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The Theorem of Busemann-Feller-Alexandrov in

Carnot Groups

D. Danielli, N. Garofalo, D. M. Nhieu, and F. Tournier

1. Introduction.

A classical theorem states that a convex function in Rn admits second deriva-
tives at a.e. point. This result was first proved by Busemann and Feller [BF]
for functions in the plane, and subsequently generalized by A.D. Alexandrov
[A] to arbitrary dimensions. The theorem of Busemann-Feller-Alexandrov
plays a basic role in analysis and in pde’s, especially in the theory of fully
nonlinear equations. For instance, in the proof of uniqueness of viscosity
solutions, see Theorems 5.1 and 5.3 in [CC], a quantitative version of such
result (see Theorem 6.4.1 in [EG]) plays an essential role.

In this paper we prove a version of the Busemann-Feller-Alexandrov the-
orem for the class of weaklyH-convex functions in Carnot groups introduced
in [DGN]. Here is our main result 3 .

Theorem 1.1. Let G be a Carnot group of step r = 2, with a system
X1, ..., Xm of bracket generating left-invariant vector fields. If u ∈ C(G) is

a weakly H-convex function, then the horizontal second derivatives XiXju
exist at a.e. point in G. More precisely, for dg-a.e. point go ∈ G there exists

a polynomial of weighted degree ≤ 2, Pu(g; go), such that

lim
g→go

u(g)− Pu(g; go)
d(g, go)2

= 0 .

For the relevant definitions we refer the reader to Section 2. Here, we
recall that, given a Carnot group G, a function u : G → R is called weakly
H-convex if for every g ∈ G, and 0 ≤ λ ≤ 1, the following inequality holds

u(gδλ(g−1g′)) ≤ (1 − λ)u(g) + λu(g′) , for every g′ ∈ Hg , (1.1)
1First author supported in part by NSF grants DMS-0002801 and CAREER DMS-

0239771.
2Second author supported in part by NSF Grants DMS-0070492 and DMS-0300477.
3Theorem 1.1 was announced at the Workshop on Second Order Subelliptic

Equations and Applications, Cortona, June 2003.
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where Hg indicates the horizontal plane through g ∈ G. In (1.1) we have
denoted by δλ : G → G the anisotropic dilations on G. The point gδλ(g−1g′)
denotes the twisted convex combination of g and g′ based at g. The geometric
notion of convexity (1.1) was introduced in [DGN]. In the same paper it was
proved that u ∈ Γ2(G) is weakly H-convex if and only if the symmetrized
horizontal Hessian HessX(u) = [u,ij], defined by

u,ij
def
=

XiXju+XjXiu

2
, i, j = 1, ..., m , (1.2)

is semi-definite positive at every point, see Theorem 2.3. It was also shown
in [DGN] that for every L1

loc weakly H-convex function u, the distributional
derivatives u,ij are signed Radon measures. This interesting property, how-
ever, says nothing concerning the unsymmetrized second derivatives XiXju.
Since

XiXju = u,ij +
1
2
[Xi, Xj]u in D′(G) , (1.3)

it is clear that the central open question here is whether the commutators
[Xi, Xj]u are Radon measures.

The main contribution of the present paper is proving that in a Carnot
group G of step two if u ∈ C(G) is a weakly H-convex function, then the
commutators

[Xi, Xj]u ∈ L2
loc(G) , i, j = 1..., m , (1.4)

In particular, they are Radon measures. Because of (1.3), this implies
that XiXju are Radon measures. This is equivalent to saying that u be-
longs to the Banach space BV 2

H,loc(G) of functions with horizontal gradient
Xu locally of bounded H-variation (we recall here that a classical result of
Rešetnjak [R] shows that a convex function in Rn belongs to BV 2

loc(R
n)).

We can thus appeal to the following recent result of Ambrosio and Magnani
which states: if u ∈ BV 2

H,loc(G), then for dg-a.e. go ∈ G there exists a
polynomial P (go; ·) of weighted degree ≤ 2, such that

lim
r→0

1
r2

1
|B(go, r)|

∫
B(go,r)

|u(g) − P (go, g)| dg = 0 . (1.5)

This tells us that, at least in the average, the second horizontal derivatives
of u exist at dg-a.e. point. To bridge the gap from this information and the
actual pointwise statement in Theorem 1.1, we use the following compactness
estimate, which is Theorem 9.2 in [DGN]: let u be a continuous weakly H-
convex function in G, then there exists C(G) > 0 such that for every gauge
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ball B(g, r) one has

sup
B(g,r)

|u| ≤ C(G)
1

|B(g, 5r)|

∫
B(g,5r)

|u| dg′ , (1.6)

and
ess sup
B(g,r)

|Xu| ≤ C(G)
r

1
|B(g, 15r)|

∫
B(g,15r)

|u| dg′ . (1.7)

Combining (1.4) with (1.5), (1.6), (1.7), we can close the circle and estab-
lish Theorem 1.1. We mention that for the Heisenberg group Hn, n = 1, 2,
Theorem 1.1 was recently proved by two of us in [GT], and our present work
is motivated by the approach there, and by the results in [DGN]. In [GT] the
crucial property (1.4) was deduced from the following monotonicity result
and from an adaption of an idea in [TW]: Let u and v be (smooth) weakly
H-convex functions in a domain Ω ⊂ Hn, n = 1, 2, u ≥ v in Ω, and u = v

on ∂Ω, then ∫
Ω
Sma(u) dg ≤

∫
Ω
Sma(v) dg . (1.8)

Here, we have denoted by Sma(u) the fully nonlinear operator acting on
a function u on H2 as follows

Sma(u) = det HessX(u) +
3
4

{
det
(
u,22 u,24

u,24 u,44

)
+ 2 det

(
u,12 u,14

u,23 u,34

)
(1.9)

+ det
(
u,11 u,13

u,13 u,33

)}
(Tu)2 +

5
16

(Tu)4.

The expression within curly brackets represents a suitable combination
of 2 × 2 minors of the 4 × 4 matrix HessX(u). For functions on H1 the
operator in (1.9) takes the simpler form

Sma(u) = detHessX(u) +
3
4

(Tu)2 ,

and in this setting (1.8) was first proved by Gutierrez and Montanari in [GM],
with the different purpose of proving a maximum principle and generalizing
some of the results in [TW]. Although in [GM] the authors did not explicitly
make the connection with the Busemann-Feller-Alexandrov theorem, they
did establish (1.4) for the first Heisenberg group H1.

Extending the monotonicity property (1.8) to arbitrary Carnot groups is
a difficult task. On the other hand, an analysis of the proof of (1.4) reveals
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that having the horizontal Monge-Ampère operator detHessX(u) in (1.8) is
not necessary, and that a simpler monotonicity result would suffice. Since
in [TW] the authors extend Krylov’s monotonicity property for the Monge-
Ampère operator [K] to what they call k-Hessian measures, it is natural
to ask whether, for any fixed r = 1, ..., m, the monotonicity property (1.8)
continues to be valid for the fully nonlinear operators Fr[u] associated with
the lower symmetric functions (2.8) of the eigenvalues of HessX(u). As it
is well known, such functions play an important role in geometry as they
interpolate between the arithmetic mean and the determinant, see e.g. [Sp].
For the precise description of the operators Fr[u] we refer to equations (2.8),
(2.9) in Section 2. Following the classification introduced for the classical
case in [TW], a function u ∈ Γ2(G) will be called (H)r-convex if Fk[u] ≥ 0
for every k = 1, ..., r. It is worth noting that, when the dimension of the
bracket generating layer in the Lie algebra of G is m = 2, then the relevant
operator F2[u] coincides with detHessX(u). This is the case for instance in
the first Heisenberg group H1, or in the 4-dimensional Engel group E of step
three, and in such cases one respectively recovers Theorem 3.1 in [GM] and
Theorem 9.1 in [GT]. Of course, it is easier to work with the lower symmetric
functions, rather than with the determinant of the horizontal Hessian, since
the computations involving the commutators are more manageable.

In Section 3 we prove a version of (1.8) for arbitrary Carnot groups and
for (H)2-convex functions, i.e., when detHessX(u) is replaced by F2[u], see
Theorem 3.2. This type of result is reminiscent of the monotonicity theorems
in [K], [TW], except that because of the non-trivial commutations the basic
null-Lagrangian property of the symmetric forms fails (for such property see
Proposition 2.1 in [Re]), and we had to find the appropriate substitute for
it.

In Section 4 we prove Theorem 1.1. Here, we focus on groups of step two,
and the reason for this is twofold. First, in these ambients all higher-order
commutators in Theorem 3.2 vanish, and we obtain the notable Corollary
3.3. Secondly, in order to adapt an idea in [TW] we need to produce a
smooth (H)2-convex function to use in Corollary 3.3 whose level sets are
compact and generate the topology of G. For a group of step two it was
proved in [DGN] that the function N 4, where N is the anisotropic gauge, is
weakly H-convex. This is quite remarkable since the gauge itself is almost
certainly not weakly H-convex (it is so in groups of Heisenberg type, but
such groups enjoy some symmetry properties which are lacking in general
Carnot groups of step two). Since N 4 is smooth, from its weak H-convexity
we infer that it is, in particular (H)2-convex, and clearly it possesses the two
above mentioned additional properties. The existence of related functions
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in groups of steps ≥ 3 is a challenging question which we plan to address in
a future study.

In closing, we mention that, similarly to its classical predecessor, Theo-
rem 1.1 will play a key role in proving the uniqueness of viscosity solutions
for fully nonlinear equations in Carnot groups. Such area is presently un-
dergoing a rapid development, see [B], [DGN], [BC], [LMS], [Wa1], [Wa2],
[GM], [GT], [BR], [Wa3], [M]. In particular, in the Heisenberg group a no-
tion of convexity in the viscosity sense of [CIL] (called v-convexity) has been
recently set forth in [LMS]. While it is easy to see that every weakly H-
convex function is also v-convex, the more delicate reverse implication has
been recently established in the papers [BR], [Wa3], [M]. As a consequence,
one now knows that the geometric notion of weak H-convexity is in fact
equivalent to that of v-convexity.

As a final comment, we note that thanks to the recent works [BR], [Wa3]
and [M], the assumption u ∈ C(G) in Theorem 1.1 can be somewhat relaxed.
For instance, it suffices to assume that u is locally bounded from above, see
Remark 4.7. However, in the Heisenberg group Hn even this hypothesis can
be dispensed with altogether since it has been proved in [BR] that weakly
H-convex functions are in L∞

loc.

2. Preliminaries.

We begin by introducing the relevant geometric framework. A Carnot group
of step r is a simply-connected Lie group whose Lie algebra is graded, i.e., g

admits a decomposition g = V1⊕...⊕Vr, with [V1, Vj] = Vj+1, for j = 1, ..., r−
1, and g is r-nilpotent, i.e., [V1, Vr] = {0}, see [FS], [S], [Be]. We assume
that a scalar product < ·, · > is given on g for which the V ′

j s are mutually
orthogonal. We letmj = dim Vj, j = 1, ..., r, and denote byN = m1+...+mr

the topological dimension of G. The notation {ej,1, ..., ej,mj}, j = 1, ..., r,
will indicate a fixed orthonormal basis of the j-th layer Vj. Elements of Vj
are assigned the formal degree j. As a rule, we will use letters g, g′, go for
points in G, whereas we will reserve the letters X, Y, Z, for elements of the
Lie algebra g. We will denote by Lgo(g) = gog the left-translations on G by
an element go ∈ G. Recall that the exponential map exp : g → G is a global
analytic diffeomorphism [V]. It allows to define analytic maps ξi : G → Vi,
i = 1, ..., r, by letting g = exp(ξ1(g) + ...+ ξr(g)). The mapping ξ : G → g

defined by

ξ(g) = ξ1(g) + ...+ ξr(g) ,
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is the inverse of the exponential mapping. For g ∈ G, the projection of the
exponential coordinates of g onto the layer Vj, j = 1, ..., r, are defined as
follows

xj,s(g) = < ξj(g), ej,s >, s = 1, ..., mj. (2.1)

In the sequel it will be convenient to have a separate notation for the first
two layers V1 and V2. For simplicity, we set m = m1, k = m2, and indicate

{e1, ... , em} = {e1,1, ... , e1,m} , {ε1, ... , εk} = {e2,1, ..., e2,k} .
(2.2)

We indicate with

xi(g) = < ξ1(g), ei >, i = 1, ..., m, ys(g) = < ξ2(g), εs >, s = 1, ..., k.
(2.3)

the projections of the exponential coordinates of g onto V1 and V2. Letting
x(g) = (x1(g), ..., xm(g)), y(g) = (y1(g), ..., yk(g)), we will routinely identify
g ∈ G with its exponential coordinates

g = (x(g), y(g), ...), (2.4)

where the dots indicate the (N − (m+ k))-dimensional vector

(x3,1(g), ..., x3,m3(g), ..., xr,1(g), ..., xr,mr(g)).

When G is a group of step 2, then (2.4) simply becomes g = (x(g), y(g)).
Such identification of G with its Lie algebra is justified by the Baker-
Campbell-Hausdorff formula, see, e.g., [V]

exp Z exp Z ′ = exp (Z + Z ′ +
1
2
[Z, Z ′] (2.5)

+
1
12
{
[Z, [Z, Z ′]]− [Z ′, [Z, Z ′]]

}
...) Z, Z ′ ∈ g ,

where the dots indicate a finite linear combination of terms containing com-
mutators of order three and higher.

We denote by X and Y the systems of left-invariant vector fields on G
defined by

Xi(g) = (Lg)∗(ei) , i = 1, ..., m, Ys(g) = (Lg)∗(εs) , s = 1, ..., k ,

where (Lg)∗ denotes the differential of Lg. The system X defines a basis for
the so-called horizontal subbundle HG of the tangent bundle TG. For a
given function f : G → R, the action of Xj on f is specified by the equation

Xif(g) = lim
t→0

f(g exp (tXi)) − f(g)
t

=
d

dt
f(g exp (tXi))

∣∣
t=0

. (2.6)
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A Carnot group of step r is naturally equipped with a family of non-
isotropic dilations defined by

δλ(g) = exp ◦ ∆λ ◦ exp−1(g), g ∈ G, (2.7)

where ∆λ : g → g is defined by ∆λ(Z1+...+Zr) = λZ1+...+λrZr. We denote
by dg the push-forward of Lebesgue measure on g via the exponential map.
Such dg defines a bi-invariant Haar measure on G. One has d(g◦δλ) = λQdg,
so that the number

Q = m1 + 2 m2 + ... + r mr

plays the role of a dimension with respect to the group dilations.
For this reason Q is called the homogeneous dimension of G. Such num-

ber is larger than the topological dimension N of G defined above.
Henceforth, for a given open set Ω ⊂ G we denote by Γk(Ω) the Folland-

Stein class of functions having continuous derivatives up to order k with
respect to the vector fields X1, ..., Xm. The most basic partial differential
operator in a Carnot group is the sub-Laplacian associated with X is the
second-order partial differential operator on G given on a function u ∈ Γ2(G)
by

L =
m∑
i=1

X2
i .

If λ(HessX(u)) = (λ1(HessX(u)), ..., λm(HessX(u))) denote the eigen-
values of the symmetrized horizontal Hessian of u, defined by (1.3), we clearly
have Lu = S1(λ(HessX(u))), where for r = 1, ..., m, the r-th elementary
symmetric function is defined by

Sr(x) =
∑

i1<...<ir

xi1 ... xir , 1 ≤ r ≤ m . (2.8)

When r > 1 we can use such functions to form the fully nonlinear differ-
ential operators

Fr[u] = Sr(λ1(HessX(u)), ..., λm(HessX(u))) . (2.9)

One easily recognizes that

F1[u] = S1(λ) = Lu =
m∑
i=1

XiXiu , (sub-Laplacian of u) (2.10)
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F2[u] = S2(λ) =
1
2

⎧⎨
⎩(Lu)2 −

m∑
i,j=1

u2
,ij

⎫⎬
⎭ =

∑
i<j

(
u,ii u,jj − u2

,ij

)
,

(2.11)

Fm[u] = Sm(λ) = det HessX(u) (horizontal Monge-Ampère) .
(2.12)

Following [TW] we make the definition.

Definition 2.1. For r = 1, ..., m, a function u ∈ Γ2(G) is called (H)r-
convex, if Fk(u) ≥ 0 for k = 1, ..., r.

Remark 2.2. It is important to observe that H1-convex functions corre-

spond to L-subharmonic functions, whereas a function u is Hm-convex if
and only if HessX(u) ≥ 0. According to the following result, which is The-

orem 5.12 in [DGN], this is equivalent to saying that u is weakly H-convex.

Theorem 2.3. In a Carnot group G a function u ∈ Γ2(Ω) is weakly H-
convex if and only if HessX(u) ≥ 0.

For later purposes we record here that F2[·] is (degenerate) elliptic on
(H)2-convex functions, which means that if z is (H)2-convex, then

m∑
i,j=1

∂F2[z]
∂z,ij

ζi ζj ≥ 0 , (2.13)

for every ζ ∈ Rm. The proof of this property is the same as for the classical
case, for which we refer the reader to [Sp].

The Heisenberg group. An important model of Carnot group of step
r = 2 is the Heisenberg group Hn, see [S]. The underlying manifold of this
Lie group is simply R2n+1, with the non-commutative group law

g g′ = (x, y, t) (x′, y′, t′) = (x+x′, y+y′, t+t′+
1
2
(< x′, y > − < x, y′ >)) ,

(2.14)
where we have let x, x′, y, y′ ∈ Rn, t, t′ ∈ R. Let (Lg)∗ be the differential of
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the left-translation (2.14). A simple computation shows that

(Lg)∗
(
∂

∂xi

)
def
= Xi =

∂

∂xi
− yi

2
∂

∂t
, i = 1, ..., n , (2.15)

(Lg)∗
(
∂

∂yi

)
def
= Xn+i =

∂

∂yi
+

xi
2

∂

∂t
, i = 1, ..., n ,

(Lg)∗
(
∂

∂t

)
def
= T =

∂

∂t

We note that the only non-trivial commutator is

[Xi, Xn+j] = T δij , i, j = 1, ..., n , (2.16)

therefore the vector fields {X1, ..., X2n} generate the Lie algebra hn =
R2n+1 = V1 ⊕ V2, where V1 = R2n × {0}t, V2 = {0}(x,y) × R. The non-
isotropic group dilations associated with this grading are

δλ(g) = (λx, λy, λ2t) , (2.17)

with relative homogeneous dimension Q = 2n+ 2.

Carnot groups of step two. For a Carnot group G of step r = 2 we
denote by bsij the group constants defined by the formula

[ei, ej] =
k∑
s=1

bsij εs ,

see (2.2). The following useful lemma for the first and second derivatives
along the vector fields Xj in exponential coordinates holds. For its proof see
[DGN].

Lemma 2.4. Let G be a Carnot group of step 2, then for every i, j =
1, ..., m, one has

Xi =
∂

∂xi
+

1
2

k∑
s=1

< [ξ1, ei], εs >
∂

∂ys
(2.18)

=
∂

∂xi
+

1
2

k∑
s=1

m∑
j=1

bsji xj(g)
∂

∂ys
.
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XiXj =
∂2

∂xi∂xj
+

1
2

k∑
s=1

< [ei, ej], εs >
∂

∂ys
(2.19)

+
1
2

k∑
s=1

< [ξ1, ej], εs >
∂2

∂xi∂ys
+

1
2

k∑
s=1

< [ξ1, ei], εs >
∂2

∂xj∂ys

+
1
4

k∑
s,s′=1

< [ξ1, ei], εs >< [ξ1, ej], εs′ >
∂2

∂ys∂ys′
.

From (2.19) we obtain the commutator formula

[Xi, Xj] u =
k∑
s=1

bsji
∂

∂ys
. (2.20)

The Engel group of step r = 3. We next describe the four-dimensional
cyclic or Engel group. This group is important in many respects since it
represents the next level of difficulty with respect to the Heisenberg group
and provides an ideal framework for testing whether results which are true
in step 2 generalize to step 3 or higher. The reader unfamiliar with the cyclic
group can consult [CGr], or also [Mon]. The Engel group E = K3, see ex.
1.1.3 in [CGr], is the Lie group whose underlying manifold can be identified
with R4, and whose Lie algebra is given by the grading,

e = V1 ⊕ V2 ⊕ V3 ,

where V1 = span{e1, e2}, V2 = span{e3}, and V3 = span{e4}, so thatm1 = 2
and m2 = m3 = 1. We will denote with (x, y), t and s respectively the
variables in V1, V2 and V3, so that any Z ∈ e can be written as Z = xe1 +
ye2 + te3 + se4. If g = exp(Z), we will identify g = (x, y, t, s). For the
corresponding left-invariant vector fields on E given by Xi(g) = (Lg)∗(ei),
i = 1, ..., 4, we assign the commutators

[X1, X2] = X3 [X1, X3] = [X1, [X1, X2]] = X4 , (2.21)

all other commutators being assumed trivial. We observe right-away that
the homogeneous dimension of E is

Q = m1 + 2 m2 + 3 m3 = 7 .

The group law in E is given by the Baker-Campbell-Hausdorff formula
[V]. In exponential coordinates, if g = exp(Z), g′ = exp(Z ′), we have

g ◦ g′ = Z + Z ′ +
1
2

[Z, Z ′] +
1
12
{
[Z, [Z, Z ′]] − [Z ′, [Z, Z ′]]

}
.
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A computation based on (2.21) gives (see also ex. 1.2.5 in [CGr])

g ◦ g′ =
(
x+ x′, y + y′, t+ t′ + P3, s+ s′ + P4

)
,

where
P3 =

1
2

(xy′ − yx′) ,

P4 =
1
2
(xt′ − tx′) +

1
12

(
x2y′ − xx′(y + y′) + yx

′2
)
.

Using the Baker-Campbell-Hausdorff formula we find the following ex-
pressions for the vector fields X1, ..., X4

X1 =
∂

∂x
− y

2
∂

∂t
−
(
t

2
+
xy

12

)
∂

∂s
, (2.22)

X2 =
∂

∂y
+

x

2
∂

∂t
+

x2

12
∂

∂s
,

X3 =
∂

∂t
+

x

2
∂

∂s
,

X4 =
∂

∂s
.

3. Monotonicity.

To introduce the results in this section we continue to denote with E the
Engel group discussed above. We observe that since E has step r = 3, if
u ∈ Γ3(Ω), then u ∈ C1(Ω).

Theorem 3.1. Let Ω ⊂ E be a C1 bounded open set, and consider two

weakly H-convex functions u, v ∈ Γ3(Ω) such that u ≥ v in Ω and u = v on

∂Ω. For 0 ≤ τ ≤ 1 we set

z = z(g, τ)
def
= (1− τ)u(g) + τv(g) , g ∈ Ω .

We have

d

dτ

∫
Ω

{
detHessX(z) +

3
4

(X3z)2 +
1
2

(X2z)(X4z)
}
dg ≥ 0 .

In particular,∫
Ω

{
detHessX(u) +

3
4

(X3u)2 +
1
2

(X2u)(X4u)
}
dg

≤
∫

Ω

{
detHessX(v) +

3
4

(X3v)2 +
1
2

(X2v)(X4v)
}
dg .
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Theorem 3.1 was proved in [GT]. When the functions u and v do not
depend on the variable in the last layer V4, then X4z = 0, and the corre-
sponding statement about weakly H-convex functions in the first Heisenberg
group H1 was proved in [GM]. We note that in E the notions of (H)2- and
weak H-convexity coincide.

The aim of this section is to obtain a version of Theorem 3.1 for arbitrary
Carnot groups. Here is our main result. For a C1 domain Ω ⊂ G, with
Riemannian outer unit normal ν, we introduce the horizontal normal to ∂Ω,

νX = (νX,1, ..., νX,m)T , (3.1)

whose components are defined by

νX,i = < Xi, ν > . (3.2)

Theorem 3.2. Let G be a Carnot group of arbitrary step, and Ω ⊂ G be a

C1 bounded open set. Consider (H)2-convex functions u, v ∈ Γ3(Ω)∩C1(Ω)
such that u ≥ v in Ω, and u = v on ∂Ω. For 0 ≤ s ≤ 1, we set

z = z(g, s)
def
= (1− s)u(g) + sv(g) , g ∈ Ω , (3.3)

and indicate with zs the partial derivative

∂z

∂s
= v − u .

With νX defined by (3.2), one has

d

ds

∫
Ω

{
F2[z] +

3
4

∑
i<j

([Xi, Xj]z)
2 +

1
2

m∑
j=1

∑
i�=j

[[Xj, Xi], Xi]z Xjz (3.4)

+
1
4

m∑
j=1

∑
i�=j

[Xj, [[Xj, Xi], Xi]](z2)
}
dg

=
∫
∂Ω

m∑
i,j=1

∂F2[z]
∂z,ij

νX,i νX,j |∇zs| dσ ≥ 0 ,

where in the last inequality we have used (2.13). In particular, one obtains
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from (3.4)

∫
Ω

⎧⎨
⎩F2[u] +

3
4

∑
i<j

([Xi, Xj]u)
2 +

1
2

m∑
j=1

∑
i�=j

[[Xj, Xi], Xi]u Xju (3.5)

+
1
4

m∑
j=1

∑
i�=j

[Xj, [[Xj, Xi], Xi]](u2)

⎫⎬
⎭ dg

≤
∫

Ω

⎧⎨
⎩F2[v] +

3
4

∑
i<j

([Xi, Xj]v)
2 +

1
2

m∑
j=1

∑
i�=j

[[Xj, Xi], Xi]v Xjv

+
1
4

m∑
j=1

∑
i�=j

[Xj, [[Xj, Xi], Xi]](v2)

⎫⎬
⎭dg .

Theorem 3.2 has the following important consequence.

Corollary 3.3. Let G be a Carnot group of step r = 2, and Ω ⊂ G be a C1

bounded open set. Consider (H)2-convex functions u, v ∈ Γ3(Ω) such that
u ≥ v in Ω and u = v on ∂Ω. For z = z(g, s) as in (3.3), one has

d

ds

∫
Ω

⎧⎨
⎩F2[z] +

3
4

∑
i<j

([Xi, Xj]z)
2

⎫⎬
⎭ dg

=
∫
∂Ω

m∑
i,j=1

∂F2[z]
∂z,ij

νX,i νX,j |∇zs| dσ ≥ 0 ,

which gives in particular

∫
Ω

⎧⎨
⎩F2[u] +

3
4

∑
i<j

([Xi, Xj]u)2

⎫⎬
⎭ dg (3.6)

≤
∫

Ω

⎧⎨
⎩F2[v] +

3
4

∑
i<j

([Xi, Xj]v)
2

⎫⎬
⎭ dg .

Proof. It suffices to observe that if the step of G is r = 2, then we have
trivially [[Xj, Xi], Xi] = [Xj, [[Xj, Xi], Xi]] = 0 for all i, j = 1, ..., m, so that
the conclusion follows immediately from Theorem 3.2. �

In particular, using (2.16) one obtains from Corollary 3.3.
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Corollary 3.4. Under the same assumptions of Corollary 3.3, when G =
Hn, the Heisenberg group, one has

∫
Ω

{
F2[u] +

3
4
n (Tu)2

}
dg ≤

∫
Ω

{
F2[v] +

3
4
n (Tu)2

}
dg . (3.7)

We also note that since in the Engel group E a function is (H)2-convex if
and only if it is weaklyH-convex, and since in E one has [Xj, [[Xj, Xi], Xi]] =
0, Theorem 3.2 contains Theorem 3.1.

To establish Theorem 3.2 we begin with a simple calculus lemma.

Lemma 3.5. Let G be a Carnot group and Ω ⊂ G be a C1 bounded open

set. Consider two functions u, v ∈ Γ3(Ω) ∩ C1(Ω) such that u ≥ v in Ω and

u = v on ∂Ω. For 0 ≤ s ≤ 1, let z = z(g, s) be as in (3.3), and define

f(s) =
∫

Ω
F2[z] dg . (3.8)

One has

f ′(s) =
∫
∂Ω

m∑
i,j=1

∂F2[z]
∂z,ij

νX,i νX,j |∇zs| dσ −
∫

Ω

m∑
i,j=1

Xi
∂F2[z]
∂z,ij

Xj(zs) dg ,

(3.9)
where we have indicated with dσ the Riemannian volume measure on ∂Ω.

Proof. In the sequel we will tacitly use the summation convention over
repeated indices. Also, we will indicate with zs the partial derivative

∂z

∂s
= v − u .

We note explicitly that zs ≤ 0 in Ω, and zs = 0 on ∂Ω. Thereby, the
Riemannian unit normal ν to ∂Ω satisfies the relation

∇zs = ν |∇zs| , (3.10)

where ∇ indicates the Riemannian gradient in G. A differentiation now
gives

f ′(s) =
∫

Ω

∂F2[z]
∂z,ij

∂z,ij
∂s

dg =
∫

Ω

∂F2[z]
∂z,ij

(zs),ij dg .
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Using the definition (1.2), and integrating by parts, we find

f ′(s) =
1
2

∫
∂Ω

∂F2[z]
∂z,ij

Xj(zs) < Xi, ν > dσ − 1
2

∫
Ω
Xi
∂F2[z]
∂z,ij

Xj(zs) dg

(3.11)

+
1
2

∫
∂Ω

∂F2[z]
∂z,ij

Xi(zs) < Xj, ν > dσ − 1
2

∫
Ω
Xj

∂F2[z]
∂z,ij

Xi(zs) dg .

Next, using (3.10) we see that

Xi(zs) = < Xi, ν > |∇zs| = νX,i |∇zs| . (3.12)

Substitution in (3.11) gives

f ′(s) =
∫
∂Ω

∂F2[z]
∂z,ij

νX,i νX,j |∇zs| dσ −
∫

Ω

Xi
∂F2[z]
∂z,ij

Xj(zs) dg , (3.13)

which is (3.9). �

We now turn to the

Proof of Theorem 3.2. We claim that the following formula holds∫
Ω
Xi
∂F2[z]
∂z,ij

Xj(zs) dg =
d

ds

{
3
4

∫
Ω

∑
i<j

([Xi, Xj]z)
2 (3.14)

+
1
2

m∑
j=1

∑
i�=j

[[Xj, Xi], Xi]z Xjz +
1
4

m∑
j=1

∑
i�=j

[Xj, [[Xj, Xi], Xi]](z2)
}
.

Assuming (3.14) valid for a moment, then from it, and from (3.9) of
Lemma 3.5, we would obtain

d

ds

∫
Ω
F2[z] =

∫
∂Ω

m∑
i,j=1

∂F2[z]
∂z,ij

νX,i νX,j|∇zs|dσ − d

ds

{
3
4

∫
Ω

∑
i<j

([Xi, Xj]z)
2

+
1
2

m∑
j=1

∑
i�=j

[[Xj, Xi], Xi]z Xjz +
1
4

m∑
j=1

∑
i�=j

[Xj, [[Xj, Xi], Xi]](z2)
}
,

and this would complete the proof of the theorem. We are thus left with
proving (3.14).

We write

Xi
∂F2[z]
∂z,ij

Xj(zs) = Xi
∂F2[z]
∂z,i1

X1(zs) + ... + Xi
∂F2[z]
∂z,im

Xm(zs) . (3.15)
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In the sequel, we will need the following simple formulas

∂F2[u]
∂u,ii

=
m∑
j �=i

u,jj ,
∂F2[u]
∂u,ij

= − u,ij when i �= j . (3.16)

If we consider the first addend in the right-hand side of (3.15), using
(3.16) we obtain

Xi
∂F2[z]
∂z,i1

= X1
∂F2[z]
∂z,11

+
∑

i=2,...,m

Xi
∂F2[z]
∂z,i1

(3.17)

=
m∑
i=2

X1z,ii −
m∑
i=2

Xiz,i1 =
m∑
i=2

{X1z,ii − Xiz,i1} .

We now observe that

X1z,ii − Xiz,i1 = X1XiXiz − 1
2
XiX1Xiz − 1

2
XiXiX1z (3.18)

= X1XiXiz − 1
2
XiX1Xiz − 1

2
XiX1Xiz +

1
2
Xi[X1, Xi]z

= [X1, Xi]Xiz +
1
2
Xi[X1, Xi]z =

3
2
Xi[X1, Xi]z + [[X1, Xi], Xi]z .

Replacing (3.18) in (3.17), we conclude

Xi
∂F2[z]
∂z,i1

=
3
2

m∑
i=2

Xi[X1, Xi]z +
m∑
i=2

[[X1, Xi], Xi]z . (3.19)

The same considerations allow to establish analogous formulas for the
remaining addends in (3.15), obtaining

Xi
∂F2[z]
∂z,ij

Xj(zs) =
3
2

m∑
j=1

⎛
⎝∑
i�=j

Xi[Xj, Xi]z

⎞
⎠Xj(zs) (3.20)

+
m∑
j=1

⎛
⎝∑
i�=j

[[Xj, Xi], Xi]z

⎞
⎠Xj(zs) .
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We consider the first term in the right-hand side of (3.20). Integrating
by parts, we find

3
2

m∑
j=1

∑
i�=j

∫
Ω
Xi[Xj, Xi]z Xj(zs) dg (3.21)

=
3
2

m∑
j=1

∑
i�=j

∫
∂Ω

[Xj, Xi]z < Xi, ν > Xj(zs) dσ

− 3
2

m∑
j=1

∑
i�=j

∫
Ω

[Xj, Xi]z XiXj(zs) dg

=
3
2

m∑
j=1

∑
i�=j

∫
∂Ω

[Xj, Xi]z < Xi, ν >< Xj, ν > |∇zs| dσ

− 3
2

m∑
j=1

∑
i�=j

∫
Ω
[Xj, Xi]z XiXj(zs) dg

= (I) + (II) ,

where in the last equality we have used (3.12). We now claim that

(I) = 0 . (3.22)

This easily follows from the identity [Xi, Xj] = −[Xj, Xi], and from

(I) =
3
2

∫
∂Ω

{
[X1, X2]z < X1, ν >< X2, ν > +...

+ [X1, Xm−1]z < X1, ν >< Xm−1, ν >

+ [X1, Xm]z < X1, ν >< Xm, ν >

+ [X2, X1]z < X2, ν >< X1, ν > +...
+ [Xm−1, X1]z < Xm−1, ν >< X1, ν > +...
+ [Xm−1, Xm]z < Xm−1, ν >< Xm, ν >

+ [Xm, X1]z < Xm, ν >< X1, ν > +...

+ [Xm, Xm−1]z < Xm, ν >< Xm−1, ν >

}
|∇zs|dσ.

Just notice that the terms in the above boundary integral cancel in pairs.
Finally, we claim that

(II) =
d

ds

⎧⎨
⎩3

4

∑
i<j

∫
Ω

([Xi, Xj]z)
2 dg

⎫⎬
⎭ . (3.23)
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To prove (3.23) we proceed as follows

(II) = − 3
2

m∑
j=1

∑
i�=j

∫
Ω
[Xj, Xi]z XiXj(zs) dg

= − 3
2

∫
Ω

{
[X1, X2]z X2X1(zs) + ...+ [X1, Xm]z XmX1(zs)

+ [X2, X1]z X1X2(zs) + ...+ [Xm, Xm−1]z Xm−1Xm(zs)
}
dg

= − 3
2

∫
Ω

{
[X1, X2]z

(
X2X1(zs) −X1X2(zs)

)
+ ...

+ [X1, Xm]z
(
XmX1(zs) −X1Xm(zs)

)
+ ... + [Xm−1, Xm]z

(
XmXm−1(zs) −Xm−1Xm(zs)

)}
dg

=
d

ds

⎧⎨
⎩3

4

∑
i<j

∫
Ω

([Xi, Xj]z)
2 dg

⎫⎬
⎭ .

We next consider the second term in the right-hand side of (3.20). An
integration by parts gives
m∑
j=1

∑
i�=j

∫
Ω
[[Xj, Xi], Xi]z Xj(zs) dg (3.24)

=
m∑
j=1

∑
i�=j

∫
∂Ω
z < [[Xj, Xi], Xi], ν>Xj(zs)dσ−

m∑
j=1

∑
i�=j

∫
Ω
z[[Xj, Xi], Xi]Xj(zs)dg.

We now consider
∑m

j=1

∑
i�=j Xjz[[Xj, Xi], Xi](zs), and integrate this

function by parts, obtaining
m∑
j=1

∑
i�=j

∫
Ω
Xjz [[Xj, Xi], Xi](zs) dg

=
m∑
j=1

∑
i�=j

∫
∂Ω

z<Xj, ν> [[Xj, Xi], Xi](zs)dσ−
m∑
j=1

∑
i�=j

∫
Ω

zXj[[Xj, Xi], Xi](zs)dg

=
m∑
j=1

∑
i�=j

∫
∂Ω

z < Xj, ν >< [[Xj, Xi], Xi], ν > |∇zs| dσ

−
m∑
j=1

∑
i�=j

∫
Ω

z[[Xj, Xi], Xi]Xj(zs)dg −
m∑
j=1

∑
i�=j

∫
Ω

z[Xj, [[Xj, Xi], Xi]](zs)dg.
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The latter equality gives

−
m∑
j=1

∑
i�=j

∫
Ω
z [[Xj, Xi], Xi]Xj(zs) dg (3.25)

=
m∑
j=1

∑
i�=j

∫
Ω
Xjz [[Xj, Xi], Xi](zs) dg

−
m∑
j=1

∑
i�=j

∫
∂Ω

z < Xj, ν >< [[Xj, Xi], Xi], ν > |∇zs| dσ

+
m∑
j=1

∑
i�=j

∫
Ω

z [Xj, [[Xj, Xi], Xi]](zs) dg .

We now substitute (3.25) into (3.24), obtaining

m∑
j=1

∑
i�=j

∫
Ω
[[Xj, Xi], Xi]z Xj(zs) dg (3.26)

=
m∑
j=1

∑
i�=j

∫
∂Ω
z < [[Xj, Xi], Xi], ν > Xj(zs) dσ

−
m∑
j=1

∑
i�=j

∫
∂Ω
z < Xj, ν >< [[Xj, Xi], Xi], ν > |∇zs| dσ

+
m∑
j=1

∑
i�=j

∫
Ω
Xjz [[Xj, Xi], Xi](zs) dg

+
m∑
j=1

∑
i�=j

∫
Ω

z [Xj, [[Xj, Xi], Xi]](zs) dg

=
m∑
j=1

∑
i�=j

∫
Ω

Xjz [[Xj, Xi], Xi](zs) dg

+
m∑
j=1

∑
i�=j

∫
Ω

z [Xj, [[Xj, Xi], Xi]](zs) dg ,
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where we have been able to eliminate the boundary integrals because of
(3.10). We now use (3.26) to find

d

ds

⎛
⎝ m∑
j=1

∑
i�=j

∫
Ω
[[Xj, Xi], Xi]z Xjz dg

⎞
⎠ (3.27)

=
m∑
j=1

∑
i�=j

∫
Ω
[[Xj, Xi], Xi](zs) Xjz dg

+
m∑
j=1

∑
i�=j

∫
Ω
[[Xj, Xi], Xi]z Xj(zs) dg

= 2
m∑
j=1

∑
i�=j

∫
Ω

[[Xj, Xi], Xi]z Xj(zs) dg

−
m∑
j=1

∑
i�=j

∫
Ω

z [Xj, [[Xj, Xi], Xi]](zs) dg

= 2
m∑
j=1

∑
i�=j

∫
Ω
[[Xj, Xi], Xi]z Xj(zs) dg

− 1
2
d

ds

⎛
⎝ m∑
j=1

∑
i�=j

∫
Ω
[Xj, [[Xj, Xi], Xi]](z2) dg

⎞
⎠ .

From (3.27) we finally obtain
m∑
j=1

∑
i�=j

∫
Ω
[[Xj, Xi], Xi]z Xj(zs)dg =

d

ds

{
1
2

m∑
j=1

∑
i�=j

∫
Ω
[[Xj, Xi], Xi]z Xjzdg

(3.28)

+
1
4

m∑
j=1

∑
i�=j

∫
Ω

[Xj, [[Xj, Xi], Xi]](z2) dg
}
.

We now integrate (3.20) over Ω, and use (3.21), (3.22), (3.23) and (3.28)
to conclude∫

Ω
Xi
∂F2[z]
∂z,ij

Xj(zs) dg =
d

ds

∫
Ω

⎧⎨
⎩3

4

∑
i<j

([Xi, Xj]z)
2

+
1
2

m∑
j=1

∑
i�=j

[[Xj, Xi], Xi]z Xjz +
1
4

m∑
j=1

∑
i�=j

[Xj, [[Xj, Xi], Xi]](z2)

⎫⎬
⎭ dg .
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This finally establishes (3.14), thus completing the proof of the theorem.
�

4. The theorem of Busemann-Feller and Alexandrov.

Throughout this section G represents a Carnot group of step r = 2. Our
primary objective in this section is to prove Theorem 1.1. Our first step
will be to obtain a local control from above of the fully nonlinear operator
appearing in Theorem 3.2 in terms of the oscillation of the function u. Here,
we adapt an idea in the paper by Trudinger and Wang [TW] which has
already been exploited for the generalized Monge-Ampère operator in the
Heisenberg group in [GM] and [GT]. To implement this idea we need to
provide a suitable smooth (H)2-convex test function to insert in Theorem
3.2. It turns out that we can use for this purpose a suitable power of the
gauge N . That this is possible at all is quite remarkable, since the weak
H-convexity of the gauge itself in an arbitrary Carnot group of step 2 is
very much in doubt. However, in [DGN] it was proved that the function
u = N 4 is weakly H-convex in any such group. For completeness we record
the short proof in the next lemma.

Lemma 4.1. In a Carnot group of step 2 the function u(g) = N (g)4 =
|x(g)|4 + 16|y(g)|2 is weakly H-convex, hence in particular it is (H)r-convex
for r = 1, ..., m (see Remark 2.2).

Proof. Consider the two functions ψ(g) = |x(g)|4, χ(g) = |y(g)|2. It suffices
to show that ψ and χ are weakly H-convex in G. Since ψ does not depend
on the variables (y1(g), ..., yk(g)), we easily obtain from (2.19) in Lemma 2.4

ψ,ij = 4 |x(g)|2 δij + 8 xi(g) xj(g) . (4.1)

From this formula we easily infer for every ζ ∈ V1

< HessX(ψ)(g)ζ, ζ > = 4 |x(g)|2 |ζ|2 + 8 < ξ1(g), ζ >2 ≥ 0 ,

which thanks to Theorem 2.3 guarantees the weak H-convexity of ψ. Next,
we look at χ. Again, from (2.19) in Lemma 2.4 we have

XiXjχ =
k∑
s=1

< [ei, ej], εs > ys +
1
2

k∑
s,s′=1

< [ξ1, ei], εs >< [ξ1, ej], εs′ > δss′

=
k∑
s=1

< [ei, ej], εs > ys +
1
2

k∑
s=1

< [ξ1, ei], εs >< [ξ1, ej], εs > .
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Since [ei, ej] = −[ej, ei], we obtain

χ,ij =
1
2
(
XiXjχ + XjXiχ

)
=

1
2

k∑
s=1

< [ξ1, ei], εs >< [ξ1, ej], εs > .

(4.2)

This gives for every ζ ∈ V1

< HessX(χ)(g)ζ, ζ > =
1
2

k∑
s=1

m∑
i,j=1

< J(εs)ξ1(g), ei > ζi < J(εs)ξ1(g), ej > ζj

=
1
2

k∑
s=1

< J(εs)ξ1(g), ζ >2 ≥ 0 , (4.3)

where we have denoted by J : V2 → End(V1) the Kaplan mapping defined
by the equation

< J(η)ξ, ξ′ > = < [ξ, ξ′], η > .

From Theorem 2.3 we conclude that χ is weakly H-convex. �

Lemma 4.2. Let G and u be as in Lemma 4.1, then there exists a constant

C(G) > 0 such that∣∣∣∣∣∣F2[u] +
3
4

∑
i<j

([Xi, Xj]u)
2

∣∣∣∣∣∣ ≤ C(G) u .

Proof. From (4.1), (4.2) we obtain

u,ij(g) = 4 |x(g)|2 δij + 8 xi(g) xj(g) (4.4)

+
1
2

k∑
s=1

< J(εs)ξ1(g), ei >< J(εs)ξ1(g), ej > .

From (4.4) and (2.11) we easily infer

|F2[u]| ≤ C(G) |x(g)|4 . (4.5)

Next, we use (2.20) to find∑
i<j

([Xi, Xj]u|)2 ≤ C(G) |y|2 . (4.6)
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Combining (4.5), (4.6) we reach the desired conclusion. �

The following is the second main result of this paper. We emphasize
that it represents a kind of Caccioppoli inequality, but for the fully nonlinear
operator appearing in Corollary 3.3.

Theorem 4.3. Consider a bounded open set Ω in a group of step two G.
Let u ∈ Γ3(Ω) be a (H)2-convex function. For any D ⊂⊂ Ω we have for

some constant C > 0 depending on G,Ω, and D,

∫
D

⎧⎨
⎩F2[u] +

3
4

∑
i<j

([Xi, Xj]u)
2

⎫⎬
⎭ dg ≤ C

(
osc
Ω
u

)2

.

Proof. We observe preliminarily that since G has step r = 2, then the
assumption u ∈ Γ3(Ω) implies that for any ω ⊂⊂ Ω one has u ∈ C1(ω).
We now fix a gauge ball B = B(go, R) ⊂ Ω, and without loss of generality
we assume that go = 0, the group identity. By considering instead of u the
function v = u − supB u − ε, we can assume that u ≤ −ε in B, for some
ε > 0. If we set mo = infB v < 0, we next define the C∞ function

ψ(g) =
|mo|
σ

{
N (g)4

R4
− 1
}
,

where σ ∈ (0, 1) is fixed. From Lemma 4.1 we know that the function N 4 is
weakly H-convex, hence, in particular, it is (H)2-convex. We thus conclude
that ψ is a smooth (H)2-convex function. Furthermore, we have

ψ(e) = − |mo|
σ

< mo .

We apply (3.6) in Corollary 3.3 to v and ψ on the open set B̃ = {g ∈ Ω |
ψ(g) < v(g)}, obtaining

∫
B̃

⎧⎨
⎩F2[v] +

3
4

∑
i<j

([Xi, Xj]v)
2

⎫⎬
⎭ dg ≤

∫
B̃

⎧⎨
⎩F2[ψ] +

3
4

∑
i<j

([Xi, Xj]ψ)2

⎫⎬
⎭ dg
(4.7)

≤
∫
B

⎧⎨
⎩F2[ψ] +

3
4

∑
i<j

([Xi, Xj]ψ)2

⎫⎬
⎭ dg.
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We next observe that {g ∈ Ω | ψ(g)< mo} ⊂ B̃. This being said we now
claim that there exists δ = δ(σ) ∈ (0, 1), independent of u, such that

B(0, δR) ⊂ {g ∈ Ω | ψ(g)< mo} .

The proof of this property easily follows from the definition of ψ, provided
that we choose δ = (1− σ)1/4. From these considerations and from (4.7) we
conclude

∫
B(0,δR)

⎧⎨
⎩F2[v]+

3
4

∑
i<j

([Xi, Xj]v)
2

⎫⎬
⎭ dg≤

∫
B

⎧⎨
⎩F2[ψ]+

3
4

∑
i<j

([Xi, Xj]ψ)2

⎫⎬
⎭ dg.
(4.8)

At this point we appeal to Lemma 4.2 to conclude

∫
B

⎧⎨
⎩F2[ψ] +

3
4

∑
i<j

([Xi, Xj]ψ)2

⎫⎬
⎭ dg ≤ C(G)

m2
o

σ2
R−8

∫
B
N 4(g) dg .

(4.9)
Using Proposition 1.15 in [FS], or a rescaling, we find∫

B
N 4(g) dg = α(G) RQ+4 ,

where α(G) > 0, and Q = m + 2k is the homogeneous dimension of G.
Substituting this information in (4.9), and then using such inequality in
(4.8), and letting ε→ 0, we finally obtain

∫
B(0,δR)

⎧⎨
⎩F2[u] +

3
4

∑
i<j

([Xi, Xj]u)
2

⎫⎬
⎭ dg (4.10)

≤ C(G)
RQ−4

σ2
(oscB u)2 ≤ C′(G) RQ−4 (oscΩ u)2 .

To complete the proof, we simply cover D ⊂⊂ Ω with a finite number of
balls B(gj , σR), and apply (4.10) to each of these balls. �

We now present an important consequence of Theorem 4.3, namely that
the commutators of a weakly H-convex function are locally in L2

loc.

Corollary 4.4. Let u ∈ C(Ω) be a weaklyH-convex function in an open set

Ω ⊂ G, where G is a Carnot group of step two, then for every i, j = 1, ..., m
one has

[Xi, Xj]u ∈ L2
loc(Ω) .
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Proof. Fix D ⊂⊂ D′ ⊂⊂ Ω. Let K ∈ C∞
o (Hn) be such that K ≥ 0,

supp K ⊆ B(0, 1),
∫

Hn K(g)dg = 1, and let Kε(g) = ε−QK(δε−1g) be the
approximation to the identity associated with K. By Remark 5.9 in [DGN],
for sufficiently small ε, depending on dist(D′,Ω), the function uε = Kε � u
is weakly H-convex in D′ and C∞. In particular, uε is (H)2-convex in D′.
Furthermore, since uε → u uniformly on compact subsets of Ω, we clearly
have

osc
D′

uε ≤ C osc
Ω

u ,

for some constant C > 0 depending only on dist(D′,Ω), but not on ε. From
the latter inequality, and from Theorem 4.3, we find

∫
D

⎧⎨
⎩F2[uε] +

3
4

∑
i<j

([Xi, Xj]uε)
2

⎫⎬
⎭ dg ≤ C

(
osc
Ω
u

)2

= C(Ω,Ω′, n, u) <∞ .

(4.11)
By (4.11), and by the (H)2-convexity of uε, we infer∫

D

([Xi, Xj]uε)2 dg ≤ C(Ω,Ω′, n, u) . (4.12)

In particular, (4.12) says that ||[Xi, Xj]uε||L2(D) ≤ C(Ω,Ω′, n, u), and
therefore there exists v ∈ L2(D) such that [Xi, Xj]uε ⇀ v. Denoting by
[Xi, Xj]u the distributional derivative of u along the commutator [Xi, Xj],
one easily recognizes that [Xi, Xj]u = v ∈ L2(D). This proves the theorem.
�

We now recall a basic result, which is Theorem 8.1 in [DGN], see also
Theorem 4.2 in [LMS] for a similar result in the special case of the Heisenberg
group.

Theorem 4.5. Let G be a Carnot group G and consider a weaklyH-convex

function u ∈ L1
loc(G). For i, j = 1, ..., m, there exist signed Radon measures

νijH = νjiH such that for every φ ∈ C∞
o (G) one has∫

G
u(g) φ,ij(g) dg =

∫
G
u(g)

XiXjφ(g) +XjXiφ(g)
2

dg =
∫
G
φ(g) d νijH(g) .

In addition, the measures νiiH are nonnegative.

With Theorem 4.5 we can establish the following important consequence
of Corollary 4.4.
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Theorem 4.6. Let u ∈ C(G) be weaklyH-convex in a group G of step two,
then the non-symmetrized distributional second derivatives XiXju, i, j =
1, ..., m, are signed Radon measures.

Proof. Clearly, u ∈ L1
loc(Ω). We now observe that

XiXju = u,ij +
1
2
[Xi, Xj]u in D′(Ω) .

From Corollary 4.4 we conclude that [Xi, Xj]u ∈ L2
loc(Ω), hence in partic-

ular all first commutators are Radon measures. The conclusion thus follows
from the above identity and from Theorem 4.5. �

Remark 4.7. By the recent results in [BR], [Wa3] and [M], we know that
if u is weakly H-convex and locally bounded from above, then in fact u ∈
L∞
loc(G). Therefore, the conclusion of Theorem 4.6 continues to hold under

the weaker assumption that u is locally bounded from above. In the special

case of Hn, even such weaker assumption is not needed, see [BR].

In the sequel, we denote by Γ0,1
loc(G) the space of functions which are

locally Lipschitz with respect to the Carnot-Carathéodory metric in G. We
will need the following result which is contained in Theorem 1.3 and Theorem
2.7 in [GN].

Theorem 4.8. Let G be a Carnot group and h ∈ Γ0,1
loc(G). There exists

C = C(G) > 0 such that for every g′, g′′ ∈ B(g, r) one has

|h(g′)− h(g′′)| ≤ C d(g′, g′′) ‖Xh‖L∞(B(g,3r)) .

We also need the next result, which is Theorem 9.1 in [DGN].

Theorem 4.9. Let G be a Carnot group and u ∈ L∞
loc(G) be a weakly H-

convex function, then u can be modified on a set of measure zero so that for

some constant C = C(G) > 0 one has for every go ∈ G and every R > 0

||Xu||L∞(B(go,R)) ≤ C

R
||u||L∞(B(go,3R)) ,

|u(g)− u(g′)| ≤ C

R
||u||L∞(B(go,3R)) d(g, g

′) , g, g′ ∈ B(go, R) .
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To state our next result we recall the notion of horizontal bounded vari-
ation introduced in [CDG]. Let Ω ⊂ G be an open set in a Carnot group G,
and u ∈ L1

loc(Ω). Denote by ζ =
∑m

i=1 ζiXi an element of C1
o (Ω;HG). Let

FH(Ω) =
{
ζ ∈ C1

o (Ω;HG) | ||ζ||∞ ≤ 1
}
.

The H−variation of u in Ω is defined as follows

V arH(u; Ω) = sup
ζ∈FH(Ω)

∫
Ω

u
m∑
i=1

Xiζi dg .

A function u ∈ L1(Ω) is called of bounded H−variation if V arH(u; Ω) <
∞. In such case, we write u ∈ BVH(Ω), and the collection of all such
functions becomes a Banach space when endowed with the norm

||u||BVH(Ω) = ||u||L1(Ω) + V arH(u; Ω) .

The notationBVH,loc(Ω) indicates the collection of functions u ∈ L1
loc(Ω),

such that u ∈ BVH(ω), for every ω ⊂⊂ Ω. We denote with BV 2
H,loc(Ω)

the Banach space of functions u ∈ L1,1
loc(Ω) such that Xiu ∈ BVH,loc(Ω),

i = 1, ..., m.

Theorem 4.10. Let u ∈ C(G) be weakly H-convex in a Carnot group of

step two, G, then u ∈ BV 2
H,loc(G).

Proof. By Theorem 4.9 we know that u ∈ Γ0,1
loc(G). By Theorem 4.8 we

infer that Xju ∈ L∞
loc(Ω), hence in particular, Xju ∈ L1

loc(Ω), j = 1, ..., m.
Let ω ⊂⊂ Ω, and consider ζ ∈ FH(ω). For any i = 1, ..., m we have

∫
ω
Xiu

m∑
j=1

Xjζj dg = −
m∑
j=1

∫
ω
u XiXjζj dg . (4.13)

= − 2
m∑
j=1

∫
ω
u
XiXjζj +XjXiζj

2
dg +

m∑
j=1

∫
ω
u XjXiζj dg

Using Theorem 4.5 we obtain from (4.13)

∫
ω
Xiu

m∑
j=1

Xjζj dg = − 2
m∑
j=1

∫
G
ζj(g) dν

ij
H(g) +

m∑
j=1

(XiXju, ζj) ,
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where we have denoted by (·, ·) the duality between D′(G) and D(G). By
Theorem 4.6 we know that also XiXju are Radon measures, therefore we
conclude∫

ω
Xiu

m∑
j=1

Xjζj dg ≤ 2
m∑
j=1

νijH(ω) +
m∑
j=1

XiXju(ω) < ∞ .

Taking the supremum on all ζ ∈ FH(ω) we reach the conclusion that for
every i = 1, ..., m, Xiu ∈ BH(ω), hence u ∈ BV 2

H(ω). This completes the
proof. �

Theorem 4.10 now allows to close the gap between the integral version of
the Busemann-Feller-Alexandrov theorem in (1.5), and the estimates (1.6),
(1.7) from [DGN]. We proceed to proving Theorem 1.1 following the ap-
proach in [EG]. In connection with this part of the paper, we mention that,
after this work was completed, we have received the preprint [M] from Mag-
nani in which the author, assuming Theorem 4.10 as valid, has also derived
the following arguments.

We need the following proposition.

Proposition 4.1. In a Carnot group G let h ∈ Γ0,1
loc(G) be such that

lim
r→0+

1
r2|B(g, r)|

∫
B(g,r)

|h(g′)| dg′ = 0 . (4.14)

For every η, ε > 0 there exists ro = ro(g, η, ε) > 0 such that for 0 < r < ro
one has

sup
B(g,r)

|h| ≤ ε r2 + 4η
1
Q ‖Xh‖L∞(B(g,3r)) r . (4.15)

Proof. Fix g ∈ G. Given η > 0, ε > 0 we use assumption (4.14) and
Chebyshev’s inequality, to obtain ro = ro(g, η, ε)> 0 such that for 0 < r < ro
we have

|{g′ ∈ B(g, r) | |h(g′)| > ε r2}|
|B(g, r)| ≤ 1

ε r2|B(g, r)|

∫
B(g,r)

|h(g′)| dg′ ≤ η .

(4.16)
Let σ = 4η

1
Q . Then for every g′ ∈ B(g, r/2), there exists g′′ = g′′(g′, r) ∈

B(g, r) such that

d(g′, g′′) ≤ σ r and |h(g′′)| ≤ ε r2 . (4.17)
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For if not, then there is a g′o ∈ B(g, r/2) such that for every g′′ ∈ B(g, r)
either |h(g′′)| > ε r2, or d(g′, g′′) > σ r. This implies B(g′o, σ r) ⊂ {g′ ∈
B(g, r) | |h(g′)| > ε r2} and hence using (4.16) we infer

|B(g′o, σ r)| ≤ η|B(g, r)| .

On the other hand, by choice of σ we have

η|B(g, r)| ≤ η |B(g′o, 2r)| = η2Qσ−Q|B(g′o, σ r)| < |B(g′o, σ r)| .

This contradiction proves (4.17). Hence, for every g′o ∈ B(g, r/2) we have

|h(g′)| ≤ |h(g′′)| + |h(g′) − h(g′′)|
(by Theorem 4.8) ≤ ε r2 + d(g′, g′′)‖Xh‖L∞(B(g,3r))

≤ ε r2 + σ ‖Xh‖L∞(B(g,3r)) r .

�

We are finally ready to complete the

Proof of Theorem 1.1. Let u be an upper semicontinuos weaklyH-convex
function in a Carnot group group G of step two. Appealing to Theorem 4.10,
we know that u ∈ BV 2

H,loc(G). We fix go ∈ G such that (1.5) holds for a
polynomial of weighted degree 2, Pu(g; go). By Theorem 4.9 u ∈ Γ0,1

loc(G),
hence also the function h(g) = u(g) − Pu(go, g) belongs to Γ0,1

loc(G). Let
η > 0 be given, ε > 0 will be chosen later. Applying Proposition 4.1 to the
function h we obtain ro > 0 such that for every r < 1

45min(ro, dist(g, ∂Ω))

sup
B(go,r/2)

|h(g)| ≤ ε r2 + 4η
1
Q ‖Xh‖L∞(B(g,3r)) r . (4.18)

Our next task is to estimate ‖Xh‖L∞(B(g,3r)). To this end, we make
the observation that (1.5) implies Pu(go; go) = u(go). We write Pu(g; go) =
P1 + P2 where

P1(x, y) = u(go) +
m∑
i=1

ai(xi(g)− xi(go))

and

P2(x, y) =
m∑

i,j=1

ai,j(xi(g)−xi(go))(xj(g)−xj(go)) +
k∑
s=1

cs(ys(g)−ys(go)) .
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Lemma 2.4 then gives

XioP2(x, y) =
m∑
j=1

(aio,j + aj,io)(xj(g)− xj(go))

+
1
2

k∑
s=1

m∑
j=1

csb
s
j,io(xj(g)− xj(go))

XjoXioP2(x, y) = aio,jo + ajo,io +
1
2

k∑
s=1

csb
s
jo,io .

Let

M = 2 m max
io,jo=1...m

∣∣∣∣∣aio,jo + ajo,io +
1
2

k∑
s=1

csb
s
jo,io

∣∣∣∣∣
and define

Q(x, y) = M ((x1(g)− x1(go))2 + · · ·+ (xm(g)− xm(go))2) .

Since

XjoXio(P2(x, y) +Q(x, y)) = aio,j + aj,io +
1
2

k∑
s=1

csb
s
jo,io + 2δio,joM ,

the entries Dij of the symmetric matrix HessX(P2 +Q), satisfy

Dii >

m∑
l=1

DilDli

Dll

and hence this matrix is positive definite on G. It is obvious that u − P1

is weakly H-convex. Theorem 2.3 allows us to conclude that u − Pu −Q is
weakly H-convex. Therefore, if r < 1

45min(ro, dist(g, ∂Ω)), then

sup
B(go,3r)

|Xh| ≤ sup
B(go,3r)

|X(u− Pu −Q)| + sup
B(go,3r)

|XQ| (4.19)

(by (1.7)) ≤ C̃

r

1
|B(go, 45r)|

∫
B(go,45r)

|u− Pu −Q| dg′ + C1 r

≤ C̃

r

1
|B(go, 45r)|

∫
B(go,45r)

|u− Pu| dg′ + C2 r +C1 r

(by (1.5)) ≤ C̃η r + C1 r +C2 r



The Theorem of Busemann-Feller-Alexandrov in Carnot Groups 883

In the above chain of inequalities, we have used also the fact that the
polynomial Q is homogeneous of weighted degree 2 with respect to the point
go. Using (4.19) in (4.18) we obtain

sup
B(go,r/2)

|h(g)| ≤ ε r2 + 4η
1
Q r(C̃η r + C1 r + C2 r)

= (ε + 4η
1
Q (C̃η + C1 + C2)) r2 = 2ε r2 ,

provided we choose ε = 4η
1
Q (C̃η + C1 + C2). The last estimate establishes

the theorem. �
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