
communications in
analysis and geometry
Volume 12, Number 4, 887-926, 2004

Painlevé Expansions, Cohomogeneity One Metrics

and Exceptional Holonomy

Andrew Dancer and McKenzie Y. Wang

Introduction.

In this paper we continue our study ([DW1] - [DW4]) of ordinary differen-
tial equations arising as reductions of the Einstein equations. One way of
performing this reduction is to require the Einstein metrics to be of coho-
mogeneity one–that is, they are required to be invariant under the action of
a group with principal orbits of codimension one.

In [DW4] we introduced variables so that the cohomogeneity one Ricci-
flat equations became a constrained flow of an ODE system with quadratic
nonlinearities. This enabled us to perform a Painlevé-Kowalewski analysis
(cf. [ARS], [AvM]) of these equations in the case when the isotropy repre-
sentation had two inequivalent summands. In Painlevé-Kowalewski analysis,
one looks for singular solutions of a system of ODEs (containing several pa-
rameters) given by Painlevé expansions, i.e., meromorphic expansions in (a
rational power of) the independent variable. The singularity (poles or branch
points) is movable (i.e., its position can be continuously varied), and should
be distinguished (in the particular case of the Einstein equations) from sin-
gularities of the metric. The general philosophy of this method is that the
existence of large families of Painlevé expansions should be associated with
“nice” properties of the equations, and in general occurs for only special val-
ues of the parameters in the equations. In particular, if for each dependent
variable in the equations there is a corresponding family of Painlevé expan-
sions which depends on the maximum number of degrees of freedom and in
which that dependent variable actually blows up, then this is regarded as a
strong indication that the equations are “integrable”.

In this paper we shall prove some general results about the Painlevé anal-
ysis of the cohomogeneity 1 Ricci-flat equations in the situation when the
isotropy representation of the principal orbit consists of pairwise inequivalent
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representations. We then apply these results to examples of more compli-
cated orbit types than those in [DW4], including some which have recently
become relevant in the study of metrics of exceptional holonomy in string
theory ([CGLP1], [BGGG]).

As in [DW4], we find that existence of nontrivial Painlevé expansions
depends sensitively on the choice of principal orbit, and is often associated
with the existence of a solution to a Diophantine problem (in particular, the
existence of an integral point on an elliptic curve) (cf §6 and §7). We also find
that, when Painlevé expansions do exist, they sometimes represent metrics
of exceptional holonomy. Indeed, for some families of principal orbits (cf §6)
the Diophantine constraints appear to single out precisely the dimensions in
which exceptional holonomy metrics can live.

The paper is organised as follows. In §2 we perform a general analysis
of the possible leading terms of a Painlevé expansion for our Ricci-flat equa-
tions. We also relate the leading term behaviour of our Painlevé expansions
to the end behaviour of the corresponding Ricci-flat metrics. In §3 we study
the resonances, that is, the steps in the expansion at which a free parameter
may enter. These are the steps at which the linear operator in the recursion
relation for the series expansion is noninvertible. Existence of a nontrivial
Painlevé expansion requires the existence of rational resonances, giving rise
to the Diophantine conditions mentioned above. In §4 we discuss compati-
bility conditions for the recursion to proceed at each resonance, as well as the
constraints that the ODE flow satisfies. In §5 and §6 we apply this general
theory to some cases of particular interest including ones where metrics of
exceptional holonomy have recently been shown to exist. We list the pos-
sible Painlevé expansions, find the number of free parameters in each, and
discuss their geometric significance. In particular, we discuss the Painlevé
expansions which represent solutions of the equations for G2 and Spin(7)
holonomy. Finally, §7 contains a discussion of the Diophantine equations
which arise from the requirement of rationality of resonances.

In the sequel [DW6] to this paper, the techniques in §2 - §4 will be
applied further to the Ricci-flat systems where the principal orbits are the
Aloff-Wallach spaces and certain principal circle bundles over a product of
two Fano varieties.
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1. The equations.

In this section we briefly review the formulation in [DW4] of the cohomo-
geneity one Ricci-flat equations (see also [BB], [DW1], [EW] for background
on these equations).

Consider a Riemannian manifold (M, g) with a cohomogeneity one iso-
metric action of a compact Lie group G, whose principal orbit is G/K. We
denote by

p = p1 ⊕ . . .⊕ pr

the decomposition of the isotropy representation p ≈ T(K)(G/K) of G/K
into irreducible K-representations. We let di be the real dimension of pi,
and let n =

∑r
i=1 di denote the dimension of G/K (so dimM = n+ 1). We

use d for the vector of dimensions (d1, . . . , dr).
We shall assume that the isotropy representation is monotypic, that is, all

the pi are distinct as representations of K. In particular if there is a trivial
summand it must be 1-dimensional. The metric g may now be written as

dt2 + gt (1.1)

where
gt = eq1(t)B |p1

⊥ . . . ⊥ eqr(t)B |pr
(1.2)

is a 1-parameter family of G-invariant metrics on G/K, B is a background
metric on G/K induced from some biinvariant metric on G, and t is a pa-
rameter along a geodesic which intersects all principal orbits orthogonally.
Note that the factor exp(1

2d · q) is the ratio of the volume of gt to that of B.
The scalar curvature of (G/K, gt) is given by

S =
∑
w∈W

Awe
w·q,

where Aw are (nonzero) constants and W is a finite collection of vectors
w ∈ Zr (which depend only onG/K and which we refer to as weight vectors).
These vectors fall into three types

(i) Type I: one entry of w is −1, the others are zero,

(ii) Type II: one entry is 1, two are -1, the rest are zero,



890 A. Dancer and M. Y. Wang

(iii) Type III: one entry is 1, one is -2, the rest are zero.

We define a non-negative integer � by

r + � = |W|.

We shall also assume that the elements of W span Rr, which is the case when
G is semisimple (cf proof of Theorem 3.11 in [DW1]). So we may order the
weight vectors as w(k) (1 ≤ k ≤ r + �), where

w(i+r) =
r∑
j=1

νijw
(j) : 1 ≤ i ≤ �,

for some constants νij . Note that as w(k) · (1, . . . , 1) = −1, we can deduce
that

∑r
j=1 νij = 1 for all i. We shall refer to the constant Aw(k) just as Ak

in future.

As explained in [DW4], the Ricci-flat equations for g may be viewed as
the flow for a Hamiltonian H together with the constraint H = 0. The
potential term is the scalar curvature S of G/K times the square of the
volume distortion factor exp(1

2d · q). The kinetic energy is given by the
signature (1, r− 1) quadratic form

J(p) =
1

n− 1

(
r∑
i=1

pi

)2

−
r∑
i=1

p2
i

di
. (1.3)

In [DW4] we showed how to rewrite the Ricci-flat equations as a quadratic
system, using ideas from [AvM].

We first define an (r + �) × r matrix Û by

Ûij = dj + w
(i)
j .

Consider the matrix Φ := ÛJÛ t, where we have also denoted by J the matrix
of the quadratic form given in (1.3). Now we can choose an (r+�)×r matrix
Q satisfying QDQt = Φ, where D = diag(ε1, . . . , εr) and

ε1 = 1 : εi = −1 (i > 1).

We may also arrange that Q is of the form(
Q1

νQ1

)
(1.4)
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for some invertible r × r matrix Q1.
The Ricci-flat equations for g are now equivalent, after suitable change

of dependent and independent variables, to the system

z′i = 2zi
r∑
j=1

Qijvj : (1 ≤ i ≤ r + �), (1.5)

v′i = εi

r+�∑
j=1

Qjizj : (1 ≤ i ≤ r), (1.6)

together with the constraints

zr+j
Ar+j

=
r∏
i=1

(
zi
Ai

)νji

: (1 ≤ j ≤ �), (1.7)

and the Hamiltonian constraint

H ≡ v2
1 − v2

2 − . . .− v2
r −

r+�∑
j=1

zj = 0. (1.8)

The quantities zr+j
∏r
i=1 z

−νji

i , as well as H, are conserved by the flow.
As discussed in [DW4], equations (1.5)-(1.6) may be viewed as a Poisson
Hamiltonian flow, and the constraints (1.7) define restriction of this flow to
a symplectic leaf. The Ricci-flat equations are then the Hamiltonian flow on
this leaf subject to the Hamiltonian constraint (1.8).

Note that the choice of Q above is not unique. Indeed, replacing Q by
−Q and vj by −vj will leave the above system invariant.

2. Leading terms.

We can now begin the analysis of equations (1.5)-(1.6). The references
[ARS] and [AvM] provide a good source for a modern treatment of Painlevé-
Kowalewski methods. We should point out that one of the advantages of
working with a quadratic system such as (1.5)-(1.6) is that once we establish
the existence of a formal Painlevé expansion in a rational power of the in-
dependent variable, its convergence in a deleted neighbourhood of 0 follows
from a general majorisation argument (cf §6 in [DW2]).
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A. Algorithm for their determination

We first look for possible leading terms of the Painlevé expansions. We
denote the independent variable by s. Put

zi = α
(i)
0 smi + . . . , : vi = β

(i)
0 sni + . . . . (2.1)

where α(i)
0 , β

(i)
0 �= 0.

Let nmin be the least of the ni and suppose nmin < −1, We see from (1.5)
that for all i, ∑

{j: nj=nmin}
Qijβ

(j)
0 = 0,

which is impossible because Q1 and hence Q have maximal rank. So all ni
are ≥ −1.

In the following we will deal with the important case where all mi ≥ −2.
See, however, Remark 2.14 for a discussion of what happens if somemi < −2.

Let S ⊂ {1, . . . , r+ �} denote the set of indices i for which mi = −2 and
T ⊂ {1, . . . , r} denote the set of indices for which ni = −1. We will make
the convention that i /∈ S means that i belongs to the complement of S in
{1, . . . , r + �}. Similarly, we say j /∈ T if j belongs to the complement of T
in {1, . . . , r}. Substituting (2.1) into (1.5)-(1.6) we obtain

mi = 2
∑
j∈T

Qijβ
(j)
0 , (2.2)

β
(i)
0 = −εi

∑
j∈S

Qjiα
(j)
0 if i ∈ T, (2.3)

0 =
∑
j∈S

Qjiα
(j)
0 if i /∈ T. (2.4)

(These equations are valid even if some of the mi, ni are zero.)
It is convenient to introduce a (r + �) × r matrix P and r × 1 vector β̂0

defined by
Pij = Qij if i ∈ S

= 0 if i /∈ S,

β̂
(i)
0 = β

(i)
0 if i ∈ T

= 0 if i /∈ T.

We can now rewrite equations (2.2)-(2.4) as

m = 2Qβ̂0, (2.5)
β̂0 = −DP tα0, (2.6)
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wherem is the column vector whose ith entry ismi andD = diag(ε1, . . . , εr).
It follows that m = −2QDP tα0, so

mi = −2
∑
j∈S

(QDQt)ij α
(j)
0 = −2

∑
j∈S

(ÛJÛ t)ij α
(j)
0 .

Let ΦS denote the (r+ �)× |S| matrix obtained by deleting the jth column
of Φ = ÛJÛ t iff j /∈ S, and let α̂0 denote the |S| × 1 vector (α(i)

0 )i∈S. We
now see

m = −2ΦSα̂0. (2.7)

Therefore we need
(ΦSα̂0)(i) = 1 (i ∈ S), (2.8)

(ΦSα̂0)(i) < 1 (i /∈ S). (2.9)

This gives us an algorithm to find the possibilities for S, α0 and β0. For
each subset S of {1, . . . , r+ �}, we solve (2.8) for α̂0 and then check if (2.9)
is satisfied. (If |S| < r+ � then the components α(i)

0 with i /∈ S will be free.)
Equation (2.6) now gives us the corresponding possibilities for β0. If |T | < r

then some of the entries in β̂0 will be zero, and the corresponding entries of
β0 will be free.

Remark 2.10. Note that if w(j) lies in the span of {w(i) : i ∈ S} then,
since w(i) · (1, . . . , 1) = −1 for all i, we can write

w(j) =
∑
i∈S

σjiw
(i) where

∑
i∈S

σji = 1,

and hence
d+w(j) =

∑
i∈S

σji(d+w(i)).

It now follows that for Φ, and hence for ΦS ,

row j =
∑
i∈S

σji row i,

so, from (2.7),
mj =

∑
i∈S

σjimi = −2
∑
i∈S

σji = −2,

that is, j ∈ S. This discussion shows that we only have to apply the above
algorithm to sets S which satisfy the property

j ∈ S whenever w(j) ∈ Span{w(i) : i ∈ S}. (2.11)
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Remark 2.12. If S is a singleton {k} our algorithm takes a particularly
simple form. Now conditions (2.8)-(2.9) are satisfied if and only if either
Φkk is positive and the greatest element in its column, or negative and the
least element in its column.

Example 2.13. In our earlier paper [DW4] we considered the case of r = 2
with weight vectors (−1, 0), (0,−1), (1,−2) (so � = 1). Using the methods
discussed above, we find that

Φ =

⎛
⎝ 1 − 1

d1
1 1 + 1

d1
1 1 − 1

d2
1 − 2

d2
1 + 1

d1
1 − 2

d2
1− 1

d1
− 4

d2

⎞
⎠ .

Moreover any two weight vectors span R2. It follows that we need only
consider singletons and the full set {1, 2, 3} as candidates for S. Applying
our algorithm we find the only possibilities are:

S = {1, 2, 3}

and
S = {3} provided that 1− 1

d1
− 4
d2

< 0,

in agreement with the result of [DW4].
Similarly we may rederive the case when r = 2 and there are four weight

vectors (� = 2), which was also treated in [DW4].

Remark 2.14. If there are some indices i for which mi < −2, we let S̃ de-
note the subset of such indices corresponding to the minimal leading powers.
Equation (2.5) still holds, and in conjunction with (1.4) and the argument
of Remark 2.10 this immediately puts some restrictions on S̃.

Now (1.6) implies that
∑

j∈S̃Qjiα
(j)
0 = 0 for i = 1, . . . , r. These r equa-

tions are supplemented by the � equations on α0 coming from the constraints
(1.7). In most cases these equations force some or all of the α(i)

0 to be zero,
giving a contradiction. In the examples we consider this is true except in
Example (5.2) where S̃ = {1, 7, 8} is possible.

B. Metric Asymptotics

The convergent Painlevé expansions of Eqs. (1.5)-(1.8) of course give
local solutions of the cohomogeneity one Ricci-flat equations. One can easily
derive from the leading term behaviour of a Painlevé expansion (as s tends
to 0) the behaviour of the corresponding Ricci-flat metric.
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Let fi(t)2 = eqi(t) in (1.2). As in [DW4], let U denote the r × r matrix
consisting of the first r rows of Û . Let ξ be the vector −dU−1 and U ij denote
the components of U−1. Recall that the geodesic parameter t is related to
the independent variable s of our quadratic system (1.5)-(1.6) by

ds = exp(−1
2
(d · q)) dt =

r∏
j=1

(
zj
Aj

)1
2
ξj

dt.

Also,

fi(t)2 =
r∏
j=1

(
zj
Aj

)U ij

.

If we now use the expressions for the leading terms of the Painlevé ex-
pansion in the above relations, it follows easily that

(I) if 1− 1
2

∑r
i=1 miξi < 0, then as s→ 0+, we must have t→ +∞ (after

possibly changing the sign of t), and asymptotically, we have

fi(t)2 ∼ ci t

∑
j Uijmj

1− 1
2
∑

j mj ξj ,

(II) if 1 − 1
2

∑r
i=1 miξi > 0, then as s → 0+, t decreases to a finite limit

t∗, and asymptotically, we have

fi(t)2 ∼ ci(t− t∗)

∑
j Uijmj

1− 1
2
∑

j mj ξj .

Note that the constants ci in the above asymptotic formulae are given
by

ci =

⎛
⎝ r∏
j=1

(
α

(j)
0

Aj

)U ij
⎞
⎠
⎛
⎜⎝
∣∣∣∣∣∣
1
2

⎛
⎝ r∑
j=1

mjξj

⎞
⎠− 1

∣∣∣∣∣∣
∏
j

(
α

(j)
0

Aj

) ξj
2

⎞
⎟⎠

∑
Uijmj

1−(1/2)
∑

mj ξj

.

Also, 1− 1
2

∑
imiξi cannot be 0, for otherwise fi(t)2 would be asymptotically

of the form exp(−Ct∑j U
ijmj) and since −dU−1m = 2 in this case, we

would have a complete Ricci-flat end with exponential volume growth.
It follows from (I) above that a convergent Painlevé expansion for which

1 − 1
2

∑
jmjξj < 0 corresponds to a complete Ricci-flat end, and fi(t)2 is

asymptotic to a nonzero constant iff
∑

j U
ijmj = 0.

The first interesting type of leading term behaviour is when we have
S = {1, . . . , r + �} and T = {1, . . . , r}, that is, all mi equal −2 and all ni
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equal −1. In this case the leading terms are themselves an exact solution of
the equations. Each such solution corresponds to the Ricci-flat cone over a
homogeneous Einstein metric on G/K.

Painlevé expansions with such leading terms therefore correspond to met-
rics asymptotic to the cone (AC in the terminology of [CGLP1]). We refer
to such leading terms as being of cone type. We note further that, in the
expression (1.1) for such a Ricci-flat metric, if we let g̃t denote the unit vol-
ume metric in the homothety class of gt, then g̃t is a curve in the space of
unit volume G-invariant metrics on G/K which converges (in the C∞ topol-
ogy) to a G-invariant Einstein metric with Einstein constant n − 1. The
corresponding complete Ricci-flat ends necessarily have Euclidean volume
growth.

A second interesting type of leading term behaviour is the following. In
case (I), suppose that the condition

∑
j U

ijmj = 0 holds for some i and
the corresponding summand pi is such that k′ = k ⊕ pi is the Lie algebra
of some closed subgroup K ′ of G. Suppose further that ⊕j �=i pj and the
induced metrics on it are Ad(K ′)-invariant for all t sufficiently large. Finally
assume that for all j �= i, fj(t)2 grows like t2. Then the principal orbits in
the complete Ricci-flat end will be asymptotic to a K ′/K bundle over G/K ′

with isometric fibres, and the end will have sub-Euclidean volume growth.
As is well-known, this happens in the case of the Euclidean Taub-NUT space.
Notice that locally (in t) the metric is asymptotically that of a bundle with
isometric fibres over a cone on an Einstein metric on G/K ′.

Recently, such end behaviour has become important in string theory, es-
pecially in connection with the construction of complete non-compact mani-
folds with G2 or Spin(7) holonomy. In [CGLP1] the terminology asymptoti-
cally locally conical (or ALC) was introduced to describe such end behaviour.
Specifically, the situation when K ′/K is a circle (i.e., pi is a 1-dimensional
trivial K-representation) of asymptotically constant radius has physical in-
terpretations (cf [BGGG], [CGLP1] and [CGLP2]).

The following proposition puts the ALC condition in a more formal
framework and provides a connection to Palais-Smale sequences (cf [St], p.
78) for the Hilbert action on the principal orbit.

Proposition 2.15. Let K ′ be a compact Lie group, K ⊂ K ′ be a closed

subgroup such that K ′/K is connected, and let π : Q → B be a principal
K ′-bundle over a compact base. Denote by P the bundle associated to Q
with fibre K ′/K. Let n be the dimension of P . Suppose that ω is a fixed

principal connection on Q, ht is a 1-parameter family of K ′-invariant metrics
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on K ′/K, and gt
∗ is a 1-parameter family of Riemannian metrics on B, where

t lies in some open interval I = (t0,+∞). Let gt be the unique metric on

the total space P induced by ω, ht, and gt
∗.

Assume that g = dt2 + gt is a Ricci-flat metric on M = I × P . Finally,
assume that as t→ +∞ the following asymptotic conditions are satisfied:

1. ht = h∞ + t−1ρ+O(t−2),

2. t−2gt
∗ = g∗∞ + t−1σ + O(t−2),

where h∞, ρ are respectively K ′-invariant metrics (symmetric 2-tensors) on

K ′/K and g∗∞, σ are respectively metrics (symmetric 2-tensors) on B.
Then K ′/K must be a torus and g∗∞ is Einstein with scalar curvature

(dimB)(dimB − 1). Furthermore, if g̃t denotes the unit volume metric in
the homothety class of gt, then

lim
t→+∞S(g̃t) = 0, (2.16)

and

lim
t→+∞ ‖Ric(g̃t) −

S(g̃t)
n

g̃t‖L2(g̃t) = 0. (2.17)

Note that in (2.17) we are taking the L2-norm (defined by the metric g̃t)
of the traceless Ricci tensor of g̃t, which is the negative of the L2-gradient of
the Hilbert functional on the space of unit volume metrics on P . So for any
sequence {tk} going to +∞, {g̃tk} is a Palais-Smale sequence of this action.

Proof. We will use the formalism in [DW1] and [EW]. We first choose a
background metric gb of volume 1 on P by choosing a metric on B and a
K ′-invariant metric on K ′/K. We express each gt and its Ricci tensor via
gb and gt respectively as symmetric endomorphisms gt and rt of TP . If V (t)
denotes the volume of gt, then g̃t is given explicitly by V (t)−(2/n)gt.

It follows from the asymptotic conditions 1. and 2. that the shape
operator L of P takes the form

L =
1
2

( −t−2h−1∞ ρ+ O(t−3) 0
0 2

t I +O(t−2)

)
, (2.18)

and
V (t) = tdimB v2/n

∞ +O(tdimB−1
2 ), (2.19)

where
v∞ =

∫
P

√
(det h∞)(det g∞) dvolgb

.
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Combining the above formulae with the Hamiltonian constraint H = 0 (cf
Remark 1.14 in [DW1]) and using the fact that dimB < n, it follows readily
that limt→+∞ S(g̃t) = 0. (Indeed, the same computation shows that if dt2+gt
is Einstein with constant Λ �= 0, this limit is ±∞ according to the sign of
Λ.)

Similarly, if we use the Einstein equation (1.2) in [DW1], we can verify
that the Ricci endomorphisms rt satisfy

rt =
1
2

(
(2− dimB)t−3h−1∞ ρ+ O(t−4) 0

0 2(dimB − 1)t−2I + O(t−3)

)
.

(2.20)
Then the conclusion (2.17) follows from a straightforward computation, for
which we need to use the fact dimB < n once more when we take the limit
in t.

Next we consider the O’Neill equations for the Riemannian submersion
metrics gt (cf Proposition 9.36 in [Bes]). Since the fibres are totally geodesic,
all terms involving O’Neill’s T -tensor vanish. As the fibre metrics are ho-
mogeneous, to see that K ′/K is a torus, it suffices for us to show that h∞
is Ricci-flat, since any Ricci-flat homogeneous metric is automatically flat.
In Eq. (9.36a) in [Bes], using (2.20) we see that the left-hand side tends
to 0 as t → +∞. To compute the terms involving O’Neill’s A-tensor, we
may choose a g∞-orthonormal frame {E(∞)

i } and corresponding orthonor-
mal frames {E(t)

i } for the metrics t−2gt
∗ such that E(t)

i → E
(∞)
i as t→ +∞.

Since {t−1E
(t)
i } are orthonormal with respect to gt∗, we can use their hori-

zontal lifts in computing the O’Neill A-tensor terms. From the asymptotic
conditions 1. and 2. and the fact that the Lie brackets [t−1E

(t)
i , t−1E

(t)
j ]

= t−2[E(t)
i , E

(t)
j ] converge to 0 as t → +∞, it follows that the O’Neill A-

tensor term in (9.36a) of [Bes] also tends to zero. Therefore K ′/K is a
torus.

Finally, using (2.20), we see that the left-hand side of (9.36c) tends to
(dimB−1)g∞. As above, the term involving O’Neill’s A-tensor on the right-
hand side tends to zero, while the term involving the Ricci tensor of the base
tends to Ric(g∞). Hence g∞ is Einstein with constant dimB−1 as asserted.
The proof of the proposition is now complete. �

Let us now return to the cohomogeneity one case where P = G/K.

Remark 2.21. The two consequences (2.16) and (2.17) for the renormalised
family g̃t in the ALC situation should be compared to the condition in the
AC case that the family g̃t converges to a G-invariant Einstein metric with
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constant n − 1. These conditions give an upper bound on the number of
parameters arising from leading order considerations in Painlevé expansions
of AC or ALC type.

In the three examples that we will consider in §5 and §6, with one excep-
tion, all admissible choices of the sets S and T lead to ends which are either
incomplete or else of AC or ALC type. The exception occurs in Example
5.2 in the situation where the minimal leading powers are < −2, i.e., when
Remark (2.14) applies. In that case, we get complete ends asymptotic to a
2-torus bundle (cf Theorem 5.11).

Remark 2.22. Note also that by Theorem 2.1 in [BWZ], the existence on
G/K of a sequence of unit volume G-invariant metrics satisfying (2.16) and
(2.17) is already enough for concluding that G/K is covered by a homoge-
neous torus bundle. The hypotheses in (2.15) are of course stronger, and
hence we were able to deduce more directly that K ′/K is a torus.

3. Resonances.

Next we shall investigate how the leading terms of the previous section can
be extended to full series solutions to equations (1.5)-(1.6), in (possibly frac-
tional) powers of s. Let us write

zi =
∞∑
j=0

α
(i)
j s

mi+
j
N , (3.1)

vi =
∞∑
j=0

β
(i)
j sni+

j
N (3.2)

where N is an integer to be determined after all the resonances have been
computed.

The equations (1.5)-(1.6) will now yield recursion relations involving the
αj , βj. Schematically, the recursion may be written as

Tj(αj, βj) = expression in αk, βk (k < j),

where Tj is a linear operator. The rational resonances of the expansion are
the values of j/N for which Tj is non-invertible; that is, they give the stages
in the recursion at which free parameters may enter. In this section we
aim to calculate the resonances of the various Painlevé expansions to our
equations. We shall continue to assume that mi ≥ −2 for all i.
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We substitute the full expansions (3.1)-(3.2) into the equations (1.5)-
(1.6). Equating coefficients of smi+

j
N
−1 in (1.5), and snp+ j

N
−1 in (1.6), we

obtain the recursion relations

(
mi +

j

N

)
α

(i)
j =

r∑
p=1

j−N(np+1)∑
k=0

2α(i)
k Qip β

(p)
j−k−N(np+1)

(3.3)

and (
np +

j

N

)
β

(p)
j = εp

r+�∑
i=1

Qip α
(i)
j−N(mi−np+1). (3.4)

Using (2.5) we may rewrite (3.3) as

j

N
α

(i)
j − 2α(i)

0

⎛
⎝∑
p∈T

Qip β
(p)
j

⎞
⎠ =

∑
p∈T

j−1∑
k=1

2Qip α
(i)
k β

(p)
j−k (3.5)

+
∑
p/∈T

j−N(np+1)∑
k=0

2Qip α
(i)
k β

(p)
j−k−N(np+1).

If p ∈ T , we can write (3.4) as

(
j

N
− 1
)
β

(p)
j − εp

r+�∑
i=1

Pip α
(i)
j = εp

∑
i/∈S

Qip α
(i)
j−N(mi+2). (3.6)

We refer to the expressions on the right-hand side of (3.5) and (3.6)
respectively as X (i)

j and Y (p)
j . Note that these quantities involve only terms

with subscripts < j (because np ≥ −1 with equality iff p ∈ T , and because
by assumption mi ≥ −2 with equality iff i ∈ S). Moreover, the terms β(p)

j

with p /∈ T do not appear on the right-hand side.
We may therefore first consider equations (3.5)-(3.6), which form a sub-

system of the full recursion. Eliminating αj by (3.5) we obtain, for p ∈ T ,

j

N

(
j

N
− 1
)
β

(p)
j − 2εp

∑
i

∑
q∈T

Pip α
(i)
0 Qiq β

(q)
j = Z

(p)
j , (3.7)

where Z(p)
j = j

N Y
(p)
j + εp

∑
i PipX

(i)
j involves only terms with subscripts < j.

Let M := 2DP tdiag(α(1)
0 , . . . , α

(r+�)
0 )Q, where P t denotes the transpose

of P , and let us introduce the |T | × |T | matrix MT obtained from M by



Painlevé Expansions, Cohomogeneity, Exceptional Holonomy 901

deleting the pth row and pth column for all p not in T . Equation (3.7) is
then just (

j

N

(
j

N
− 1
)
−MT

)
βj = Zj . (3.8)

In other words, β(p)
j (p ∈ T ) and αj are uniquely determined by the earlier

terms αk, βk(k < j) unless R = j/N satisfies the condition that

R(R− 1) is an eigenvalue of MT . (3.9)

Such R are the rational resonances of the subsystem (3.5)-(3.6), while the
resonances refer to real (or even complex) solutions of (3.9).

Remark 3.10. Note that these resonances only depend on α0 via the com-

ponents α(i)
0 for i ∈ S, i.e., the vector α̂0.

Remark 3.11. It is easy to check from (2.5) and (2.6) that β̂0 is an eigen-

vector of M with eigenvalue 2. It follows that (β(p)
0 )p∈T is an eigenvector of

MT with eigenvalue 2, and hence that

−1, 2 are resonances.

Note that (
( 1
2miα

(i)
0 )r+�i=1

(β(p)
0 )p∈T

)

lies in the kernel of the recursion (3.5)-(3.6) for R = 2 (that is, j = 2N ). We
shall see in the next section that the resonance R = 2 is connected with the
Hamiltonian constraint (1.8).

The appearance of −1 as a resonance is typical for autonomous systems
of differential equations, and is associated to the degree of freedom implicit
in translating the independent variable and hence changing the position of
the singularity.

It often happens that −1, 2 are the only rational resonances, and that
the free parameter at R = 2 is fixed by the Hamiltonian constraint. In this
case translation of s is the only free parameter in the Painlevé expansion
and we refer to such expansions as trivial.

Existence of nontrivial Painlevé expansions requires the existence of a
rational root R of (3.9) other than −1, 2. This can impose constraints on the
principal orbit G/K, and in particular can lead to Diophantine conditions
involving, for example, the dimension of G/K. An example is discussed in
§6.
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Finally, let us consider the situation for β(p)
j (p /∈ T ). In most of our

examples, the following conditions hold.
(i) mi ≥ np − 1 for all p /∈ T and i /∈ S with Qip �= 0,
(ii) Qip = 0 for all p /∈ T and i ∈ S.
Condition (ii) means that, for p /∈ T , equation (3.4) reduces to(

np +
j

N

)
β

(p)
j = εp

∑
i/∈S

Qip α
(i)
j−N(mi−np+1)

. (3.12)

We observe that condition (i) now shows that β(p)
j , with p /∈ T , are uniquely

determined by αk (k ≤ j) unless j
N = −np, so the only additional resonance

arising from (3.12) is R = −np.

Remark 3.13. The conditions (i),(ii) do not have to hold. This is the
situation for instance in the case S = {4, 5} in Example (5.2). In this case
we can perform a reindexing j �→ j − N (np + 1) for the terms β(p)

j where
p /∈ T , and bring the system back into the form considered above.

Remark 3.14. Equations (3.5)-(3.6), (3.12) are valid for j > 0. We may
also have additional zero resonances, associated to free parameters in α0, β0.

4. Compatibility conditions.

As remarked earlier, the resonances correspond to the steps in the recursion
at which the recursion operator is non-invertible. This means that at each
resonance there are compatibility conditions which must be satisfied if the
recursion is to proceed. These conditions express the fact that the right-
hand side of the recursion should be in the image of the recursion operator.
These conditions may put constraints on the free parameters introduced at
earlier resonances.

In all our examples compatibility holds at the top resonance R = 2. In
many of these cases we can see this from the following proposition.

Proposition 4.1. Suppose that all compatibility conditions hold for R =
j
N < 2, and we have

(i) mi ≥ np − 1 for all p /∈ T, i /∈ S with Qip �= 0,

(ii) Qip = 0 for all p /∈ T and i ∈ S,
(iii) the 2-eigenspace of MT is one-dimensional.

Suppose in addition that either
(iv) mi + np + 1 > 0 for all p /∈ T and i /∈ S with Qip �= 0, or
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(v) mi − np + 1 = 0 for all p /∈ T and i /∈ S with Qip �= 0.
Then we can solve the recursion at R = 2.

Proof. Assumptions (i) and (ii) show, by the discussion of §3, that solvabil-
ity of the recursion at R = 2 (that is, j = 2N ) is equivalent to solvability of
(3.8) at j = 2N .

It is straightforward to check, using (2.5) and (2.6), that Dβ̂0 is an
eigenvector of M t with eigenvalue 2, and hence the truncated column vector
((Dβ0)p∈T ) is an eigenvector of M t

T , also with eigenvalue 2. Assumption (iii)
means that this vector spans the eigenspace, so we have a single compatibility
condition for (3.8). After some further calculation using (2.5) this condition
becomes

−
∑
i∈S

X
(i)
2N + 2

∑
p∈T

εp β
(p)
0 Y

(p)
2N = 0, (4.2)

where X (i)
j , Y

(p)
j were defined in §3.

Assumption (ii) now shows that the first sum in (4.2) simplifies to

−2
∑
p∈T

2N−1∑
k=1

(P tαk)(p)β
(p)
2N−k,

which, using (3.6), becomes

−2
∑
p∈T

εp

2N−1∑
k=1

((
k

N
− 1
)
β

(p)
k β

(p)
2N−k − Y

(p)
k β

(p)
2N−k

)
.

We can use the index change q = 2N−k to observe that the sum
∑2N−1

k=1 ( kN−
1)β(p)

k β
(p)
2N−k is zero. Hence the compatibility condition becomes

∑
p∈T

εp

2N∑
k=1

Y
(p)
k β

(p)
2N−k = 0. (4.3)

As Y (p)
k = εp

∑
j /∈S Q

t
pj α

(j)
k−N(mj+2)

(for p ∈ T ), (4.3) becomes

∑
j /∈S

∑
p∈T

2N∑
k=1

α
(j)
k−N(mj+2)Qjp β

(p)
2N−k = 0. (4.4)

Now the sum over {j /∈ S} in (4.4) is only a sum over {j /∈ S : mj < 0}
because if mj ≥ 0 and j /∈ S then we only get a contribution from terms
with k = 2N and mj = 0. This contribution is zero by (2.2).
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For each j /∈ S with mj < 0, we have 0 < −Nmj < 2N . If we let
i = k −N (mj + 2), then

∑
p∈T

2N∑
k=1

α
(j)
k−N(mj+2)

Qjp β
(p)
2N−k =

∑
p∈T

−Nmj∑
i=0

α
(j)
i Qjp β

(p)
−Nmj−i.

Using the recursion relation (3.5), in which we replace i by j and j by −Nmj,
the above becomes

−
∑
p/∈T

−N(mj+np+1)∑
i=0

α
(j)
i Qjp β

(p)
−N(mj+np+1)−i.

We may substitute this last expression back into (4.4), noting that for those
j /∈ S with mj ≥ 0, the factor mj + np + 1 in the upper summation index is
positive since p /∈ T . Hence our compatibility condition (4.4) is just

∑
j /∈S

∑
p/∈T

−N(mj+np+1)∑
i=0

α
(j)
i Qjp β

(p)
−N(mj+np+1)−i = 0. (4.5)

The case of our proposition when condition (iv) holds follows immediately
from this formula.

To study the situation when (v) holds, note first that the left-hand side
of (4.5) now becomes

∑
j /∈S

∑
p/∈T

−2Nnp∑
i=0

α
(j)
i Qjp β

(p)
−2Nnp−i.

We next perform the summation over j first with the help of the recursion
relation (3.12), and get

∑
p/∈T

−2Nnp∑
i=0

εp(np +
i

N
)β(p)
i β

(p)
−2Nnp−i.

This expression is zero by the same argument as before where we replace the
index i by −2Nnp − i and the sum changes sign. �

Remark 4.6. Note that the condition (iv) holds, for example, if mi ≥ 0
for all i /∈ S . This condition occurs frequently in the examples in §5 and
§6. Condition (iv) also holds if np > 0 for all p /∈ T since we are assuming
(i). Condition (v) holds, for example, if there exist constants ν1 and ν2 such
that ν1 − ν2 + 1 = 0 and mi = ν1 for all i /∈ S, np = ν2 for all p /∈ T . This
condition will hold in the ALC cases of Examples 5.2 and 6.1.
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We shall also discuss the constraints. As zr+j
∏r
i=1 z

−νji

i (j = 1, . . . , �)
are constants of the flow, and we have mj+r =

∑r
k=1 νjkmk resulting from

(1.4) and (2.2), the constraints (1.7) are equivalent to requiring that α0

satisfies
α

(r+j)
0

Ar+j
=

r∏
i=1

(
α

(i)
0

Ai

)νji

: (1 ≤ j ≤ �). (4.7)

The Hamiltonian constraint is related to the resonance at R = 2, as we
now explain. After substituting the Painlevé expansion into the Hamiltonian
(1.8), one sees that the constant term is given by the expression

2
∑
p∈T

εpβ
(p)
0 β

(p)
2N −

∑
i∈S

α
(i)
2N + terms with subscripts < 2N.

As remarked in (3.11) the vector

(
α

β

)
=

( (
1
2miα

(i)
0

)r+�
i=1

(β0)p∈T

)

is in the kernel of the recursion operator at R = 2, that is, at j = 2N . We
therefore deduce

Proposition 4.8. If all compatibility conditions hold at R = 2, and if

2
∑
p∈T

εp(β
(p)
0 )2 +

∑
i∈S

α
(i)
0 �= 0,

then the Hamiltonian constraint may always be satisfied by choosing
α2N , β2N appropriately. In this situation the Hamiltonian constraint fixes

one of the degrees of freedom coming from the resonance R = 2. �

5. Some 7-dimensional examples and G2 metrics.

Example 5.1. Principal orbit SU(3)/T 2.

The isotropy representation is the sum of the three 2-dimensional real
root spaces of SU(3), which are permuted by the action of the Weyl group,
the symmetric group on three letters. In the scalar curvature formula, the
weight vectors w(1), . . . , w(6) are respectively

(−1, 0, 0), (0,−1, 0), (0, 0,−1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1),
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and the constants Ai are given by

(A1, . . . , A6) = (6, 6, 6,−1,−1,−1),

where the background metric is induced by −tr(XY ).
So r = � = 3 and our equations are a 9-dimensional system with three

constraints (together with the Hamiltonian constraint). The matrix Φ and
a choice for Q are as follows.

Φ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2 1 1 3

2
1
2

1
2

1 1
2 1 1

2
3
2

1
2

1 1 1
2

1
2

1
2

3
2

3
2

1
2

1
2 −1

2
3
2

3
2

1
2

3
2

1
2

3
2 −1

2
3
2

1
2

1
2

3
2

3
2

3
2 −1

2

⎞
⎟⎟⎟⎟⎟⎟⎠
, Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

0 0
√

2
√

3√
2

0
√

2
√

2√
3

√
5√
6

3√
2

5√
6

√
5√
6

1√
2

− 1√
6

√
5√
6

1√
2

1√
6

−
√

5√
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We find that the possible S are

{4}, {5}, {6} and {1, . . . , 6}.

There are no leading terms with exponent < −2.

(I) The three singleton possibilities for S are equivalent because of the action
of the Weyl group. If we take S = {4} we obtain

m = (6, 2, 2,−2, 6, 6), T = {1, 2, 3}, α
(4)
0 = −2.

We find that the resonances are −1, 0 (twice), 1 (twice), 2. The compatibility
conditions are all satisfied, giving a Painlevé family depending on the full
number of parameters. The quantity 1 − 1

2

∑
jmjξj = 3 > 0 and so as s

tends to 0, the volume of the principal orbits tends to 0. On the other hand,
we can also check that f1(t)2 ∼ (t − t∗)−2/3 while fi(t)2 ∼ (t − t∗)2/3 for
i = 2, 3.

(II) The remaining case is

S = {1, . . . , 6}, m = (−2, . . . ,−2), T = {1, 2, 3}.

We have four possibilities for the leading coefficients, corresponding, as in
Remark 2.21, to the three homogeneous Kähler-Einstein metrics and the
normal homogeneous Einstein metric on SU(3)/T 2. As the Kähler-Einstein
metrics are equivalent under the Weyl group action, it is sufficient to just
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consider one, which we call case (a). We call the normal homogeneous case
(b).

The corresponding expressions for α0 are:

(a) α0 = 1
20(12, 12, 6,−1,−1,−4),

(b) α0 = 1
25(12, 12, 12,−2,−2,−2).

and the resonances are as follows:

(a) -1, 2 and the roots of R(R− 1) = 1
5 and R(R− 1) = −2

5 (all of which
are irrational).

(b) −1, 1
5 (twice), 4

5 (twice), 2.

Therefore, case (a) only gives a trivial Painlevé family.
In case (b) we find that the compatibility condition at R = 4/5 forces

the free parameters at R = 1/5 to be zero. The upshot is that we have
a 3-parameter Painlevé family for the Ricci-flat equations. One parameter
comes from R = −1 (the position of the singularity), and the other two come
from R = 4

5 , where the recursion operator has a 2-dimensional kernel.
The cohomogeneity 1 metrics with G2-holonomy are given by the solu-

tions of (1.5)-(1.8) which lie in the subvariety defined by the equations

−1√
3
v2 −

1√
15

v3 = ±2
√−z4

v1 +
2√
3
v2 −

1√
15

v3 = ±2
√−z5

v1 +
2√
3
v2 +

4√
15

v3 = ±2
√−z6,

where the ± sign depends on the choice of orientation of the G2-structure.
Using these equations, one can check that the metrics corresponding to

the above 3-parameter family of Painlevé expansions all have holonomy equal
to G2. A 2-parameter subfamily of these metrics was found by Bryant and
Salamon [BS] and Gibbons-Page-Pope [GPP]. The full 3-parameter family
was found independently first by Cleyton and Swann [CS], and shortly after
by the authors [DW5] and by Cvetic̆-Gibbons-Lü-Pope [CGLP2].

These G2-metrics have a particularly nice description if we write them
in the form

F1F2F3 dρ
2 +

F2F3

F1
B |p1

+
F3F1

F2
B |p2

+
F1F2

F3
B |p3

,

where ρ is a new radial coordinate satisfying
√
F1F2F3 dρ = dt and t is

arclength. The equations for G2-holonomy then become the SU(2) Nahm
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equations
dF1

dρ
= F2F3

and cyclically, a well-known integrable system which is solvable in terms of
Jacobi functions. The metrics of [BS], [GPP] arise if two of the Fi have equal
magnitude. The special case when F1 = F2 = F3 is the cone over the normal
metric on SU(3)/T 2 discovered in [B].

These equations are identical to those arising from four-dimensional hy-
perKähler metrics of cohomogeneity one with respect to a triholomorphic
SU(2) action (cf [BGPP]).

A summary of the results for this example was given in [DW5].

Example 5.2. Principal orbit S3 × S3 ≈ ((SU(2) × SU(2) × ∆U(1)) �
Z2)/(∆U(1)× Z2).

This example was considered in [BGGG]. The group Spin(4) ≈
SU(2) × SU(2) acts on each S3 factor by left and right translations. The
SU(2)×SU(2) in G is the direct product of the groups of left translations on
each S3 factor. The U(1) in G is the diagonal circle subgroup of the group
SU(2) × SU(2) of right translations on S3 × S3. The Z2 in G is the outer
automorphism that interchanges the two S3 factors.

We have the inclusions

k ↪→ ∆u(1)⊕ ∆u(1) ↪→ (u(1)⊕ u(1)) ⊕ ∆u(1) ↪→ su(2)⊕ su(2)⊕ ∆u(1)

whose successive quotients give the decomposition of the isotropy represen-
tation p into four irreducible summands of dimensions 1,1,2 and 2. Note
that p1, given by the first quotient, is a trivial representation, while the
third quotient gives the direct sum of p3 and p4, the 2-dimensional repre-
sentations. Also, the action of Z2 is nontrivial only on p2 and p4, and the
action of ∆U(1) is non-trivial only on p3 and p4. We label the weight vectors
occurring in the scalar curvature function as

w(1) = (0,−1, 0, 0), w(2) = (0, 0,−1, 0), w(3) = (0, 0, 0,−1), w(4) = (1, 0,−2, 0),

w(5)=(1, 0, 0,−2), w(6)=(0,1,−1,−1), w(7)=(0,−1,1,−1), w(8)=(0,−1,−1,1),

and the corresponding coefficients are (A1, . . . , A8)=(2,4,4,−1
4,−1

4 ,−1,−1,−1),
where the background metric B is induced by the direct sum of the trace
forms −tr(XY ) on the SU(2) factors.
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We see that r = � = 4, and Φ and a choice of Q are given by

Φ=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 2 0 0
1 1

2 1 0 1 1
2

3
2

1
2

1 1 1
2 1 0 1

2
1
2

3
2

1 0 1 −2 0 0 2 0
1 1 0 0 −2 0 0 2
2 1

2
1
2 0 0 −1 2 2

0 3
2

1
2 2 0 2 −1 1

0 1
2

3
2 0 2 2 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Q=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2

√
2 0 0

1√
2

0 0 0√
2 1√

2
1 0

0 − 1√
2

−1
2

√
5

2√
2 1√

2
3
2

√
5

2
1√
2

− 1√
2

1 0
3√
2

3√
2

1 0
1√
2

1√
2

−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

With some amount of computation it is actually possible to determine
explicitly all the G-invariant Einstein metrics on G/K. These will give the
leading terms of cone type in our Painlevé expansions. Up to isometry there
are only two G-invariant Einstein metrics: the product metric on S3 × S3,
and the metric induced by the normal homogeneous metric via the diffeomor-
phism S3 ×S3 ≈ (SU(2)× SU(2)×SU(2))/∆(SU(2)). (The latter Einstein
metric was observed, e.g., in [WZ] (cf Proposition 5.5).)

We will first consider Painlevé expansions in which the leading exponent
in each zi is ≥ −2. The one case in which a leading exponent < −2 can
occur will be discussed at the end of this section.

Applying the algorithm of §2 we compile the possibilities for S and T,
and the associated vectors m and α0 in the table below.

S T m α
(i)
0 (i ∈ S)

{5} {1, . . . , 4} (1,1,0,0,-2,0,0,2) −1
2

{4, 6} {1, . . . , 4} (5,1,2,-2,0,-2,6,4) −1
2 ,−1

{4, 8} {1, . . . , 4} (1,1,4,-2,4,4,4,-2) −1
2 ,−1

{5, 6} {1, . . . , 4} (5,2,1,0,-2,-2,4,6) −1
2 ,−1

{5, 7} {1, . . . , 4} (1,4,1,4,-2,4,-2,4) −1
2 ,−1

{4, 5, 6} {1, . . . , 4} (6,2,2,-2,-2,-2,6,6) −1
2 ,−1

2 ,−1
{1, . . . , 8} {1, . . . , 4} (-2, . . . , -2) see below
{4, 5} {1, 3, 4} (2,1,1,-2,-2,0,2,2) −1

2 ,−1
2

{4} {2, 3, 4} (1,0,1,-2,0,0,2,0) −1
2

{6} {1, 2, 3} (4,1,1,0,0,-2,4,4) -1
{7} {1, 2, 3} (0,3,1,4,0,4,-2,2) -1
{8} {1, 2, 3} (0,1,3,0,4,4,2,-2) -1

{1, 2, 3, 6, 7, 8} {1, 2, 3} (-2,-2,-2,-3
2,-

3
2 ,-2,-2,-2) see below

In the above we have not yet imposed the constraints (4.7).
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When S = {1, . . . , 8} we have two possible sets of leading coefficients
satisfying the constraints, corresponding respectively to the product and
normal homogeneous Einstein metrics on the principal orbit. These are

(a) α0 = 1
5 (2, 4, 4,−1

2,−1
2 ,−1,−1,−1),

(b) α0 = 9
25( 2

3 , 4,
4
3 ,−1

2 ,− 1
18 ,−1,−1

9,−1).

If S = {1, 2, 3, 6, 7, 8} the only real, nonzero leading coefficients satisfying
the constraints are given by

α0 = (
9
32
,
3
4
,
3
4
, ω0, ω0,−

1
4
,− 9

64
,− 9

64
)

where ω0 < 0 is a free parameter.

Regarding asymptotics, the quantity 1 − 1
2

∑
jmjξj is negative when

S = {1, 2, 3, 6, 7, 8} or when S = {1, . . . , 8}, and is positive in the remaining
cases.

If S = {1, . . . , 8} we are in the AC case. When S = {1, 2, 3, 6, 7, 8},
the quantity

∑
j U

ijmi is zero for i = 1 only. Recall that p1 is the trivial
summand in the isotropy representation of G/K. We can also check that
fi(t)2 ∼ t2 for i = 2, 3, 4. So in this case we will get complete Ricci-flat ends
with ALC asymptotics (cf §2).

For the remaining cases, as s tends to 0, the volume of the principal
orbits tends to 0, even though at least one fi(t)2 blows up. Furthermore,
when S = {4}, {5}, {6}, {7}, {8} or {4, 5}, there is also at least one fi(t)2

which converges to a positive constant.

We can now compute MT and its eigenvalues, and find the resonances.
Recall that only the components α(i)

0 for i ∈ S affect the resonances. The
results are summarised below.
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number of
S Resonances (multiplicities) parameters

in expansion
{5} -1 , 0 (3 times), 1 (3 times) , 2 7
{4, 6} -1 (twice), 0 (twice), 1 (twice), 2 (twice) 6
{4, 8} -1 (twice), 0 (twice), 1 (twice), 2 (twice) 6
{5, 6} -1 (twice), 0 (twice), 1 (twice), 2 (twice) 6
{5, 7} -1 (twice), 0 (twice), 1 (twice), 2 (twice) 6
{4, 5, 6} -1 (three times), 0, 1, 2 (three times) 5

{1, . . . , 8} (a) -1, 2 and roots of R(R−1)= 2
5 (twice), R(R−1)= 4

5 1
{1, . . . , 8} (b) −1, 2

5
, 3

5
, 2 and roots of R(R− 1) = 1

25
(31 ±

√
145) 3

{4, 5} -1 (twice), 0 (twice), 1 (twice), 2 (twice) 6
{4} -1, 0 (3 times), 1 (twice), 2 and −n1 7
{6} -1, 0 (3 times), 1 (twice), 2 and 0 or -1 7
{7} -1, 0 (3 times), 1 (twice), 2 and 0 or -1 7
{8} -1, 0 (3 times), 1 (twice), 2 and 0 or -1 7

{1, 2, 3, 6, 7, 8} −1,−1
2
, 0, 1

4
, 3

4
, 3

2
, 2 and 1

2
4

Remark 5.3. (i) In the cases where |T | < 4, (except for {4, 5} for which
see Remark 3.13) the resonances listed after “and” arise from the possible
values of −np (p /∈ T ). When S = {4}, n1 = 0 or n1 ≥ 1.

(ii) The entry in the final column is the maximum number of parameters
among Painlevé families with the corresponding leading exponents, after all
constraints, including the Hamiltonian constraint, have been imposed. Note
that the degree of freedom coming from translation of s is included as a
parameter (cf. Remark (3.11)). For S = {4}, {6}, {7} or {8} we obtain the
largest number of parameters (7) in the expansion by taking np = 0. We get
one fewer parameter if n1 = 1.

(iii) Expansions with N = 1 (i.e. expansions meromorphic in s rather
than a fractional power of s) are obtained except when S is {1, ..., 8}, {4, 5},
or {1, 2, 3, 6, 7, 8}.

Let us discuss the cases S = {1, . . . , 8} and S = {1, 2, 3, 6, 7, 8} in more
detail.

Remark 5.4. AC Cases: S = {1, . . . , 8}. In case (a) there are no non-
trivial rational resonances, and the Painlevé expansion is trivial.

In case (b) we may choose N to be 5 and obtain a Painlevé expansion
depending on three parameters (from resonances at −1, 2

5 ,
3
5). The compat-

ibility conditions either hold trivially or by Proposition (4.1).

Remark 5.5. ALC Case: S = {1, 2, 3, 6, 7, 8}. The recursion and the
compatibility conditions are non-trivial in this case and were worked out
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using MAPLE. Recall from the leading term analysis that we have a free
parameter ω0, which corresponds to the resonance R = 0. It also follows
easily from (1.6, i = 4) that n4 = −1/2. The integer N is chosen to be 4, in
view of the resonances.

At the resonance R = 1/4 we have a free parameter ω1 given by

(β(1)
1 , β

(2)
1 , β

(3)
1 ) = ω1(1,−1,−

√
2).

At R = 1
2 we encounter the first non-trivial compatibility condition ω0 +

4ω2
1 = 0 and a new free parameter ω2 = β

(4)
2 , as a result of (3.12) and

−n4 = 1
2 . The compatibility condition at R = 3

4 is identical to that at
R = 1

2 . We also pick up a free parameter ω3 given by

(β(1)
3 , β

(2)
3 , β

(3)
3 ) = ω3(1,−1,−

√
2).

At R = 3
2 , we encounter the non-trivial compatibility condition

ω2 =
1

3
√

5

(
88192ω4

1 − 2760ω1ω3 + 2
ω2

3

ω2
1

)
,

and if it is satisfied, we pick up another free parameter ω4. By Proposi-
tion 4.1 and Remark 4.6 the compatibility condition at the top resonance
R = 2 is satisfied. The free parameter entering at this stage is used to sat-
isfy the Hamiltonian constraint as indicated in (4.8). Therefore, we have a
Painlevé expansion with 4 free parameters: ω1, ω3, ω4 and the position of the
singularity.

The cohomogeneity 1 metrics with G2-holonomy are given by the solu-
tions of the system (1.5)-(1.8) which lie in the subvariety

v4 = ±
√

5
2
√

2
(
√−z4 −

√−z5)

v3 +
1√
5
v4 = ±(−

√
2
√−z5 −

√−z6 −
√−z7 +

√−z8)
√

2v2 − v3 +
1√
5
v4 = ±2(

√−z6 −
√−z7 −

√−z8)
√

2v1 +
√

2v2 + v3 −
1√
5
v4 = ±(−

√
2
√−z4 +

√−z6 −
√−z7 +

√−z8),

where all square roots are positive and ± depends on the orientation cho-
sen. One can obtain these equations for example by transforming the G2-
equations in [BGGG] to the variables we use. Hence the above subvariety
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can be parametrized by xi = zi/Ai for i = 4, 5, 6, 7, 8 together with the con-
straint x4x7 = x5x8. One checks that, regardless of the ± sign chosen above,
the system (1.5)-(1.6) induces on the subvariety the system

ζ ′i = ζi
∑
j

Cijζj : (i, j = 4, 5, 6, 7, 8)

where ζi is the positive square root of xi and C is the matrix⎛
⎜⎜⎜⎜⎜⎝

−1√
2

0 0 −2 0
0 1√

2
0 0 −2

0 0 1 −2 −2
1√
2

0 −2 1 −1
0 −1√

2
−2 −1 1

⎞
⎟⎟⎟⎟⎟⎠ .

By comparing the Painlevé expansions of this system with those of the full
system having the same leading terms, we obtain

Theorem 5.6. Consider the cohomogeneity one Ricci-flat system for the
principal orbit ((SU(2)× SU(2)× ∆U(1))� Z2)/(∆U(1)× Z2) ≈ S3 × S3.

The Painlevé expansions of the associated quadratic system (1.5)-(1.8) which
contain metrics of G2-holonomy are given by

(I) a 3-parameter family of convergent Painlevé expansions represent-
ing asymptotically conical Ricci-flat ends, within which lies a 2-parameter
subfamily representing AC metrics with G2-holonomy;

(II) a 4-parameter family of convergent Painlevé expansions represent-
ing asymptotically locally conical Ricci-flat ends, within which lie two 3-

parameter subfamilies representing ALC metrics with G2-holonomy;
(III) a 7-parameter family of convergent Painlevé expansions representing

local Ricci-flat metrics, within which lies a 4-parameter subfamily represent-
ing metrics with G2-holonomy.

Remark 5.7. The two parameters of the family of AC G2-metrics come
from resonances at −1 and 3

5 . These metrics were discovered in [BS] and
[GPP].

The subsets of ALC G2-metrics are given by the cubic equations ω3 =
32ω3

1 and ω3 = 1328ω3
1, where ω1, ω3, ω4 are the parameters described in

Remark (5.5). These G2-metrics were first found in [BGGG]
The third family in the above theorem corresponds to the case S = {4}

with n1 = 0. While the family depends on the full number of parameters,
only one of the dependent variables actually blows up. The corresponding
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cohomogeneity one manifolds have orbit space a finite interval (0, t0), and
near t = 0, f1(t) ∼ t−1/3, f3(t) ∼ t1/3, and f2(t), f4(t) ∼ const.

We next discuss Painlevé expansions in which some zi has leading expo-
nent less than −2.

Using Remark (2.14) one sees after some computation that the only pos-
sibility for S̃ is {1, 7, 8} and

(α(1)
0 , ..., α

(8)
0 ) = (−2a, b, b, c, c,

b2

16a
, a, a),

where b > 0, a < 0, c < 0 are free parameters. In writing down the
recursion relations, (3.5) remains the same, but as we split the right-hand
sum in (3.4) into two using the definition of S̃ in (2.14), the terms involving
mi ∈ S̃ actually occur later in the recursion. Let m̃ denote the minimum
value of the leading exponents in the zi. For p = 1, 2, 3, we now rename the
index j −N (m̃− np + 1) as j, and obtain

εp
∑
i∈S̃

Qip α
(i)
j =

(
j

N
+ m̃+ 1

)
β

(p)
j+N(m̃−np+1)

− εp
∑
i/∈S̃

Qip α
(i)
j−N(mi−m̃)

.

As for p = 4, since Qi4 = 0 unless i = 4, 5, (3.4) can be written as

−
(
j

N
+ n4

)
β

(4)
j + ε4

∑
i=4,5

Qi4 α
(i)
j−N(mi−n4+1)

= 0. (5.8)

Note that either n4 − 1 = m4 = m5, or else n4 = 0 (which can happen only
when 4 /∈ T ).

In the former case, (3.4) in matrix form becomes

Γαj − diag(0, 0, 0, n4 + (j/N ))βj = Ỹj , (5.9)

where

Γ =

⎛
⎜⎜⎜⎝

√
2 0 0 0 0 0 3√

2
1√
2

−
√

2 0 0 0 0 0 − 3√
2

− 1√
2

0 0 0 0 0 0 −1 1
0 0 0 −

√
5

2 −
√

5
2 0 0 0

⎞
⎟⎟⎟⎠

and

Ỹ
(p)
j =

{
( jN +m̃+1)β(p)

j+N(m̃−np+1)
−εp
∑

i/∈S Qip α
(i)
j−N(mi−m̃)

if p = 1, 2, 3
0 if p = 4.
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Eliminating αj in (5.9) using (3.5), we obtain the following analogue of (3.7):(
2Γ diag(α(1)

0 , ..., α
(8)
0 )QT − (j/N ) diag(0, 0, 0, n4 + (j/N ))

)
βj (5.10)

=
(
j

N

)
Ỹj − ΓXj ,

where QT is the matrix obtained from Q by replacing each column whose
index does not lie in T by a corresponding column of zeros.

Let M̃j denote the matrix on the left of βj in (5.10). The new feature
here is that for all j ≥ 1 the matrix M̃j has rank 2. Indeed its left kernel is
spanned by the vectors (1, 1, 0, 0) and (

√
2, 0, 1, 0), and so the compatibility

condition at step j is that the right side of (5.10) should be annihilated by
these vectors.

We first analyse the compatibility conditions for 1 ≤ j ≤ (−2 − m̃)N .
As a result we are able to conclude that all mi ≥ −2 whenever i /∈ S̃, and
the only subsets T for which all these compatibility conditions hold are (i)
T = {1, 2, 3} and (ii) T = {1, 2, 3, 4}.

If n4 = 0 instead, we arrive at the same conclusions except that only
possibility (i) for T can arise. However, the arguments require some minor
modifications. For example, the last row of the matrix Γ becomes zero, and
Y

(4)
j is the negative of the second term on the left in (5.8).

For case (i), we find that the vector of leading exponents is

(−8/3,−2,−2,−4/3,−4/3,−4/3,−8/3,−8/3),

and in the vector of leading coefficients b = 2/3. So m̃ = −8/3, −2−m̃ = 2/3,
and n4 = −1/3. (The case n4 = 0 leads to a contradiction.) One can
show that the two free parameters introduced at step j are fixed by the
compatibility condition at step j + (2N/3) as long as j ≥ 1 is not equal to
N/3, N or 2N . Hence it is natural to choose N = 3 in our expansion. Using
MAPLE to perform the recursion up to step j = 8, we obtain a Painlevé
family depending on 5 parameters, satisfying all the constraints, including
the Hamiltonian constraint.

Regarding the asymptotics of this family, one readily checks that it rep-
resents complete Ricci flat ends and the quantity

∑
j U

ijmj = 0 for precisely
i = 1, 2. Also, f3(t), f4(t) ∼ t. So the Ricci-flat ends are asymptotic to a
2-torus bundle over a cone on S2 × S2. We can therefore state

Theorem 5.11. For the quadratic system in Theorem (5.6 ), there is also a
5-parameter family of convergent Painlevé expansions representing complete

Ricci-flat ends asymptotic to a 2-torus bundle over a cone on S2 × S2.
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For case (ii), we find that the vector of leading exponents is

(2(b− 2),−2,−2,−2,−2,−2b, 2(b− 2), 2(b− 2)),

where b is the same parameter occurring in the vector of leading coefficients.
We further have c = 1 − ( 3

2 )b and 2
3 < b < 1. Accordingly, let b = p

N where
p < N are relatively prime. For a generic choice of b (meaning that the
equations R2−R+5− ( 15

2 )b = 0 and 2R4−4R3 +(8−15b)R2− (6−15b)R−
30b(1 − ( 3

2 )b) = 0 have no positive rational roots), one can show that the
two free parameters introduced at step j ≥ 1 are fixed by the compatibility
condition at step j + 2N − 2p except possibly when j = N . So we would
get a Painlevé expansion depending on at most 2 parameters, satisfying all
constraints. Among non-generic values for b, the most interesting one is
b = 3

4 because in this case f2(t) would be asymptotically constant. However,
the compatibility condition at j = 6 cannot be satisfied.

One can check that there are no exceptional holonomy metrics in the
Painlevé expansions with leading exponents which are less than −2.

6. S4k+3 as principal orbit and Spin(7) metrics.

Example 6.1. Principal orbit S4k+3≈G/K=Sp(k+1)U(1)/Sp(k)∆(U(1)).

In this orbit, the Sp(k+ 1) acts via left multiplication on S4k+3 and the
U(1) acts by right multiplication. We have inclusions

sp(k)⊕∆u(1) ↪→ sp(k)⊕(u(1)⊕u(1)) ↪→ sp(k)⊕sp(1)⊕u(1) ↪→ sp(k + 1)⊕u(1)

whose successive quotients give the decomposition of the isotropy represen-
tation p into the sum of three irreducible summands, of dimension 1, 2 and
4k. (The first, p1, is a trivial summand, p2 is an irreducible representation of
U(1), and p3 is a copy of Hk.) The scalar curvature function involves weight
vectors w(1), . . . , w(5) given respectively by

(0,−1, 0), (0, 0,−1), (1,−2, 0), (1, 0,−2), (0, 1,−2),

and the constants Ai are

(A1, . . . , A5) = (4, 4k(k+ 2),−1
2
,−k

4
,−k),

where the background metric B is the direct sum of the trace forms −tr(XY )
on SU(2k+ 2) and SU(2).
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We therefore have r = 3 and � = 2. The matrix Φ is given by

Φ =

⎛
⎜⎜⎜⎜⎝

1
2 1 0 1 3

2

1 4k−1
4k 1 2k−1

2k
2k−1
2k

0 1 −2 0 2
1 2k−1

2k 0 − 1
k

k−1
k

3
2

2k−1
2k 2 k−1

k
k−2
2k

⎞
⎟⎟⎟⎟⎠

and a choice of Q is

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

0 0
√

2
√

4k+1
4k 0

0 −
√

4k
4k+1

√
4k+2
4k+1√

2 2k+1√
k(4k+1)

√
4k+2
4k+1

3√
2

√
4k+1
k 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It is well-known from [Z] that (up to homothety) there are only two G-
invariant Einstein metrics on G/K. These are the round metric and the
Jensen metric [J].

An analysis of the possible leading terms for the Painlevé expansions is
summarised below. Note that we do not get any leading exponents which
are less than −2 in this case.

S T m α
(i)
0 (i ∈ S) Remarks

{4} {1, 2, 3} (2k, 2k− 1, 0,−2, 2k− 2) −k
{3, 4} {1, 2, 3} (2k, 2k,−2,−2, 2k) −1

2 ,−k
{4, 5} {1, 2, 3} (8, 3, 8− 2,−2) −1,−2 k = 1 only

{1, . . . , 5} {1, 2, 3} (−2, . . . ,−2) see (6.2)
{3} {2, 3} (0, 1,−2, 0, 2) −1

2
{5} {1, 2} (6, 2, 8, 0,−2) −2 k = 1 only

{1, 2, 5} {1, 2} (−2,−2,− 8k
4k+1 ,− 8k

4k+1 ,−2) see (6.2)

Remark 6.2. The constraints (4.7) will impose further conditions on α0.
In the case when S = {1, . . . , 5}, there are two possibilities for α0 compatible
with the constraints:

(a) α0 = 1
(2k+1)2

(
2, 4k(k+ 2),−1

2,−k,−2k
)
,

(b) α0 = (2k+3)2

16k3+64k2+64k+18

(
4, 8k(k+2)

2k+3 ,−1,− 2k
(2k+3)2

,− 4k
(2k+3)2

)
,

corresponding to the round and Jensen metrics on the principal orbit respec-
tively.
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If S = {1, 2, 5} then the constraints force α0 to be given by
(a) α0 = 1

(k+1)(4k+1)(2, 4k(k + 2), µ0, 2kµ0, −2k),
or

(b) α0 = 1
(4k+1)(k2+3k+1)

(2(k+1)2, 4k(k+1)(k+2), µ0,
2k

(k+1)2
µ0, −2k),

where µ0 < 0 is a free parameter.

The quantity 1− 1
2

∑
jmjξj is negative when S = {1, 2, 3, 4, 5} or {1, 2, 5},

and is positive in the remaining cases.
If S = {1, . . . , 5} we have AC asymptotics. When S = {1, 2, 5}, the

quantity
∑

j U
ijmj is 0 precisely for i = 1. Since the summand p1 is trivial,

and we can check that f2(t), f3(t) grow linearly, we have complete Ricci-flat
ends with ALC asymptotics in this case.

In the cases where 1− 1
2

∑
jmjξj > 0, the volume of the principal orbits

tends to 0 as s tends to 0, but there is always at least one fi(t)2 which blows
up. In the cases of S = {3}, {4}, {5}, there is a unique i such that fi(t)2 is
asymptotically a positive constant.

We list next the results of the analysis of the resonances and compatibility
conditions. We follow the same conventions in Remark (5.3).

number of
S Resonances (multiplicities) parameters

in expansion
{4} -1, 0 (twice), 1 (twice), 2 5
{3, 4} -1 (twice), 0, 1, 2 (twice) 4
{4, 5} -1 (twice), 0, 1, 2 (twice) 4

{1, . . . , 5} (a) −1,− 1
2k+1(twice), 2k+2

2k+1(twice), 2 3
{1, . . . , 5} (b) −1, 2, roots of R(R− 1) = 2(k+1)(4k+9)

(2k+1)(4k2+14k+9)
, 4 if k = 1

roots of R(R− 1) = − (4k2+10k+6)
(2k+1)(4k2+14k+9) 1 if k > 1

{3} -1, 0 (twice), 1, 2 and 0 or −n1 5
{5} -1, 0 (twice), 1, 2 and 0 or -1 5

{1, 2, 5} (a) -1,0,2, roots of R(R− 1) = 2k
(k+1)(4k+1) and 4k−1

4k+1 3
{1, 2, 5} (b) -1,0,2 roots of R(R−1)=− 2k(k+1)

(4k+1)(k2+3k+1) and 4k−1
4k+1 4 if k = 1

3 if k > 1

Note that we get expansions with N = 1 except when S = {1, ..., 5} or
{1, 2, 5}. Also, when S = {3}, n1 is either 0 or ≥ 1, and the largest number
of parameters occurs when n1 = 0.

Let us discuss the cases when S = {1, . . . , 5} or S = {1, 2, 5} in more
detail.
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AC Cases: S = {1, . . . , 5}.
(a) The eigenvalues of the matrix M are 2 and 2k+2

(2k+1)2
, the latter with

multiplicity 2. Hence the resonances are as given in the above table. The
compatibility condition at the first positive resonance is trivial, while that at
the top resonance is handled by (4.1). It follows that we obtain a 3-parameter
Painlevé expansion for all k ≥ 1.

(b) The equation R(R− 1) = − 4k2+10k+6
(2k+1)(4k2+14k+9)

has rational roots iff

(8k3 + 16k2 − 8k − 15)(2k+ 1)(4k2 + 14k+ 9) is a perfect square. (6.3)

This condition arose already in Example 6.4 of [DW4]. It is certainly satisfied
when k = 1. In §7 we will show that there are only finitely many solutions
of (6.3) and provide strong evidence that k = 1 is the only positive integer
solution.

The equation R(R− 1) = 2(k+1)(4k+9)
(2k+1)(4k2+14k+9)

has rational roots iff

(8k3 + 64k2 + 136k + 81)(2k+ 1)(4k2 + 14k + 9) is a perfect square. (6.4)

This condition is satisfied for k = 1 and for at most finitely many positive
integers. We again conjecture that k = 1 is the only positive integer solution
for (6.4), and provide strong evidence for our conjecture in §7.

Therefore, if k > 1 we do not expect any nontrivial Painlevé expansions
in this case.

If k = 1, on the other hand, we obtain resonances at −1,−4
9 ,

4
9 ,

5
9 ,

13
9 and

2. The compatibility conditions at R = 4
9 ,

5
9 hold trivially and at the top

resonance R = 2 we may use Proposition (4.1). So the only non-trivial com-
patibility condition is at R = 13

9 , which we can show holds using MAPLE.
Hence, we obtain a 4-parameter Painlevé expansion in powers of s1/9. These
metrics are asymptotic to the cone over the Jensen sphere.

ALC Cases: S = {1, 2, 5}.
The conditions for rationality of the resonances arising from eigenvalues

of MT are identical to those analysed in Example 6.2 of [DW4] for a Ricci-
flat (4k + 3)-manifold with principal orbit CP2k+1 = Sp(k + 1)/Sp(k)U(1).
This can be attributed to the fact that the Ricci-flat metric in our present
paper asymptotically approaches a circle bundle of constant length over a
cone over Sp(k + 1)/Sp(k)U(1) = CP2k+1. It follows from the analysis of
[DW4] that case (a) never gives nontrivial rational resonances besides 4k−1

4k+1 .
We obtain a 3-parameter family of Painlevé expansions. The compatibility
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condition at 4k−1
4k+1 follows easily since it is the first nonzero resonance, and

the compatibility condition at the top resonance follows from applying part
(v) of Proposition 4.1.

In case (b), recall that the rationality condition is that

(4k3 + 5k2 − k + 1)(k2 + 3k + 1)(4k+ 1) is a perfect square. (6.5)

This condition is satisfied for k = 1 and for at most finitely many k. Again
we conjecture that this is the only positive integer solution for (6.5) and will
provide strong evidence for our conjecture in §7.

We will therefore focus on case (b) with k = 1. Note that from (1.6) with
i = 3 we must have n3 = 3

5 . Hence we may choose the integer N to be 5
since the resonances are −1, 0, 1

5 ,
3
5 ,

4
5 and 2. We then use MAPLE to check

the compatibility conditions. Recall from (6.2) that the leading coefficients
contain a free parameter µ0. A free parameter µ1 enters at R = 1

5 from
the relation (β(1)

1 , β
(2)
1 ) = µ1(1, −

√
10

2 ). At R = 3
5 , we get a non-trivial

compatibility condition from (3.12): either µ1 = 0 or 225µ2
1 + µ0 = 0. If

this is satisfied, then β
(3)
3 becomes a free parameter µ2. At R = 4

5 the
compatibility condition is

(225µ2
1 + µ0)(1125µ2

1 + µ0) = 0,

which holds iff the earlier compatibility condition 225µ2
1 + µ0 = 0 holds,

and then we get another free parameter µ3. Finally, by Proposition 4.1 and
Remark 4.6 the compatibility condition holds at the top resonance, but the
free parameter that enters at that stage is needed to fix the Hamiltonian
constraint. So we obtain a Painlevé expansion with 4 parameters: µ1, µ2, µ3

and the position of the singularity.
The situation when k > 1 is similar to that of case (a).
The cohomogeneity one metrics with Spin(7)-holonomy are given by the

solution curves of the Ricci-flat system (1.5)-(1.8) which lie on the subvariety
defined by

√
30v3 = ± 3(

√
x3 −

√
x4)

−
√

3v2 −
√

2v3 = ±
√

15
(

1
2
√
x4 +

√
2
√
x5

)

3
√

5v1 + 4
√

2v2 −
√

3v3 = ±3
√

5
(

2
√
x1 −

1√
2
√
x3 −

√
x5

)
,

where xi = zi/Ai, all square roots are positive, and ± depends on the chosen
orientation. These equations can be deduced for example from the Spin(7)-
equations in [CGLP1] by a change of variables to ours. Hence the above
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subvariety can be parametrised by ζi =
√
xi for i = 1, 3, 4, 5 together with

the constraint x1x4 = x3x5. The Hamiltonian vector field is tangent to this
subvariety and induces on it the system

ζ ′i = ζi
∑
j

C̃ijζj : (i, j := 1, 3, 4, 5)

where C̃ is the matrix⎛
⎜⎜⎜⎝

−
√

2 0 −1
2

−3√
2

0 −1 0 −2
√

2
−2

√
2 0 1

2 0
−3

√
2 1 0 1√

2

⎞
⎟⎟⎟⎠ .

By comparing the Painlevé expansions of this system which have the
same leading terms as those of the full Ricci-flat system, we obtain

Theorem 6.6. Consider the cohomogeneity one Ricci-flat system for the

principal orbit G/K = (Sp(k+ 1) ·U(1))/(Sp(k) ·∆U(1)) ≈ S4k+3. For any

k ≥ 1, the associated quadratic system (1.5)-(1.8) has

(i) a 3-parameter family of convergent Painlevé expansions representing

complete Ricci-flat ends asymptotic to the metric cone over the round metric
on S4k+3,

(ii) a 3-parameter family of convergent Painlevé expansions representing
complete Ricci-flat ends asymptotic to a circle bundle over a cone on CP2k+1.

These Painlevé families have generic holonomy.

When k = 1, i.e., when G/K ≈ S7, the quadratic system has in addition

(I) a 4-parameter family of convergent Painlevé expansions representing

complete Ricci-flat ends asymptotic to the cone over the Jensen metric on S7,
within which lies a 2-parameter family of Painlevé expansions representing

metrics with Spin(7)-holonomy,

(II) a 4-parameter family of convergent Painlevé expansions represent-

ing complete Ricci-flat ends with ALC asymptotics, within which lies a 3-
parameter family of Painlevé expansions representing metrics with Spin(7)-
holonomy.

(III) a 5-parameter family of meromorphic Painlevé expansions repre-
senting local Ricci-flat metrics, within which lies a 3-parameter subfamily

representing metrics with Spin(7)-holonomy.

(I)-(III) are the only Painlevé families which contain metrics with

Spin(7)-holonomy.
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Remark 6.7. Our conjecture (cf §7) about the solutions of the Diophantine
problems (6.3)-(6.5) implies that the 4-parameter families (I) and (II) are
unique to the k = 1 case.

In (I), the resonances of the Spin(7)-subsystem are −1,−4
9 , 0,

5
9 . The

free parameter at R = 0 is fixed by the constraint x1x4 = x3x5, leaving
the free parameter at R = 5

9 and the position of the singularity. These AC
Spin(7)-metrics were found in [BS] and [GPP].

In (II), the resonances of the Spin(7)-subsystem are −1, 0, 0, 4
5 , and the

constraint x1x4 = x3x5 fixes one of the free parameters at R = 0. In terms of
the parameters µ1, µ2, µ3 in the Ricci-flat Painlevé expansions, the Spin(7)-
metrics are cut out by the equation√

5
3
µ2 = − 45

4
√

2
µ1µ3 +

2179 · 54 · 9
49 · 16

µ5
1.

Note that in this example we have a Painlevé expansion for the Spin(7)-
subsystem depending on the full number of parameters (three), in which all
the dependent variables blow up. This is consistent with the fact that these
Spin(7)-equations are an integrable system–they are solved in [CGLP1] in
terms of hypergeometric functions.

The expansions in (III) correspond to the case S = {3} with n1 = 0.
The cohomogeneity one Ricci-flat manifolds have a finite interval (0, t0) as
orbit space. Near t = 0, f1(t) ∼ t−1/3, f2(t) ∼ t1/3, and f3(t) ∼ const.

Remark 6.8. It is interesting to compare the example analysed in this sec-
tion with the case, analysed in [DW4], when the principal orbit S4k+3 is
viewed instead as the homogeneous space (Sp(k+ 1)Sp(1))/(Sp(k)∆Sp(1)).
In the latter case there are only two irreducible summands in the isotropy
representation, and not all Sp(k + 1)U(1)-invariant metrics on S4k+3 are
Sp(k+ 1)Sp(1)-invariant.

This means that the Ricci-flat equations become a subsystem of the sys-
tem considered above. In particular the expansions for the subsystem will
have four rather than six resonances.

We still have two possibilities for the cone-type leading terms, corre-
sponding to the round and Jensen metrics, since these metrics are in fact
Sp(k + 1)Sp(1)-invariant [J], [Z]. The resonances in the two situations are
now respectively

(a) −1, − 1
2k+1 ,

2k+2
2k+1 , 2, and

(b) −1, 2 and the roots of R(R− 1) = − 4k2+10k+6
(2k+1)(4k2+14k+9)

.
It was shown in [DW4] that (a) gives a 2-parameter family of Painlevé

expansions to the Ricci-flat equations. If k = 1, (b) gives a 3-parameter AC



Painlevé Expansions, Cohomogeneity, Exceptional Holonomy 923

Ricci-flat family (which includes the 2-parameter subfamily of AC Spin(7)-
metrics of [BS], [GPP] mentioned above), while if k > 1, our conjecture
would imply that we only get a trivial Painlevé expansion. Note that we do
not get any expansions of ALC type.

Remark 6.9. We observe that if the choice of principal orbit type permits
ALC asymptotics (as is the case in Examples 5.2 and 6.1, but not Exam-
ple 5.1 or Remark 6.8), then the ALC Painlevé expansions for the excep-
tional holonomy subsystem involve more free parameters than the expansions
representing AC metrics. This is in accord with the behaviour noticed by
Cvetic̆-Gibbons-Lü-Pope, that ALC asymptotics seem to be “preferred” in
some sense.

7. Remarks on the Diophantine conditions.

We will end by explaining the evidence for our conjecture that the only
positive integer solution of the Diophantine problems (6.3), (6.4) and (6.5)
is k = 1.

First, by elementary arguments (cf [DW4]) it follows that (6.3), (6.4),
(6.5) imply respectively that the following must be squares:

(a) 8k3 + 16k2 − 8k − 15, (2k+ 1)/3, (4k3 + 14k + 9)/3

(b) 8k3 + 64k2 + 136k+ 81, (2k + 1)/3, (4k2 + 14k + 9)/3

(c) 4k3 + 5k2 − k + 1, (4k + 1)/5, (k2 + 3k + 1)/5.

In particular, this shows that solutions of our Diophantine problems give
integral points (x, y) on the elliptic curves

y2 = x3 + 4x2 − 4x− 15, (x = 2k) (7.1)
y2 = x3 + 16x2 + 68x+ 81, (x = 2k) (7.2)
y2 = x3 + 5x2 − 4x+ 16, (x = 4k) (7.3)

respectively, where x is positive and has the divisibility property shown.
Observe that for each such integral point we still have to check that the
remaining linear and quadratic expressions are squares.

We summarise our findings below.
(i) A classical theorem of Siegel tells us there are only finitely many

integral points on the elliptic curves, so each of our Diophantine problems
has only finitely many solutions.
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(ii) We applied the program RATPOINTS of Elkies, Stahlke and Stoll
(which finds rational points with given bounds on numerator and denomina-
tor on curves of the form y2 = p(x)) to our Diophantine equations. We found
that in each case k = 1 is the only integer solution in the range 1 ≤ k ≤ 106.

(iii) We also used the program SIMATH to find all integral points on
the elliptic curves (7.1)-(7.3). Using these integral points we again found
that for each of our Diophantine problems k = 1 is the only positive integral
solution.

However, the algorithm for finding all integral points on a given ellip-
tic curve uses first an algorithm to determine a basis for the free part of
the Mordell-Weil group of the curve. As far as we understand, this last
algorithm may, depending on the given curve, assume the conjecture of
Birch/Swinnerton-Dyer. According to SIMATH, the Mordell-Weil groups
of the elliptic curves (7.1)-(7.3) are torsion free and have respectively rank
2, 3 and 2. We refer the interested reader to the webpage diana.math.uni-
sb.de/∼simath for further information.

Finally, the linear and quadratic parts of our Diophantine problems can
also be used to show that k = 1 is the only solution in the range 1 ≤
k ≤ N for large N . This approach is more elementary since it uses only
the classical methods for determining elements of a fixed norm in a real
quadratic extension of the rationals. For example, in case (c) the relevant
extension is Q(

√
5). But it appears that one needs to involve the elliptic

curves in order to prove that the number of solutions is finite.
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