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Convergence of the J-flow on Kahler Surfaces

BEN WEINKOVE

Donaldson defined a parabolic flow of potentials on Kéahler mani-
folds which arises from considering the action of a group of sym-
plectomorphisms on the space of smooth maps between manifolds.
One can define a moment map for this action, and then consider
the gradient flow of the square of its norm. Chen discovered the
same flow from a different viewpoint and called it the J-flow, since
it corresponds to the gradient flow of his J-functional, which is
related to Mabuchi’s K-energy. In this paper, we show that in the
case of Kahler surfaces with two Kahler forms satisfying a certain
inequality, the J-flow converges to a zero of the moment map.

1. Introduction.

In [Do], Donaldson described how a number of geometric situations fit into
a general framework of diffeomorphism groups and moment maps. In the
Kahler setting, he used this framework to define a natural parabolic flow,
as follows. Suppose that (M, w) is a compact Ké&hler manifold of dimension
n and let xo be another Kéhler form on M, in a different K&hler class.
Consider the infinite-dimensional manifold M of diffeomorphisms f : M —
M, homotopic to the identity. M carries a natural symplectic form 2 defined
by
_ X0
Qf(”? ’UJ) - / w(v, ’U))—',
M n:
for sections v, w of f*(T'M). The group G of exact xo-symplectomorphisms
of M acts on M by composition on the right, preserving 2. We can identify
the Lie algebra of G with the space of functions on M of integral zero with
respect to the volume form induced by xg. A moment map p : M — Lie(G)*
for the group action is given by

— —1
_ AT JuwAxs

Xo Jar Xt
where we are using the L? inner product to identify Lie(G) with its dual. It

p(f)

Y

is natural to look for solutions of

w(f)=0 (mod G). (1.1)
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These points form the symplectic quotient. Under certain conditions, one
would hope that the gradient flow f; of the function |u|[> on M would
converge to give a solution of (1.1). The gradient flow can be rewritten as a
flow of Kihler forms (f;)~!(xo) on M. This defines a parabolic flow on the
space of Kéhler potentials and is the object of study of this paper.

At around the same time, Chen [C1] independently discovered the same
flow as the gradient flow of his J-functional. He later called it the J-flow
[C2]. He showed in [C1] that the J-functional is related to the Mabuchi
K-energy [Ma], which plays a key role in the study of Ké&hler geometry and
stability in the sense of geometric invariant theory (see [Y2], [T2], [T3] and
[PS] for example).

Explicitly, the J-flow is defined as follows. Let ¢ be the constant given
by

Jarw A Xo !
J, M X0
and let H be the space of Kahler potentials

c )

- _
H = {6 € C=(M) | xo = xo + Y2550 > 0}.

The J-flow is the flow on H given by

T o w A th_l
ot G
oo = 0. (1.2)

A critical point of the J-flow gives a Kahler metric y satisfying
wAX" = ex". (1.3)

Donaldson [Do] asked whether one can find a solution to (1.3) in the class
[Xo] under certain assumptions. He noted that a necessary condition is that
[ncxo—w] be a Kéhler class, and conjectured that this condition be sufficient.
Chen [C1] confirmed this conjecture in the case n = 2, without using the
J-flow, by observing that (1.3) reduces to a Monge-Ampere equation which
can be solved by the well-known result of Yau [Y1]. The conjecture is still
open for n > 2.

Chen [C1] shows that Donaldson’s conjecture would imply a result on
the lower bound of the Mabuchi K-energy for compact Kéahler manifolds M
with negative first Chern class. Namely, if —w € ¢1(M) with w > 0, then for
Kaéhler classes [xo] satisfying

ne[xo] - [w] >0,
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the Mabuchi K-energy would have a lower bound in the class [xo].

Solutions of the J-flow exist for a short time by general theory, since
the flow is parabolic. In [C2], Chen showed that the flow always exists for
all time for any smooth initial data. He also showed that if the bisectional
curvature of w is non-negative then the J-flow converges to a critical metric.

In general, the behaviour of the flow is not known. In this paper, we deal
with the case n = 2 with no curvature restrictions. Our main result is as
follows.

Main Theorem Suppose that (M,w) has dimension n = 2 and that
nexo —w > 0.

Then the J-flow (1.2) converges in C° to a smooth critical metric.

The outline of the paper is as follows. In section 2 we state some prelimi-
nary facts about the flow and introduce notation. In section 3, the maximum
principle is used to derive an estimate on the second derivatives of ¢ in terms
of ¢ itself. In section 4, a C° estimate for ¢ is given. The argument uses
the second order estimate, a Moser iteration argument applied to the expo-
nential of —¢ and the result of Tian [T1] (see also [TY]) on the existence of
constants a > 0 and C' such that

e_o“z’x—8 <C
M ’I’L' - ’

for all ¢ in H with sup,; ¢ = 0. In section 5, the proof of the main theorem
is completed.

2. Preliminaries and notation.

From now on, assume that w has been scaled so that ¢ = 1/n. We will work
in local coordinates, and write
VA V=1

w=— gﬁdzi A dz;, Xo = —5—Xo Z;dzi A dz;,

Y -
X = Txﬁdzl ANdZ = T(Xoﬁ + aiﬁijﬁ)dzz Ndz7,

where x = x¢ (suppressing the t-subscript.) The operators A, and A, act

on (1,1) forms a = @aﬁdzi A dz7 by

and

and Ao = Xﬁoz =

Aya =g~ 7
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The J-flow (1.2) can be written
99 _ 1

o n

Pli=o = 0.

(I-Aw)
(2.1)

Differentiating with respect to ¢ gives

e e

where the operator A acts on functions f by

1 o 7:_
Af = —X"x"g5000;].

For convenience, write
Kl kj. il
h™ =X"Xx"g;

The tensor h¥! is positive definite and its inverse defines a Hermitian metric
on M. The operator A is, up to a constant factor, the Laplacian associated
to this Hermitian metric.

By the maximum principle for parabolic equations, (2.2) implies that

inf(Ay,w) < Ayw < sup(Ayw), (2.3)
M M

which gives a lower bound for ¥,

1
X>—w 2.4
sunr () (2:4)

The J-functional [C1] is defined by
Lroog wAxg !
Jw = — ———dt,

where {¢;} is a path in H between 0 and ¢. The functional is independent
of the choice of path. We will need the following formula for the functional
in the case n = 2. Taking the path ¢; = t¢, we see that

Joxo (@) = % /M pw A (xo+ X)- (2.5)
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Chen also makes use of the I-functional,

L[ 0o X3,
L= [ [ 2,

This is a well-known functional in Kéhler geometry (see [Ma]). Notice that
I(¢) = 0 along the flow. For n = 2, this functional is given by

Lo (9) = é/MQS(X?JerAxO +x%). (2.6)

In the course of the paper, Cy, C, ... will denote constants depending
only on the initial data w and x(. Curvature expressions such as Rim will
always refer to the metric 9;5-

3. Second order estimate.

We use the maximum principle to obtain an estimate on the second derivative
of ¢ in terms of ¢. We choose to calculate the evolution of (log A, x — A¢)
for some constant A (compare to [Y1], [Au] or [Si] for the analogous estimate
for the well-known Monge-Ampere equation, and [Ca] for the Kéhler-Ricci
flow.)

Theorem 3.1. Suppose that (M,w) has dimension n = 2 and that
Xo —w > 0. (3.1)

Let ¢ = ¢¢ be a solution of the J-flow (2.1) on [0,00). Then there exist
constants A > 0 and C > 0 depending only on the initial data such that for
any time t > 0, x = Xxg, satisfies

Ayx < CeAlo—infarxpo.g 9), (3.2)

Proof. We will calculate

(A £ (08(Ax) — 49).

Using normal coordinates for w, first calculate
A Lo ij
AAwx) = W09 x;5)

T B
— EhkleZUXZE—i_ Ehklgmakal_ng
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And

5 Ax) = —(9"0:0;9)

= L0007 - N B0
— GNP TOxs50 0 + X Ryg).

Now

where

~ 1,3
V(AL = Ehklak(f\wx)ai(f\wx)-

Note that by the Kéhler property of x, we have
0071 = KD
Then

(&~ ) log(Aux)

ot
1 7 i ﬁ Aux 2 ij 1 7G pS

+ g7 WX 10, x0505x7 — X" Ryg)-

We need the following lemma to deal with the second term on the right
hand side.

Lemma 3.2.

V(A < (BuX)g7 X 0ixrs05 7
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Proof. Using normal coordinates for w in which y is diagonal, and making
use of the Cauchy-Schwartz inequality, we obtain

nlVA)P = D ™ oexs0x;

1,5,k
B 1/2 B 1/2
< ) (Z(xkk)zlakxiﬂz) (Z(ka)zlakxjﬂz)
i7 \ & A

~ 1/2\ 2

= Z(Z(ka)zlakxzﬂz)

i \ k

2

o 1/2
= DV (Z(X'f’“)zx”lakxzﬂz)
: k
< ZXiZZ(XkE)zXﬁWkXﬁP

ik

= (M) YO OxaOx
ik

= (AWX)Z(ka)zxiiaiXkZa?Xz'E
ik

< () DO X0 x5 xw
1,5,k

= (AwX)g7 R X" 0ixrs 05X

Let Cp be a constant satisfying
szm > _Cogkigij'
Then,

-9 1 T 1
(& =z log(Aux) 2 (—Coh™ 9439 x5 — X" Ryy)

nAyx
1 Kl Kl
= 5 (5Ch g = X Ryg).
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Now calculate

9 . =
(A=5)0 = —(hop00+x7g5-1)

- .Z kz By
XX g% — W0 + X795 — 1)

[—3 =3

= (2795~ xom — 1.

At this point we must choose our value of A. From our assumption (3.1),
we can choose 0 < € < 1/3 to be sufficiently small so that

xo > (1+ 3¢)w. (3.3)
Let A be given by
A=,
€

Fix a time ¢t > 0. There is a point (zg,tg) in M x [0,t¢] at which the
maximum of (log(A,x) — A¢) is achieved. We may assume that ¢ > 0. At
this point, we have

0 > (A 2)0g(hux) - 49)

ot
1 ; ; = .
> E(—Cohklgkz “ i X Ry —2Ax7 g5+ AR X 1 + A)
1 ; 1 4 = ;
> L (Coh"g = xRy = 24x7 g5+ (1 = 9 Ah"xo
+cAhMg + A)
1, 1 = -
= g(—mxkl% — 2AxY g5+ (1 — ) AR x 7 + A).

From the lower bound (2.4) on x,;, the term insz is bounded above and
hence at (zg,tg), we have

1+(1- E)hleOki — 2Xijgi3 < (Ac;lx)'
From (3.3), we get
1+ (1+ QhMlg — 2xg- <~ (3.4)
(Awx)

We will compute in normal coordinates at xg for w in which y is diagonal
and has eigenvalues A1, \o. From (2.4), A; and A9 are bounded below by
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a positive constant. We want to show that they are also bounded above.
First, observe that for n = 2,

1 det x

Aw  (detw)(Ayx)’

and by (2.3), this is bounded along the flow.
Multiplying (3.4) by (det x/ detw) gives,

A A
Ao+ (1+ 6)(f + A—;) —2(\1 + \o) < Co.

From (2.3), we may suppose that one of the eigenvalues, say Ao, is bounded
from above. Rewrite the inequality as

1 A
AM(do+ (1 —1—6))\—2 —2)+(1 —1—6))\—? —2)\y < Cs.

Then, since the function f : (0,00) — R defined by

f(x):x+(1+e)§_2,

is bounded below by a small positive constant depending on €, we see that
A1 must also be bounded above. Hence at the point (zg, tg), there exists C
depending only on the initial data such that

Aux < C.
Then, on M x [0, t],

log(A,x) — Ap <1 — A inf o.
og(Ayx) — Ap < logC M13[07t]¢

Exponentiating gives
Aux < CeAld—infario. ¢)7
completing the proof of the theorem.

4. Zero order estimate.

We prove an estimate on the C° norm of ¢ using a Moser iteration method
applied to the exponential of the solution rather than a power of the solution
(compare to [Y1]) and the estimate of Theorem 3.1.
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Theorem 4.1. Suppose that (M,w) has dimension n =2 and that
xo —w > 0.

Let ¢ be a solution of the J-flow (2.1) on [0, 00). Then there exists a constant
C depending only on the initial data such that

éellcoan < C.

Proof. Suppose first that infy; ¢; is bounded from below uniformly in time.
We will show that this implies the above estimate. Since the functional J, y,
decreases along the flow, there exists a constant Cj such that

/ prw A (X0 + X¢) < Co,

M

using (2.5). Let C7 be a positive constant satisfying
w? < Ciw A Yo.

Then

2 . 2 . 2
/qutw - /th—lﬁf@)w i /Mlﬁqutw

< /M(¢t—i]1\14f¢t)°0/\><0 +i]1\14f¢t /sz

< 0100—01/ ¢tw/\x¢t—|—inf¢t</ wz—Cl/wAX())
M M M M

= 0100—01/ (¢ — inf @r)w A xg,
M M

—|—inf¢t</ w2—201/ W/\X0>
M M M
<

0100—|—inf¢t</ w2—201/ w/\X0>.
M M M

This gives an upper bound for [, ¢ w? depending on the lower bound for
infas ¢¢. Since A,y > —Ayxo along the flow, it follows from the existence
of a lower bound on the Green’s function of w that sup,; ¢; is bounded from
above, giving us the required estimate.

Now suppose that no such lower bound for inf,; ¢; exists. Then we can
assume that there is a sequence of times ¢; — oo such that

(i) infps ¢y, = infycio ) infar ¢y
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(ii) infas ¢y, — —o0.

We will seek a contradiction. For a fixed i, write
¢ti = ¢ti — sSup ¢ti'
M

Notice that sup,; ¢, is bounded from below by zero from (2.6) and the fact
that I(¢;) = 0. Hence

1¥:llco — o0

The following proposition is the key result of this section.

Proposition 4.2. Let M be a compact complex surface with two Kdhler
metrics xo and w. Suppose that 1 € C°°(M) satisfies the conditions

Jv—1 _
Xy = X0 + —5—00¢ >0, sup vy = 0,
2 M
and
Auxy < CeAWp—infar )

Then there exists a constant C' depending only on M, w, xo and the con-
stants A and C such that
[¥llco < C".

We apply this proposition to 1) = 9y, and obtain a contradiction since

Aoxye, = AuXey,
CeAM)ti —infye(o,¢;) infar 1)

IN

—  CeAWy—infy U)ti)’

where we have used Theorem 3.1 and condition (i) above. It remains to
prove the proposition.

Proof of Proposition 4.2 Let d be a small positive constant, to be deter-
mined later. Set B = A/(1 — §) and let u = e~ BY.
Now, for = n/(n — 1) = 2, the Sobolev inequality for functions f on
(M,w) is
17135 < C2(IVFII5 + 1 £113),

for Cy depending on w. We will apply this to u?/2 for p > 1. This gives

2\ 1/8 2 2
(/ e—Bpﬁw“’_> < G (/ |ve—BPW2|2w—+/ e‘BPW—>- (4.1)
M 2 M 2 M 2
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Now calculate

2
/ |ve—BPw/2|2% _ \/_—1/ He—BPUI2 A Ge—BPE/2 A
M

B2p2

= \/_/ e By A DY Aw

- —T\/—_l/ (e PPy AN O Aw
_B,,wx/_

Bp
2 /M

_ @/ BV
2 Ju
Bp
2 /M
CBp

00 N w

(X — X0) ANw
B w?
e PPV (Awxy — AWX0)7

< o~ BPY pA(—infar ) Y
2 Ju 2

_ CBpe—Amew/ e—(:n—(l—é))BwW_2
2 M 2’

where we have used the estimate
Awa < CeA(ﬂJ—infM ¥)

Then in (4.1),

1/8 w2
/ ) < Cype-Anta / up— (-9
M 2 - M 2

Raising to the power 1/p and writing v =1 — § gives

: - in -
leellps < 03/pp1/pe (4/p) waHUH;p_“/ﬂ/)/p

Take the logarithm of both sides to get

IOgHqu—“{'

(p—7)
p

1 1 1
log ||ul|ps < —1og Cs + —logp + — sup(—Az) +
p p b M
We now apply the iteration. First, replace p with p3 + v to get

1+8 1
log [[ull,g24+5 < ﬁ+ log C5 + P ———(Blogp + log(pB + 7))

1+4 Bp—")
—A PP, .
+pﬁ+781\u4p( V) + P og [[ullp—y
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Repeat this procedure, replacing p with p3 + v to obtain for any positive
integer k,

log ||u||pﬁk+1+~/(ﬁ+ﬁ2+...+ﬁk)
1+8+8%+...+6°
po* +y(L+ B+ 42+ + 1)

1 k k—1

o+ log(pBF A1+ B+ + 8D
1+8+62+...+ 6"
pﬁk+7(1+ﬁ+62+...+ﬁ’f—1)Sﬁp(_‘w)
B —7)
poF +y(1+ B+ 5%+ ...+ pF

Now set p =14 6. Then, since § = 2 we have
B+ YA+ B+ + .+ =148+ 82+ + B 40

Notice that the second term on the right hand side of (4.2) is bounded by

log 03

S 1og [ulp . (4.2)

k.
log(B**!) < logp+logﬁ(zzgi1

=1

1 1
logp+=logB®+...+ =

5 5 )

< Cy.
Then

log [|ull s+ (p+62+..46%)
< log C5 4+ Cy + sup(—Ay) + 26 max(log ||u/|2s, 0).
M

Using the fact that A = (1 — 0)B and —Bvy = logu, and letting &k tend to
infinity,
log [[ullc, < C5 + 2max(log |ul|2s, 0).

Hence we get the following inequality for 1,

o\ 1/26
[¥][co < Cs + C7max <log (/M e‘253¢%> ,0> . (4.3)

We can now finish the estimate. First, define

/T

—1 —_
P(M, xo) = {® € C*(M) | xo0 + ~5—00% >0, sup @ = 0}.
M
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Then Proposition 2.1 of [T1] (see section 4.4, [Ho]) states that there exist
constants a > 0 and Cg depending only on (M, x¢) such that

n
/ e—wa_? < Cy for all ® € P(M, xo).
M n:

Define § to be
a 1

= 0.
e
Then the required estimate follows from (4.3), since ¥ belongs to P(M, xo).

d = min{

5. Convergence of the flow.

In this section we complete the proof of the main theorem. We assume,
using the result of [C2], that a solution ¢ = ¢, for the J-flow exists for all
time. From Theorem 3.1 and Theorem 4.1 we have uniform estimates on ¢
and the derivatives 81'6]—45, using the fact that

Since the operator
(11— M),
is concave in the Xz, it is well known that, by the work of Evans [E1, E2]
and Krylov [Kr] (see also [Tr]), one can deduce a uniform Holder estimate
on the second derivatives 81'8]—4;5. By differentiating the equation (2.1) and
applying standard Schauder estimates for parabolic equations (see [LSU]
for example), one can obtain uniform estimates on all of the derivatives of
¢. It then follows that there is a sequence of times t; — oo such that ¢,
converges in C'°° to some smooth function ¢.,. In order to show that we
have convergence without having to pass to a subsequence, we will use a
modification of the argument in [Ca].
Notice that d¢/0t satisfies the heat equation

0 (06N  x (99
§<§>_A<m>'

Since we have uniform bounds for Xij from above and away from zero, and

bounds on %Xﬁ and all the covariant derivatives of Xi7 and %Xﬁ, it follows
from the Harnack inequality of Li and Yau [LY] and the argument in [Ca]
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that there exist positive constants Cy and 7, which are independent of ¢,

such that
¢ . 0¢ it
) —infl =L)< .
p(3) () <o
Since 5
¢ 9
o 5 X =0,

0¢ /0t must take on the value zero somewhere on M for each ¢, and so
9¢
—| < Cpe™ ™.
I at| = "

Hence for any 0 < s < ¢, and any = € M,

s’ o
o) 0w ) = | [ P, v
s d¢
A EI

/

Co / e Mdt

1 /
= Cor (e ),

IN

IN

which tends to zero as s and s’ tend to infinity. Hence ¢; converges in the
Ch norm to ¢o. It must converge also in the C'°° topology, since otherwise
there would exist an integer IV, an € > 0 and a sequence t; — oo with

[P, — Poollon > €

Since ¢ is bounded in all the C* norms, one could pass to a subsequence of
the ¢, which would converge to some ¢, # doo, giving the contradiction.
This completes the proof.

Acknowledgements. This work was completed while the author was a
graduate student at Columbia University, and these results form part of his
PhD thesis [We]. The author is very grateful to his advisor D.H. Phong
for his constant support and advice. He also thanks Jacob Sturm and Jian
Song for some helpful conversations, and the referee for some constructive
comments.



964

Ben Weinkove

References.

Aubin, T. Fquations du type Monge-Ampere sur les variétés Kahler-
iennes compacts, Bull. Sc. Math. 102 (1978), 119-121

Cao, H-D. Deformation of Kdhler metrics to Kdhler-Einstein metrics
on compact Kdahler manifolds, Invent. Math. 81 (1985), 359-372

Chen, X. X. On the lower bound of the Mabuchi energy and its appli-
cation, Int. Math. Res. Notices 12 (2000), 607-623

Chen, X. X. A new parabolic flow in Kdhler manifolds, preprint,
arXiv: math.DG/0009247

Donaldson, S. K. Moment maps and diffeomorphisms, Asian J. Math.
3, No. 1 (1999), 1-16

Evans, L. C. Classical solutions of fully nonlinear, convex, second
order elliptic equations, Comm. Pure Appl. Math. 25 (1982), 333-363

Evans, L. C. Classical solutions of the Hamilton-Jacobi Bellman equa-
tion for uniformly elliptic operators, Trans. Amer. Math. Soc. 275
(1983), 245-255

Hoérmander, L. An introduction to complex analysis in several vari-
ables, Van Nostrand, Princeton, NJ 1973

Krylov, N. V. Boundedly nonhomogeneous elliptic and parabolic equa-
tions, Izvestia Akad. Nauk. SSSR 46 (1982), 487-523. English trans-
lation in Math. USSR Izv. 20 (1983), No. 3, 459-492

Ladyzenskaja, O. A., Solonnikov, V. A. and Ural’Ceva, N. N. Linear
and quasilinear equations of parabolic type, Providence, Amer. Math.
Soc. 1968

Li, P. and Yau, S.-T. On the parabolic kernel of the Schrédinger op-
erator, Acta Math. 156 (1986), No. 3-4, 153-201

Mabuchi, T. K-energy maps integrating Futaki invariants, Toéhoku
Math. Journ., 38 (1986), 575-593

Phong, D. H. and Sturm, J. Stability, energy functionals, and Kahler-
Einstein metrics, Comm. Anal. Geom. 11 (2003), No. 3, 565-597



Convergence of the J-flow on Kéhler Surfaces 965

[Si]  Siu, Y.-T. Lectures on Hermitian-Einstein metrics for stable bundles
and Kdhler-Finstein metrics, Birkhauser Verlag, Basel 1987

[T1] Tian, G. On Kdhler-Einstein metrics on certain Kahler manifolds
with ¢ (M) > 0, Invent. Math. 89 (1987), 225-246

[T2] Tian, G. The K-energy on hypersurfaces and stability, Comm. Anal.
Geom. 2 (1994), No. 2, 239-265

[T3] Tian, G. Kdhler-Einstein metrics with positive scalar curvature, In-
vent. math. 137 (1997), 1-37

[TY] Tian, G. and Yau, S.-T. Kdhler-FEinstein metrics on complex surfaces
with ¢1 (M) positive, Comm. Math. Phys. 112 (1987),

[Tr] Trudinger, N. S. Fully nonlinear, uniformly elliptic equations under
natural structure conditions, Trans. Amer. Math. Soc. 278 (1983),
751-769

[We] Weinkove, B. The J-flow, the Mabuchi energy, the Yang-Mills flow
and multiplier ideal sheaves, PhD thesis, Columbia University 2004

[Y1] Yau, S.-T. On the Ricci curvature of a compact Kdhler manifold and
the complex Monge-Ampére equation, I, Comm. Pure Appl. Math. 31
(1978), 339-411

[Y2] Yau, S.-T. Open problems in geometry, Proc. Symposia Pure Math.
54 (1993), 1-28 (problem 65)

DEPARTMENT OF MATHEMATICS
CoOLUMBIA UNIVERSITY

NEw YoOrk, NY 10027
weinkove@math.columbia.edu

RECEIVED AucGusT 12, 2003.



