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We present a revised definition of a Ribaucour transformation for
submanifolds of space forms, with flat normal bundle, motivated
by the classical definition and by more recent extensions. The def-
inition introduced in this paper, provides a precise treatment of
the geometric aspect of such transformations preserving lines of
curvature and it can be applied to submanifolds whose principal
curvatures have multiplicities bigger than one. We characterize this
transformation in terms of differential equations and we study some
of its properties. We show that an n-dimensional sphere or hyper-
plane can be locally associated by a Ribaucour transformation to
any given hypersurface Mn of Rn+1, which admits n orthogonal
principal direction vector fields. As an application of Ribaucour
transformations, we characterize the Dupin hypersurfaces which
have a principal curvature of constant multiplicity one, as a mani-
fold foliated by (n−1)-dimensional Dupin submanifolds associated
by Ribaucour transformations.
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1. Introduction.

The classical Ribaucour transformation relates diffeomorphic surfacesM and
M̃ of R3 such that at corresponding points the normal lines intersect at an
equidistant point. Moreover, the set of intersection points is also required
to describe a surface of R3 and the diffeomorphism to preserve the lines of
curvature of M and M̃ . The classical theory (see Bianchi [Bi]) includes the
case of hypersurfaces parametrized by lines of curvature, where the princi-
pal curvatures of both hypersurfaces have multiplicity one, although this is
not stated explicitly. Ribaucour transformations have many applications. In
particular they can be applied as a method of construction of surfaces of con-
stant Gaussian curvature, constant mean curvature, and minimal surfaces.

1Partially supported by PROCAD.
2Partially supported by CNPq.

1055



1056 A. V. Corro and K. Tenenblat

Although this was known in the classical literature, it was recently applied
for the first time to obtain minimal surfaces [CFT2]. Moreover, Ribaucour
transformations for linear Weingarten surfaces and for Dupin hypersurfaces
were studied in [CFT3] and [CFT1].

The extension to submanifolds of higher codimension is quite recent. One
of the difficulties relies on extending the condition on the intersection of the
normal lines. The first attempt in this direction can be found in Tojeiro
[To]. More recently, two distinct extensions were considered by Corro [Co]
and Dajczer-Tojeiro [DT1], for submanifolds, with flat normal bundle and
parametrized by lines of curvature. We point out that a version of the
definition in [DT1], for nonholonomic submanifolds, was introduced in [DT2]
and it was used in [BDPT].

While both definitions require the transformation to preserve all lines of
curvature, they differ in the extension of the condition on the intersection of
the normal lines. One can see in [Co], [DT1] and [DT2] that both are “char-
acterized” by the same integrable system of differential equations. Moreover,
solutions of this system provide immersions locally associated by Ribaucour
transformation to a given immersion. However, solutions of the system of
differential equations do not always preserve multiplicity of principal curva-
tures. This was observed in [CFT1], where families of Dupin submanifolds
were associated to the plane (see also Example 3.7 b). In such cases, the
diffeomorphism between the submanifolds does not preserve all lines of cur-
vature. In fact, one can see that the system of differential equations is a
necessary but not sufficient condition for the existence of immersions asso-
ciated to a given one by Ribaucour transformations.

In view of the aspects mentioned above, the definition of a Ribaucour
transformation needs to be revised. The definition, that will be introduced
in section 2, provides a precise treatment of the geometric aspect of such
transformations preserving lines of curvature and it can be applied to sub-
manifolds, of any codimension, whose principal curvatures have multiplicity
bigger than one.

Given a submanifold Mn ⊂ Rn+p with flat normal bundle, we will define
the submanifolds M̃n associated to M by a Ribaucour transformation, with
respect to a fixed set of n orthonormal vector fields of principal directions
{ei}, globally defined on M . Preserving all lines of curvature will be re-
placed by the requirement of preserving the lines of curvature tangent to
{ei}. We observe that the existence of such a set of vector fields, for n ≥ 3,
does not imply the existence of a local parametrization such that the coor-
dinate curves are tangent to these vector fields or that the submanifold is
holonomic. We will also require the existence of a unit vector field normal
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to each submanifold such that the corresponding normal lines intersect at
an equidistant point as in [Co]. Moreover, the set of intersection points is
required to be an n-dimensional submanifold.

We point out that given a submanifold M with a principal curvature
with multiplicity bigger than one, the submanifolds M̃ associated to M , by
a Ribaucour transformation, may differ depending on the choice of the set of
vector fields of principal directions {ei} on M . Moreover, the transformation
is invertible in the sense that there exists such a set {ẽi} on M̃ , such that
M is associated to M̃ by a Ribaucour transformation with respect to {ẽi}.
We will show that the revised defintion is indeed equivalent to the system
of differential equations. Moreover, it implies the existence of a normal
bundle isometry which commutes with the normal connections, such that
the corresponding normal lines are parallel or intersect at an equidistant
point as required in [DT1]. We observe that the theory extends obviously
to submanifolds and immersions of the sphere or of the hyperbolic space
by replacing straight lines by geodesics of the ambient space. We conclude
section 2 by showing that an n-dimensional sphere or hyperplane can be
locally associated by a Ribaucour transformation to any given hypersurface
Mn of Rn+1, which admits n orthogonal principal direction vector fields.
The results of this section were announced in [T].

In section 3 we consider Dupin submanifolds. Such surfaces were first
studied by Dupin in 1822 and more recently by many authors [CC], [CeR1-
CeR2], [CJ1-CJ2] [M], [N], [P1-P2], [PT], [Th], which considered several
aspects of Dupin hypersurfaces. Since the classification of Dupin hypersur-
faces for higher dimensions is far from complete, it is important to study
such submanifolds.

We consider Dupin hypersurfaces parametrized by lines of curvature.
Hence, we eliminate those which are Lie equivalent to an isoparametric hy-
persurface contained in Sn. This follows from Pinkall’s result [P2], which
asserts that an isoparametric hypersurface in Sn with more than two distinct
principal curvatures cannot be parametrized by lines of curvature.

The main purpose of section 3 is to characterize the Dupin hypersurfaces
which have a principal curvature of constant multiplicity one, as a manifold
foliated by (n−1)-dimensional Dupin submanifolds associated by Ribaucour
transformations. This characterization was obtained in [Co]. More recently,
the case of a principal curvature with constant multiplicity bigger than one
was considered in [DFT]. The results in this section provide a method of
constructing a Dupin hypersurface in Rn+2, from a given one in Rn+1, via
Ribaucour transformations. It might be interesting to relate this method to
Pinkall’s notion of reducibility [P2].
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We conclude section 3 with an example which shows that when a sub-
manifold M has principal curvatures with multiplicity bigger than one, then
the submanifolds associated by a Ribaucour transformation to M may differ
depending on the choice of the set of principal directions.

2. Ribaucour transformations.

In this section, we discuss the classical definition of a Ribaucour transforma-
tion for hypersurfaces and the more recent extensions to submanifolds with
higher codimension. In view of this discussion, we then introduce a new defi-
nition of Ribaucour transformation for submanifolds of the Euclidean space,
with flat normal bundle. The revised definition provides a precise treatment
of the geometric aspect of such transformations preserving lines of curvature
and it extends Ribaucour transformations to submanifolds whose principal
curvatures have multiplicity bigger than one. We characterize this transfor-
mation in terms of differential equations and we study some of its properties.

The classical Ribaucour transformation relating hypersurfaces parame-
trized by lines of curvature can be found in Bianchi [Bi]. The extension to
submanifolds of higher codimension is more recent. In [Co] and [DT1], two
distinct extensions were given for submanifolds, with flat normal bundle,
parametrized by lines of curvature.

In [Co], two such manifolds Mn and M̃n, contained in Rn+2 are con-
sidered to be related by a Ribaucour transformation if there exist a dif-
feomorphism ψ : M → M̃ , which preserves lines of curvature, a differen-
tiable function h : M → R and unit normal vector fields N , Ñ , parallel
in the normal connection of M and M̃ , respectively, such that ∀q ∈ M ,
q + h(q)N(q) = ψ(q) + h(q)Ñ (ψ(q)) and the subset q + h(q)N(q) is n-
dimensional.

In [DT1], two holonomic isometric immersions f : Mn → Rn+p and
f̃ : M̃n → Rn+p are said to be related by a Ribaucour transformation
when there exist a curvature-lines-preserving diffeomorfism ψ : M → M̃
with |f− f̃ ◦ψ| �= 0 everywhere, a vector bundle isometry P : T⊥

f M → T⊥
f̃
M̃

covering ψ, and a vector field ζ ∈ T⊥
f M that is nowhere a principal curvature

normal of f , such that a) P (ξ) − ξ =< ξ, ζ > (f − f̃ ◦ ψ) for all ξ ∈ T⊥
f M ;

and b) P is parallel, i.e. P commutes with the normal connection.
Definition in [Co] is quite simple compared to the definition in [DT1].

Before we relate these two definitions, we discuss some basic geometric as-
pects which motivated the new definition. We start by observing that the
definitions above require a Ribaucour transformation to preserve all lines of
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curvature, This is one of the basic problems that we will treat in this paper.
We first mention that, even in the case of surfaces in R3, one has to fix

a surface and then consider those associated to the given surface by Ribau-
cour tranformations (instead of considering two surfaces associated by the
transformation). An easy example illustrates this observation. Consider in
R3 the following segments: (1, 0, t), (1 + t, 0, t) and (1 + t, 0, 0), where t > 0.
By rotating the segments arround the x3 axis one gets a half cylinder, a
truncated cone and the complement of a unit disc in the x1, x2 plane. Let
ψ be the diffeomorphism that to each point of the cylinder (cos θ, sin θ, t) it
associates the point ((1+t) cos θ, (1+t) sin θ, 0) on the plane. Then the trun-
cated cone is the set of intersection of the normal lines and ψ preserves the
lines of curvature. However, one cannot say that the cylinder is associated
to the planar region, since not all lines of curvature of the plane correspond
to such curves on the cylinder.

Preserving lines of curvature. It is generally accepted that Ribaucour trans-
formations preserve lines of curvature. In the classical theory and in both
[Co] and [DT1], the definition is “characterized” essencially by the same
integrable system of differential equations, whose solutions provide immer-
sions locally associated by Ribaucour transformations to a given immersion
(see for example Theorem 9 in [DT1]). However, one can show that this
procedure does not always preserve multiplicity of principal curvatures. In
fact, this was already mentioned in [CFT1] and one can see in Example 3.7
that a torus is locally associated to a plane. In such cases, the requirement
of the local diffeomorphism ψ preserving all lines of curvature does not hold.
This is due to the fact that the system of differential equations is a necessary
condition for the existence of immersions associated to a given one by Ribau-
cour transformations, but it is not sufficient. We will also show in Corollary
2.10, that given any hypersurface Mn of Rn+1, which admits n orthonormal
principal direction vector fields, there exists a solution to the system of dif-
ferential equations so that the associated hypersurface is an open subset of
a hyperplane or a sphere.

In the revised definition, we replace the requirement of preserving lines of
curvature by the requirement of preserving the lines of curvature tangent to a
fixed set of n orthonormal vector fields of principal directions. In that case,
the system of equations is indeed equivalent to the definition. Moreover,
for submanifolds which admit principal curvatures with multiplicity bigger
than one, the choice of distinct set of orthonormal principal directions may
provide, by solving the system of equations, distinct families of submanifolds
associated by Ribaucour transformations (see Example 3.7).
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Holonomic submanifolds. The classical theory and the more recent devel-
opments in [Co] and [DT1] require the submanifolds to be holonomic. (i.e.
admit a global parametrization by lines of curvature). However, for subman-
ifolds which admit principal curvatures with multiplicity bigger than one, by
considering distinct parametrizations by lines of curvatures and solving the
system of differential equations one may obtain different associated subman-
ifolds (see Example 3.7). The nonholonomic case was considered in [DT2].
However, it presents the same problem with respect to the transformation
preserving all lines of curvature (see Theorem 45 in [DT2] which does not
characterize all Ribaucour transformations).

Our definition will not require the manifold to be holonomic. However,
it will require the existence of n orthomormal vector fields of principal di-
rections globally defined. If the submanifold is given parametrized by or-
thogonal lines of curvature, then the vector fields tangent to the coordinate
curves provide the principal directions that will be preserved.

Extending the condition on the intersection of the normal lines for higher
codimension. Assuming that the submanifolds have flat normal bundle,
while [Co] requires the existence of a unit vector field normal to each sub-
manifold such that the corresponding lines intersect at an equidistant point,
the definition in [DT1] requires the existence of an isometry of the normal
bundles such that the corresponding normal lines are parallel or intersect at
an equidistant point.

Our definition will require the existence of a vector field normal to each
submanifold such that at corresponding points the lines in these normal di-
rections intersect at an equidistant point. We will show that this condition
implies the existence of a correspondence between the normal bundles (resp.
tangent bundles) such that the lines at corresponding normal (resp. tan-
gent) vectors are parallel or intersect at an equidistant point. Moreover, the
correspondence between the normal bundles can be chosen so that it is an
isometry wich commutes with the normal connections.

The set of equidistant points. The classical definitions and the definition
in [Co] requires that the set of the intersections of the normal lines is an
n-dimensional submanifold. The existence of a normal vector field, which
is nowhere a principal curvature normal to the immersion in the definition
of [DT1], is equivalent to requiring the existence of a normal vector field
for which the set of intersections of the corresponding normal lines is n
dimensional.

In view of the aspects mentioned above we propose the following defini-
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tion.

Definition 2.1 Let Mn be a submanifold of Rn+p with flat normal bundle.
Assume there exist e1, ..., en orthonormal principal vector fields defined on
M . A submanifold M̃n ⊂ Rn+p, with flat normal bundle, is associated to
M by a Ribaucour transformation with respect to e1, ..., en if there exist a
diffeomorphism ψ : M → M̃ , a differentiable function h : M → R and unit
normal vector fields N and Ñ , parallel in the normal connection of M and
M̃ respectively, such that:

a) q + h(q)N(q) = ψ(q) + h(q)Ñψ(q), ∀q ∈M ;
b) the subset q + h(q)N(q), q ∈M is n-dimensional;
c) dψ(ei) are orthogonal principal directions in M̃ .

This transformation is invertible in the sense that there exist orthonormal
principal direction vector fields ẽ1, ..., ẽn on M̃ such that M is associated to
M̃ by a Ribaucour transformation with respect to these vector fields. One
may consider the analogue definition for locally associated submanifolds (or
for immersions).

Definition 2.2 Let Mn be a submanifold of Rn+p with flat normal bun-
dle. Assume there exist e1, ..., en orthonormal principal vector fields globally
defined on M . A submanifold M̃n is locally associated to M by Ribaucour
transformations with respect to e1, ..., en if for any q̃ ∈ M̃ there exists a
neighborhood Ṽ of q̃ in M̃ and an open subset V ⊂ M such that Ṽ is
associated to V by a Ribaucour transformation with respect to e1, ..., en.

Similar definitions can be considered for immersions in Rn+p and also
for submanifolds and immersions in the sphere Sn+p or the hyperbolic space
Hn+p. In the latter cases one should replace the straight lines of conditions
a) and b) by geodesics of the ambient space.

The definition above reduces to the classical case of surfaces in R3 or
hypersurfaces in Rn, parametrized by lines of curvature, whenever the prin-
cipal curvatures of the associated submanifolds have multiplicity one and
the direction ei are considered to be tangent to the coordinate curves.

The requirement of ψ being a diffeomorphism implies that both mani-
folds are topologically equivalent. In general this is a very strong condition.
Many interesting applications of this method (see [CFT2,CFT3]) show that
in general one has immersions locally associated by Ribaucour transforma-
tions to a given one, even when both manifolds are complete.

In what follows we consider a submanifold Mn of Rn+p, with flat normal
bundle. Let ei, 1 ≤ i ≤ n, be a local orthonormal frame tangent to M
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and let Nα 1 ≤ α ≤ p be a an orthonormal frame normal to M parallel in
the normal connection. We denote by ωi the one forms dual to the vector
fields ei and by ωij , 1 ≤ i, j ≤ n the connection forms determined by dωi =∑

j �=i ωj ∧ ωji, ωij + ωji = 0. The normal connection ωiα =< dei, Nα >
satisfies

∑
i ωi ∧ωiα = 0. Hence, ωiα =

∑
j b
α
ijωj where bαij = bαji. The Gauss

equation is given by

dωij =
∑
k

ωik ∧ ωkj +
∑
γ

ωiγ ∧ ωγj

and the Codazzi equations are dωiα =
∑

j ωij ∧ ωjα. If, ei, 1 ≤ i ≤ n, are
orthonormal principal directions, we have

dNα(ei) = λαiei, ωiα = −λαiωi. (1)

Then the Codazzi equations reduce to

dλαi(ej) = (λαi − λαj)ωij(ei) ∀α and i �= j. (2)

Theorem 2.3 Let Mn be an immersed submanifold of Rn+p, whose normal
bundle is flat and let ei, 1 ≤ i ≤ n be orthonormal principal vector fields
defined on M . A submanifold M̃n is locally associated to M by a Ribaucour
transformation with respect to the set ei, if and only if, for any q̃ ∈ M̃
there exist parametrizations X̃ : U ⊂ Rn → M̃ and X : U → M such that
q̃ ∈ X̃(U), a differentiable function h : U → R, a p × p matrix function B
defined on U and parallel orthonormal vector fields Nα, 1 ≤ α ≤ p, normal
to X(U) such that

X̃ = X + h(N1 − Ñ1), (3)

where Ñ1 is a unit vector field normal to X̃(U) given by

Ñ1 = (1−B11)
n∑
i=1

Ziei +
p∑
γ

B1γNγ , (4)

Zi =
dh(ei)

1 + hλ1i
∆ =

n∑
i=1

(
Zi
)2
, (5)

dNα(ei) = λαiei, 1 + hλi �= 0, h and B are generic solutions of the
differential equations

dZj(ei) +
n∑
k=1

Zkωkj(ei)− ZiZjλ1i = 0, 1 ≤ i �= j ≤ n, (6)
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BBt + ∆DDt = I, (7)

dB(ei)Bt−BdBt(ei)+∆[dD(ei)Dt−DdDt(ei)]+2Zi[BΛiDt−D(Λi)tBt] = 0
(8)

where

Dt = (1−B11,−B21, ...,−Bp1) (Λi)t = (λ1i, ..., λpi). (9)

Proof: Let N1 be the unit normal of the definition of Ribaucour transfor-
mation. We may complete with unit vector fields N2, ..., Np, normal to M ,
parallel in the normal connection.

In order to prove the theorem, we will consider Ñα, 1 ≤ α ≤ p, to be unit
orthonormal vector fields given by

Ñα =
n∑
i=1

bαiei +
p∑

γ=1

BαγNγ , (10)

where
n∑
i=1

bαibβi +
p∑

γ=1

BαγBβγ = δαβ . (11)

We introduce the following notation

dÑα(ei) =
∑
j

Lαji ej +
∑
γ

Cαγi Nγ , (12)

where, for 1 ≤ i ≤ n, 1 ≤ α ≤ p,

Lαji = dbαj(ei) +
∑
k

bαkωkj(ei) +
∑
γ

Bαγλγiδij , (13)

Cαγi = dBαγ(ei)− bαiλγi. (14)

We will show later that the following relations hold

bαi = Zi(δ1α −Bα1), 1 ≤ i ≤ n, 1 ≤ α ≤ p. (15)

In this case, substituting into (11) and using (5) we get

∆(δ1α −Bα1)(δ1β −Bβ1) +
∑
γ

BαγBβγ = δαβ

and the algebraic condition (11) reduces to (7). We will now prove the
theorem.
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Assume that M̃ is locally associated to M by a Ribaucour transforma-
tion. Then by definition there exist local parametrizations X of M , X̃ of M̃
and a function h defined on U ⊂ Rn such that

X̃ + h Ñ1 = X + hN1,

where Ñ1 is a unit vector field normal to M̃ , which may be considered as in
(4). Then

< dX̃(ei), Ñα >= 0, for all i, 1 ≤ i ≤ n, 1 ≤ α ≤ p. (16)

Since
dX̃ = dX + dh(N1 − Ñ1) + h(dN1 − dÑ1) (17)

it follows from the relations dX =
∑

j ωjej and dN1(ei) = λ1iei that

dX̃(ei) = (1 + hλ1i)ei + dh(ei)(N1 − Ñ1)− hdÑ1(ei). (18)

Hence, equation (16) implies

(1 + hλ1i)bαi + dh(ei)(Bα1 − δα1) = 0, 1 ≤ i ≤ n, 1 ≤ α ≤ p. (19)

We claim that the fact that X̃ is a Ribaucour transformation ofX implies
that 1 + hλ1i �= 0 for all i. In fact, consider the center manifold X0 =
X + hN1. Then

dX0(ei) = (1 + hλ1i)ei + dh(ei)N1.

Assume that (1+hλ1i)(u0) = 0 at a point u0. Then it follows from (19) that
dh(ei)(B11 − 1)(u0) = 0 and hence dh(ei)(u0) = 0. Otherwise, B11(u0) =
1 implies that X̃(u0) = X(u0) = X0(u0). Hence h(u0) = 0, which is a
contradiction, since (1 + hλ1i)(u0) = 0. Therefore, we have dh(ei)(u0) = 0
and dX0(ei)(u0) = 0, which contradicts the fact that the center manifold
X0 is n-dimensional. So 1 + hλ1i �= 0 for all i, therefore we conclude from
(19) that the relations (15) hold.

We will show that the differential equation which is satisfied by h, is a
consequence of the property

< dÑα(ei), dX̃(ej) >= 0 for i �= j.

Since dX̃(ei) are orthogonal principal directions, we have

< dX̃(ei), dX̃(ej) >=< dÑα(ej), dX̃(ei) >=< dÑα(ej), dÑβ(ei) >= 0
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for all i �= j, α �= β. Hence, using the notation (12) and equation (18), we
get

< dÑα(ei), dX̃(ej) > = < dÑα(ei), (1 + hλ1j)ej + dh(ej)N1 >,

= Lαji (1 + hλ1j) + Cα1
i dh(ej) = 0,

for all i �= j, α. By using the relations (13) and (14) in the last equality, we
conclude that equation (6) holds. We will show that the differential equation
(8), is a consequence of the property

< dÑα(ei), Ñβ >= 0 for all α, β, i.

Substituting (10) and (12), we have∑
j

Lαji b
βj +

∑
γ

Cαγi Bβγ = 0.

By using (14), (15), (5) and (9) in the last equality, we conclude that equation
(8) holds. We observe that h and B are generic solutions of (6)-(8) in the
sense that

dX̃(ei) =
∑
j

[(1 + hλ1i)δji − dh(ei)b1j − hL1j
i ]ej

+
∑
γ

[dh(ei)(δγ1 −B1γ)− hC1γ
i ]Nγ (20)

does not vanish for all i.
Conversely, assume h is a solution of (6) such that 1 + hλ1i �= 0 and B

satisfies (7) and (8). Then we define the functions Zi and ∆ by (5), bαi by
(15). We now define vector fields Ñα by (10). Since (7) holds, we get that
Ñα are orthonormal. We consider dÑα(ei), as a vector of Rn+p, given by
the expression (12). It follows from the definition of Ñα that equations (13)
and (14) hold. We now consider Ñα and X̃ as in (10) and (3) respectively.
We need to verify that X̃ satisfies the conditions of Definition 2.1.

We have seen that Ñα are orthonormal. We next verify that Ñα is normal
to X̃ . From the definition of X̃, dX̃(ei) is given by (18) and it does not vanish
for generic h and B. Using (15) and the fact that < dÑα(ei), Ñβ >= 0 is
equivalent of equations (7) and (8), we conclude that

< dX̃(ei), Ñα >= (1+hλ1i)bαi+dh(ei)(Bα1− δ1α)−h < dÑ1(ei), Ñα >= 0.

It follows from (14), (15) and (6), that

Lαji + ZjCα1
i = 0, i �= j.
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As a consequence of (18), (12) and < dÑα(ei), Ñ1 >= 0, we conclude that
for i �= j

< dÑα(ei), dX̃(ej) > = < dÑα(ei), (1 + hλ1j)(ej) + dh(ej)N1 >

= Lαji (1 + hλ1j) +Cα1
i dh(ej) = 0.

Finally, we conclude that the images of the vector fields ei, ej by dX̃ are
orthogonal for all i �= j. In fact,

< dX̃(ei), dX̃(ej) > = (1 + hλ1i) < ei, dX̃(ej) > +dh(ei) < N1, dX̃(ej) >
= dh(ej)[−(1 + hλ1i)b1i + dh(ei)(1−B11)] = 0,

where the last equality follows from the definition of bαi. �
Remark. We observe that when p = 1 then (7) reduces to (B11)2 + ∆(1−
B11)2 = 1 and (8) is an identity. For any p,introducing the eigenvalues

dÑ1(ei) = λ̃1idX̃(ei),

from (18) we get

(1 + hλ̃1i)dX̃(ei) = (1 + hλ1i)ei + dh(ei)(N1 − Ñ1).

Hence, using the expressions (10) and (15), we obtain

|1 + hλ̃1i||dX̃(ei)| = |1 + hλ1i|. (21)

Moreover, it follows from the proof given above that for the submanifold M̃ ,
the normal unit vector fields are given by

Ñα =
n∑
i=1

Zi(δ1α −Bα1)ei +
p∑

γ=1

BαγNγ , (22)

and they are parallel in the normal connection. Moreover, using (12), we
have

< dÑγ(ei), dX(ei) >= Lγii = λ̃γi < dX̃(ei), dX(ei) > (23)

< dÑγ(ei), N1 >= Cγii = λ̃γi < dX̃(ei), N1 > . (24)

Using (23), (24), (18),(10) and (12) we obtain the principal curvatures given
by

λ̃γi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Cγ1i
dh(ei)(1−B11)− hC11

i

if dh(ei) �= 0

Lγii
1 + hλ1i − hL11

i

, if dh(ei) ≡ 0,

(25)
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where Cγ1i and Lγii are given respectively by (14) and (13).
We conclude this remark by observing that the generic condition, men-

tioned in Theorem 2.3, will be given more explicitly at the end of this section,
in Theorem 2.8.

The following result shows that Definition 2.1 implies that for each point
q̃ ∈ M̃ and any unit vector normal (resp. tangent) at q̃, there exists a unit
vector, normal (resp. tangent) at a corresponding point q ∈M , such that the
lines in these directions are parallel or intersect at an equidistant point. Later
in Corollary 2.9, we will show that there exists a matrix B, which satisfies
(7) and (8), such that the correspondence between the normal bundles is
an isometry which commutes with the normal connections (hence it satisfies
the condition on the normal bundle isometry of definition in [DT1]).

Proposition 2.4 Let Mn and M̃n be immersed submanifolds of Rn+p with
flat normal bundle. Suppose that M̃ is associated to M by a Ribaucour
transformation with respect to a set of orthonormal principal vectors fields
ei. Then for any q̃ ∈ M̃ and any unit vector Ñ(q̃) normal (resp. Ṽ (q̃)
tangent) to M̃ , there exists q ∈ M and a unit vector N(q) normal (resp.
V (q) tangent) to M such that the lines of Rn+p starting at q̃ and q in the
direction of Ñ(q̃) and N(q) (resp. Ṽ (q̃) and V (q)) respectively are parallel
or intersect at a point equidistant to q̃ and q.

Proof: We will consider the notation of Theorem 2.3.
i) Let Ñ =

∑p
α=1A

αÑα be any unit vector field normal to M̃ . It follows
from (22) that

Ñ =
n∑
j=1

Zj(A1 −
p∑

α=1

AαBα1)ej +
p∑

γ=1

(
p∑

α=1

AαBαγ)Nγ . (26)

Hence, if A1 −
∑p

α=1A
αBα1 = 0, then there exists N = Ñ such that the

lines at corresponding points are parallel. If A1 −
∑p

α=1A
αBα1 �= 0, let

h̃ =
h(1−B11)

A1 −
∑p

α=1A
αBα1

.

Using (3), (4), (7) and (26), we get X̃ + h̃Ñ = X + h̃N , where N is a unit
vector given by

N = A1N1 +
p∑

γ=2

(
p∑

α=2

Aα(
Bα1B1γ

1−B11
+Bαγ))Nγ .
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ii) We will now prove the corresponding result for tangent vectors. It
follows from (18), that the unit principal directions of M̃ are given by

ẽi = ei + Zi(N1 − Ñ1). (27)

Let Ṽ =
∑n

i=1Q
iẽi be any unit vector tangent to M̃ . It follows from (27),

that

Ṽ =
n∑
i=1

Qiei + (N1 − Ñ1)
n∑
i=1

QiZi. (28)

Hence, if
∑n

i=1Q
iZi = 0, then there exists V = Ṽ such that the lines are

parallels. If
∑n

i=1Q
iZi �= 0, we consider

R =
−h∑n

i=1Q
iZi

.

It follows from (28) that X̃ + RṼ = X + RV , where V is given by V =∑n
i=1Q

iei. �
The following result linearizes the problem of obtaining the function h,

Proposition 2.5 If h is a solution of (6) which does not vanish on a simply
connected domain, then h = Ω/W1, where W1 is a nonvanishing function
and the functions Ω, Ωi, W1 satisfy

dΩi(ej) =
n∑
k=1

Ωkωik(ej), for i �= j, (29)

dΩ =
n∑
i=1

Ωiωi, (30)

dW1 = −
n∑
i=1

Ωiλ1iωi. (31)

Conversely, suppose (29)-(31) are satisfied then h = Ω/W1 is a solution of
(6).

Proof: Assume h is a nonvanishing solution of (6), then ψ =
∑

i Z
iωi/h,

is a closed form. Hence, on a simply connected domain there exists a dif-
ferentiable function Ω such that d(log Ω) = ψ. We define Ωi = dΩ(ei) and
W1 = Ω/h. Then dh(ei) = Ωi(1 + Ωλ1i/W1)/W1 and (30) holds. Moreover,
it follows from (6) that (29) and (31) are satisfied.

Conversely if (29)-(31) hold, considering Zi = Ωi/W1 one concludes that
(6) is satisfied. We define h = Ω/W1, then it follows that dh(ei) = Zi(1 +
hλ1i). �
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We observe that it follows from the proof of Proposition 2.5 that

dh(ei) =
Ωi

W1
(1 + Ωλ1i/W1) Zi =

Ωi

W1
∆ =

1
(W1)2

∑
j

(Ωj)2. (32)

Proposition 2.6 Equation (29) is the integrability condition for (30) and
(31). Moreover, (29) implies that there exist functions Wγ , 2 ≤ γ ≤ p,
defined on a simply connected domain such that

dWγ = −
∑
i

Ωiλγiωi, 2 ≤ γ ≤ p. (33)

Proof: The proof follows easily from the fact that the system of equations
(29) is equivalent to

dΩi ∧ ωi −
∑
j �=i

Ωjωij ∧ ωi = 0, 1 ≤ i ≤ n

and from Codazzi equation (2). �
Our next result provides solutions B for (8).

Proposition 2.7 Equations (29)-(31) and (33) are the integrability condi-
tions, for the system of equations (7) and (8) for B. Moreover, for a given
solution of (29)-(31) and (33), the matrix function

Bαβ = δαβ − 2
WαWβ

S
, 1 ≤ α, β ≤ p, (34)

where

S =
n∑
j=1

(Ωj)2 +
p∑

γ=1

(Wγ)2. (35)

is a solution of (8).

Proof: It follows from (7) that there exists an orthogonal matrix function
A = (aαβ), 1 ≤ α, β ≤ p, such that

B11 =
∆ + a11

1 + ∆
, B1β =

a1β

√
1 + ∆

, Bα1 =
aα1

√
1 + ∆

, Bαβ = aαβ , (36)

where 2 ≤ α, β ≤ p.
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We introduce the notation W = (W1, ...,Wp). It follows from (31)-(33)
and (9) that equation (8) is equivalent to

dBBt −BdBt + ∆(dDDt −DdDt) +
2
W1

(DdWBt −BdWtDt) = 0.

As a consequence of (9), (36) and AAt = I from the last equality, we get

da11 = (1− a11)

⎡⎣−(1 + a11)
dH

2H
− 1√

H

p∑
γ=2

a1γdWγ

⎤⎦ , (37)

da1β = a11a1β dH

2H
− 1− a11

√
H

dWβ +
a1β

√
H

p∑
γ=2

a1γdWγ , (38)

daα1 = aα1a11 dH

2H
− 1− a11

√
H

p∑
γ=2

aαγdWγ , (39)

daαβ = aα1a1β dH

2H
+
aα1

√
H
dWβ +

a1β

√
H

p∑
γ=2

aαγdWγ , (40)

where

H =
n∑
j=1

(Ωj)2 + (W1)2. (41)

It is a straighthoward computation to see that the compatibility condition
for these equations is given by (29)-(31) and (33).
Claim: For a given solution of (29)-(31)

a) The solution to (37) and (38) is given by

a11 = 1− 2H
S
, a1γ = −2

√
H

S
Wγ , 2 ≤ γ ≤ p, (42)

where Wγ are solutions of (33).

b) There exist solutions to (39) and (40) given by

aα1 = −2

√
H

S
Wα, aαβ = −2

WαWβ

S
2 ≤ α, β ≤ p. (43)

In fact, we may consider

a11 = 1− 2H
Q
, a1β = −2

√
H

Q
σβ, 2 ≤ β ≤ p. (44)
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Since the matrix A is orthogonal, it follows from the fact that
∑p

γ=1(a
1γ)2 =

1 that

Q = H +
p∑

β=2

(σβ)2. (45)

From (44) and (37) we obtain

dQ = dH +
p∑

γ=2

2σγdWγ ,

which, as a consequence of (45), reduces to

p∑
γ=2

σγdσγ =
p∑

γ=2

σγdWγ . (46)

Similarly, by considering (44), (38), (45) and (46) we conclude that dσβ =
dWβ, for 2 ≤ β ≤ p. Therefore we have σβ = Wβ are solutions of (33) and
Q = S. This concludes the proof of our claim a).

In order to prove claim b), we first observe that a straightforward com-
putation shows that the matrix A defined by (42) and (43) is orthogonal.
Moreover, by differentiating (43), we can easily verify that (39) and (40) are
satisfied.

Finally, since the matrix function B is given by (36), where ∆ =∑
j(Ω

j)2/(W1)2 substituting the expression of the matrix A, and using the
fact that 1 + ∆ = H/(W1)2, we conclude that B, given by (34), satisfies (8).
�

If M̃ ⊂ Rn+p is a submanifold locally associated to M by a Ribaucour
transformation, Theorem 2.3, shows that the parametrization X̃ of M̃ de-
pends on a function h and a matrix B satisfying the differential equations
(7) and (8). However, the expressions of the parametrization X̃ and of the
normal vector Ñ1, given by (3) and (4) respectively, depend only on the first
row of matrix B. Moreover, Claim a) in the proof of Proposition 2.7 and
equation (36) show that all solutions B have the first row given by (34).
The other rows of B are related to fixing the remaining unit vector fields
Ñγ , normal to X̃, for γ ≥ 2 (see (10)). Considering the matrix function B
given by (34), Theorem 2.3 can be rewritten as follows.

Theorem 2.8 Let Mn be an immersed submanifold of Rn+p, with flat normal
bundle parametrized by X : U ⊂ Rn → M . Assume ei, 1 ≤ i ≤ n are the
principal directions, Nγ , 1 ≤ γ ≤ p, is a parallel orthonormal basis of the
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normal bundle of X(U) and λγi the corresponding principal curvatures. A
submanifold M̃n is locally associated to M by a Ribaucour transformation
with respect to ei, if and only if, for each q̃ ∈ M̃ , there exist differentiable
functions Wγ ,Ω,Ωi : V ⊂ U → R, defined on a simply connected domain V ,
which satisfy (29)-(31) and (33), such that, for some 1 ≤ α ≤ p

WαS(Wα + λαiΩ)(S − ΩT i) �= 0, 1 ≤ i ≤ n, (47)

where, S is defined by (35),

T i = 2

⎛⎝dΩi(ei) +
∑
k

Ωkωki(ei)−
p∑

γ=1

Wγλ
γi

⎞⎠ , (48)

and X̃ : V ⊂ Rn → M̃ , is a parametrization of a neighborhood of q̃ in M̃
given by

X̃ = X − 2Ω
S

⎛⎝ n∑
i=1

Ωiei −
p∑

γ=1

WγNγ

⎞⎠ . (49)

Moreover, the unit normal vector fields and the corresponding principal cur-
vatures on M̃ are

Ñβ = Nβ + 2
Wβ

S

(
n∑
i=1

Ωiei −
∑
γ

WγNγ

)
, (50)

λ̃βi =
T iWβ + λβiS

S − ΩT i
. (51)

Proof: Let X and X̃ be parametrizations of M and M̃ . We can suppose
without loss of generality that α = 1. We have already seen that for 1 ≤ β ≤
p, the normal vector fields Ñβ are given by (22). Hence it follows from (32)
and (34) that (50) holds, where S �= 0. The expression (49) follows directly
(3) and (50). We will now obtain condition (47) and the expression (51) for
the eigenvalues λ̃βi.

If Ωi �= 0, then it follows from (14), (15) and (31)- (34) that

Cγ1i = 2
W1

S2
(WγdS(ei) + ΩiSλγi).

Therefore, using (32), (34) and the fact that

dS(ei) = ΩiT i, (52)
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where T i is given by (48), we have that

dh(ei)(1−B11)− hC11
i = 2

W1Ωi

S2
(S − ΩT i). (53)

Therefore, the left hand side of (53) ( which is also < dX̃(ei), N1 > ) is
nonzero if and only if W1(S − ΩT i) �= 0. Moreover, by considering the first
expression of (25), we conclude that (51) holds.

If Ωi ≡ 0, then it follows from (13), (34) and (32) that

Lγii =
1
S

(Sλγi +WγT
i),

where we have used the fact that dbγi(ei) = 0. On the other hand,

1 + hλ1i − hL11
i =

1
S

(S − ΩT i).

Hence, the left hand side of this relation ( which is < dX̃(ei), e1 > ) is
nonzero if and only if (S − ΩT i) �= 0. Therefore, by considering the second
expression of (25), we conclude that (51) holds also in this case.

In order to prove (47), we have seen that one needs W1S(S − ΩT i) �= 0,
∀1 ≤ i ≤ n. Requiring W1 + Ωλ1i �= 0 corresponds to condition b) of
Definition 2.1, since h = Ω/W1. �

We observe that in (47), S �= 0 determines the domain of X̃. Moreover,
a straightforward computation shows that

|dX̃(ei)| =
|S − ΩT i|

S
.

Therefore, the parametrization X̃, given by (49), may extend regularly to
points where Wα(Wα + λαiΩ) = 0, whenever S(S −ΩT i) �= 0.

From now on, whenever we say that a submanifold M̃ is locally associ-
ated by a Ribaucour transformation to M , with respect to a set of principal
directions ei of M , we are assuming that there are functions where Ωi, Ω
and Wγ locally defined, satisfying the system (29)-(31) and (33). More-
over, whenever M is parametrized by orthogonal lines of curvature, we are
assuming that ei are the unit vector fields tangent to the coordinate curves.

As a consequence of the theorem above we show that Definition 2.1 im-
plies the existence of a normal bundle isometry satisfying conditions a) b)
and c) of definition [DT1].

Corollary 2.9 Let Mn and M̃n be submanifolds of Rn+p with flat normal
bundle. Assume that M̃ is associated to M by a Ribaucour transformation
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with respect to e1, ..., en. Then there exists an isometry P of the normal
bundles and a normal vector field ζ which is nowhere a principal curvature
normal of M , such that P (N)−N =< N, ζ > (q − ψ(q)) for all vector field
N normal to M and P commutes with the normal connection.

Proof: From Theorem 2.8 we have differentiable functionsWγ , Ω, Ωi which
satisfy (29)-(31) and (33) and parametrizations X and X̃ of M and M̃ such
that (49) hold, and unit vector fields on M̃ given by (50).

Let P be the normal bundle isometry defined by extending linearly the
correspondence P (Nγ) = Ñγ , for all 1 ≤ γ ≤ p. We consider the normal
vector field ζ =

∑
γWγNγ/Ω. It follows from Definition 2.1 b) that ζ is

nowhere a principal curvature normal of M . As a consequence of (49), (50)
and the definition of P , we have that P (N) − N =< N, ζ > (X − X̃).
Moreover, since M and M̃ have flat normal bundle, it follows easily that P
commutes with the normal connections. �

We conclude this section by showing that an n-dimensional sphere or
hyperplane can be locally associated by a Ribaucour transformation to any
given hypersurface Mn of Rn+1, which admits n orthogonal principal direc-
tion vector fields.

Corollary 2.10 Let Mn be a hypersurface of Rn+1, that admits n orthogonal
principal direction vector fields ei. For any real constants b1 �= 0 and b0, the
system of equations

dΩi =
∑
k

Ωkωik + b0ωi + (b1 −W )ωin+1

dΩ =
n∑
i=1

Ωiωi,

dW =
n∑
i=1

Ωiωin+1

is integrable. The function S − 2(b0Ω + b1W ) = c is a constant determined
by the initial conditions. Considering c = 0, the associated hypersurface is
an open subset of a sphere (resp. hyperplane) if b0 �= 0 (resp. b0 = 0).

Proof One can easily prove that the system of equations is integrable and
as a consequence of (35)that dS − 2(b0dΩ + b1dW ) = 0. Therefore, we can
choose the initial conditions so that S−2(b0Ω+b1W ) = 0. Finally, it follows
from (51) that any principal curvature of the associated hypersurface is given
by b0/b1. �
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Observe that the system of equations of Corollary 2.10 contains (29)-
(31). Moreover, this Corollary shows that the system of equations (29)-(31)
and (33) does not preserve multiplicity of principal directions. This fact had
already been observed in [CFT1].

3. Dupin submanifolds.

In this section we will consider Dupin submanifolds. A submanifold Mn ⊂
Rn+p with flat normal bundle is a Dupin submanifold if for an orthonormal
basis of the normal bundle of M , parallel in the normal connection, its
principal curvatures are constant along the corresponding lines of curvature,
i.e. dλαi(ei) = 0, ∀1 ≤ i ≤ n. The main purpose of this section is to
characterize the Dupin hypersurfaces which have a principal curvature of
constant multiplicity one. This characterization was obtained in [Co]. More
recently, the case of a principal curvature with constant multiplicity bigger
than one was considered in [DFT].

Theorem 3.1 Let Mn be a Dupin submanifold of Rn+p, with flat normal
bundle. Let ei, 1 ≤ i ≤ n be orthonormal principal vector fields, Nγ , 1 ≤
γ ≤ p parallel orthonormal basis of the normal bundle of M and λγi the
corresponding principal curvatures. Let M̃ be a submanifold of Rn+p, locally
associated to M by a Ribaucour transformation, with respect to ei. Then M̃
is a Dupin submanifold, if and only if, the functions Ωi, Ω and Wγ satisfy
the following additional condition for each i 1 ≤ i ≤ n,

dT i(ei) = 0 (54)

where T i is given by (48).

Proof: Since M is a Dupin submanifold, it follows from (51), (52), (30)
and (31) that dλ̃γi(ei) = 0, if and only if,

(Wγ + Ωλγi)dT i(ei) = 0, 1 ≤ γ ≤ p, 1 ≤ i ≤ n.

Since W1 + Ωλ1i �= 0, we conclude the proof. �
From now on, we will consider submanifolds parametrized by orthogonal

lines of curvature, X(u1, ..., un). Then the first fundamental form is of the
form I =

∑
i ω

2
i , where ωi = aidui and ai = |X,i| and the principal directions

are the vector fields ei = X,i/ai, where X,i denotes partial derivative of X
with respect to ui. Then the connection forms are

ωij =
1
aiaj

(−ai,jωi + aj,iωj) (55)
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and the Christoffel symbols are given by

Γiij =
ai,j
ai
, Γjii = −aiai,j

a2
j

, Γkij = 0 for i, j, k distinct. (56)

Theorem 3.2 Let Mn be a Dupin submanifold of Rn+p, parametrized by
orhogonal lines of curvature X(u1, ..., un) and with flat normal bundle. Let
ei = X,i/|X,i|, 1 ≤ i ≤ n, and let Nγ , 1 ≤ γ ≤ p be parallel orthonormal
vector fields normal to M . Consider λγi the corresponding principal curva-
tures.
a) If there exists, α, 1 ≤ α ≤ p such that ∀1 ≤ i ≤ n, λα = λαi, on M .
Then , up to translations, M ⊂ Rn+p−1 or M is a subset of the sphere
Sn+p−1(1/λα).
b) If there exists, α, 1 ≤ α ≤ p and k, 1 ≤ k ≤ n such that

λαi �= λαj , 1 ≤ i ≤ k, k + 1 ≤ j ≤ n,

then M is foliated by k-dimensional Dupin submanifolds.

Proof: Assume the conditions of item a) are satisfied. Since dλαi(ei) = 0,
we conclude that λα is constant. If λα = 0, we consider f(u) =< X(u) −
X(u0), Nα > . Since df(ei) = 0 and f(u0) = 0 we have that f(u) = 0.
Therefore up to translation M ⊂ Rn+p−1. If λα �= 0, we consider Y (u) =
X(u) − Nα/λ

α. Since dY (ei) = 0, Y is a constant vector and |X − Y |2 =
1/(λα)2, therefore up to translations M ⊂ Sn+p−1(1/λα).

Assume the conditions of item b) are satisfied. We define

Y (u1, ..., uk) = X(u1, ..., uk , u
0
k+1, ..., u

0
n).

We will show that Y is a Dupin submanifold with flat normal bundle. In
fact, let

Nj =
X,j

aj
, k + 1 ≤ j ≤ n.

Then the set {Nj , Nγ} is an orthonormal basis for the normal bundle of Y .
It follows from (56), that for 1 ≤ i ≤ k

Nj,i =
X,ji

aj
− aj,i

(aj)2
X,j =

Γiij
aj
Y,i.

Hence

λji =
Γiij
aj
, λγi, 1 ≤ i ≤ k, k + 1 ≤ j ≤ n, 1 ≤ γ ≤ p,
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are the principal curvatures of Y. Using the hypothesis λαi �= λαj , Codazzi
equations (2), (55) and (56), we get

λji,i =

[
1
aj

λαi,j
λαj − λαi

]
i

= 0, 1 ≤ i ≤ k, k + 1 ≤ j ≤ n.

Therefore Y is a Dupin submanifold. �

Theorem 3.3 Let Mn be an orientable immersed hypersurface of Rn+1

parametrized by orthogonal lines of curvature X(u1, ...un). Then M is a
Dupin hypersurface which has a non zero principal curvature of multiplicity
one in the direction en, if and only if, M is foliated by (n-1)-dimensional
Dupin submanifold associated by Ribaucour transformations with respect to
ei, 1 ≤ i ≤ n− 1.

Proof: Let X(u1, ..., un) be a local parametrization of M by orthogonal
curvature lines. Let ei = X,i/|ai|, 1 ≤ i ≤ n, be the principal directions, N
the normal Gauss map and λi the principal curvatures, i.e. dN(ei) = λiei.
Assume that λn �= 0 has multiplicity one and define

Y = X − 1
λn
N.

Since λn,n = 0 and N,n = λnX,n, we have that Y,n = 0, hence, for un �= ũn
we get

X(u, un)−
N(u, un)
λn(u)

= X(u, ũn)−
N(u, ũn)
λn(u)

,

where u = (u1, ...un−1). Using item b) of Theorem 3.2, we conclude thatM is
foliated by (n-1)-dimensional Dupin submanifolds, associated by Ribaucour
transformation with respect to ei, 1 ≤ i ≤ n− 1.

Conversely, assume there exists a differentiable function h(u), such that

X(u, un) + h(u)N(u, un) = X(u, ũn) + h(u)N(u, ũn),

where un �= ũn. Then the map Y (u) = X(u, un) + h(u)N(u, un) is indepen-
dent of un, hence

0 = dY (en) = dX(en) + hdN(en) = dX(en)(1 + hλn),

i.e. λn = −1/h and since 1 + hλi �= 0 for i �= n we have that λn �= λi.
Moreover, N(u, .) is a parallel unit vector field normal to X(u, .) and we
have that λi,i = 0. Hence M is a Dupin hypersurface wich has a non zero
principal curvature of multiplicity one. �
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Proposition 3.4 Let Mn be a Dupin submanifold of Rn+2, with flat normal
bundle. Assume that X : U ⊂ Rn → M is a parametrization by orthogonal
curvature lines, and M̃ is a Dupin submanifold of Rn+2 locally associated to
M by a Ribaucour transformation with respect to ei = Xi/|X,i|, 1 ≤ i ≤ n.
Then there exists a 1-parameter family of Ribaucour transformations of M ,
containing M and M̃ , which defines a Dupin hypersurface in Rn+2, with a
non zero principal curvature of multiplicity one. Moreover, a parametriza-
tion of the hypersuface M̃ is given by

X̃(u, un+1) = X − 2Ω(
∑n

i=1 Ωiei −W1N1 − (W2 + un+1)N2)∑n
i=1(Ωi)2 + (W1)2 + (W2 + un+1)2

,

where (u, un+1) ∈ U ×R.

Proof: Let Ωi, Ω, W1, W2 be a solution of the system (29)-(31) and
(33) which associates M̃ to M by a Ribaucour transformation. Then
Ωi, Ω, W1, W2 + un+1, ∀un+1 ∈ R is also a solution of the system. There-
fore, there is a 1-parameter family of submanifolds M̃un+1 associated to M
by Ribaucour transformations.

Let T i and T iun+1
be the expressions given by (48) corresponding to M̃

and M̃un+1 respectively. Since M and M̃ are Dupin submanifolds, it follows
from (48), that

dT iun+1
(ei) = dT i(ei) = 0.

Hence, using Theorem 3.1 we conclude that M̃un+1 is a Dupin submanifold
for each un+1. We complete the proof by using Theorem 3.3. �

Corollary 3.5 Let Mn and M̃n be Dupin hypersurfaces of Rn+1

parametrized by orthogonal lines of curvature. Assume that M̃ is associated
to M by a Ribaucour transformation, with respect to the principal directions
tangent to the coordinate curves of M . Then there exists a Dupin hyper-
surface of Rn+2 wich has a non zero principal curvature of multiplicity one
containing M and M̃ .

Proof: We can consider Mn and M̃n as submanifolds of Rn+2 with
N2 = Ñ2 = (0, ..., 0, 1) ∈ Rn+2, normal unit vector fields of Mn and M̃n.
Hence λ2i = λ̃2i = 0, 1 ≤ i ≤ n. Therefore, Mn and M̃n are associated by
Ribaucour transformation as submanifolds of Rn+2. Using of Proposition
3.4 we conclude our result. �

Remark 3.6 As an illustration of the use of Corollary 3.5, we mention
[CFT1], where families of Dupin hypersurfaces of Rn+1 were obtained, by
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considering hypersurfaces associated by Ribaucour transformations to a hy-
perplane, to a torus, to S1×Rn−1 and to S2×Rn−2. These families generate
Dupin hypersurfaces of Rn+2, wich have a non zero principal curvature of
multiplicity one, by using Corollary 3.5.

Example 3.7 In this example, we will obtain the families of Dupin surfaces
in R3 associated to the plane by Ribaucour transformations, with respect to
two distinct pairs of principal directions tangent to two distinct parametriza-
tions by orthogonal lines of curvature. We will show that the two families
do not coincide.
a) Let X(u1, u2) = (u1, u2, 0) be a parametrization of the plane in R3 and
ei = Xui , i = 1, 2, be the unit tangent vectors. Then the dual and the
connection forms are given by ωi = dui and ω12 = 0, λi = 0 and the system
of equations (29)-(31) reduces ∂Ωi/∂uj = 0, i �= j, dΩ =

∑
iΩ

idui, dW = 0.
Hence,

Ωi = f ′i(ui), Ω = f1 + f2, W = c �= 0,

where fi is a differentiable function of ui and c is a real number. From
Theorem 2.8 we have

S =
∑
i

(f ′i)
2 + c2, T i = 2f ′′i S − ΩT i �= 0.

Now consider the family of surfaces parametrized by X̃ described by (49).
Then the principal curvatures are given by λ̃i = cT i/(S − ΩT i). It follows
from Theorem 3.3 that X̃ is a Dupin manifold if and only if ∂T i/∂ui = 0.
Therefore,

fi = aiu
2
i + biui + ci, i = 1, 2.

We claim that the family X̃ does not contain a parametrization of the torus.
In fact, suppose λ̃i is constant for some i = 1, 2, then we either have aj =
bj = 0, j �= i or a2 = a1. In both cases, we conclude that all points of X̃ are
umbilic. Hence it does not describe a torus.

b) Let X(u1, u2) = (u1 cos u2, u1 sinu2, 0), 0 < u1 < ∞, 0 < u2 < 2π, be
a parametrization of the plane in R3. We consider the principal directions
e1 = Xu1 and e2 = Xu2/u1. Then ω1 = du1, ω2 = u1du2 and ω12 = du2. By
solving the system of equations (29)-(31), we obtain

Ω1 = f ′1 + f2, Ω2 = f ′2, Ω = f1 + u1f2, W = c �= 0,

where fi is a differentiable function of ui and c is a real number. From
Theorem 2.8 we have

T 1 = 2f ′′1 , T 2 =
2
u1

(f ′1 + f2 + f ′′2 ), S − ΩT i �= 0.
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Consider the family of surfaces described by (49), then these are Dupin
surfaces, if and only if,

f1 = a1u
2
1 + b1u1 + c1, and (f ′′2 + f2)′ = 0.

Now we choose f2 = c2, a1 �= 0 and b1 + c2 �= 0. Then it is easy to see that
λ̃1 is a nonzero constant and λ̃2 is a non constant function of u1. Hence it
is a parametrization of a torus.
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