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Global and Local Volume Bounds and the Shortest

Geodesic Loops

Stéphane Sabourau

Introduction.

The relations between the volume of complete Riemannian manifolds and
the length of their shortest nontrivial geodesic loops under no curvature
assumption are studied in this paper. We present and compare two lower
bounds on the global volume, one of which admits a local version.

Previous curvature-free estimates have been first obtained with the in-
jectivity radius. Namely, M. Berger proved in [3] the isoembolic theorem

Vol(M) ≥ Cninj(M)n

for all complete Riemannian manifolds with a sharp positive constant Cn.
A local version was then established by C. Croke in [4]

VolB(x0, R) ≥ CnR
n for all R ≤ 1

2
inj(M)

for all complete Riemannian manifolds but with a nonsharp constant.
Replacing the notion of injectivity radius with one of local geometric

contractibility, M. Gromov extended M. Berger’s global volume estimate in
[7]. In the same way, an extension of C. Croke’s local version was then
established by R. Greene and P. Petersen in [6].

Other results have been obtained by M. Gromov and C. Croke, who com-
pared the volume with the length of the shortest nontrivial closed geodesic,
noted scg(M). In [7], M. Gromov proved that every 1-essential closed Rie-
mannian manifold M satisfies

Vol(M) ≥ Cnscg(M)n

for some positive constant Cn depending only on the dimension n of M .
Recall that an n-dimensional manifold M is by definition k-essential if

there exists a continuous map ψ : M −→ K into a K(π, k) space such
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that ψ∗[M ] �= 0 where [M ] ∈ Hn(M) is the fundamental class of M . The
homology coefficients are in Z, if M is orientable, and in Z2, otherwise.

For the two-dimensional sphere, the previous inequality still holds as it
was proved by C. Croke in [5]. These two statements are the only results
known in this direction and no counter-example exist so far.

Throughout this paper, we will consider geodesic loops rather than closed
geodesics. By definition, a geodesic loop (based at a point ∗) is a geodesic arc
with endpoints ∗. In particular, a closed geodesic is a geodesic loop whose
tangent vectors at its endpoints agree. The length of the shortest nontrivial
geodesic loop of a Riemannian manifold M is denoted by sgl(M).

The first theorem we will prove provides lower bounds on the diameter,
on the volume of the whole manifold and on the volume of sufficiently small
balls.

Theorem A. Let M be a complete Riemannian manifold. Then there exists
positive constant Cn, C ′

n and C ′′
n depending only on the dimension n of M

such that
Vol(M) ≥ Cnsgl(M)n

Diam(M) ≥ C ′
nsgl(M)

VolB(x0, R) ≥ C ′′
nR

n

for every ball B(x0, R) of radius R ≤ 1
2sgl(M) in M .

Explicit formulas for Cn, C ′
n and C ′′

n can be calculated. Note that scg(M)
may be greater than sgl(M) and yield no universal lower bound on the
volume of “small” balls ofM . A counter-example is given by any Riemannian
manifold on which a long and thin spike is glued.

The following result, introducing the lengths of geodesic double loops,
refines the global volume estimate for 2-essential manifolds but does not
admit any local version.

Theorem B. Let M be a 2-essential complete Riemannian manifold. Then
there exists positive constants cn and c′n depending only on the dimension n
of M such that

Vol(M) ≥ cn�0(M)n

Diam(M) ≥ c′n�0(M)

where �0(M) is the length of the shortest double loop Φ0 among the double
loops formed of two nontrivial geodesic loops of the same length based at the
same point.
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The two geodesic loops which compose Φ0 may agree. In this case,
since Φ0 is minimal, this latter reduces to a closed geodesic run twice and we
get lower bounds on the volume and the diameter in terms of scg(M). Un-
fortunately, even after slight perturbations of the metric, the double loop Φ0

might still be composed of two distinct geodesic loops. This will be discussed
in more details at the end of this paper.

The example of a long and thin cone glued to a Riemannian manifold
shows that �0(M) provides no universal lower bounds on the volume of
“small” balls. This shows the difference in nature between the shortest
geodesic loop and the double loop Φ0. Note that considering multi-loops
formed of k nontrivial geodesic loops of the same length based at the same
point (with k fixed) instead of double loops does not really change the prob-
lem since their shortest representants have comparable lengths.

In [1], M. Anderson proved a compactness theorem for metrics whose
Ricci curvature, diameter, volume and length of the shortest geodesic loop
are bounded. From Theorem A, it turns out that the required bound on
the volume can be dropped. In [14], an upper bound similar to the second
inequality of Theorem A has also been established by R. Rotman for simply
connected Riemannian manifolds with nontrivial second homology group and
with nonnegative curvature. These topological and geometrical assumptions
on the manifold can actually also be dropped.

Similar curvature-free estimates were independently obtained in [12] by
A. Nabutovsky and R. Rotman who found upper bounds on the minimal
mass of nontrivial stationnary one-cycles (see also [11] for estimates depend-
ing on the curvature).

In the first section, we present a map extension criterion based on a sim-
plex filling process and derive Theorem A using R. Greene and P. Petersen’s
theorem (see [6]). In the second section, we introduce a variational calculus
on the double loop space and describe the structure of critical points. Then,
we prove Theorem B using filling radius estimates developped by M. Gromov
in [7].

The author would like to thank I. Babenko and C. Croke for several
helpful conversations and comments.

1. Extension process and short geodesic loops.

In this part, we construct a map extension process and prove Theorem A.
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1.1. Preliminaries.

The notion of retraction of loop spaces and the definition of ordered complex
are presented in this section.

Let (X, d) be a metric space, more simply noted X, and ∗ be a point
in X. The loop space of X based at ∗, noted Ω∗X, is by definition the space
of continuous loops γ : [0, 1] −→ X with endpoints ∗. It is endowed with the
C0-topology. Let κ ≥ 0, we define Ωκ

∗X as the space of loops based at ∗ of
length less than κ. The length of a loop γ of a metric space is given by

L(γ) = sup

{
m−1∑
i=0

d(γ(si), γ(si+1)) | (si)0≤i≤m subdivision of [0, 1]

}

The Birkhoff curve-shortening process with fixed endpoints is defined on
the loop space of Riemannian manifolds (cf. [10] for a precise definition). It
gives rise to a continuous length non-increasing homotopy γt ∈ Ω∗M from
a fixed loop γ ∈ Ω∗M to a geodesic loop based at ∗. Furthermore, geodesic
loops are the only fixed points of this process. Therefore, if κ < sgl(M),
there exists no nontrivial critical point for the length functional in Ωκ

∗X. In
this case, the Birkhoff process gives rise to a retraction from any loop space
Ωκ
∗X into the singleton formed by the point curve ∗.

This property of retraction of loop spaces can also be set out for general
metric spaces. Furthermore, it may be weakened, requiring that only finite
dimensional subspaces of the loop space be retractible. In the rest of this
part κ0 ≥ 0 and m ∈ N are fixed and the metric spaces X considered satisfy
the following property :

For every point ∗ ∈ X, every continuous map f : P −→ Ωκ0∗ X defined
on any simplicial complex of dimension ≤ m, there exists a continuous map
F : P × [0, 1] −→ Ωκ0∗ X such that

- F agrees with f on P × {0}
- F reduces to the constant loop ∗ on P × {1}
- L(γp,t) ≤ L(γp,s) whenever 0 ≤ s ≤ t ≤ 1 where γp,t = F (p, t).

An ordered complex is, by definition, a simplicial complex endowed with
a total order relation on the set of its vertices. For instance, a complex whose
vertices are numbered is ordered by the natural order of N. A subcomplex of
an ordered complex will be endowed with the order induced by restriction.
In particular, a k-dimensional simplex ∆ of P will be considered as a (k+1)-
uplet (v0, v1, . . . , vk) with v0 < v1 < · · · < vk. Note that the order induced by
restriction is compatible with the inclusion. More precisely, let P ′′ ⊂ P ′ ⊂ P
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be subcomplexes, the order on P ′′ induced by the inclusion P ′′ ⊂ P ′ is the
same as the one induced by P ′′ ⊂ P .

1.2. Extension criterion.

In this section, we state an extension criterion for maps defined on the ver-
tices of simplicial complexes. We also treat the case where the extension is
prescribed on a subcomplex.

Let P be a locally finite n-dimensional simplicial complex and f : P 0 −→
X be a map from the 0-skeleton P 0 of P to X. Fix αn = 1

4.3n−1−1
.

Proposition 1.1. If the distance between the images of any pair of adjacent
vertices is less than ρ with ρ < αnκ0, then f extends to a continuous map
F : P −→ X. Furthermore, the diameter of the image by F of any simplex
of P is less than ρn := 2.3nρ.

Proof. Let us number the vertices of P by natural integers and consider the
induced order. Every (k + 1)-dimensional simplex ∆k+1 of P is endowed
with the order induced by restriction and identifies in a natural way with
the (k + 1)-dimensional standard ordered simplex ∆k+1

0 = (x0, . . . , xk+1).
The points xi represent the vertices of the simplex.

The construction of the extension F : P −→ X carries out successively on
the skeleton of P . We will denote by ϕ : ∂∆k+1 −→ X the restriction of F to
the boundary ∂∆k+1 of a (k+1)-dimensional simplex ∆k+1 of P . The simplex
∆p
I = (xi0 , . . . , xip) � ∆p

0, where I = {i0, . . . , ip} is a subset of {0, . . . , k+ 1}
with i0 < · · · < ip and p ≤ k, represents a p-face of ∆k+1

0 . It identifies in a
natural way with the p-dimensional standard ordered simplex ∆p

0.
We define F on the 1-skeleton of P by mapping each edge of P to a

minimizing arc between the images of the endpoints by f . In particular, the
lengths of the images of the edges of P are bounded from above by ρ.

Suppose now that we have defined by induction an extension F : P k −→
X of f on the k-skeleton P k of P . We also suppose that the restrictions of
ϕ to the k-faces ∆k

I of ∆k+1
0 , noted ϕI,k : ∆k

I � ∆k
0 −→ X or more generally

ψ : ∆k
0 � ∆k

I −→ X, satisfy the extension condition (Ek) which follows:

Let x ∈ ∆k−1
0 = (x0, . . . , xk−1) ⊂ ∆k

0 , we designate by xkx the ray of ∆k
0

emanating from xk and joining ∆k−1
0 at x. The images by ψ of the rays xkx

for x lying in ∆k−1
0 are parametrized proportionally to arclength. They are

given by induction on k from the restriction of ϕ to the 1-skeleton of ∂∆k+1
0

in the following way:



1044 Stéphane Sabourau

Given z ∈ ∆k−2
0 = (x0, . . . , xk−2) ⊂ ∆k

0, let x be a point lying in the ray
xk−1z contained in ∆k−1

0 arising from xk−1 and joining z (see figure). This
ray decomposes into three segments zz′, z′z′′ and z′′xk−1 of equal lengths.

z

z′
z′′

xk−1

xk

For any given x running through zz′, there exists a point w in zxk−1

which divides zxk−1 into the same ratio as x divides zz′. The map ψ takes
then the ray xkx to the path ψ(xkz)∪ψ(zw) ∪ψ(wx) where ψ(xkz), ψ(zw)
and ψ(wx) are given by induction as images of segments lying in some (k−1)-
faces of ∆k−1

0 .
Similarly, for any given x running through z′z′′, there exists a point w in

xk−1xk which divides xk−1xk into the same ratio as x divides z′z′′. The map
ψ takes the ray xkx to the path ψ(xkz)∪ψ(zxk−1)∪ψ(xk−1w)∪ψ(wxk−1)∪
ψ(xk−1x).

For x = z′′, we get the path γ ∪ψ(xkxk−1)∪ψ(xk−1z
′′) where γ is a loop

based at ψ(xk), image by ψ of the triangle xkzxk−1 of sides xkz, zxk−1 and
xk−1xk.

For x dividing z′′xk−1 into a ratio t, the ray xkx is sent by ψ to a path
γt ∪ ψ(xkxk−1) ∪ ψ(xk−1x) where γt is a homotopy of loops based at ψ(xk)
with γ0 = γ and γ1 is the constant loop ψ(xk). Note that the loops γ
and γt lying in the image of ∆k

0 are continuously parametrized by z and will
therefore be noted γ∆k

I ,z
and γ∆k

I ,z,t
, or more simply γz and γz,t.

Thus, the images of the rays xkx, where x runs along xk−1z, give rise
to a continuous family of loops γz which contract into ψ(xk) through a
continuous family of homotopies of loops γz,t based at ψ(xk). Note that,
reciprocally, such a family of homotopies γz,t permits us to define the images
of the rays xkx where x runs along xk−1z using the restriction of ϕ to the
(k − 1)-faces of ∂∆k

0.
The maps ψ are thus defined by induction from the restriction of ϕ to

the 1-skeleton of ∂∆k+1
0 and some continuous families of homotopies γz,t.

Furthermore, we assume that the images by ψ of the rays xkx where x lies
in ∆k−1

0 are of length bounded from above by �k := (2.3k−1 − 1)ρ.
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This concludes the statement of the extension condition (Ek).
Now, we want to define an extension Φ of ϕ to ∆k+1

0 as a cone over ∆k
0 =

(x0, . . . , xk) based at xk+1, which satisfies the extension condition (Ek+1).
Let x ∈ ∆k

0. The ray of ∆k+1
0 emanating from xk+1 and joining x is

noted xk+1x. By definition, the images by the extension Φ of the rays xk+1x
where x lies in ∆k

0 are parametrized proportionally to arclength.
Let z be the base point in ∆k−1

0 of the ray of ∆k
0 arising from xk and

passing through x where x ∈ ∆k
0 , x �= xk. The image by ϕ of the triangle

xk+1zxk of ∆k+1
0 of sides xk+1z, zxk and xkxk+1 is noted γz.

We want to define the images by Φ of the rays arising from xk+1 in the
same manner as the restrictions ψ of ϕ to the faces of ∂∆k+1

0 are defined (see
above). For that, we need to construct a continuous family of homotopies γz,t
as it arises in the extension condition (Ek).

This family must be defined for (z, t) ∈ ∆k−1
0 ×[0, 1]. It must also contract

the loops γz,0 = γz based at ψ(xk+1) into the constant loops γz,1 ≡ ψ(xk+1)
through a homotopy of loops γz,t based at ψ(xk+1).

Since Φ extends ϕ, the images by Φ of the rays xk+1x where x ∈ ∂∆k
0

are given by ϕ. Therefore, the family γz,t with (z, t) ∈ ∂∆k−1
0 × [0, 1] must

agree with the homotopies γ∆,z,t where ∆ is a k-face of ∂∆k+1
0 containing

xk and xk+1.
The family of homotopies γz,t is thus defined for (z, t) ∈ ∆k−1

0 × ∂[0, 1]∪
∂∆k−1

0 × [0, 1] =: Σk−1 � Sk−1. By construction, the lengths of the
loops γz,t for (z, t) ∈ Σk−1 are bounded from above by 2�k + ρ < κ0.
Therefore, the family γz,t given by a map Σk−1 −→ Ω2�k+ρ

xk+1 X extends
to Σk−1 × [0, 1]/Σk−1 × {1} � ∆k−1

0 × [0, 1]/∆k−1
0 × {1} � Bk with

L(γz,t) ≤ 2�k + ρ. Thus, the family γz,t extends to ∆k−1
0 × [0, 1] and satisfies

all the required conditions.
That completes the construction of the family of homotopies γz,t and

yields an extension Φ : ∆k+1
0 −→ X of ϕ. By definition, L(Φ(xk+1x)) ≤

3�k + 2ρ = �k+1 where x lies in ∆k
0. Therefore, the map F : P k −→ X

extends to the (k+1)-skeleton of P into a map, still noted F , which satisfies
the extension condition (Ek+1). We conclude then by induction.

The last statement of the proposition comes from the construction of F .
�

Remark. In order to extend ϕ : ∂∆k+1 −→ X to ∆k+1, we only used the fact
that the restrictions of ϕ to the k-faces containing the vertex xk+1 satisfy
the extension condition (Ek) and that the length of the ϕ-images of the rays
xkx lying in ∆k

0 = (x0, . . . , xk) are bounded from above by �k. We will use
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this remark afterwards in the following manner.
Given a subcomplexQ of P , we number the vertices of P starting by those

of Q and consider the induced order. The identification of the simplices of Q
with the standard simplex yields a natural metric length structure on Q.

Let f : P 0 ∪ Q −→ X be a map and ε > 0. Assume that the restric-
tions of f to the simplices of Q are ε-Lipschitz and that the restriction of
f to P 0 fulfills the hypothesis of Proposition 1.1. If ε is small enough then
the construction of the proof of Proposition 1.1 applies with the previously
defined order on P , from the remark above. The map f extends then to a
continuous map F : P −→ X as in the proposition.

1.3. Volume and the shortest geodesic loop.

Theorem A is established and the example of Riemannian homogeneous
manifolds is presented in this section.

Proof of Theorem A. In order to apply R. Greene and P. Petersen’s theorem
(see [6, Theorem 1]) to derive a local volume estimate, we need to show that
M satisfies a condition of local geometric contractibility (see [6, p. 274]).

Fix x0 ∈ M and 0 < r < αnsgl(M). We want to show that the ball
B(x0, r) is contractible in B(x0, 4.3nr). Without loss of generality, we can
assume that the sphere S(x0, r) is represented by a finite (n−1)-dimensional
simplicial complex σ : Q −→M . The identification of the simplices ofQ with
the standard simplex yields a natural metric length structure on Q. Since
the map σ : Q −→ M can be approximated by continuous maps homotopic
to σ whose restrictions to the simplices of Q are Lipschitz, we can assume
that the same holds for σ. Every simplicial complex endowed with the
coherent topology admits a subdivision finer than a given open covering U
(see [15, p. 126]). Fix ε > 0, we apply this result to the open covering Uε
of P where Uε = {U ⊂ Q | U open, f|U is k-Lipschitz and Diam(U ∩ Q) ≤
ε
k for some k > 0}. Then we dilate the metric on Q so that every simplex of
the new triangulation of Q is isometric to the standard simplex. The map
σ is ε-Lipschitz with respect to this new metric on Q.

Let P be the cone over Q. We extend σ to P 0∪Q by sending the vertex of
P \Q to x0. From the remark following Proposition 1.1, the map σ extends
to σ : P −→ B(x0, 4.3nr). Therefore, the ball B(x0, r) is contractible in
B(x0, 4.3nr). Thus, the continuous function ρ : [0, sgl(M)[−→ R+ is a local
geometric contractibility function for M .

Using Theorem 1 of [6], we can conclude that there exists C ′
n > 0 such

that VolB(R) ≥ C ′
nR

n for every ball B(R) of radius R in M . �
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The following well-known statement refines Theorem A for Riemannian
homogeneous manifolds.

Lemma 1.2. The geodesic loops of Riemannian homogeneous manifolds
agree with the simple closed geodesics.

Proof. Given a geodesic loop γ based at x0 ∈M , the first variation formula
shows that d

dtL(γt) = g(γ̇(1),X(x0)) − g(γ̇(0),X(x0)) = 0 where γt is the
variation of γ induced by the Killing vector field X. Since the Killing vector
fields generate the tangent space of homogeneous Riemannian manifolds, we
have γ̇(1) = γ̇(0). Therefore, γ is closed. �

As a corollary, there exists Cn > 0 such that

Vol(M) ≥ Cnscg(M)n

for every Riemannian homogeneous manifold. This inequality contrasts with
the case of the multi-dimensional systoles. Indeed, M. Katz constructs, in
appendix D of [8], a sequence of homogeneous metrics on S3 × S3 such that
Vol(gn)
sys3(gn)2 → 0, where sys3(g) = inf{Volg(S) | S is a 3-cycle such that [S] �=
0 ∈ H3(S3 × S3,Z)}.

2. Volume and short geodesic loops.

In this part, we first present some filling estimates. Then, we define a func-
tional on the double loop space and study the structure of some of its critical
points. Finally, the proof of Theorem B is presented.

2.1. Generalities.

In this section, we recall the definition of the filling radius introduced by M.
Gromov in [7] and state general filling estimates.

Let M be a complete Riemannian manifold and L∞(M) be the space
of all Borel functions on M with the sup-norm. Because of the possible
noncompactness of M , we consider unbounded functions on M ; therefore,
the distance between two of them may be infinite. However the natural
embedding i : M ↪→ L∞(M) defined by i(x)(.) = distM (x, .) is an isometry
between metric spaces. Considering M isometrically embedded in L∞(M),
we define Ur(M) as the r-tubular neighborhood of M in L∞(M).
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Definition. The filling radius of M , denoted FillRad(M), is the infin-
imum of positive reals r such that there exists a locally finite (n + 1)-
dimensional chain c in Ur(M) whose boundary ∂c, contained in M , repre-
sents the fundamental class ofM inHn(M). That means the homomorphism
Hn(M) −→ Hn(Ur(M)) induced by the inclusion map vanishes. Here, the
homology is with noncompact supports and the coefficients are in Z if M is
orientable and in Z2 otherwise.

The two following results, which provide upper bounds on the filling
radius of Riemannian manifolds, will permit us to derive Theorem B. The
first one was established by M. Gromov in [7, p. 41].

Theorem 2.1. Let M be a complete Riemannian manifold of dimension n,
then

FillRad(M) ≤ cnVol(M)
1
n

where cn is a positive constant depending only on the dimension of M .

And the second one was proved by M. Katz in [9].

Theorem 2.2. Let M be a closed Riemannian manifold of diameter
Diam(M), then

FillRad(M) ≤ 1
3
Diam(M)

2.2. Morse theory on the double loop space.

In this section, we define the double loop space, introduce a functional on it
and describe one of its critical points.

Let M be a complete Riemannian manifold. All the functional spaces
will be endowed with the C0-topology. Let C be the space of piecewise
smooth curves γ : [0, 1] −→ M . We recall that ΛM and ΩM designate
respectively the free loop space and the pointed loop space. The spaces
Γ′ = {Φ = (γ1, γ2) ∈ C × C | γ1(0) = γ1(1) and γ2(0) = γ2(1)} and Γ′′ =
{Φ = (γ1, γ2) ∈ C × C | γ1(0) = γ2(1) and γ1(1) = γ2(0)} identify naturally
with ΛM × ΛM and ΛM . Let Γ be the union of Γ′ and Γ′′ and Γ0 ⊂ Γ be
the set of point curves. The intersection of Γ′ and Γ′′, noted X, represents
the double loop space.

Next proposition will not be used afterwards. We state it because, de-
scribing the relative homotopy of Γ, it sets up the basis of a variational
calculus on the double loop space.
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Proposition 2.3. Let M be a simply connected closed manifold. Then,
π1(Γ,Γ0) is naturally isomorphic to π2(M).

Proof. Let us consider the natural projection

p : Γ −→ M ×M
Φ �−→ (γ1(0), γ2(0))

This projection gives rise to two Serre fibrations with fiber ΩM × ΩM :

p′ : Γ′ = ΛM × ΛM −→M ×M and p′′ : Γ′′ = ΛM −→M ×M.

Let ∆ � M be the diagonal of M × M . We have X = p−1(∆) =
ΛM × ΛM ∩ ΛM and p : X = Γ′ ∩ Γ′′ −→ ∆ is the restricted fibration.
The space Γ may be written as ΛM × ΛM  X ΛM . From Van Kampen’s
theorem, π1(Γ) is naturally isomorphic to π1(ΛM × ΛM) ∗π1(X) π1(ΛM).
Since M is simply connected, the exactness of the homotopy sequences of the
fibrations implies that the groups π1(ΛM ×ΛM) and π1(X) are isomorphic
to π1(ΛM)⊕ π1(ΛM). Furthermore, the inclusion X ↪→ ΛM ×ΛM induces
an isomorphism π1(X) −→ π1(ΛM × ΛM). Therefore, π1(Γ) is naturally
isomorphic to π1(ΛM). Since M is simply connected, π1(Γ) and π1(ΛM)
are respectively isomorphic to π1(Γ,Γ0) and π2(M). Hence the result. �

We introduce the functional L on Γ defined by L(Φ) = max{L(γ1), L(γ2)}
where Φ = (γ1, γ2) ∈ Γ. The restriction of L to X induces a functional LX
on the double loop space. Let L0(M) be the infinimum of the positive local
minima of LX .

The following lemma describes the structure of the local minima of LX .

Lemma 2.4. Let Φ ∈ X be a positive local minimum of LX . Then, Φ is
formed either of a nontrivial closed geodesic to which a loop is attached or of
two distinct nontrivial geodesic loops γ1 and γ2 of the same length based at
the same point. In the second case, the differences v1 and v2 of the tangent
vectors at the endpoints of γ1 and γ2 point to different directions. That is
g(v1, v2) ≤ 0 where vi = γ̇i(1)− γ̇i(0) is different from 0.

Proof. Let γ1 and γ2 be the two loops forming Φ. Suppose that none of them
is a closed geodesic of null index. In this case, the loops γi are homotopic to
a shorter closed curve. If L(γ1) > L(γ2) then there exists a LX-decreasing
deformation of Φ (which possibly slightly increase the length of γ2). This is
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impossible because Φ is a local minimum of LX . Switching the roles of γ1

and γ2, we get L(γ1) = L(γ2). The loops γ1 and γ2 are geodesic, otherwise
the Birkhoff curve-shortening flow with fixed endpoints would decrease the
length of one of them. This would contradict the inequality L(γ1) = L(γ2)
for the local minima of LX . If g(v1, v2) > 0, the first variation formula shows
that it would be possible to decrease simultanuously the lengths of γ1 and γ2

through a local flow. Hence another contradiction. �

Remark. When M is compact, L0(M) is positive. Furthermore, L0(M) is
reached either by the length of a nontrivial closed geodesic of null index or
by half the length of a geodesic double loop formed of two distinct nontrivial
geodesic loops of the same length based at the same point. Therefore, we
have �0(M) ≤ 2min{scg(M), L0(M)}.

2.3. Volume and double geodesic loops.

Now, we derive Theorem B from Theorems 2.1 and 2.2, the previous remark
and the following inequality.

Proposition 2.5. Let M be a 2-essential complete Riemannian manifold,
then

FillRad(M) ≥ 1
24
�0(M)

Proof. By definition, the fundamental class [M ] of M vanishes in Uδ(M) ⊂
L∞(M) where δ > FillRad(M). Therefore, there exists a continuous map
σ̃ : P −→ Uδ(M) from an (n + 1)-dimensional simplicial complex P such
that the restriction σ : ∂P −→ M represents [M ] in Hn(M). Since M
is 2-essential, there exists a continuous map ψ : M −→ K into a K(π, 2)
space, which induces a nontrivial morphism ψ∗ : Hn(M) −→ Hn(K). The
image of Q := ∂P by ψ ◦ σ represents ψ∗[M ] in Hn(K). Suppose that
δ < 1

24�0(M). We are going to construct a continuous map F : P −→ K
which agrees with ψ ◦ σ on ∂P . This will lead to a contradiction since
ψ∗[M ] �= 0. Therefore, M does not bound in Uδ(M) with δ < 1

24�0(M),
hence the inequality FillRad(M) ≥ 1

24�0(M).
Subdividing P if necessary, we can assume that the diameter of the image

by σ̃ of the simplices of P is less than ε > 0 with ε < 1
12�0(M) − 2δ. We

first define a map f : P 0 ∪Q −→M with f|Q = σ by sending each vertex pi
of P to a nearest point of σ̃(pi) in M , as we wish. Since i : M ↪→ Uδ(M) is
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isometric, every pair pi, pj of adjacent vertices of P satisfies

dM (f(pi), f(pj)) ≤ dL∞(f(pi), σ̃(pi))+dL∞(σ̃(pi), σ̃(pj))+dL∞(σ̃(pj), f(pj))

≤ 2δ + ε =: ρ <
1
24
�0(M)

We extend the map f to P 1 by taking the edges of P to minimizing segments
joining the image of their endpoints. Let ∆2 be a 2-simplex of P . By
construction, the length of the image of ∂∆2 is less than 3ρ < scg(M).
Therefore, the Birkhoff curve-shortening process defines a map from the disk
D � ∆2 to M , which sends ∂D = ∂∆2 onto its image. This construction
yields an extension f : P 2 ∪Q −→M of σ.

We want now to extend it to P 3. This is possible if the image of the
boundary ∂∆3 of every 3-simplex ∆3 of P bounds a ball in M . Let ∆i

be the faces of ∆3. The boundaries ∂∆i converge to point curves through
homotopies (cit)0≤t≤1, given by the Birkhoff curve-shortening process, which
define the images of ∆i. The curves ci0 agree with the images of ∂∆i by f and
the curves ci1 reduce to point curves. Note also that L(cit) < scg(M). Using
homotopies to reparametrize the loops if necessary, we can assume that c10(s)
and c20(s) agree and run through their common edge for 2

3 ≤ s ≤ 1. The
family Φt = (c11−t, c

2
1−t) ∈ Γ′′, 0 ≤ t ≤ 1, extends to Γ through the homotopy

Φt(s) = (c10(
s
t ), c

2
0(
s
t )) ∈ Γ′ where 1 ≤ t ≤ 3

2 and 0 ≤ s ≤ 1. The same goes
for c3t and c4t . This yields two homotopies of Γ. We use now homotopies
to reparametrize the final curves so that they agree. Putting these two
homotopies together gives rise to a one-parameter family of curves Φt ∈ Γ,
0 ≤ t ≤ 3, starting and ending at point curves.

Let us show now that the class it induces in π1(Γ,Γ0) is trivial. The
family decomposes into three parts :

- (Φt)0≤t≤1 and (Φt)2≤t≤3, which join in Γ′′ point curves to double loops.
- (Φt)1≤t≤2, which join in Γ′ the two double loops Φ1 and Φ2.

Since L(Φ1) and L(Φ2) are < 3ρ < L0(M), the two double loops Φ1 and Φ2

converge to point curves through L-non-increasing homotopies Φ1
t and Φ2

t

of X. In particular, each of the loops which compose them converge to
point curves through homotopies given by Φ1

t and Φ2
t . The length of the

loops of these homotopies is less than 3ρ < scg(M). Therefore, they are
homotopic to the cit’s. Indeed, two homotopies starting from the same loop
and ending at point curves form a path in ΛM with endpoints in Λ0M .
Such a path composed of loops of length < scg(M) is homotopically trivial
in π1(ΛM,Λ0M) from the minimax principle of Fet and Lyusternik (see [10]).
Since we want to show that the family Φt bounds in M , we can assume that
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(Φt)0≤t≤1 and (Φt)2≤t≤3 agree with Φ1
t and Φ2

t . Under this assumption, Φt

lies in Γ′ � ΛM . It gives rise to a path in ΛM which starts and ends at
point curves with L(Φt) < 6ρ < scg(M). As previously, this implies that
this path is homotopically trivial. Therefore, the image of the boundary of
every 3-simplex of P bounds a ball in M . The map f extends to P 3.

From obstruction theory, the map F : P 3 ∪ Q f−→ M
ψ−→ K extends

to P . Hence the result. �

Remark. Generically, i.e., for a metric lying in a dense open set of the
space of metrics endowed with the C2 topology, closed geodesics are non-
degenerate and have different lengths. This property does not hold for
geodesic loops. It is not possible to get rid of the double loops formed of two
distinct nontrivial geodesic loops of the same length by slightly perturbing
the metric.

We only sketch the arguments. Let us consider a metric which has two
distinct geodesic loops of the same length based at the same point x0. We
suppose that these geodesic loops are non-degenerate and that their index
is null. This construction may be carried out by modifying the metric on
a tubular neighborhood of a figure-eight curve. These two geodesic loops
vary continuously with their base-point in the neighborhood of x0. Locally,
the set of base-points for which the two geodesic loops have equal length
forms a hypersurface. This hypersurface is stable and does not disappear
by slightly perturbing the metric. Therefore, on open sets of metrics, points
do exist through which two geodesic loops of the same length pass. Given a
metric with three distinct (non-degenerate) geodesic loops of the same length
based at the same point, the previous arguments suggest that this triple loop
configuration might disappear after some perturbations of the metric.
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