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A New Parabolic Flow in Kähler Manifolds

X. X. Chen

1. Introduction.

This is a follow-up work of my earlier paper [8]. In [8], we study the lower
bound of the K energy on the Kähler manifold when the first Chern class
is negative. This is an important problem in Kähler geometry since the
existence of lower bound of the K energy is the pre-condition for the existence
of constant scalar curvature metric problem (cf. [2] and [9]). According to
a decomposition formula in [8]2, the problem is reduced to the problem
of solving the existence of critical metrics of a new functional J introduced
both in our paper [8] and Donaldson’s work [11]. For convenience, we include
its definition below. The existence problem is completed solved in Kähler
surface. However, the existence problem in general dimension is still open.
In this paper, we try to understand the general existence problem in Kähler
manifold via flow method. Let (V n, ω0) be a Kähler manifold and ω0 be any
Kähler form in V. Consider the space of Kähler potentials

H = {ϕ, ωϕ = ω0 + i∂∂ϕ > 0, on V }.

For any fixed positive (1,1) form χ, one introduces a new functional J with

respect to this form χ. Denote g =
n∑

α,β=1

gαβd zαd zβ is the Kähler metric

corresponds to the Kähler form ω.

Definition 1.1. Suppose χ is a closed (1,1) form, then for any ϕ(t) ∈ H, J
is defined through its derivative:

d J

d t
=
∫
V

∂ϕ

∂t
χ ∧ ωϕ

n−1

(n− 1)!
.

It is straightforward to show that this is well defined.

1This paper was accepted in 2000; but publication has been delayed.
2An explicit formula for the K energy was given first by Tian [23] earlier.
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Remark 1.2. This definition is given by [11]. In [8], we assume χ is a Ricci
form, but not necessary positive.

In [11], Donaldson outlined the significance of this functional in its own
right: a) J is a convex functional in the space of Kähler potentials (See
proposition 1 below); b) J is a moment map from the space of Kähler poten-
tials to the dual space of the Lie algebra of some sympletic automorphism
group. In this paper, we will continue to study the existence problem of the
critical point of J. In particular, we concentrate in the gradient flow of this
functional.

The Euler equation for J is:
n∑

α,β=1

gαβ χαβ = trgχ = c (1.1)

where

χ =
n∑

α,β=1

χαβ d zαd zβ .

Here g is the critical metric and c is a constant depending only on Kähler
class of [χ] and [ω0] :

c =

∫
V

χ ∧ 1
(n− 1)!

ω(n−1)

∫
V

1
n!
ωn

=
n [χ] · [ω0]n−1

[ω0]n
.

Consider the parabolic equation

∂ϕ

∂t
= c−

n∑
α,β=1

gαβ(ϕ) χαβ. (1.2)

Here

gαβ(ϕ) = g0αβ +
∂2ϕ

∂zα∂zβ
.

Similar to the case of Calabi flow [4], the main result of this paper is

Theorem 1.3. The following statements are true:

1. This gradient flow of J always exists for all time for any smooth initial
data. Moreover, the length of any smooth curve and the distance

between any two metrics decreases under this flow.
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2. If the bisectional curvature of χ is semi-positive, then the gradient flow
exists for all time and converges to a smooth critical metric.

From equation (1), it is easy to see that a necessary condition for a
solution to exist is (also see [11])

c · ωg − χ > 0, (1.3)

where ωg is the Kähler form associated to g. In other words, there exists at
least one Kähler form ω in the Kähler class of [ω0] such that the following
holds:

c · ω − χ > 0. (1.4)

Conjecture 1.4. (Donaldson [11]) If the aforementioned necessary condi-

tion is satisfied, then there exists a critical point for J = Jχ in that Kähler
class.

Historic remarks: Using heat flow method to study the nonlinear PDE is
a well known method in differential geometry. In recent years, it has been
the source of active researches since the famous work of Eells J. and Samp-
son [13]. Interested readers are refereed to important work by Hamilton R.
[16], Huisken G. [18][17] and a survey paper by Cao H.D. and Chow B.[7]
and the references therein.

Acknowledgement The author would like to thank Professor Donaldson
for his encouragement in studying the critical points for the functional J,
which began in the spring of 1999 when the author visited him. The author
also would like to thank Professor Huisken G. for many interesting discussion
about heat flow and Hamilton’s maximal principal for tensors, the later play
a key role in proving Theorem 1.2. Also, the author would like to thank
Schoen R. Simon L., Calabi E. and Tian G. for their interests in this work.
The author is very grateful to the referee for pointing out a number of errors
in the eariler version of this paper.

2. Summary of recent developments in the Riemannian
metric in space of Kähler potentials.

Let (V, ω0) be a Kähler manifold. Mabuchi ([19]) in 1987 defined a Rie-
mannian metric on the space of Kähler metrics, under which it becomes
(formally) a non-positive curved infinite dimensional symmetric space. Ap-
parently unaware of Mabuchi’s work, Semmes [21] and Donaldson [12] re-
discover this same metric again from different angles. For any vector ψ in
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the tangential space TϕH, we define the length of this vector as

‖ψ‖2
ϕ =
∫
V
ψ2 d µϕ.

The geodesic equation is

ϕ(t)′′ − 1
2
|∇ϕ′(t)|2ϕ(t) = 0, (2.1)

where the derivative and norm in the 2nd term of the left hand side are
taken with respect to the metric ωϕ(t).

This geodesic equation shows us how to define a connection on the tan-
gent bundle of H. If φ(t) is any path in H and ψ(t) is a field of tangent
vectors along the path (that is, a function on V × [0, 1]), we define the co-
variant derivative along the path to be

Dtψ =
∂ψ

∂t
− 1

2
(∇ψ,∇φ′)φ.

This connection is torsion-free because in the canonical “co-ordinate chart”,
which represents H as an open subset of C∞(V ). The main theorem formally
proved in [19](and later reproved in [21] and [12]) is:

Theorem A The Riemannian manifold H is an infinite dimensional sym-
metric space; it admits a Levi-Civita connection whose curvature is covariant
constant. At a point φ ∈ H the curvature is given by

Rφ(δ1φ, δ2φ)δ3φ = −1
4
{{δ1φ, δ2φ}φ, δ3φ}φ,

where { , }φ is the Poisson bracket on C∞(V ) of the symplectic form ωφ;
and δ1φ, δ2φ ∈ TφH. Then the sectional curvature is non-positive, given by

Kφ(δ1φ, δ2φ) = −1
4
‖{δ1φ, δ2φ}φ‖2

φ.

We will skip the proof here. Interested readers are referred to paper of
Mabuchi [19] or [21] and [12] for the proof.

This subject has been quiet since the early pioneer work of Mabuchi
(1987) and Semmes(1991). The real breakthrough came in the beautiful pa-
per by Donaldson [12] in 1996. In [12], he outlines the connection between
this Riemannian metric in the infinite dimensional space H and the tradi-
tional Kähler geometry through a series important conjectures and theorems.
In 1997, following his program, the author proves some of his conjecture:

Theorem B [9]The following statements are true:
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1. The space of Kähler potentials H is convex by C1,1 geodesics. More
specifically, if ϕ0, ϕ1 ∈ H and ϕ(t) (0 ≤ t ≤ 1) is a geodesic connecting
these two points in H, then the mixed convariant derivative of ϕ(t) is
uniformly bounded from above.

2. H is a metric space. In other words, the infimum of the lengths of all
possible curves between any two points in H is strictly positive.

In [4], E. Calabi and the author proved the following:

Theorem C[4]The following statements are true:

1. H is a non-positive curved space in the sense of Alenxandrov.

2. The length of any curve in H is decreased under the Calabi flow unless
it is represented by a holomorphic transformation. The distance in H
is also decreaseing under various geometric condition.

3. General preparation.

In this section, we assume χ > 0 is a Kähler form and J is defined with
respect to this positive form χ. Then

Proposition 3.1. J is a strictly convex functional on any C1,1 geodesic. In

particular, J has at most one critical point in H0.

Remark 3.2. This proposition was pointed to the author by Donladson
in spring 1999 when the author visited him. The proof here is somewhat

different than his original proof.

Proof. Suppose ϕ(t) is a C1.1 geodesic. In other words, ϕ(t) is a weak limit
of the following continuous equation as ε→ 0 :

(
∂2ϕ

∂t2
− 1

2
| ∇ϕ′ |2ϕ

)
det g = ε · det g0.

By definition,
d J

d t
=
∫
V

∂ϕ

∂t
(gαβ χαβ).
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Then (denote σ = gαβ χαβ in the following calculation):

d 2J
d t2 =

∫
V

(
∂2ϕ

∂t2
σ − ∂ϕ

∂t
gαβ(

∂ϕ

∂t
),βrg

rδχαδ +
∂ϕ

∂t
σ �g

∂ϕ

∂t

)
det g

=
∫
V

(
∂2ϕ

∂t2
σ − ∂ϕ

∂t
gαβ(

∂ϕ

∂t
),βrg

rδχαδ − (
∂ϕ

∂t
),rσgrδ(

∂ϕ

∂t
),δ

−∂ϕ
∂t g

αβχαβ,δg
rδ(∂ϕ∂t ),r

)
det g

=
∫
V

(
(
∂2ϕ

∂t2
− 1

2
|∇∂ϕ

∂t
|2g)σ − ∂ϕ

∂t
gαβ(

∂ϕ

∂t
),βrg

rδχαδ

−∂ϕ
∂t

(
gαβχαδg

rδ
)
,β

(∂ϕ∂t ),r

)
det g

=
∫
V

(
(
∂2ϕ

∂t2
− 1

2
|∇∂ϕ

∂t
|2g) (gαβ χαβ)+(

∂ϕ

∂t
),β
(
gαβχαδg

rδ
)

(
∂ϕ

∂t
),r

)
det g

=
∫
V

(
∂ϕ

∂t
),β
(
gαβχαδg

rδ
)

(
∂ϕ

∂t
),r det g ≥ 0.

The last equality holds along any C1,1 geodesic. �

By Donaldson’s viewpoint, we can view J as a moment map, and we

denote the energy of J as E, then E =
∫
V

(trg(χ))2 det g.

Proposition 3.3. E has same critical point as J. E is decreasing by the
gradient flow of J.

Proof. Let σ = trgχ. All of the derivatives, norm and integration are taken
with respect to g in the following calculation:

δv E(g)=
∫
V

⎛
⎝2σ(−

n∑
α,β,r,δ=1

gαβv,βrg
rδχαδ) + σ2�gv

⎞
⎠ det g

=
∫
V

⎛
⎝2

n∑
α,β,r,δ=1

(gαβσ,βv,rg
rδχαδ + gαβσv,rg

rδχαδ,β) − 2σσ,δv,rg
δr

⎞
⎠

=
∫
V

⎛
⎝2

n∑
α,β,r,δ=1

(gαβσ,βv,rg
rδχαδ + gαβσv,rg

rδχαβ,δ) − 2σσ,δv,rg
δr

⎞
⎠

=2
∫
V

⎛
⎝ n∑
α,β,r,δ=1

gαβσ,βv,rg
rδχαδ

⎞
⎠=−2

∫
V

n∑
α,β,r,δ=1

(
gαβσ,βχαδg

rδ
)
,r
v.
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The Euler-Lagrange equation for functional E is:

n∑
α,β,r,δ=1

(
gαβσ,βχαδg

rδ
)
,r

= 0.

The left hand side is a divergence form and the equation holds on the mani-
fold without boundary. Taking the differentiation inside the brake, we have

n∑
α,β,r,δ=1

(
gαβσ,rβχαδg

rδ
)

+
n∑

αβ=1

σ,ασ,βg
αβ = 0, (3.1)

where we have used the identity χαδ,rg
rδ = (χrδg

rδ),α since χ is a closed
(1,1) form. At maximum or minimum point of σ, we have σ,α = 0. Thus
σ,αβ = 0 at the critical point of σ since χ is strictly positive (1,1) form.
Thus σ = const identically. One can also prove this via integration by parts.
Multiple σ in both sides of equation (3.1) and integrating over the entire
manifolds, we have

0 =
∫
V

n∑
α,β,r,δ=1

(
gαβσ,rβχαδg

rδ
)
σ +

n∑
αβ=1

σ,ασ,βg
αβσ

= −
∫
V

n∑
α,β,r,δ=1

(
gαβσ,rχαδ,βg

rδ
)
σ −
∫
V

n∑
α,β,r,δ=1

(
gαβσ,rχαδg

rδ
)
σβ

+
n∑

αβ=1

σ,ασ,βg
αβσ

= −
∫
V

n∑
α,β,r,δ=1

(
gαβσ,rχαδ g

rδ
)
σ,β.

Thus σ = const in the manifold V since χ is a strictly positive (1,1) form.
Now, along a gradient flow of J, we have ∂ϕ

∂t = c− trgχ = c− σ. Thus,

d E

d t
= 2

∫
V

⎛
⎝ n∑
α,β,r,δ=1

gαβσ,β(c− σ),rgrδχαδ

⎞
⎠

= −2
∫
V

⎛
⎝ n∑
α,β,r,δ=1

gαβσ,βσ,rg
rδχαδ

⎞
⎠ ≤ 0. (3.2)

The equality holds unless σ is a constant. Thus E is strictly decreasing
under the gradient flow of J. �
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Proposition 3.4. Any critical point of E is a local minimizer.

Proof. Recall the first variation of E is:

δv E(g) = 2
∫
V

⎛
⎝ n∑
α,β,r,δ=1

gαβσ,βv,rg
rδχαδ

⎞
⎠ .

Now we calculate the second variation of E in u, v direction, and substitute
the condition for being critical point σ = const, we have

δu δv E(g) = −2
∫
V

⎛
⎝ n∑
α,β,r,δ=1

gαβ

⎛
⎝ n∑
i,j,k,l=1

giju,jkg
klχkl

⎞
⎠
,β

v,rg
rδχαδ

⎞
⎠

= 2
∫
V

⎛
⎝ n∑
α,β,r,δ,i,j,k,l=1

gαβ giju,jkg
klχkl v,rβg

rδχαδ

⎞
⎠

+ 2
∫
V

⎛
⎝ n∑
α,β,r,δ,i,j,k,l=1

giju,jkg
klχkl v,rg

rδ gαβ χαδ,β

⎞
⎠

= 2
∫
V

⎛
⎝ n∑
α,β,r,δ,i,j,k,l=1

gαβ giju,jkg
klχkl v,rβg

rδχαδ

⎞
⎠

+ 2
∫
V

⎛
⎝ n∑
α,β,r,δ,i,j,k,l=1

giju,jkg
klχkl v,rg

rδ σ,δ

⎞
⎠

= 2
∫
V

⎛
⎝ n∑
α,β,r,δ,i,j,k,l=1

gαβ giju,jkg
klχkl v,rβg

rδχαδ

⎞
⎠ > 0.

The last equality holds since σ = const at the critical point. Also, the
last inequality holds as a symmetric form. QED.

Proposition 3.5. Under the gradient flow of J, the length of any smooth
curve strictly decreases. Moreover, the distance between any two points
decreases as well.

Proof. Suppose ϕ(s) : [0, 1] → H is a smooth curve in the space of Kähler
potentials. Now consider the energy of this curves as

En =
∫ 1

s=0

∫
V

(
∂ϕ

∂s

)2

det g.
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Then, under gradient flow of J, suppose the energy becomes En(t). We
want to show that the energy is strictly decreasing under this flow (All of
the derivatives, norm and integration are taken with respect to g + d s2 in
the following calculation:).

dEn(t)
d t

= 2
∫ 1

s=0

∫
V

(
∂ϕ

∂s

∂2ϕ

∂s∂t
+ (

∂ϕ

∂s
)2�g

∂ϕ

∂t

)
det g

= −2
∫ 1

s=0

∫
V

(
∂ϕ

∂s

∂σ

∂s
+ (

∂ϕ

∂s
)2�gσ

)
det g

= 2
∫ 1

s=0

∫
V

∂ϕ

∂s
· (

n∑
α,β,r,δ=1

gαβ(
∂ϕ

∂s
),βrg

rδχαδ) +
∂ϕ

∂s
(
∂ϕ

∂s
),ασ,βg

αβ

= −2
∫ 1

s=0

∫
V

n∑
α,β,r,δ=1

(
gαβ(

∂ϕ

∂s
),β g

αβ(
∂ϕ

∂s
),rgrδχαδ

+
∂ϕ

∂s
· gαβ(∂ϕ

∂s
),rgrδχαδ,β

)
+ 2
∫ 1

s=0

∫
V

∂ϕ

∂s
(
∂ϕ

∂s
),ασ,βg

αβ

= −2
∫ 1

s=0

∫
V

n∑
α,β,r,δ=1

(
gαβ(

∂ϕ

∂s
),β g

αβ(
∂ϕ

∂s
),rgrδχαδ

+
∂ϕ

∂s
· (∂ϕ
∂s

),rgrδσ,δ

)
+ 2
∫ 1

s=0

∫
V

∂ϕ

∂s
(
∂ϕ

∂s
),ασ,βg

αβ

= −2
∫ 1

s=0

∫
V

n∑
α,β,r,δ=1

(
gαβ(

∂ϕ

∂s
),β g

αβ(
∂ϕ

∂s
),rgrδχαδ

)
≤ 0.

The equality holds unless ∂ϕ
∂s is a constant in V × [0, 1] or the geodesic is

trivial.

If the J flow exists for long time, then this will imply that J flow decreases
distance between any two points in H. We will deal with the long term
existence of the J flow in the next section. �

There are surprising similarities between this two group functions: the
first group is K energy and Calabi energy, both are well known, but perhaps
not well understood. The second group is our J function and its norm E.

Here J plays the ”role” of K energy and E plays the role of Calabi energy.
Calabi first proved in [3] that critical point of Calabi energy minimizes Cal-
abi energy locally, one should compare this to proposition 3 aforementioned.
In [4], we showed that Calabi flow (gradient flow of K energy) decreases
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the length of any smooth curves in the space of Kähler metrics, one should
compare this to proposition 4 aforementioned. In [9], we prove that critical
point for Calabi energy is unique if C1(V ) < 0, and in general it is conjec-
tured that critical point of Calabi energy is unique in each Kähler class, one
should compare this to Proposition 1 aforementioned. The list of similarities
could go on and on. The critical point for Calabi energy is well known. The
critical point of E is not known and is also not clear about its importance.
But the similarity between E and Calabi energy makes it clear: to study the
critical point of E or its gradient flow, is amount to study a junior version of
extremal metrics or Calabi flow. The insight and technique we learned from
the critical point of J must be helpful to understand extremal metrics and
Calabi flow.

4. C2 estimate of heat flow depending time t.

Lemma 4.1. σ > 0 is bounded from above and below along the gradient

flow of J.

Proof. Taking second derivatives with respect time, we have

∂2ϕ

∂t2
=

n∑
α,β,r,δ=1

gαβ
(
∂ϕ

∂t

)
,βr

grδχαδ

By ordinary maximum principle for parabolic equation, we have max
V

∂ϕ

∂t
↓

and min
V

∂ϕ

∂t
↑ as t increases. Since ∂ϕ

∂t = c−σ, we then prove this lemma. �

Corollary 4.2. Under the gradient flow of J, metric is strictly bounded
from below.

Theorem 4.3. There exists a const C(t) depends on t only, such that ω0 +
∂∂ϕ ≤ C · ω0.

Proof. Consider the heat flow equation:

∂ϕ

∂t
= c−

n∑
α,β=1

gα β χαβ .
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We are now taking first and second derivatives on both side of this equation.
In the following calculation, all indices are running from 1 to n. Whenever
there is a repeated indices, that automatically means summation from 1 to
n.

∂ϕ,i
∂t

= gαrgrδ,ig
δβχαβ − gαβχαβ,i.

Now, let us take another derivative on both sides of the above equation, we
have
∂ϕij

∂t = gαrgrδ,ijg
δβχαβ − gαagab,jg

brgrδ,ig
δβχαβ − gαrgrδ,ig

δagab,jg
bβχαβ

−gαβjχαβ,i − gαβχαβ,ij.

Indices after comma represents partial derivatives in above two formulas.
Now multiple the above equation with χij and summarized everything. De-
note F = χijgij = χij(g0ij + ϕ,ij). Consider all differentials as covariant
differentials with respect to metric χ. Denote the bisectional curvature of χ
as R(χ). We then have

∂F
∂t = gαrgrδ,ijg

δβχαβχ
ij − 2gαagab,jg

brgrδ,ig
δβχαβχ

ij + gαβ̄R(χ)αβ̄ij̄χ
ij̄

= gαrgri,δjg
δβχαβχ

ij − 2gαagab,jg
brgrδ,ig

δβχαβχ
ij + gαβ̄R(χ)αβ̄ij̄χ

ij̄

= gαr
(
gri,jδ + R(χ)ipδjgpr −R(χ)prδjgip

)
gδβχαβχ

ij

−2gαagab,jg
brgrδ,ig

δβχαβχ
ij + gαβ̄R(χ)αβ̄ij̄χ

ij̄

= gαrgij,rδg
δβχαβχ

ij + gαr
(
R(χ)ipδjgpr −R(χ)prδjgip

)
gδβχαβχ

ij

−2gαagab,jg
brgrδ,ig

δβχαβχ
ij + gαβ̄R(χ)αβ̄ij̄χ

ij̄ .

Next, we can choose a coordinate such that χij = δij and gi∂j = λiδi∂j.

Note that at this point, we have

σ =
n∑
α=1

1
λα
, and F =

n∑
i=1

λi.

Note that χ is a fixed metric, then there exists a constant C such that the
following inequality holds (via some straightforward calculation):

gαr
(
R(χ)ipδjgpr − R(χ)prδjgip

)
gδβχαβχ

ij

=
1
λα

(
R(χ)iαδjλα −R(χ)iαδjλi

) 1
λδ
δij ≤ C(σ + σ2F ).

Moreover, it is easy to check that

|gαβ̄R(χ)αβ̄ij̄χ
ij̄ | ≤ cσ
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for some constant c. Thus, we have
∂F
∂t = �̃F − 2gαagab,jg

brgrδ,ig
δβχαβχ

ij + C · (σ + σ2 F )

where �̃f = gαrf,rδg
δβχαβ for any smooth function f. From here, we quickly

imply that F is bounded from above since σ is uniformly bounded from
above. �

Recall the estimate of equation (3.2), we have

∫ ∞

0

d E

d t
d t = −2

∫ ∞

0

∫
V

⎛
⎝ n∑
α,β,r,δ=1

gαβσ,βσ,rg
rδχαδ

⎞
⎠ det g d t

= E(∞)−E(0) ≥ C.

In other words,

∫ ∞

0

∫
V

⎛
⎝ n∑
α,β,r,δ=1

gαβσ,βσ,rg
rδχαδ

⎞
⎠ det g d t ≤ C.

There exists a subsequence of ti → ∞ such that

∫
V

⎛
⎝ n∑
α,β,r,δ=1

gαβσ,βσ,rg
rδχαδ

⎞
⎠ det g |t=ti→ 0.

This last expression, shall suggests that σ |t=ti→ c in some sense for some
constant c.

Next we return to prove the Theorem 1.1.

Proof. Following from the interior estimate by Evans and Krylov, we can
imply C2,α estimate for any finite time t. Then standard elliptic regularity
theorem would imply that g is C∞ at any finite time. Thus the flow exists
for long time. Then proposition 4 implies that J flow decreases distance
between any two points in H. �

5. Uniform C2 estimate for heat flow for manifolds with
semi-positive definite curvature tensors..

In this section, we assume that the bisectional curvature of χ is non-negative,
we want to show that there exists a uniform bound on the second derivatives
of ϕ.
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Theorem 5.1. the bisectional curvature of χ is non-negative, then there
exists a uniform bound on the second derivatives of ϕ.

Proof. Following the calculation in the previous section, we have (equation
4.1) :

∂ϕ,ij

∂t = gαrgrδ,ijg
δβχαβ − gαagab,jg

brgrδ,ig
δβχαβ − gαrgrδ,ig

δagab,jg
bβχαβ

−gαβjχαβ,i − gαβχαβ,ij.

Simplify this equation by adopting differentiation in terms of metric χ, we
have
∂ϕ,ij
∂t

= gαrgrδ,ijg
δβχαβ − gαagab,jg

brgrδ,ig
δβχαβ − gαrgrδ,ig

δagab,jg
bβχαβ

(5.1)
Define an auxiliary tensor Tij as

Tij = gij −C0 · χij = g0ij + ϕij −C0 · χij .
Choose C0 big enough so that Tij < 0 as a tensor at time t = 0. Claim:
T < 0 is preserved under this heat flow. Let us first obtain the flow equation
for T. From equation (5.1), we have

∂T,ij

∂t = gαrTrδ,ijg
δβχαβ − gαagab,jg

brgrδ,ig
δβχαβ − gαrgrδ,ig

δagab,jg
bβχαβ

= gαrTri,δjg
δβχαβ − gαagab,jg

brgrδ,ig
δβχαβ − gαrgrδ,ig

δagab,jg
bβχαβ

= gαr
(
Tri,jδ + R(χ)ipδjTpr −R(χ)prδjTip

)
gδβχαβ

−gαagab,jgbrgrδ,igδβχαβ − gαrgrδ,ig
δagab,jg

bβχαβ

= gαr
(
Tij,rδ + R(χ)ipδjTpr −R(χ)prδjTip

)
gδβχαβ

−gαagab,jgbrgrδ,igδβχαβ − gαrgrδ,ig
δagab,jg

bβχαβ .

Now we want to apply Hamilton’s maximal principal for tensors. Since
Tij < 0 at t = 0, we may suppose that there is a first time t = t0 > 0 and
a point O, where T has a degenerate direction. We might assume that this
direction is ξ(O) = (ξ1, ξ2, · · ·ξn); and parallel transport this vector along a
small neighborhood of O by metric χ, so we have constant parallel vector
field in a small neighborhood O of point O. By definition, we have

Tijξ
iξj < 0, ∀ t < t0.

and at t = t0 we have

Tijξ
iξj(O) = 0, and Tij ≤ 0 in O.
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In particular, at t = t0 and at point O, we have Tijξ
i = Tijξ

j = 0. Now
plugging everything into the equation (5.2), we have (in O)

∂(Tijξ
iξj)

∂t
=gαrTij,rδξ

iξjgδβχαβ+gαr
(
R(χ)ipδjTpr−R(χ)prδjTip

)
gδβχαβξ

iξj

− gαagab,jg
brgrδ,ig

δβχαβξ
iξj − gαrgrδ,ig

δagab,jg
bβχαβξ

iξj

=�̃(Tijξ
iξj)+gαrR(χ)ipδjξ

iξjTprg
δβχαβ−gαrR(χ)prδjTipξ

igδβχαβξ
j

− gαagab,jg
brgrδ,ig

δβχαβξ
iξj − gαrgrδ,ig

δagab,jg
bβχαβξ

iξj.

Now at Point O and at time t = t0, by ordinary maximum principle,
we have �̃(Tijξ

iξj) ≤ 0. Moreover,gαrR(χ)prδjTipξ
igδβχαβξ

j(O) = 0 and

gαrR(χ)ipδjξ
iξjTprg

δβχαβ ≤ 0 since R(χ) is a non-negative tensor while T is
a non-positive tensor. Thus

∂(Tijξ
iξj)

∂t
(O) ≤ 0.

This implies that T will remain non-positive. In other words,

gij ≤ C0 · χij
holds for all t where the flow exists. Thus, all of the second derivatives of ϕ
is bounded from above. �

Finally, we want to prove Theorem 1.2.

Proof. as before, following from the interior estimate by Evans and Krylov,
we can obtian a uniform C2,α estimate for any finite time t from the theorem
3 above. Then standard elliptic regularity theorem would imply that g is
C∞ at any finite time. Thus the flow exists for long time. Since the C2,α

estimate is uniform (independent of time t), thus the flow converges to a
critical point of J. at least by sequence. The uniqueness of sequential limit
is provided by the fact that J is strictly convex. �
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