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Convergence of the J-flow on Kähler Surfaces

Ben Weinkove

Donaldson defined a parabolic flow of potentials on Kähler mani-
folds which arises from considering the action of a group of sym-
plectomorphisms on the space of smooth maps between manifolds.
One can define a moment map for this action, and then consider
the gradient flow of the square of its norm. Chen discovered the
same flow from a different viewpoint and called it the J-flow, since
it corresponds to the gradient flow of his J-functional, which is
related to Mabuchi’s K-energy. In this paper, we show that in the
case of Kähler surfaces with two Kähler forms satisfying a certain
inequality, the J-flow converges to a zero of the moment map.

1. Introduction.

In [Do], Donaldson described how a number of geometric situations fit into
a general framework of diffeomorphism groups and moment maps. In the
Kähler setting, he used this framework to define a natural parabolic flow,
as follows. Suppose that (M,ω) is a compact Kähler manifold of dimension
n and let χ0 be another Kähler form on M , in a different Kähler class.
Consider the infinite-dimensional manifold M of diffeomorphisms f : M →
M , homotopic to the identity. M carries a natural symplectic form Ω defined
by

Ωf(v, w) =
∫
M
ω(v, w)

χn0
n!
,

for sections v, w of f∗(TM). The group G of exact χ0-symplectomorphisms
of M acts on M by composition on the right, preserving Ω. We can identify
the Lie algebra of G with the space of functions on M of integral zero with
respect to the volume form induced by χ0. A moment map µ : M → Lie(G)∗

for the group action is given by

µ(f) =
f∗(ω) ∧ χn−1

0

χn0
−
∫
M ω ∧ χn−1

0∫
M χn0

,

where we are using the L2 inner product to identify Lie(G) with its dual. It
is natural to look for solutions of

µ(f) = 0 (mod G). (1.1)
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These points form the symplectic quotient. Under certain conditions, one
would hope that the gradient flow ft of the function ‖µ‖2 on M would
converge to give a solution of (1.1). The gradient flow can be rewritten as a
flow of Kähler forms (f∗t )−1(χ0) on M . This defines a parabolic flow on the
space of Kähler potentials and is the object of study of this paper.

At around the same time, Chen [C1] independently discovered the same
flow as the gradient flow of his J-functional. He later called it the J-flow
[C2]. He showed in [C1] that the J-functional is related to the Mabuchi
K-energy [Ma], which plays a key role in the study of Kähler geometry and
stability in the sense of geometric invariant theory (see [Y2], [T2], [T3] and
[PS] for example).

Explicitly, the J-flow is defined as follows. Let c be the constant given
by

c =

∫
M ω ∧ χn−1

0∫
M χn0

,

and let H be the space of Kähler potentials

H = {φ ∈ C∞(M) | χφ = χ0 +
√−1

2
∂∂φ > 0}.

The J-flow is the flow on H given by

∂φt
∂t

= c−
ω ∧ χn−1

φt

χnφt

.

φ0 = 0. (1.2)

A critical point of the J-flow gives a Kähler metric χ satisfying

ω ∧ χn−1 = cχn. (1.3)

Donaldson [Do] asked whether one can find a solution to (1.3) in the class
[χ0] under certain assumptions. He noted that a necessary condition is that
[ncχ0−ω] be a Kähler class, and conjectured that this condition be sufficient.
Chen [C1] confirmed this conjecture in the case n = 2, without using the
J-flow, by observing that (1.3) reduces to a Monge-Ampère equation which
can be solved by the well-known result of Yau [Y1]. The conjecture is still
open for n > 2.

Chen [C1] shows that Donaldson’s conjecture would imply a result on
the lower bound of the Mabuchi K-energy for compact Kähler manifolds M
with negative first Chern class. Namely, if −ω ∈ c1(M) with ω > 0, then for
Kähler classes [χ0] satisfying

nc[χ0] − [ω] > 0,
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the Mabuchi K-energy would have a lower bound in the class [χ0].
Solutions of the J-flow exist for a short time by general theory, since

the flow is parabolic. In [C2], Chen showed that the flow always exists for
all time for any smooth initial data. He also showed that if the bisectional
curvature of ω is non-negative then the J-flow converges to a critical metric.

In general, the behaviour of the flow is not known. In this paper, we deal
with the case n = 2 with no curvature restrictions. Our main result is as
follows.

Main Theorem Suppose that (M,ω) has dimension n = 2 and that

ncχ0 − ω > 0.

Then the J-flow (1.2) converges in C∞ to a smooth critical metric.

The outline of the paper is as follows. In section 2 we state some prelimi-
nary facts about the flow and introduce notation. In section 3, the maximum
principle is used to derive an estimate on the second derivatives of φ in terms
of φ itself. In section 4, a C0 estimate for φ is given. The argument uses
the second order estimate, a Moser iteration argument applied to the expo-
nential of −φ and the result of Tian [T1] (see also [TY]) on the existence of
constants α > 0 and C such that∫

M
e−αφ

χn0
n!

≤ C,

for all φ in H with supM φ = 0. In section 5, the proof of the main theorem
is completed.

2. Preliminaries and notation.

From now on, assume that ω has been scaled so that c = 1/n. We will work
in local coordinates, and write

ω =
√
−1
2

gijdz
i ∧ dzj, χ0 =

√
−1
2

χ0 ijdz
i ∧ dzj,

and

χ =
√
−1
2

χijdz
i ∧ dzj =

√
−1
2

(χ0 ij + ∂i∂jφ)dzi ∧ dzj,

where χ = χφ (suppressing the t-subscript.) The operators Λω and Λχ act
on (1, 1) forms α =

√−1
2 αijdz

i ∧ dzj by

Λωα = gijαij, and Λχα = χijαij.
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The J-flow (1.2) can be written

∂φ

∂t
=

1
n

(1 − Λχω)

φ|t=0 = 0. (2.1)

Differentiating with respect to t gives

∂

∂t

(
∂φ

∂t

)
= �̃

(
∂φ

∂t

)
, (2.2)

where the operator �̃ acts on functions f by

�̃f =
1
n
χkjχilgij∂k∂lf.

For convenience, write
hkl = χkjχilgij.

The tensor hkl is positive definite and its inverse defines a Hermitian metric
on M . The operator �̃ is, up to a constant factor, the Laplacian associated
to this Hermitian metric.

By the maximum principle for parabolic equations, (2.2) implies that

inf
M

(Λχ0ω) ≤ Λχω ≤ sup
M

(Λχ0ω), (2.3)

which gives a lower bound for χ,

χ ≥ 1
supM(Λχ0ω)

ω. (2.4)

The J-functional [C1] is defined by

Jω,χ0(φ) =
∫ 1

0

∫
M

∂φt
∂t

ω ∧ χn−1
φt

(n− 1)!
dt,

where {φt} is a path in H between 0 and φ. The functional is independent
of the choice of path. We will need the following formula for the functional
in the case n = 2. Taking the path φt = tφ, we see that

Jω,χ0(φ) =
1
2

∫
M
φω ∧ (χ0 + χ). (2.5)
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Chen also makes use of the I-functional,

Iω,χ0(φ) =
∫ 1

0

∫
M

∂φt
∂t

χnφt

n!
dt.

This is a well-known functional in Kähler geometry (see [Ma]). Notice that
I(φ) = 0 along the flow. For n = 2, this functional is given by

Iω,χ0(φ) =
1
6

∫
M
φ (χ2

0 + χ ∧ χ0 + χ2). (2.6)

In the course of the paper, C0, C1, . . . will denote constants depending
only on the initial data ω and χ0. Curvature expressions such as Rijkl will
always refer to the metric gij.

3. Second order estimate.

We use the maximum principle to obtain an estimate on the second derivative
of φ in terms of φ. We choose to calculate the evolution of (logΛωχ− Aφ)
for some constant A (compare to [Y1], [Au] or [Si] for the analogous estimate
for the well-known Monge-Ampère equation, and [Ca] for the Kähler-Ricci
flow.)

Theorem 3.1. Suppose that (M,ω) has dimension n = 2 and that

χ0 − ω > 0. (3.1)

Let φ = φt be a solution of the J-flow (2.1) on [0,∞). Then there exist
constants A > 0 and C > 0 depending only on the initial data such that for
any time t ≥ 0, χ = χφt satisfies

Λωχ ≤ CeA(φ−infM×[0,t] φ). (3.2)

Proof. We will calculate

(�̃ − ∂

∂t
)(log(Λωχ) −Aφ).

Using normal coordinates for ω, first calculate

�̃(Λωχ) =
1
n
hkl∂k∂l(g

ijχij)

=
1
n
hklR

ij

kl
χij +

1
n
hklgij∂k∂lχij .
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And

∂

∂t
(Λωχ) =

∂

∂t
(gij∂i∂jφ)

= −1
n
gij∂i∂j(χ

klgkl)

=
1
n

(gij∂i(χpl∂jχpqχ
kq)gkl + gijχklRijkl)

=
1
n

(gijhpq∂i∂jχpq − gijhrqχps∂iχrs∂jχpq

− gijhpsχrq∂iχrs∂jχpq + χklRkl).

Now

�̃ log(Λωχ) =
�̃(Λωχ)

Λωχ
− |∇̃(Λωχ)|2

(Λωχ)2
,

where

|∇̃(Λωχ)|2 =
1
n
hkl∂k(Λωχ)∂l(Λωχ).

Note that by the Kähler property of χ, we have

∂i∂jχkl = ∂k∂lχij.

Then

(�̃ − ∂

∂t
) log(Λωχ)

=
1

nΛωχ
(hklR ij

kl
χij − n

|∇̃(Λωχ)|2
Λωχ

+ gijhrqχps∂iχrs∂jχpq

+ gijhpsχrq∂iχrs∂jχpq − χklRkl).

We need the following lemma to deal with the second term on the right
hand side.

Lemma 3.2.

n|∇̃(Λωχ)|2 ≤ (Λωχ)gijhrqχps∂iχrs∂jχpq .
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Proof. Using normal coordinates for ω in which χ is diagonal, and making
use of the Cauchy-Schwartz inequality, we obtain

n|∇̃(Λωχ)|2 =
∑
i,j,k

χkkχkk∂kχii∂kχjj

≤
∑
i,j

(∑
k

(χkk)2|∂kχii|2
)1/2(∑

k

(χkk)2|∂kχjj |2
)1/2

=

⎛
⎝∑

i

(∑
k

(χkk)2|∂kχii|2
)1/2

⎞
⎠

2

=

⎛
⎝∑

i

√
χii

(∑
k

(χkk)2χii|∂kχii|2
)1/2

⎞
⎠

2

≤
∑
i

χii

∑
i,k

(χkk)2χii|∂kχii|2

= (Λωχ)
∑
i,k

(χkk)2χii∂kχii∂kχii

= (Λωχ)
∑
i,k

(χkk)2χii∂iχki∂iχik

≤ (Λωχ)
∑
i,j,k

(χkk)2χii∂jχki∂jχik

= (Λωχ)gijhrqχps∂iχrs∂jχpq.

Let C0 be a constant satisfying

R ij

kl
≥ −C0gklg

ij.

Then,

(�̃ − ∂

∂t
) log(Λωχ) ≥ 1

nΛωχ
(−C0h

klgklg
ijχij − χklRkl)

=
1
n

(−C0h
klgkl −

1
Λωχ

χklRkl).
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Now calculate

(�̃ − ∂

∂t
)φ =

1
n

(hkl∂k∂lφ+ χijgij − 1)

=
1
n

(χkjχilgijχkl − hklχ0 kl + χijgij − 1)

=
1
n

(2χijgij − hklχ0 kl − 1).

At this point we must choose our value of A. From our assumption (3.1),
we can choose 0 < ε < 1/3 to be sufficiently small so that

χ0 ≥ (1 + 3ε)ω. (3.3)

Let A be given by

A =
C0

ε
.

Fix a time t > 0. There is a point (x0, t0) in M × [0, t] at which the
maximum of (log(Λωχ) − Aφ) is achieved. We may assume that t0 > 0. At
this point, we have

0 ≥ (�̃ − ∂

∂t
)(log(Λωχ) −Aφ)

≥ 1
n

(−C0h
klgkl −

1
Λωχ

χklRkl − 2Aχijgij +Ahklχ0 kl +A)

≥ 1
n

(−C0h
klgkl −

1
Λωχ

χklRkl − 2Aχijgij + (1 − ε)Ahklχ0 kl

+ εAhklgkl +A)

=
1
n

(− 1
Λωχ

χklRkl − 2Aχijgij + (1− ε)Ahklχ0kl +A).

From the lower bound (2.4) on χkl, the term χklRkl is bounded above and
hence at (x0, t0), we have

1 + (1 − ε)hklχ0 kl − 2χijgij ≤
C1

(Λωχ)
.

From (3.3), we get

1 + (1 + ε)hklgkl − 2χijgij ≤
C1

(Λωχ)
. (3.4)

We will compute in normal coordinates at x0 for ω in which χ is diagonal
and has eigenvalues λ1, λ2. From (2.4), λ1 and λ2 are bounded below by
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a positive constant. We want to show that they are also bounded above.
First, observe that for n = 2,

1
Λχω

=
detχ

(detω)(Λωχ)
,

and by (2.3), this is bounded along the flow.
Multiplying (3.4) by (detχ/ detω) gives,

λ1λ2 + (1 + ε)(
λ2

λ1
+
λ1

λ2
) − 2(λ1 + λ2) ≤ C2.

From (2.3), we may suppose that one of the eigenvalues, say λ2, is bounded
from above. Rewrite the inequality as

λ1(λ2 + (1 + ε)
1
λ2

− 2) + (1 + ε)
λ2

λ1
− 2λ2 ≤ C2.

Then, since the function f : (0,∞) → R defined by

f(x) = x+ (1 + ε)
1
x
− 2,

is bounded below by a small positive constant depending on ε, we see that
λ1 must also be bounded above. Hence at the point (x0, t0), there exists C
depending only on the initial data such that

Λωχ ≤ C.

Then, on M × [0, t],

log(Λωχ) −Aφ ≤ logC − A inf
M×[0,t]

φ.

Exponentiating gives

Λωχ ≤ CeA(φ−infM×[0,t] φ),

completing the proof of the theorem.

4. Zero order estimate.

We prove an estimate on the C0 norm of φ using a Moser iteration method
applied to the exponential of the solution rather than a power of the solution
(compare to [Y1]) and the estimate of Theorem 3.1.



958 Ben Weinkove

Theorem 4.1. Suppose that (M,ω) has dimension n = 2 and that

χ0 − ω > 0.

Let φt be a solution of the J-flow (2.1) on [0,∞). Then there exists a constant
C̃ depending only on the initial data such that

‖φt‖C0(M ) ≤ C̃.

Proof. Suppose first that infM φt is bounded from below uniformly in time.
We will show that this implies the above estimate. Since the functional Jω,χ0

decreases along the flow, there exists a constant C0 such that∫
M
φt ω ∧ (χ0 + χφt) ≤ C0,

using (2.5). Let C1 be a positive constant satisfying

ω2 ≤ C1ω ∧ χ0.

Then∫
M
φt ω

2 =
∫
M

(φt − inf
M
φt)ω2 +

∫
M

inf
M
φt ω

2

≤ C1

∫
M

(φt − inf
M
φt)ω ∧ χ0 + inf

M
φt

∫
M
ω2

≤ C1C0 − C1

∫
M

φt ω ∧ χφt + inf
M
φt

(∫
M

ω2 −C1

∫
M

ω ∧ χ0

)

= C1C0 − C1

∫
M

(φt − inf
M
φt)ω ∧ χφt

+ inf
M
φt

(∫
M
ω2 − 2C1

∫
M
ω ∧ χ0

)

≤ C1C0 + inf
M
φt

(∫
M
ω2 − 2C1

∫
M
ω ∧ χ0

)
.

This gives an upper bound for
∫
M φt ω

2 depending on the lower bound for
infM φt. Since �ωφt > −Λωχ0 along the flow, it follows from the existence
of a lower bound on the Green’s function of ω that supM φt is bounded from
above, giving us the required estimate.

Now suppose that no such lower bound for infM φt exists. Then we can
assume that there is a sequence of times ti → ∞ such that

(i) infM φti = inft∈[0,ti] infM φt
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(ii) infM φti → −∞.

We will seek a contradiction. For a fixed i, write

ψti = φti − sup
M

φti .

Notice that supM φti is bounded from below by zero from (2.6) and the fact
that I(φt) = 0. Hence

‖ψti‖C0 → ∞.

The following proposition is the key result of this section.

Proposition 4.2. Let M be a compact complex surface with two Kähler
metrics χ0 and ω. Suppose that ψ ∈ C∞(M) satisfies the conditions

χψ = χ0 +
√
−1
2

∂∂ψ > 0, sup
M

ψ = 0,

and
Λωχψ ≤ CeA(ψ−infM ψ).

Then there exists a constant C′ depending only on M , ω, χ0 and the con-
stants A and C such that

‖ψ‖C0 ≤ C′.

We apply this proposition to ψ = ψti and obtain a contradiction since

Λωχψti
= Λωχφti

≤ CeA(φti
−inft∈[0,ti]

infM φt)

= CeA(ψti−infM ψti),

where we have used Theorem 3.1 and condition (i) above. It remains to
prove the proposition.

Proof of Proposition 4.2 Let δ be a small positive constant, to be deter-
mined later. Set B = A/(1 − δ) and let u = e−Bψ .

Now, for β = n/(n − 1) = 2, the Sobolev inequality for functions f on
(M,ω) is

‖f‖2
2β ≤ C2(‖∇f‖2

2 + ‖f‖2
2),

for C2 depending on ω. We will apply this to up/2 for p ≥ 1. This gives

(∫
M
e−Bpβψ

ω2

2

)1/β

≤ C2

(∫
M

|∇e−Bpψ/2|2ω
2

2
+
∫
M
e−Bpψ

ω2

2

)
. (4.1)
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Now calculate∫
M

|∇e−Bpψ/2|2ω
2

2
=

√
−1
∫
M

∂e−Bpψ/2 ∧ ∂e−Bpψ/2 ∧ ω

=
B2p2

4
√
−1
∫
M
e−Bpψ∂ψ ∧ ∂ψ ∧ ω

= −Bp
4

√
−1
∫
M
∂(e−Bpψ) ∧ ∂ψ ∧ ω

=
Bp

2

∫
M

e−Bpψ
√
−1
2

∂∂ψ ∧ ω

=
Bp

2

∫
M
e−Bpψ(χψ − χ0) ∧ ω

=
Bp

2

∫
M
e−Bpψ(Λωχψ − Λωχ0)

ω2

2

≤ CBp

2

∫
M
e−BpψeA(ψ−infM ψ)ω

2

2

=
CBp

2
e−A infM ψ

∫
M
e−(p−(1−δ))Bψω

2

2
,

where we have used the estimate

Λωχψ ≤ CeA(ψ−infM ψ).

Then in (4.1),(∫
M
upβ

ω2

2

)1/β

≤ C3pe
−A infM ψ

∫
M
up−(1−δ)ω2

2
.

Raising to the power 1/p and writing γ = 1 − δ gives

‖u‖pβ ≤ C
1/p
3 p1/pe−(A/p) infM ψ‖u‖(p−γ)/p

p−γ .

Take the logarithm of both sides to get

log ‖u‖pβ ≤ 1
p

logC3 +
1
p

log p+
1
p

sup
M

(−Aψ) +
(p− γ)
p

log ‖u‖p−γ .

We now apply the iteration. First, replace p with pβ + γ to get

log ‖u‖pβ2+γβ ≤ 1 + β

pβ + γ
logC3 +

1
pβ + γ

(β log p+ log(pβ + γ))

+
1 + β

pβ + γ
sup
M

(−Aψ) +
β(p− γ)
pβ + γ

log ‖u‖p−γ .
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Repeat this procedure, replacing p with pβ + γ to obtain for any positive
integer k,

log ‖u‖pβk+1+γ(β+β2+...+βk)

≤ 1 + β + β2 + . . .+ βk

pβk + γ(1 + β + β2 + . . .+ βk−1)
logC3

+
1

pβk + γ(1 + β + . . .+ βk−1)
( βk log p+ βk−1 log(pβ + γ) + . . .

. . .+ log(pβk + γ(1 + β + . . .+ βk−1) )

+
1 + β + β2 + . . .+ βk

pβk + γ(1 + β + β2 + . . .+ βk−1)
sup
M

(−Aψ)

+
βk(p− γ)

pβk + γ(1 + β + β2 + . . .+ βk−1)
log ‖u‖p−γ. (4.2)

Now set p = 1 + δ. Then, since β = 2 we have

pβk + γ(1 + β + β2 + . . .+ βk−1) = 1 + β + β2 + . . .+ βk + δ.

Notice that the second term on the right hand side of (4.2) is bounded by

log p+
1
β

logβ2 + . . .+
1
βk

log(βk+1) ≤ log p+ logβ(
k∑
i=1

i+ 1
βi

)

≤ C4.

Then

log ‖u‖pβk+1+γ(β+β2+...+βk)

≤ logC3 + C4 + sup
M

(−Aψ) + 2δmax(log ‖u‖2δ, 0).

Using the fact that A = (1 − δ)B and −Bψ = log u, and letting k tend to
infinity,

log ‖u‖C0 ≤ C5 + 2 max(log‖u‖2δ, 0).

Hence we get the following inequality for ψ,

‖ψ‖C0 ≤ C6 + C7 max

(
log
(∫

M
e−2δBψω

2

2

)1/2δ

, 0

)
. (4.3)

We can now finish the estimate. First, define

P (M,χ0) = {Φ ∈ C2(M) | χ0 +
√−1

2
∂∂Φ ≥ 0, sup

M
Φ = 0}.
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Then Proposition 2.1 of [T1] (see section 4.4, [Ho]) states that there exist
constants α > 0 and C8 depending only on (M,χ0) such that

∫
M
e−αΦχ

n
0

n!
≤ C8 for all Φ ∈ P (M,χ0).

Define δ to be

δ = min{ α
4A

,
1
2
} > 0.

Then the required estimate follows from (4.3), since ψ belongs to P (M,χ0).

5. Convergence of the flow.

In this section we complete the proof of the main theorem. We assume,
using the result of [C2], that a solution φ = φt for the J-flow exists for all
time. From Theorem 3.1 and Theorem 4.1 we have uniform estimates on φ
and the derivatives ∂i∂jφ, using the fact that

χij = χ0 ij + ∂i∂jφ > 0.

Since the operator
1
n

(1− Λχω),

is concave in the χij, it is well known that, by the work of Evans [E1, E2]
and Krylov [Kr] (see also [Tr]), one can deduce a uniform Hölder estimate
on the second derivatives ∂i∂jφ. By differentiating the equation (2.1) and
applying standard Schauder estimates for parabolic equations (see [LSU]
for example), one can obtain uniform estimates on all of the derivatives of
φ. It then follows that there is a sequence of times tj → ∞ such that φtj
converges in C∞ to some smooth function φ∞. In order to show that we
have convergence without having to pass to a subsequence, we will use a
modification of the argument in [Ca].

Notice that ∂φ/∂t satisfies the heat equation

∂

∂t

(
∂φ

∂t

)
= �̃

(
∂φ

∂t

)
.

Since we have uniform bounds for χij from above and away from zero, and
bounds on ∂

∂tχij and all the covariant derivatives of χij and ∂
∂tχij , it follows

from the Harnack inequality of Li and Yau [LY] and the argument in [Ca]
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that there exist positive constants C0 and η, which are independent of t,
such that

sup
M

(
∂φ

∂t

)
− inf

M

(
∂φ

∂t

)
≤ C0e

−ηt.

Since ∫
M

∂φ

∂t
χ2 = 0,

∂φ/∂t must take on the value zero somewhere on M for each t, and so∣∣∣∣∂φ∂t
∣∣∣∣ ≤ C0e

−ηt.

Hence for any 0 < s < s′, and any x ∈M ,

|φ(x, s′) − φ(x, s)| = |
∫ s′

s

∂φ

∂t
(x, t)dt|

≤
∫ s′

s

|∂φ
∂t

(x, t)|dt

≤ C0

∫ s′

s

e−ηtdt

= C0
1
η
(e−ηs − e−ηs

′
),

which tends to zero as s and s′ tend to infinity. Hence φt converges in the
C0 norm to φ∞. It must converge also in the C∞ topology, since otherwise
there would exist an integer N , an ε > 0 and a sequence tj → ∞ with

‖φtj − φ∞‖CN ≥ ε.

Since φ is bounded in all the Ck norms, one could pass to a subsequence of
the φtj which would converge to some φ′∞ �= φ∞, giving the contradiction.
This completes the proof.
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Math. Journ., 38 (1986), 575-593

[PS] Phong, D. H. and Sturm, J. Stability, energy functionals, and Kähler-
Einstein metrics, Comm. Anal. Geom. 11 (2003), No. 3, 565-597



Convergence of the J-flow on Kähler Surfaces 965

[Si] Siu, Y.-T. Lectures on Hermitian-Einstein metrics for stable bundles
and Kähler-Einstein metrics, Birkhäuser Verlag, Basel 1987
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