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The Apollonian Inner Metric

Peter A. Hästö

In this paper we derive an explicit formula for the inner metric
of the Apollonian metric and prove that for most domains there
exists a geodesic connecting two arbitrary points. We also give a
necessary and sufficient condition for the Apollonian inner metric
to be bilipschitz equivalent to the quasihyperbolic metric.

1. Introduction.

In this paper we consider the inner metric of the Apollonian metric from
[3]. Some basic features of this metric are that it is Möbius invariant, equals
the hyperbolic metric in balls and half-spaces and has a geodesic connecting
an arbitrary pair of points (in most domains). We start by defining the
Apollonian metric and its inner metric in order to state our main results.
The notation used conforms largely to that of [2] and [19], the reader can
consult Section 2.1 of this paper, if necessary.

We will be considering domains (open connected non-empty sets) G in
the Möbius space Rn := Rn ∪ {∞}. The Apollonian metric is defined for
x, y ∈ G � Rn by

αG(x, y) := sup
a,b∈∂G

log
|a− x|
|a− y|

|b− y|
|b− x| (1.1)

(with the understanding that |∞ − x|/|∞ − y| = 1). It is in fact a met-
ric if only if the complement of G is not contained in a hyperplane and a
pseudometric otherwise, as was noted in [3, Theorem 1.1]. This metric was
introduced in [3] and has also been considered in [5, 8–14, 16, 17]. It should
also be noted that the same metric has been considered from a different
perspective under the name of the Barbilian metric for instance in [4] and
[15].
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Let γ : [0, 1] → G ⊂ Rn be a path, i.e. a continuous function. If d is a
metric in G, then the d-length of γ is defined by

d(γ) := sup
k−1∑
i=0

d(γ(ti), γ(ti+1)),

where the supremum is taken over k < ∞ and all sequences {ti} satisfying
0 = t0 < t1 < . . . < tk = 1. All the paths in this paper are assumed to
be rectifiable, that is have finite Euclidean length. The inner metric of d is
defined by the formula

d̃(x, y) := inf
γ
d(γ),

where the infimum is taken over all paths connecting x and y inG. We denote
the inner metric of the Apollonian metric by α̃G and call it the Apollonian
inner metric.

Since the Apollonian metric is only a pseudometric in some domains it is
not reasonable to expect the Apollonian inner metric to be a metric in every
domain. The next theorem shows that it is a proper metric in a somewhat
larger class of domains than is the Apollonian metric.

Theorem 1.2. The Apollonian inner metric is a pseudometric in every do-
mainG � Rn and a metric if and only if the complement ofG is not contained

in an (n− 2)-dimensional plane.

In order to present an integral formula for the Apollonian inner metric
we need the Apollonian spheres and the density of the Apollonian metric,
both from [8].

Definition 1.3. Let G � Rn, x ∈ G and θ ∈ Rn \ {0}.

1. Let r := r(x, θ) := sup{s : Bn(x + sθ/|θ|, s) ⊂ G}. We define the
Apollonian sphere through x in direction θ to be Sn−1(x+ rθ/|θ|, r) if
r <∞ and the limiting half-space otherwise.

2. We denote αG(x; θ) := 1/(2r(x, θ))+ 1/(2r(x,−θ)) and call this func-
tion the density of the Apollonian metric.

The main result of the present paper is the following integral formula for
the Apollonian inner metric. Piecewise continuously differentiable means
continuously differentiable except in a finite number of points.
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Theorem 1.4. If x, y ∈ G � Rn, then

α̃G(x, y) = inf
γ

∫
αG(γ(t); γ ′(t))|γ ′(t)|dt,

where the infimum is taken over all paths connecting x and y in G

that are piecewise continuously differentiable (with the understanding that
αG(z; 0)0 = 0 for all z ∈ G, even when αG(z; 0) is not defined).

The next result shows that the infimum in the definition of the Apollonian
inner metric is a minimum in almost all cases, namely, when αG is a metric.

Theorem 1.5. Let x, y ∈ G � Rn and G be such that Gc is not contained

in a hyperplane. Then there exists a path γ connecting x and y in G such
that α̃G(γ) = α̃G(x, y).

In the last section of this paper we consider inequalities between the
Apollonian inner metric, the jG metric and the quasihyperbolic metric, kG.
Let G � Rn be a domain and x, y ∈ G. The jG metric, which is a modifica-
tion from [18] of a metric from [6], is defined by

jG(x, y) := log
{

1 +
|x− y|

min{d(x, ∂G), d(y, ∂G))}

}
.

The quasihyperbolic metric from [7] is defined by

kG(x, y) := inf
γ

∫ |dz|
d(z, ∂G)

,

where the infimum is taken over all paths γ joining x and y in G. The results
of this section are summarized in the following theorem.

Theorem 1.6. For G � Rn the following conditions are equivalent:

1. There exists C > 0 such that αG(x; r)d(x, ∂G) ≥ C for all x ∈ G and

r ∈ Sn−1;

2. There exists C > 0 such that 1
C kG ≤ α̃G ≤ CkG;

3. There exists C > 0 such that jG ≤ Cα̃G.

The structure of the rest of this paper is as follows. In the next section
we review the notation and terminology used. In Section 3 we prove Theo-
rem 1.4 and in Section 4 we use this result to prove Theorema 1.2 and 1.5.
In Section 5 we relate the Apollonian metric to the quasihyperbolic metric
by means of the concept of quasi-isotropy and prove Theorem 1.6.
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2. Notation and terminology.

The notation used conforms largely to that in [2] and [19], as was mentioned
in the introduction, and is reviewed in Section 2.1. Sections 2.2 and 2.3, on
the other hand, contain material specific to the Apollonian metric.

2.1. Common notation.

We denote by {e1, e2, . . . , en} the standard basis of Rn and by n the dimen-
sion of the Euclidean space under consideration and assume that n ≥ 2. For
x ∈ Rn we denote by xi its ith coordinate. The following notation is used
for balls, spheres and the upper half-space (x ∈ Rn and 0 < r <∞):

Bn(x, r) := {y ∈ Rn : |x− y| < r}, Sn−1(x, r) := {y ∈ Rn : |x− y| = r},

Bn := Bn(0, 1), Sn−1 := Sn−1(0, 1), Hn := {y ∈ Rn : yn > 0}.
We use the notation Rn := Rn ∪ {∞} for the one point compactification

of Rn. If G ⊂ Rn we denote by ∂G, Gc and G its boundary, complement
and closure, respectively, all with respect to Rn. In contrast to topological
operations, we always consider metric operations with respect to the ordinary
Euclidean metric. For x ∈ G � Rn we denote δ(x) := d(x, ∂G) := min{|x−
z| : z ∈ ∂G}.

2.2. The Apollonian balls approach.

In this subsection we present the Apollonian balls approach which has previ-
ously been used in [3, Section 2], [4] and [17, Theorem 4.1]. This presentation
is from Section 5.1 of [11].

For x, y ∈ G � Rn we define

qx := sup
a∈∂G

|a− x|
|a− y| , qy := sup

b∈∂G
|b− y|
|b− x| .

The numbers qx are called the Apollonian parameters of x and y (with respect
to G) and by definition αG(x, y) = log{qxqy}. The balls or half-spaces

Bx := {z ∈ Rn : |z−x|
|z−y| <

1
qx
} and By := {z ∈ Rn : |z−y|

|z−x| <
1
qy
},

are called the Apollonian balls about x and y (in G). We denote the centers
and radii of Bx and By by x0, y0, rx and ry. We collect some immediate
results regarding these balls, similar results obviously hold with x and y

interchanged.
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1. Bx ⊂ G and Bx ∩ ∂G �= ∅.

2. If ix and iy denote the inversions in the spheres ∂Bx and ∂By, then
y = ix(x) = iy(x).

3. Since ∞ �∈ G we have qx ≥ 1, if moreover ∞ �∈ G, then qx > 1.

4. If qx > 1, x0 denotes the center of Bx and rx its radius, then

|x− x0| =
|x− y|
q2x − 1

=
rx
qx
.

2.3. The Apollonian spheres and quasi-isotropy.

Let us start by defining the concept of quasi-isotropy, which was introduced
[8] and was studied in depth in [10].

Definition 2.1. We say that a metric space (G, d) with G ⊂ Rn is K–quasi-
isotropic if

lim sup
r→0

sup{d(x, z) : |x− z| = r}
inf{d(x, y) : |x− y| = r} ≤ K

for every x ∈ G. A 1-quasi-isotropic metric space is called isotropic.

Zair Ibragimov calls a point x ∈ G for which

lim sup
r→0

sup{αG(x, z) : |x− z| = r}
inf{αG(x, y) : |x− y| = r} = 1

a point of conformality of the Apollonian metric. In [13, Theorem 2] he
showed that for the Apollonian metric either none, one or all points are points
of conformality. The middle case provides an interesting link to convex sets
of constant width, see [13, Theorem 3].

We say that a domain G � Rn is quasi-isotropic if (G, αG) is, similarly
for isotropic. We define the function qi on the set of proper subdomains of
Rn so that qi(G) is the infimum over constants for which G is quasi-isotropic
or qi(G) = ∞ if G is not quasi-isotropic for any K.

Recall that the density of the Apollonian metric was defined in the in-
troduction. With this concept we can give the following alternative charac-
terization of quasi-isotropy.

Lemma 2.2 (Lemma 3.5, [10]). For G � Rn we have

qi(G) = sup
x∈G

supr∈Sn−1 αG(x; r)
infr∈Sn−1 αG(x; r)

,
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with the understanding that if αG(x; r) = 0 for some x ∈ G and r ∈ Sn−1

then qi(G) = ∞.

When we do not need the exact value of the quasi-isotropy constant the
following lemma is often more convenient to use.

Lemma 2.3 (Lemma 4.2, [8]). Let G � Rn be L–quasi-isotropic. Then

αG(x; r)δ(x) ≥ 1/L for every x ∈ G and r ∈ Sn−1.

If conversely αG(x; r)δ(x) ≥ 1/L for every x ∈ G and r ∈ Sn−1, then G
is 2L–quasi-isotropic.

3. An integral formula for the Apollonian inner metric.

In this section we prove that we can evaluate the Apollonian inner metric by
taking the integral over the density on piecewise continuously differentiable
paths.

The idea with the integral formulae for inner metrics is that the density is
the derivative of the metric considered as a function of one variable and the
inner metric is essentially the Riemann integral sum over this derivative. In
fact for continuously differentiable paths this is strictly speaking true both for
the jG and the Apollonian metric (the latter claim is proved in Lemma 3.2).
Since the density of the jG metric, 1/δ(x), does not depend on the direction
we can then use a density argument of continuously differentiable paths in
the set of all paths to conclude that j̃G = kG.

For the Apollonian metric, whose density depends on the direction, we
would have to approximate not only a path but also its derivative, however,
the latter need not even be defined for an arbitrary path. In view of this
difficulty, we will show explicitly that Apollonian length of a path is about
the same as the Apollonian length of a piecewise linear approximation of
the path. This will be done in two steps, first for quasi-isotropic domains in
Lemma 3.5 and then for general domains in Corollary 3.11. With this sketch
of the proof in mind we proceed with the details.

Unless specified to the contrary we assume throughout this paper that
every path γ is defined on the set [0, 1] and we call a sequence {ti}ki=0 with
0 = t0 < t1 < . . . < tk = 1 a length sequence. Let us denote, for the time
being,

α̃′
G(γ) =

∫ 1

0

αG(γ(t); γ ′(t))|γ ′(t)|dt, (3.1)

where γ ⊂ G is a piecewise differentiable (as before, we define αG(x; 0)0 = 0).
We start by showing that the integral formula is valid for segments.
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Many of the arguments that follow are based on the fact that “αG is con-
tinuous”which is an immediate consequence of the definition of the metric.

Lemma 3.2. For every segment [x, y] ⊂ G we have αG([x, y]) = α̃′
G([x, y]).

Proof. We may obviously assume that x �= y. Denote r := y − x and choose
γ(t) := x+ rt, from which it follows that the kernel of the integral in (3.1)
equals αG(x+rt; r). Since αG(x, x+rt)/t is continuous and tends to αG(x; r)
as t → 0 (shown in Lemma 5.8, [8]) and since [x, y] is compact we may, for
ε > 0, choose δ > 0 such that

αG(z, w)/(1 + ε) ≤ αG(z; r)|z− w| ≤ (1 + ε)αG(z, w) (3.3)

for z, w ∈ [x, y] with |z −w| < δ. Moreover, there exists a δ′ > 0 such that∣∣∣∣∣
∫ 1

0
αG(x+ rt; r)|r|dt−

k−1∑
i=0

αG(x+ rti; r)|r||ti+1 − ti|
∣∣∣∣∣ ≤ ε,

for every length sequence {ti} satisfying ti+1 − ti < δ′ for all 0 ≤ i < k, since
z �→ αG(z; r) is continuous and hence integrable. Taking the supremum over
all length sequences with

max{ti+1 − ti} ≤ min{δ′, δ/|r|}
and using the first inequality of (3.3) we find that

αG([x, y])/(1+ ε) ≤ sup
k−1∑
i=0

αG(x+ rti; r)|r||ti+1 − ti|

≤
∫ 1

0
αG(x+ rt; r)|r|dt+ ε.

Since ε was arbitrary, the inequality αG([x, y]) ≤ α̃′
G([x, y]) is thus proved.

The converse inequality follows similarly. �

Remark 3.4. The previous proof also shows that the integral formula holds
for paths that are continuously differentiable almost everywhere, in particu-
lar for piecewise linear paths.

We now proceed to the harder part of the proof – showing that we do not
gain anything by allowing (say) widely oscillating nondifferentiable paths in
the infimum. We first consider domains in which the Apollonian metric is
quasi-isotropic. The intuitive reason for this restriction is that we can then
estimate the Apollonian metric in a uniform manner.
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Lemma 3.5. Let G be L–quasi-isotropic and x, y ∈ G. Then

inf
γ∈A

αG(γ) = inf
γ∈B

αG(γ),

where A is the set of all paths joining x and y in G and B is the set of all
piecewise linear paths joining x and y in G.

Proof. Since B ⊂ A, it is clear that

inf
γ∈A

αG(γ) ≤ inf
γ∈B

αG(γ),

so it remains only to prove the opposite inequality. Fix γ ∈ A. We will show
that for every ε > 0 there exists a length sequence such that we have

(1 + ε)αG(γ(ti), γ(ti+1)) ≥ αG([γ(ti), γ(ti+1)]) (3.6)

for every 0 ≤ i < k. Adding these inequalities we see that

(1 + ε)αG(γ) ≥ (1 + ε)
k−1∑
i=0

αG(γ(ti), γ(ti+1))

≥
k−1∑
i=0

αG([γ(ti), γ(ti+1)]) = αG(γ ′),

where γ ′ is the path formed by concatenating the segments [γ(ti), γ(ti+1)].
Since ε was arbitrary, this shows that the opposite inequality holds too.

It remains to construct a length sequence such that (3.6) holds. Let
us denote d(γ, ∂G) =: c > 0. We will show that there exists a constant
u ∈ (0, 0.15) depending on L and ε such that

(1 + ε)αG(x, y) ≥ αG([x, y]) (3.7)

for every x, y ∈ γ with |x − y| ≤ uc. It follows from this that it suffices
to choose {ti}ki=0 to be some sequence with |γ(ti) − γ(ti+1)| ≤ uc for all
0 ≤ i < k, which is possible (for some k), since γ is rectifiable.

Let us assume then that x, y ∈ γ with |x − y| ≤ uc. Let Bx and By
be the Apollonian balls about x and y and let qx and qy be the Apollonian
parameters. We note that

max{qx, qy} ≤ qxqy = expαG(x, y) ≤ exp{2jG(x, y)} ≤ (1 + u)2 ≤ 1.4,

where the second inequality is from [3, Theorem 3.2].
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Figure 1: Calculating h when the mantle of the cylinder is the limiting factor.

It is clear that the balls Bx, By, Bn(x, c) and Bn(y, c) all lie in G. Define
h := min{ry,

√
c2 − |x− y|2/4} and let C be the cylinder around the segment

[x0, y0] (recall that x0 is the center of Bx and y0 of By) with radius h. We
easily see that

G′ :=
(
Bx ∪By ∪ C

)
⊂
(
Bx ∪ By ∪Bn(x, c)∪Bn(y, c)

)
⊂ G

(the domain G′ is indicated in Figure 2 by the heavy line). Since the Apollo-
nian spheres about x and y are the same in G and G′ we find that αG(x, y) =
αG′(x, y) = log{qxqy}. Since the Apollonian metric is monotone in the do-
main of definition (see [3, Introduction (3)]) we have αG([x, y]) ≤ αG′([x, y])
and thus it suffices to show that (1 + ε)αG′(x, y) ≥ αG′([x, y]) in order to
prove (3.7).

Let z ∈ [x, y] and define t := |y − z|. The Apollonian sphere in G′

through z in direction y − x is limited by either the mantel of C \By or by
(∂C) ∩ (∂By) when z �∈ By and by the sphere ∂By when z ∈ By. We will
derive an estimate for the radius of the Apollonian sphere in each case.

Suppose first that the Apollonian sphere through z in direction y − x is
limited by the mantel of C\By for some z. It is clear that so is the Apollonian
sphere through x in the same direction. This means that the cone with vertex
x, direction y − x and angle π/4 intersects the mantel of C. We calculate
where this cone intersects ∂By. Let h′ denote the distance of the points of

intersection from the line xy. We have h′ +
√
r2y − h′2 = |x− y0| = qyry, see
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Figure 1. This second degree equation in h′ has roots (we used the formulae
from observation 4 in Section 2.2)

h′ =
ry
2
(
qy ±

√
2− q2y

)
.

Since this cone is supposed to intersect the mantel of C in Bcy it is clear that
either h (the radius of the cone) is smaller than the smaller root or larger
than the larger one. Consider first the smaller of root. We find

hmin =
|x− y|

2
qy

q2y − 1
q2y − (2 − q2y)

qy +
√

2− q2y

=
qy

qy +
√

2 − q2y

|x− y|

and we see that this root is smaller than |x−y|. On the other hand we have

h = min{ry,
√
c2 − |x− y|2/4} ≥ min

{ |x− y|
qy − 1/qy

, |x− y|
√
u−2 − 1

}
≥ min{1.45, 6.5}|x− y|,

where we used qy ≤ 1.4 and u ≤ 0.15. Hence we see that h is not smaller
than the smaller root, and so we conclude that it is greater than the larger
root, which we denote by hmax.

Suppose next that z is such that the Apollonian sphere through z in
direction y − x is limited by (∂C) ∩ (∂By). With the variables indicated
in Figure 2 we find the radius of this sphere equals w/(2 cosθ) = w2/(2s),
where s := t + ry/qy −

√
r2y − h2, w :=

√
s2 + h2 and cos θ := s/w. Using

the expressions for s and w we find that

s

w2
=

t+ ry/qy −
√
r2y − h2

(
t+ ry/qy −

√
r2y − h2

)2 + h2

≤ |x− y|(
ry
qy

−
√
r2y − h2

)2
+ h2

+
ry −

√
r2y − h2

(
ry − ry

qy

)2 + 2ry
qy

(
ry −

√
r2y − h2

)
≤ |x− y|

h2
+

qy
2ry

.

Here we used t ≤ |x − y| and ry/qy ≤ ry in the first inequality and threw
away some positive terms from the denominators for the second inequality.

Finally, in the case when the Apollonian sphere through z in direction
y − x is limited by ∂By we find that its radius equals (ry + |y0 − z|)/2 ≥
(ry + |y0 − y|)/2 = ry(1 + 1/qy)/2.
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Figure 2: Calculating the radius of the Apollonian sphere when (∂C)∩(∂By)
is the limiting factor.

Let r+ denote the radius of the Apollonian sphere thorough z in direction
y − x. Combining the estimates from the previous three paragraphs we see
that

1
2r+

≤ max
{

1
2hmax

,
s

w2
,

1
ry + |y0 − z|

}

≤ max
{

1(
qy +

√
2− q2y

)
ry
,
qy
2ry

+
|x− y|
h2

,
1

(1 + 1/qy)ry

}

=
qy
2ry

+
|x− y|
h2

.

Similarly we derive an estimate for the radius r− of the Apollonian sphere
through z in direction x− y and find that

1
2r−

≤ qx
2rx

+
|x− y|
h2
x

where hx := min{rx,
√
c2 − |x− y|2/4}.
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It follows from these estimates and Lemma 3.2 that

αG([x, y]) =
∫

[x,y]

1
2r+

+
1

2r−
ds

≤ qx|x− y|
2rx

+
qy|x− y|

2ry
+ 2ρ2

= q2x/2 + q2y/2 − 1 + 2ρ2,

where we have denoted ρ := |x−y|/m for m := min{rx, ry,
√
c2−|x−y|2/4}.

We have now shown that

αG([x, y])
αG(x, y)

≤ q2x/2 + q2y/2− 1 + 2ρ2

log{qxqy}
.

We next show that we can choose u so that the left hand side of the previous
inequality is bounded from above by 1 + ε.

We start by deriving a bound for ρ. Since G is L–quasi-isotropic we have,
by [8, Lemma 4.5],

log{1 + |x− y|/(cL′)} ≤ jG(x, y)/L′ ≤ αG(x, y) = log{qxqy},

where L′ depends on L and c. If m =
√
c2 − |x− y|2/4 this implies that

ρ =
|x− y|√

c2 − |x− y|2/4
≤ |x− y|/c√

1 − u2/4
≤ 1.1

|x− y|
c

≤ 1.1L′(qxqy − 1).

In case m = rx, we have ρ = qx − 1/qx ≤ 2(qx − 1) and for m = ry we have
ρ ≤ 2(qy − 1). Hence in every case ρ ≤ 2L′(qxqy − 1). We then find that

2ρ2

log{qxqy}
≤ 8L′2(qxqy − 1)2

log{qxqy}
≤ 72L′2u2

log{1 + 3u} ,

where we used qxqy ≤ (1+u)2 ≤ 1+3u and the fact that z �→ z2/ log{1+ z}
is increasing in z for the second inequality. Since 72L′2u2/ log{1 + 3u} → 0
as u → 0, we can choose u0 > 1 so that 72L′2u2/ log{1 + 3u} ≤ ε/2 for
u < u0.

We move on to the other terms. Since

lim
qx→1+

q2x − 1
2 log qx

= 1,

there exists a q > 1 such that q2x − 1 ≤ 2(1 + ε/2) log qx holds for qx < q.
Then for u < min{√q − 1, u0} it follows that max{qx, qy} ≤ (1 + u)2 < q,
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and so we have

(q2x − 1)/2 + (q2y − 1)/2 + 2ρ2

log{qxqy}
≤ (1 + ε/2)(log qx + log qy)

log{qxqy}
+

72L′2u2

log{1 + 3u}
≤ 1 + ε,

which completes the proof. �

In the previous proof the claim that every length sequence with |γ(ti)−
γ(ti+1)| < uc satisfies (3.7) is false if we drop the assumption that the domain
is quasi-isotropic. On the other hand, (3.7) holds for “most” points even in
this case, a fact that we will exploit. We develop a method for removing the
assumption of quasi-isotropy, which is based on constructing a sequence of
domains approaching a given domain with larger and larger quasi-isotropy
constants.

Definition 3.8. For G � Rn we define Gr := {x ∈ G : d(x, ∂G)> r}.

Lemma 3.9. Let G � Rn be a domain and x ∈ G. For every r > 0 and
R > 0 the set Gr ∩Bn(x, R) is quasi-isotropic.

Proof. We have
Gr = G \

⋃
z∈∂G

Bn(z, r),

hence for every boundary point w of Gr there exists a ball Bn(z, r) which is
not in Gr for which w ∈ Sn−1(z, r). This is clearly also true for all boundary
points of Gr ∩ Bn(x, R). Hence it follows from [11, Theorem 4.3] that this
domain has the approximation property (the ball condition derived above is
called the (1, r)–EB condition in that paper) and is therefore quasi-isotropic.
�

Lemma 3.10. Let x, y ∈ G � Rn and γ0 be an αG-rectifiable path connect-

ing x and y. Define G′ := Gr∩Bn(x, R) where c := αG(γ0), r := δ(x)/(ec+2)
and R := (ec + 1)δ(x). Then

inf
γ∈A

αG(γ) = inf
γ∈B

αG(γ),

where A is the set of all paths joining x and y in G and B is the set of all

paths joining x and y in G′.
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Proof. If γ is a path connecting x to a point z ∈ G with δ(z) < δ(x)/3, then

αG(γ) ≥ αG(x, z) ≥ log{|x− z|/δ(z)− 1} ≥ log{δ(x)/δ(z)− 2},

as we see by choosing a = ∞ and b such that |z− b| = δ(z) in the supremum
in the definition of the Apollonian metric for a lower bound. If δ(z) <
δ(x)/(ec + 2) then this means that αG(γ) > c. Let next γ be a path such
that γ ∩ Sn−1(x, R) �= ∅ for some R > 3δ(x) and let z ∈ γ ∩ Sn−1(x, R).
Then we have

αG(γ) ≥ αG(x, z) ≥ log{|x− z|/δ(x)− 1}.

Now if |x− z| = R > (ec + 1)δ(x), then again αG(γ) > c. We have thus seen
that if γ ∈ A \ B, then αG(γ) > c and so we see that such paths have no
bearing on the infimum which is less than or equal to c, anyway. �

Using these auxiliary lemmata we show that the assumption of quasi-
isotropy was not essential in Lemma 3.5.

Corollary 3.11. For every domain G � Rn we have

inf
γ∈A

αG(γ) = inf
γ∈C

αG(γ),

where A is the set of all paths joining x and y in G and C is the set of all
piecewise linear paths joining x and y in G.

Proof. Since C ⊂ A we have

inf
γ∈A

αG(γ) ≤ inf
γ∈C

αG(γ)

and so it remains only to consider the opposite inequality.
Let x ∈ G and define G(c) := Gc ∩ Bn(x, 1/c). Using Lemma 3.9, we

see that G(c) is quasi-isotropic for c > 0. Since α̃G ≤ 2kG by [3, Theo-
rem 3.2], we see that there exists a path connecting x and y in G which is
α̃G-rectifiable. Let γ0 be the one such path and let G′ be as in Lemma 3.10
and define K := G′. Since αG(x, y) is continuous in the domain of definition
G, it follows that for every ε > 0 there exists a c0 > 0 such that

αG(c)(z, w)/(1 + ε) ≤ αG(z, w) (3.12)
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holds for all z, w ∈ K and every c < c0. Let B be as in Lemma 3.10. We
have

inf
γ∈A

αG(γ) = inf
γ∈B

αG(γ) ≥ 1
1+ε inf

γ∈B
αG(c)(γ) = 1

1+ε inf
γ∈C

αG(c)(γ)

≥ 1
1+ε inf

γ∈C
αG(γ).

Here the first equality follows from Lemma 3.10, the first inequality from
(3.12), the second equality from Lemma 3.5 and the last inequality since αG
is monotone in the domain of definition by [3, Introduction (3)]. Since ε can
be arbitrarily small this implies that infγ∈A αG(γ) ≥ infγ∈C αG(γ), which
was to be shown. �

Proof of Theorem 1.4. Fix x, y ∈ G and let A be the set of all paths joining
x and y in G, B be the set of piecewise linear paths in A and C be the set
of paths in A which are piecewise continuously differentiable. It is clear that
B ⊂ C ⊂ A and so

inf
γ∈A

αG(γ) ≤ inf
γ∈C

αG(γ) ≤ inf
γ∈B

αG(γ).

By Corollary 3.11 we have infγ∈A αG(γ) = infγ∈B αG(γ), which combined
with the previous inequality gives

inf
γ∈A

αG(γ) = inf
γ∈C

αG(γ) = inf
γ∈B

αG(γ).

Finally, it follows from Remark 3.4 that

inf
γ∈C

α̃G(γ) = inf
γ∈C

α̃′
G(γ),

which concludes the proof. �

4. Pseudometrics and geodesics.

In this section we consider two basic aspects of the Apollonian inner metric,
namely, in which domains it is a metric and in which domains there exist
geodesics connecting arbitrary points.

Proof of Theorem 1.2. Since αG satisfies the triangle inequality, is nonneg-
ative and symmetric it is clear that so does and is α̃G. It thus remains to
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consider whether or not the Apollonian inner metric is positive definite for
a given domain, i.e whether it is a pseudometric or a metric.

Suppose first that Gc is contained in an (n− 2)-dimensional plane, and
assume without loss of generality that this plane is {x ∈ Rn : xn−1 = xn = 0}.
Define γ(t) = sin(πt)en−1 + cos(πt)en for t ∈ [0, 1]. For every x, y ∈ γ([0, 1])
we have αG(x, y) = 0 since every boundary point of G is at an equal distance
from x and y. This means that αG(γ) = 0 and hence α̃G(en,−en) = 0 which
means that α̃G is a pseudometric.

It remains to check that for distinct x, y ∈ G we have α̃G(x, y) > 0 if
Gc is not contained in an (n− 2)-dimensional plane. If Gc is not contained
in a hyperplane, then αG is a metric and it is clear that so is α̃G, since
α̃G(x, y) ≥ αG(x, y) always holds. It remains to consider the case when
Gc is contained in a hyperplane but not in an (n − 2)-dimensional plane.
For definiteness say ∂G ⊂ ∂Hn. It is clear that we need only consider the
Apollonian inner metric for distinct x, y ∈ G such that αG(x, y) = 0, which
means that x and y are each others mirror images in the plane ∂Hn. Assume
without loss of generality that xn > 0. This means that αG(z; θ) > 0 for
every z ∈ Bn(x, xn/2) =: B and θ ∈ Sn−1, since αG(z; θ) = 0 implies that
∂G is contained in the hyperplane P through z with θ as normal, which
would imply that ∂G would be contained in the (n − 2)-dimensional plane
P ∩ ∂Hn, contrary to assumption. Thus

αG(z; θ) ≥ min
z∈B

min
θ∈Sn−1

αG(z; θ) =: a > 0

and so α̃G(x, y) ≥ axn > 0 since every path connecting x and y has Euclidean
length at least xn/2 in B and another xn/2 in Bn(y, xn/2). �

We then move on to consider the geodesics.

Proof of Theorem 1.5. Fix x, y ∈ G and consider the set A of piecewise
linear paths connecting x and y in G. Since α̃G ≤ 2kG by [3, Theorem 3.2],
we see that there exists a path in A which is α̃G-rectifiable. Let c0 be the
length of one such path.

Let us define r := δ(x)/(ec0 +2), R := (ec0 +1)δ(x), G′ := Gr∩Bn(x, R)
and K := G′. It follows from Lemma 3.10 that we need only consider paths
connecting x and y in K. Since αG(x; θ) > 0 (here we use that αG is a
metric) and continuous in x ∈ G and θ ∈ Sn−1, it follows that it has a
minimum in the compact set K × Sn−1, say c1, and so we see that we need
only consider paths of Euclidean length �(γ) ≤ c0/c1, since for longer paths
we have αG(γ) > �(γ)c1 > c0. Let B be the set of piecewise linear paths
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connecting x and y in K of Euclidean length at most c0/c1.
We have shown that

inf
γ∈A

αG(γ) = inf
γ∈B

αG(γ)

and so we can choose a sequence (γ ′i) of paths in B parameterized by arc-
length such that limi→∞ αG(γ ′i) = α̃G(x, y). Define the path γi by γi(t) :=
γ ′i(t�(γ

′
i)) for t ∈ [0, 1] and every i. It is clear that limi→∞ αG(γi) = α̃G(x, y),

since the parameterization of the path does not affect its length.
Let next f : N→ [0, 1]∩Q be a surjection. Since γi(f(0)) is a sequence of

points in the compact set K it follows that there exists a subsequence (γ0
i )

of (γi) such that γ0
i (f(0)) converges to a point in K. Continuing like this

we construct a subsequence (γki ) of (γk−1
i ) such that γki (f(j)) converges for

0 ≤ j ≤ k. Let then γ∞ = limk→∞ γkk . For every i we have

|γi(t) − γi(s)| ≤ �(γi)|s− t| ≤ c0|s− t|/c1,
for s, t ∈ [0, 1], where the first inequality follows since the mapping γ ′i is a
contraction and the second one since we are considering paths of length less
than or equal to c0/c1. Hence we see that the family {γi} is equicontinuous
which implies that γ∞ is continuous and hence a path connecting x and y
in K.

Suppose then that αG(γ∞) − infγ∈A αG(γ) =: δ > 0. Let {ti} be a
sequence with 0 = t0 < . . . < tl = 1 and ti ∈ Q such that

l−1∑
i=0

αG(γ∞(ti+1), γ∞(ti)) > αG(γ∞)− δ/2.

Let us denote m := infγ∈AαG(γ) and set ε := δ/(4m + δ). Let ri > 0 be
such that

αG(γ∞(ti+1), γ∞(ti)) < (1 + ε)αG(z, w)

for z ∈ Bn(γ∞(ti+1), ri) and w ∈ Bn(γ∞(ti), ri) and define r := min ri. Since
γkk (ti) → γ∞(ti) we can find a k0 such that |γkk(ti)−γ∞(ti)| < r for all k > k0

and all i. It then follows that for k > k0 we have

αG(γkk) ≥
l−1∑
i=0

αG(γkk(ti+1), γkk(ti)) ≥
1

1 + ε

l−1∑
i=0

αG(γ∞(ti+1), γ∞(ti))

>
αG(γ∞)− δ/2

1 + ε
=

m+ δ/2
1 + δ/(4m+ δ)

= m+ δ/4.

This contradicts the fact that γkk is a sequence with αG(γkk) → m as k → ∞,
which means that the assumption δ > 0 was false and so αG(γ∞) = m, which
was to be shown. �
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5. Quasi-isotropy.

Recall that the concept of quasi-isotropy was defined in Section 2.3. In this
section we study bilipschitz equivalences of the Apollonian inner metric, the
quasihyperbolic metric and the jG metric.

We denote d ≈ d′ if there exists a constant C > 0 such that 1
C d(x, y) ≤

d′(x, y) ≤ Cd(x, y) for all x, y in the domain of definition of the metrics. We
denote d � d′ if there exists a constant C > 0 such that d(x, y) ≤ Cd′(x, y)
for all x, y in the domain of definition of the metrics.

Proposition 5.1. For G � Rn we have α̃G ≈ kG if and only if G is quasi-
isotropic.

Proof. If G is quasi-isotropic, then α̃G ≈ kG by [8, Corollary 5.4].
Suppose then that α̃G ≈ kG. This means that there exists a constant K

such that α̃G(x, y) ≥ kG(x, y)/K for every x, y ∈ G. Fix x ∈ G and e ∈ Sn−1.
We have α̃G([x, x+ re]) ≥ kG([x, x+ re])/K for every r < δ(x). Since these
two metrics are integrals over continuous kernels we see by considering r → 0
that αG(x; e) ≥ 1/(Kδ(x)). This implies that αG(x; e)δ(x) ≥ 1/K for all
x ∈ G, e ∈ Sn−1 and so it follows from Lemma 2.3 that G is quasi-isotropic.
�

Lemma 5.2. Let x ∈ G and y ∈ Bn(x, δ(x)). Then log{2}|x− y|/δ(x) ≤
jG(x, y).

Proof. It suffices to show that

log{2}|x− y|/δ(x) ≤ log{1 + |x− y|/δ(x)}

since the right hand side is less than or equal to jG(x, y). Since the function
z �→ log{1+z}−z log 2 is increasing for z ≤ (log 2)−1−1 and then decreasing
it suffices to check this inequality for the maximal |x−y|/δ(x), i.e 1, in which
case the inequality reduces to log 2 ≤ log 2. �

Proposition 5.3. If G � Rn is not quasi-isotropic then jG �� α̃G.

Proof. For every K > 2 there exists a point x ∈ G and a direction e ∈
Sn−1 such that αG(x; e)δ(x) < 1/K, since otherwise G would be quasi-
isotropic, by Lemma 2.3. By continuity there exists a 0 < r < δ(x) such
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that αG(y; e)δ(x) < 2/K for all y ∈ Bn(x, r). Let z, w ∈ Bn(x, r) be such
that z − x = x− w = re/2. Then

α̃G(z, w) ≤ αG([z, w])<
2|z−w|
Kδ(x)

≤ 2
K log 2

δ(z)
δ(x)

jG(z, w) ≤ 3
K log 2

jG(z, w).

Here the second to last inequality follows from Lemma 5.2. Since K > 2 can
be arbitrarily large, we see that jG � α̃G does not hold, as claimed. �

By Lemma 2.2, the following corollary is equivalent to Theorem 1.6.

Corollary 5.4. For G � Rn the following conditions are equivalent:

1. G is quasi-isotropic;

2. kG ≈ α̃G;

3. jG � α̃G.

Proof. That items 1 and 2 are equivalent was show in Lemma 5.1. In
Lemma 5.3 we showed that 3 implies 1. It thus suffices to prove that 2
implies 3. But if 1

C kG ≤ α̃G, then it is clear that jG ≤ Cα̃G since jG ≤ 2kG
always holds. �
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