Pedro Freitas and Antoine Henrot

In this paper we prove an isoperimetric inequality for the twisted
Dirichlet eigenvalue which was introduced by Barbosa and Bérard
in the context of constant mean curvature surfaces. More precisely,
we show that in the Euclidean case this eigenvalue is minimized by
the union of two equal balls.

1. Introduction.

Let (Ω, g) be a Riemannian manifold with boundary and denote by T0 the
set of functions f : Ω → R with zero average in Ω and belonging to H1

0 (Ω),
the usual Sobolev space which is the closure of the space of C∞ functions
with compact support in Ω, for the norm ‖u‖ :=

(∫
Ω |∇u|2 + u2

)1/2. In the
context of constant mean curvature immersions, Barbosa and Bérard [BB]
were led to the problem of minimizing the Rayleigh quotient

min
u∈T0, u �≡0

∫
Ω
|∇u|2 + bu2∫

Ω
u2

, (1)

where b : Ω → R is a continuous function. This combination of Dirichlet
boundary conditions with zero average gives rise to an eigenvalue problem
that is interesting in its own right, which Barbosa and Bérard called the
twisted eigenvalue problem, and for which they presented some basic prop-
erties in [BB]. More specifically, we have that the eigenvalue problem in
question is given by the Euler–Lagrange equations associated with the above
minimization problem and is of the form⎧⎨⎩ −∆v + bv = λT1 v − 1

|Ω|

∫
Ω

∆v dx in Ω

v = 0 on ∂Ω.
(2)
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Due to the presence of the average of the Laplacian, problems of this type
are often referred to as nonlocal eigenvalue problems – see [F] for an overview
of some nonlocal eigenvalue problems.

Among other results, Barbosa and Bérard proved that the spectra of the
Dirichlet and the twisted problems are intertwined, and also a Courant type
nodal domain result for the eigenfunctions of the twisted problem.

The purpose of the present paper is to continue the study of this eigen-
value problem in the case where the potential b vanishes and in the Euclidean
context. For a bounded open set in Rn, we denote by λT1 (Ω) the first twisted
eigenvalue defined by (1). In particular, our main result is the following
isoperimetric inequality of the Rayleigh–Faber–Krahn type

Theorem 1. Let Ω be any bounded open set in Rn. Then

λT1 (Ω) ≥ λT1 (B1 ∪B2) (3)

where B1 and B2 are two disjoint balls of volume |Ω|/2.
Equality holds (for regular Ω) if and only if Ω = B1 ∪B2

It is clear that the eigenvalue λT1 (Ω) does not change if we add or remove sets
of zero capacity (for the capacity associated to the Sobolev space H1

0 (Ω)).
This is the reason why we need to consider regular domains (e.g. Lips-
chitzian) to investigate the equality case.

Since the first eigenfunction uT1 changes sign in Ω, the result above is more
related to the Krahn-Szegö Theorem for the second Dirichlet eigenvalue,
which states that among open sets of given volume, this second eigenvalue
is minimized by the union of two identical balls. We refer to [HO] for details
and extensions about the Krahn-Szegö Theorem and to [H] for a survey of
general similar results about the eigenvalues of the Laplacian operator.

In Section 2 we present some basic properties of the twisted problem
relating the first twisted eigenvalue to various Dirichlet eigenvalues, together
with some elementary bounds. In Section 3 we prove Theorem 1. This uses
a result on the ratio of the first zero of consecutive Bessel functions which
we state and prove in the Appendix. In the last section we present some
remarks and open problems.

2. Basic properties.

We begin with a simple consequence of when a number λ is an eigenvalue of
the twisted and the Dirichlet problems (see also Proposition 2.4 in [BB]).
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Proposition 2.1. A positive number λ is an eigenvalue for both the twisted
and Dirichlet problems if and only if there exists an associated eigenfunction
u for the Dirichlet problem such that∫

Ω
u(x) dx = 0.

Proof. If there is a Dirichlet eigenfunction u associated to λ which has zero
average, then the Laplacian of u also has zro average and the result follows.

Assume now that there are eigenfunctions u for the Dirichlet problem
and v for the twisted problem, both associated to the value λ. Multiplying
each equation by the other eigenfunction, integrating over Ω and taking the
difference yields (∫

Ω
u(x) dx

)(∫
Ω

∆v(x) dx
)

= 0.

From this we deduce that either u is an eigenfunction for the twisted problem,
or v is an eigenfunction for the Dirichlet problem. In both cases there is an
eigenfunction of the Dirichlet problem with zero average. �

In the case of the classical Dirichlet problem if u is an eigenfunction for a
domain Ω, then it is also an eigenfunction for any of the nodal domains that
it divides Ω into, with the same eigenvalue. For the twisted problem there
is, of course, no analogue of this result. It is, however, possible to relate the
first twisted eigenvalue to the first Dirichlet eigenvalue of its nodal domains.

Proposition 2.2. Let λT1 (Ω) be the first eigenvalue of the twisted problem,
and denote by v a corresponding eigenfunction. Then v has precisely two
nodal domains and, denoting by Ω+ and Ω− the sets where v is positive and
negative, respectively, we have that

min
{
λD1 (Ω−), λD1 (Ω+)

}
≤ λT1 (Ω) ≤ max

{
λD1 (Ω−), λD1 (Ω+)

}
,

where λD1 (Ω−) and λD1 (Ω+) denote the first Dirichlet eigenvalues of Ω+ and
Ω−, respectively.

Proof. As was mentioned in [BB], a variation of Courant’s nodal domain
theorem applies also to the twisted problem, giving that any eigenfunction
associated with the first eigenvalue has precisely two nodal domains. It
remains to prove the other assertions.
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To prove the first inequality, we use the function

u =
{
u+, x ∈ Ω+

u−, x ∈ Ω−

in the variational formulation for λT1 (Ω), where u+ and u− denote first
Dirichlet eigenfunctions for Ω+ and Ω−, respectively, and scaled in such
a way that u has zero average in Ω. This gives that

λT1 (Ω) ≤

∫
Ω+

|∇u+|2 dx+
∫

Ω−
|∇u−|2 dx∫

Ω+

u2
+dx+

∫
Ω−

u2
−dx

=
λD1 (Ω+)

∫
Ω+

u2
+dx+ λD1 (Ω−)

∫
Ω−

u2
−dx∫

Ω+

u2
+dx+

∫
Ω−

u2
−dx

,

(4)

from which the result follows.
On the other hand

λT1 (Ω) =

∫
Ω+

|∇v|2 dx+
∫

Ω−
|∇v|2 dx∫

Ω+

v2dx+
∫

Ω−
v2dx

≥
λD1 (Ω+)

∫
Ω+

v2dx+ λD1 (Ω−)
∫

Ω−
v2dx∫

Ω+

v2dx+
∫

Ω−
v2dx

,

(5)

proving the second inequality. �

Remark 2.1. It is, of course, possible to extend this result in the obvious
way to higher eigenvalues.

Corollary 2.3.

λT1 (Ω) = λD1 (Ω+) if and only if λD1 (Ω+) = λD1 (Ω−) = λD2 (Ω),

where λD2 (Ω) is the second Dirichlet eigenvalue of Ω. A similar statement
holds if we replace λD1 (Ω+) by λD1 (Ω−).
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Proof. If λD1 (Ω+) = λD1 (Ω−), then the previous proposition immediately
implies that λT1 (Ω) = λD1 (Ω+).

Assume now that λT1 (Ω) = λD1 (Ω+). Replacing this in both (4) and (5)
yields

λD1 (Ω−) ≤ λT1 (Ω) ≤ λD1 (Ω−),

and so λD1 (Ω−) = λD1 (Ω+). Denoting by v+ and v− the restrictions of a first
eigenfunction of the twisted problem to Ω+ and Ω−, respectively, we now
use

u =
{
u+, x ∈ Ω+

cu−, x ∈ Ω−

in the Rayleigh quotient for the Dirichlet problem, where c is such that u is
orthogonal to the first Dirichlet eigenspace. We then obtain that λD2 (Ω) ≤
λT1 (Ω). Since we have that λD2 (Ω) ≥ λT1 (Ω), the result follows. �

We shall now give some other bounds for λT1 in terms of the two first
eigenvalues λD1 , λ

D
2 and the corresponding eigenfunctions u1, u2 of the Dirich-

let Laplacian on Ω. We already know that λD1 < λT1 ≤ λD2 and we are now
going to give some more precise estimates.

The first is a very simple upper bound for the first twisted eigenvalue in
the terms of the first Dirichlet eigenvalue.

Proposition 2.4. There exists a constant αn which depends only on n and
for which

λD1 (Ω) ≤ λT1 ≤ αnλ
D
1 (Ω).

Proof. It is only necessary to prove the second inequality. This follows imme-
diately from the inequality λT1 ≤ λD2 (Ω) and then using the fact (see [AB1])
that

λD2 (Ω)
λD1 (Ω)

≤ λD2 (B)
λD1 (B)

=
(

jn/2,1

jn/2−1,1

)2

,

where B denotes the unit ball in Rn. �

Let us now assume that λ is a real (positive) number which is not in the
spectrum of the Dirichlet Laplacian. Therefore, we can solve the equation{

−∆v = λv + 1 in Ω
v = 0 on ∂Ω

(6)

obtaining
v = (−∆− λId)−1 (1) .
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Then, λ will be an eigenvalue for the twisted problem if and only if v satisfies∫
Ω
v(x) dx = 0. This relation

∫
Ω
v(x) dx = (1, v) = 0 (where (., .) denotes

the usual scalar product on L2(Ω)) can also be written(
[−∆− λId]−1 (1), 1

)
= 0 . (7)

We now introduce the expansion of the constant function 1 in the Hilbert
basis of the Dirichlet eigenfunctions:

1 =
+∞∑
n=1

anun with an =
∫

Ω
un(x) dx,

where we assume the eigenfunctions un to be normalized with L2 norm
equal to one. Then, the eigenvalues of the operator (−∆− λId)−1 being the
numbers (λDn − λ)−1, equation (7) can be rewritten as

+∞∑
n=1

a2
n

λDn − λ
= 0 . (8)

All the zeros of equation (8) are eigenvalues for the twisted problem, but

in the case where an =
∫

Ω
un(x) dx vanishes for some n, we must add the

corresponding λDn as an eigenvalue.
We come back to our equation (8). If we denote by φ : (λ1, λ2) → R the

function

φ(x) :=
+∞∑
n=1

a2
n

λDn − x
,

it is clear that φ will be negative for x < λT1 (Ω) and positive for x > λT1 (Ω).

Theorem 2.5. Let us denote by λ1, λ2 the two first eigenvalues of the
Dirichlet Laplacian on Ω and by u1, u2 the corresponding (normalized) eigen-

functions. We also introduce a1 =
∫

Ω
u1(x) dx, a2 =

∫
Ω
u2(x) dx. Then, we

have the following estimate for λT1 (Ω):

λ1|Ω|+ λ2 a
2
1

|Ω|+ a2
1

≤ λT1 (Ω) ≤ λ1 a
2
2 + λ2 a

2
1

a2
2 + a2

1

. (9)
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Proof. First, we set x = λ1a22+λ2a21
a22+a21

and plug it into the definition of φ giving

φ(x) ≥ a2
1

λ1 − x
+

a2
2

λ2 − x
=
a2

1(a
2
1 + a2

2)
(λ1 − λ2)a2

1

+
a2

2(a
2
1 + a2

2)
(λ2 − λ1)a2

2

= 0.

The upper bound now follows thanks to the remark preceding the statement
of Theorem 2.5.

In the same way, if we take now x = λ1|Ω|+λ2a21
|Ω|+a21

, we have

+∞∑
n=2

a2
n

λn − x
≤ 1
λ2 − x

+∞∑
n=2

a2
n ≤ ‖1‖L2

λ2 − x
=

|Ω|
λ2 − x

.

Therefore,

φ(x) ≤ a2
1

λ1 − x
+

|Ω|
λ2 − x

= 0

thanks to the definition of x. The result follows. �

Remark 2.2. We can obtain more precise bounds by taking one supple-
mentary term. These bounds will involve λ3 and u3.

Remark 2.3. The upper bound is, in some sense, ”best possible” since we
have equality as soon as a2 = 0 (see Proposition 2.1). This will happen for
example when Ω is symmetric with respect to a hyperplane or when λ2 is
a multiple eigenvalue. This bound can also be obtained by making a linear
combination of u1 and u2 with zero average, and then plugging it in the
Rayleigh quotient.

From the first inequality in Theorem 2.5 it is possible to obtain a lower
bound for the first twisted eigenvalue that depends only on the volume
of the domain and its first two Dirichlet eigenvalues. To do this, we use
the following inequality due to Kohler-Jobin, which is an extension to the
n−dimensional case of an inequality of Payne and Rayner [KJ]:

a2
1 ≥

2ωnjn−2
n/2−1,1(

λD1
)n/2 ∫

Ω
u2

1dx, (10)

where ωn denotes the area of the unit sphere in Rn. Using this in the first
inequality in Theorem 2.5 yields
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Corollary 2.6.

λT1 ≥
1
2
λD1 +

ωnj
n−2
n/2−1,1

|Ω|
(
λD1
)n/2λD2 .

Since we have equality in (10) in the case of the ball (in dimension two this
is known to be the only case [PR]), we might expect this bound not to be
very good for long domains. Indeed, if one considers rectangles in the plane,
the bound is larger than the first Dirichlet eigenvalue only up to a ratio of
the larger to the smaller side which is approximately 1.678.

3. The isoperimetric inequality.

The goal of this section is to prove Theorem 1. The first part of the proof
is similar to that of Ashbaugh and Benguria in [AB2] where they study the
same question for the first eigenvalue of the clamped problem. Let us denote
by u (one of) the first eigenfunction(s) for the twisted problem on Ω,

Ω+ = {x ∈ Ω, u(x) > 0} Ω− = {x ∈ Ω, u(x) < 0} .

Then,

λT1 (Ω) =

∫
Ω+

|∇u|2 dx+
∫

Ω−
|∇u|2 dx∫

Ω+

u2 dx+
∫

Ω−
u2 dx

.

We first prove:

Lemma 3.1. Let us denote by B+ (resp. B−) the balls of same volume as
Ω+ (resp. Ω−). Then,

λT1 (Ω) ≥ λT1 (B+ ∪B−) .

Proof. Let us introduce u∗+ (resp. −u∗−) the Schwarz decreasing rearrange-
ment of u \Ω+ (resp. u \Ω−). The classical properties of the rearrangement
provide:

λT1 (Ω) ≥

∫
B+

|∇u∗+|2 dx+
∫
B−
|∇u∗−|2 dx∫

B+

u∗+
2 dx+

∫
B−

u∗−
2 dx

(11)
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and ∫
B+

u∗+ dx−
∫
B−

u∗− dx =
∫

Ω+

u dx+
∫

Ω−
u dx =

∫
Ω
u dx = 0 . (12)

In view of (11) and (12), we have the following inequality:

λT1 (Ω) ≥ λ∗ := inf
(f, g) ∈ H1

0 (B+)×H1
0 (B−)∫

B+

f dx =
∫
B−

g dx

∫
B+

|∇f |2 dx+
∫
B−
|∇g|2 dx∫

B+

f2 dx+
∫
B−

g2 dx

.

(13)
Now, it is standard, using the classical method of calculus of variations, to
prove that the infimum in the definition of λ∗ is attained for a couple that
we denote by (f+, f−). The Euler-Lagrange condition satisfied by (f+, f−),

taking into account the constraint
∫
B−

g dx −
∫
B+

f dx = 0, can be written

as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∀(φ,ψ) ∈ H1

0 (B+)×H1
0 (B−)∫

B+

∇f+.∇φdx+
∫
B−
∇f−.∇ψ dx− λ∗

(∫
B+

f+φdx+
∫
B−

f−ψ dx

)
= µ0

(∫
B+

f2
+ dx+

∫
B−

f2
− dx

)(∫
B−

ψ dx−
∫
B+

φdx

)
,

(14)
where µ0 is a Lagrange multiplier. Due to the homogeneity of the problem,

we can obviously assume that
∫
B+

f2
+ dx+

∫
B−

f2
− dx = 1. Now, taking first

ψ = 0, then φ = 0 in (14) we see that f+ and f− solve:{
−∆f+ = λ∗f+ − µ0 in B+

f+ = 0 on ∂B+
,

{
−∆f− = λ∗f− + µ0 in B−

f− = 0 on ∂B− .
(15)

Integrating the two equations and taking the difference yields

−
∫
B+

∆f+ dx+
∫
B−

∆f− dx = −µ0(|Ω+|+ |Ω−|) = −µ0|Ω| .

Now, we introduce the open set Ω̃ = B+ ∪ B− and the function w defined
on Ω̃ by

w =
{
f+ in B+

−f− in B− .
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This function satisfies −
∫

Ω̃
∆w dx = −µ0|Ω| = −µ0|Ω̃| and then, replacing

in (15): ⎧⎨⎩ −∆w = λ∗w − 1
|Ω̃|

∫
Ω̃

∆w dx in Ω̃

w = 0 on ∂Ω̃
(16)

this shows that λ∗ is an eigenvalue of the twisted problem on Ω̃ and therefore,
λT1 (Ω) ≥ λ∗ ≥ λT1 (Ω̃). �

To finish the proof of Theorem 1, it remains to prove that the union
of two identical balls gives the lowest possible value of λT1 among union of
balls. This is not as simple as in the purely Dirichlet case since the extra
zero average condition on the eigenfunction couples the eigenfunction on the
two balls making the eigenvalue equation more complicated.

Let us establish the equation allowing to compute the first twisted eigen-
value of the union Ω of two (disjoint) balls B1 and B2 in Rn of respective
radii R1 and R2, with R1 ≤ R2. Without loss of generality, we can assume
that the volume of Ω is one which implies

Rn1 +Rn2 = 1 . (17)

There is a first possibility which consists in taking an eigenfunction which
is zero on the smaller ball B1 and which coincides on B2 with the first
eigenfunction u2 of the larger ball. In this case, we would have

λT1 (B1 ∪B2) = λT1 (B2) .

We will see later that this situation actually occurs for a large range of value
of the ratio R1/R2! Following L. Barbosa and P. Bérard, see [BB], we see

that, in such a case, we will have λT1 (B2) =
(
jn

2
,1/R2

)2
where jn

2
,1 is the

first zero of the Bessel function Jn
2
(x).

We have now to look at the case where the eigenfunction, say u, does
not vanish on any of the two balls. We write

u =
{
u1 in B1

u2 in B2 .

Since, as was mentioned in Proposition 2.2, Courant’s Theorem about the
number of nodal domains holds here, we see that u1 is, for example, positive
in B1 while u2 is negative in B2. Moreover, the proof of Lemma 3.1 shows
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that we can restrict ourselves to the case where u1 and u2 are radially sym-
metric functions. Then, the ordinary differential equation that we have to
solve (for j = 1, 2) is:⎧⎪⎪⎨⎪⎪⎩

d2 uj

dr2
+
n− 1
r

d uj
dr

+ λT uj = c

d uj
dr (0) = 0, uj(Rj) = 0

(18)

where c is the constant unknown a priori which corresponds to the term∫
Ω

∆u dx (we recall that we have chosen the volume of the union of the two

balls to be one). Setting λT (B1 ∪B2) = ω2, the solution of (18) is known to
be

u =

⎧⎪⎨⎪⎩
u1 = α1

(
r1−

n
2 Jn

2
−1(ωr)−R

1−n
2

1 Jn
2
−1(ωR1)

)
in B1

u2 = −α2

(
r1−

n
2 Jn

2
−1(ωr)−R

1−n
2

2 Jn
2
−1(ωR2)

)
in B2

(19)

Now, we express the coupling condition
∫

Ω
u(x) dx = 0:

0=
∫
B1

u1 dx+
∫
B2

u2 dx = α1

(
γn

∫ R1

0
Jn

2
−1(ωr)r

n
2 dr − δnR

n
2
+1

1 Jn
2
−1(ωR1)

)

−α2

(
γn

∫ R2

0
Jn

2
−1(ωr)r

n
2 dr − δnR

n
2
+1

2 Jn
2
−1(ωR2)

)
.

where γn is the (n−1)-measure of the unit sphere in Rn and δn the n-measure
of the unit ball. Using classical results for Bessel functions (see e.g. [W]),
namely,∫ R

0
Jn

2
−1(ωr)r

n
2 dr=

1
ω
R

n
2 Jn

2
(ωr) and 2νx Jν(x)− Jν−1(x)=Jν+1(x),

together with γn = nδn, we get

0 = α1R
n
2
+1

1 Jn
2
+1(ωR1)− α2R

n
2
+1

2 Jn
2
+1(ωR2).

Therefore, it is possible to take

α1 = R
n
2
+1

2 Jn
2
+1(ωR2) and α2 = R

n
2
+1

1 Jn
2
+1(ωR1) (20)
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in (19). It remains to express that we want the constant c in (18) to be the
same for the two equations j = 1 and j = 2. Since

∆u1 = −α1ω
2r1−

n
2 Jn

2
−1(ωr)

∆u2 = α2ω
2r1−

n
2 Jn

2
−1(ωr)

we have
c = ∆u1 + ω2u1 = −α1ω

2R
1−n

2
1 Jn

2
−1(ωR1)

c = ∆u2 + ω2u2 = α2ω
2R

1−n
2

2 Jn
2
−1(ωR2) .

Comparing these two relations and taking into account (20) yields the fol-
lowing transcendental equation whose zeros give eigenvalues of the twisted
problem for the union of two balls of radii R1 and R2:

R
n
2
+1

2 Jn
2
+1(ωR2)R

1−n
2

1 Jn
2
−1(ωR1) +R

n
2
+1

1 Jn
2
+1(ωR1)R

1−n
2

2 Jn
2
−1(ωR2) = 0

(21)
which, unless R1 = R2 (see below) can also be written as

Rn1
Jn

2
+1(ωR1)

Jn
2
−1(ωR1)

+Rn2
Jn

2
+1(ωR2)

Jn
2
−1(ωR2)

= 0 . (22)

We will denote by ω(R1, R2) (or ω if no misunderstanding can occur) the
first positive root of the equation (21) or (22). Its square is always an
eigenvalue for the twisted problem on B1 ∪ B2 but not necessarily the first
one. Actually, numerical computations (and also asymptotic expansion for
R1 → 0) show that there exist a constant cn depending on the dimension
n (we get e.g. c2 ≈ 0.56714, c3 ≈ 0.64715) such that if R1/R2 < cn, then
jn

2
,1/R2 < ω(R1, R2). That we always have cn < 1 is actually a consequence

of Corollary A.2 – see the comment just after Lemma 3.3. Summing up, the
following situation holds:

Proposition 3.2. There exists a constant cn, depending on the dimension
n, such that:

• if R1/R2 < cn then λT1 (B1 ∪B2) =
(
jn

2
,1/R2

)2

• if R1/R2 ≥ cn then λT1 (B1 ∪B2) = ω(R1, R2)2.

where ω(R1, R2) is the first positive zero of equation (21) or (22).
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In the case R1 = R2(= 2−1/n), from the equation in its form (21), we see
that

ω(R1, R1) = ω(2−1/n, 2−1/n) = jn
2
−1,1/2−1/n = 21/njn

2
−1,1 .

We will denote this value by ω∗ = 21/njn
2
−1,1 which will play an important

role in the next analysis since we want to prove that λT1 (B1 ∪B2) ≥ ω∗2.
Let us denote by φ(x) the function which appears in (22):

φ(x) := xn
Jn

2
+1(x)

Jn
2
−1(x)

.

We easily get, thanks to the recurrence relations satisfied by Bessel functions,
that

φ′(x) =
xn+1

n

[
1 +

Jn
2
+1(x)

Jn
2
−1(x)

]2

=
xn+1

n

[
1 +

φ(x)
xn

]2

. (23)

This shows, in particular, that φ is increasing on each interval where it is
defined, that is, on intervals of the form

(0, jn
2
−1,1) and (jn

2
−1,k, jn

2
−1,k+1), k ≥ 1.

Let us now introduce the function ψ(ω,R1, R2) for which we want to calcu-
late the zeros:

ψ(ω,R1, R2) := φ(ωR1) + φ(ωR2) .

It is defined when ω belongs to the intersection of all the intervals
(jn

2
−1,k/R1, jn

2
−1,k+1/R1) and (jn

2
−1,k/R2, jn

2
−1,k+1/R2). The two first such

intervals are

]0, jn
2
−1,1/R2[∪]jn

2
−1,1/R2,min(jn

2
−1,1/R1, jn

2
−1,2/R2)[.

On the first interval ψ is positive, while on the second it goes from −∞ to
+∞. It implies the following first rough estimate:

jn
2
−1,1/R2 < ω(R1, R2) < min(jn

2
−1,1/R1, jn

2
−1,2/R2) .

Moreover,

ψ(jn
2
+1,1/R2, R1, R2) = (jn

2
+1,1/R2)n

Jn
2
+1(jn

2
+1,1R1/R2)

Jn
2
−1(jn

2
+1,1R1/R2)

so, if we are in the case jn
2
+1,1R1/R2 < jn

2
−1,1 both numerator and

denominator in the previous fraction will be positive which shows that
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ω(R1, R2) < jn
2
+1,1/R2. Now, it is known that the zeros of Jn

2
−1 and Jn

2
+1

are intertwined, which means in particular jn
2
+1,1/R2 < jn

2
−1,2/R2. There-

fore, we finally have

jn
2
−1,1/R2 < ω(R1, R2) < min(jn

2
−1,1/R1, jn

2
+1,1/R2) . (24)

Remark 3.1. From (24), it is clear that when the ratio R1/R2 tends to 1,
ω(R1, R2) → jn

2
−1,1/(2−1/n) = ω∗.

Now, if we assume that R1 = R is fixed and we look at the function
ω �→ ψ(ω,R, (1 − Rn)1/n), the previous analysis shows that this function is
well defined and increasing on the interval

I =
(
jn

2
−1,1

R2
,min

{
jn

2
−1,1

R1
,
jn

2
+1,1

R2

})
.

We can now introduce the function G : (0, 2−1/n) → R defined by:

G(r) := ψ(ω∗, r, (1 − rn)1/n) = φ(ω∗r) + φ(ω∗(1− rn)1/n) . (25)

Let us remark that ω∗r = jn
2
−1,121/nr < jn

2
−1,1, so the expression φ(ω∗r)

is always well defined. For the expression φ(ω∗(1 − rn)1/n), it will also be
true if ω∗ < jn

2
−1,2. The chain of inequalities 21/njn

2
−1,1 < jn

2
,1 < jn

2
−1,2

(the first inequality coming from Corollary A.2) shows that it is the case.
Therefore, the function G is well defined on the interval [0, 2−1/n).

Lemma 3.3. If G takes only negative values on (0, 2−1/n), then ω∗ ≤
ω(R1, R2) for all R1, R2.

Proof. Since ω �→ ψ(ω,R, (1−Rn)1/n) is increasing, if ψ(ω∗, R, (1−Rn)1/n) <
0 for all R ∈ (0, 2−1/n), it will remain negative for ω < ω∗, and then no zero
of ψ (i.e. ω(R1, R2)) can be in the range (0, ω∗). �

This Lemma implies Theorem 1 because of Proposition 3.2 and the in-
equality ω∗ = jn

2
−1,121/n < jn

2
,1 ≤ jn

2
,1/R2 for all R2 ≤ 1 which comes from

Corollary A.2.

It remains to prove that G takes only negative values. For this, we compute
its derivative.

G′(r) = ω∗φ′(ω∗r)− ω∗rn−1(1− rn)1/n−1φ′(ω∗(1− rn)1/n) .
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Using the expression of φ′ given in (23), a straightforward computation gives:

G′(r)=
ω∗n+2rn−1

n

⎡⎣r2(1+
φ(ω∗r)
(ω∗r)n

)2

−(1−rn) 2
n

(
1+

φ(ω∗(1−rn)1/n)
ω∗n(1− rn)

)2
⎤⎦ .

So, if we introduce the function

h(r) := r

[
1 +

φ(ω∗r)
(ω∗r)n

]
we can write G′(r) as

G′(r) =
ω∗n+2rn−1

n

[
h2(r)− h2

(
(1− rn) 1

n

)]
.

Now, the relations satisfied by the Bessel functions show that

h(r) = r

[
1 +

Jn
2
+1(ω∗r)

Jn
2
−1(ω∗r)

]
=

n

ω∗
Jn

2
(ω∗r)

Jn
2
−1(ω∗r)

.

Since ω∗r ∈]0, jn
2
−1,1[, h is well defined and positive for r ∈]0, 2−1/n[. Fur-

thermore, using the Mittag-Leffler representation (see e.g. [W]), we get

h(r) =
n

ω∗ 2ω∗r
+∞∑
m=1

1
(jn

2
−1,m)2 − (ω∗r)2

which shows that h is an increasing function (as a product of increasing
positive functions). Therefore,

h2(r)− h2
[
(1− rn) 1

n

]
< 0

and G′(r) < 0 for r ∈ (0, 2−1/n). Now,

G(0) = φ(ω∗) = ω∗nJ
n
2
+1(ω∗)

Jn
2
−1(ω∗)

is negative since jn
2
−1,1 < ω∗ < jn

2
+1,1 < jn

2
−1,2 according to Corollary A.2.

Finally, we investigate the equality case. According to the analysis of
the equality case in the Polya inequality relating

∫
Ω∗ |∇u∗|2 and

∫
Ω |∇u|2

(see e.g. [K]), we see from (11) that equality can occur only if Ω is already
the union of two balls. Now, the proof of Lemma 3.3 shows that we have
actually ω∗ < ω(R1, R2) if R1 �= R2.

This finishes the proof of Theorem 1.
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4. Discussion and open problems.

Since the minimum is obtained for a set which is not connected, the obvi-
ous question that arises is what the infimum is if we restrict ourselves to
connected sets. As in the case of the second Dirichlet eigenvalue referred
to previously, this is not the good question, since the minimum can be ap-
proximated by a sequence of connected domains: take, for instance, two
equal balls connected by a thin tube. By using in the Rayleigh quotient
an eigenfunction corresponding to the first twisted eigenvalue problem for
the two balls alone, we can easily see that by making the tube thinner and
increasing the radius of the balls such that the total volume is kept fixed,
we can approach the optimal eigenvalue as much as desired. Thus, and like
in the Dirichlet problem, a more interesting situation is to consider the min-
imization over convex domains. Following the lines of [HO] where the case
of the second Dirichlet eigenvalue is considered, we may actually prove the
following properties:

• There exists a convex domain, say Ω∗, which minimizes λT1 (Ω) among
convex sets of given volume.

• This domain Ω∗ does not contain arc of circle (or pieces of sphere in
dimension greater than 2) on its boundary. In particular, the optimal
domain is not the stadium (convex hull of two identical tangent balls).

• The optimal domain is at least C1.

To continue the study of the optimal convex domain, in particular its geo-
metric properties, we need to know more about the nodal line of a convex
domain. Here are some open problems related to that question.

Open problem 1: Prove that the nodal line of the first twisted eigenfunc-
tion of a plane convex domain Ω hits the boundary of Ω at exactly two
points (see [M] for the Dirichlet case).

Open problem 2: Prove that the optimal plane convex domain has exactly
two parallel segments on its boundary.

Open problem 3: Prove that the optimal plane convex domain has two
axis of symmetry.
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Appendix A. A result about the ratio of the first zero of two
consecutive Bessel functions.

In the proof of Lemma 3.3 (and also at some other places in section 3), we
used the inequality jn

2
,1 > jn

2
−1,121/n. We will prove in this section that it

is a consequence of a sharper inequality involving the ratio of the first zero
of two consecutive Bessel functions:

Theorem A.1. Let us denote by jν the first positive zero of the Bessel
function Jν(x), ν ≥ 0. Then, for any ν = n

2 where n is an integer, the
following estimate holds:

31/(ν+1) ≥ jν+1

jν
≥
(
j1
j0

)1/(ν+1)

. (26)

Let us point out that the estimate from below in inequality (26) is ”the
best possible” since equality obviously holds for ν = 0. For the estimate
from above, see comment in the Remark A.1.

Corollary A.2. For every integer n, we have the inequality

jn
2
+1

jn
2
−1

>
jn

2

jn
2
−1

> 2
1
n . (27)

Proof. Indeed, the first inequality is trivial, while Theorem A.1 applied to
ν = n

2 − 1 yields
jn

2

jn
2
−1

>

(
j1
j0

)2/n

and the result follows since
(
j1
j0

)2
> 2. �

Proof of the Theorem : The starting point is the following inequality
which can be found, for example, in [QW]:

ν − α1

21/3
ν1/3 < jν < ν − α1

21/3
ν1/3 +

3
20
α2

1

21/3

ν1/3
(28)

where α1 is the first negative zero of the Airy function Ai(x), its numerical
value being α1 � −2.3381. From now on, we will assume ν ≥ 2, the case
ν < 2 will be considered at the end of the proof. We use the inequalities

1 + u/3 ≥ (1 + u)1/3 ≥ 1 + u/4 (valid for 0 ≤ u ≤ 1) , (29)
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(1 + u)−1/3 ≤ 1− u/4 (valid for 0 ≤ u ≤ 1/2) (30)

together with (28) to get on the one hand

jν+1 > ν + 1− α1

21/3
(ν + 1)1/3 ≥ ν + 1− α1

21/3
ν1/3(1 +

1
4ν

) (31)

and, on the other hand,

jν+1 < ν + 1− α1

21/3
(ν + 1)1/3 +

3
20
α2

1 21/3(ν + 1)−1/3.

This implies

jν+1 < ν + 1− α1

21/3
ν1/3(1 +

1
3ν

) +
3
20
α2

1 21/3ν−1/3(1− 1
4ν

). (32)

Let us set c = log(j1/j0). We now use the inequality eu ≤ 1 + 1.3u valid for
every number u ≤ 1/2 (we have c/(ν + 1) ≤ c ≤ 1/2) to get(

j1
j0

) 1
ν+1

≤ 1 +
1.3 c
ν + 1

≤ 1 +
1.3 c
ν

. (33)

Using (28) for jν , (31) for jν+1 and (33), we finally get:(
j1
j0

) 1
ν+1

jν − jν+1 <

(
1 +

1.3 c
ν

)(
ν − α1

21/3
ν1/3 +

3
20

21/3α2
1ν

−1/3

)
− ...

(
ν + 1− α1

21/3
ν1/3 − α1

4.21/3
ν−2/3

)
.

which gives the following upper bound for
(
j1
j0

) 1
ν+1

jν − jν+1:

1.3 c − 1 +
3
20

21/3α2
1ν

−1/3 +
α1

21/3
(
1
4
− 1.3 c)ν−2/3 +

3.9 c
20

21/3 α2
1ν

−4/3 .

If we denote by x = ν1/3, the previous estimate leads to study the polynomial

P (x) := (1.3 c − 1)x4 +
3
20

21/3α2
1x

3 +
α1

21/3
(
1
4
− 1.3 c)x2 +

3.9 c
20

21/3 α2
1 .

Now, a straightforward calculation shows that P (x) ≤ 0 as soon as x ≥
3.19226, which yields that the lower bound in inequality (26) holds when
ν ≥ 3.192263 � 32.53.
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For the upper bound, we proceed in the same way. We use jν > ν −
α1

21/3 ν
1/3 and

31/(ν+1) ≥ 1 +
log 3
ν + 1

≥ 1 +
log 3
ν

− log 3
ν2

together with (32) to get

jν31/(ν+1) − jν+1 ≥ log 3− 1− 3
20

21/3α2
1ν

−1/3 +
α1

21/3
(
1
3
− log 3)ν−2/3 + ...

− log 3 ν−1 +
3
80

21/3 α2
1ν

−4/3 +
α1

21/3
log 3ν−5/3 .

This leads us to consider the polynomial

Q(x) := (log 3− 1)x5 − 3
20

21/3α2
1x

4 +
α1

21/3
(
1
3
− log 3)x3 − log 3x2

+
3
80

21/3 α2
1x+

α1

21/3
log 3

which is non positive if x > 9.0161. It means that the upper bound in
inequality (26) holds when ν ≥ 9.01613 � 732.2.

It remains to check the inequalities in (26) for a finite number of values,
namely, ν = n

2 , n = 0, 1, . . . , 1464 for the left–hand inequality, and n =
0, 1, . . . , 66 for the right–hand side inequality. This was done using Matlab.

Remark A.1. The number 3 in the upper bound has been chosen to give
numerical computations which were not too long. Actually, according to the
asymptotic expansion given by (28), we could certainly choose, instead of 3,
any number k greater than e = 2.7128.... But obviously, the closer k is to e,
the more numerical computations we need to do to complete the proof.

Remark A.2. We were only motivated by the quotient jν+1/jν , so we have
not considered the case of higher zeros. But, since the estimate (28) holds
for any zero jν,k (we just have to replace α1 by αk, the k-th negative zero of
the Airy function), it is clear that the proof we give can be adapted to look
at any ratio of the type jν+1,k/jν,k.
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