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An Optimal Loewner-type Systolic Inequality and

Harmonic One-forms of Constant Norm

Victor Bangert
1

and Mikhail Katz
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We present a new optimal systolic inequality for a closed Rieman-
nian manifoldX , which generalizes a number of earlier inequalities,
including that of C. Loewner. We characterize the boundary case
of equality in terms of the geometry of the Abel-Jacobi map, AX ,
of X . For an extremal metric, the map AX turns out to be a Rie-
mannian submersion with minimal fibers, onto a flat torus. We
characterize the base of AX in terms of an extremal problem for
Euclidean lattices, studied by A.-M. Bergé and J. Martinet. Given
a closed manifold X that admits a submersion F to its Jacobi
torus T b1(X), we construct all metrics on X that realize equality
in our inequality. While one can choose arbitrary metrics of fixed
volume on the fibers of F , the horizontal space is chosen using
a multi-parameter version of J. Moser’s method of constructing
volume-preserving flows.

1. Introduction and statement of main theorems.

We present a new optimal systolic inequality, which generalizes a number of
earlier inequalities. These are the inequalities of C. Loewner [Pu52], J. Hebda
[He86, Theorem A], certain results of G. Paternain [Pa01], and also inequality
[BK03, Corollary 2.3]. Given a compact, oriented Riemannian manifold
X with positive first Betti number b > 0, our optimal inequality (1.1) is
a scale-invariant inequality providing a lower bound for the total volume
of X, in terms of the product of its conformal 1-systole and its systole of
codimension 1. The definitions of the systolic invariants involved appear in
Section 2.

In [BK03, Corollary 2.3], the authors generalize J. Hebda’s inequal-
ity (2.10) to arbitrary Betti number. In the present work, we strengthen
the inequality by replacing the stable 1-systole by its conformal analogue.
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Theorem 1.1. Every compact, orientable n-manifold X with positive first
Betti number b = b1(X,R) satisfies the inequality

confsys1(g)sysn−1(g) ≤ γ′bvoln(g)
n−1

n (1.1)

for every Riemannian metric g on X.

The definition (3.1) of the Bergé-Martinet constant γ′b and the associ-
ated dual-critical lattices, cf. Definition 3.1, implies that γ′b is precisely the
optimal constant in inequality (1.1) in the class of flat tori (T b, g). We also
generalize Hebda’s discussion of equality in inequality (2.10) as follows.

Theorem 1.2. Under the hypotheses of Theorem 1.1, one has equality in
(1.1) if and only if there exists a dual-critical lattice L ⊂ R

b and a Rie-
mannian submersion of X onto the flat torus R

b/L, such that all fibers are
connected minimal submanifolds of X.

In particular, equality in (1.1) can only occur if b1(X,R) ≤ n.
An alternative way of stating the conclusion of Theorem 1.2 is that we

have equality in (1.1) if and only if the deck transformations of the Jacobi
variety (4.1) form a dual-critical lattice, while the Abel-Jacobi map (4.2) is
a Riemannian submersion with connected minimal fibers.

Example 1.3. Let (X, g) be a Riemannian 4-manifold with first Betti num-
ber b1(X) = 3. For instance, X could be the product of a circle by the nil-
manifold given by the total space of the circle bundle over T 2 with nonzero
Euler number. Then inequality (1.1) takes the form

confsys1(g)sys3(g) ≤
√

3
2

vol4(g)
3
4 ,

with equality possible if and only if the deck transformations of the Jacobi
torus of X form a cubic face-centered lattice, cf. Example 3.3. The possible
topology of X was clarified in [NV03], cf. Remark 1.4 below.

Note that X admits a Riemannian submersion with minimal fibers to
a flat b-dimensional torus if and only if all of its harmonic one-forms have
pointwise constant norm, cf. [ES64] and Section 6. In Theorem 12.6 we char-
acterize all the metrics satisfying the boundary case of equality in (1.1). We
employ a multi-parameter generalisation of the method of J. Moser [Mo65]
of constructing volume-preserving flows to determine all such metrics.

We study the relation between harmonic one-forms of constant norm and
Riemannian submersions to a flat torus with minimal fibers, cf. Section 6.
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Such submersions are special cases of foliations with minimal leaves that
have been studied in the theory of foliations, cf. [Ru79], [Su79], [KT82], and
the survey by V. Sergiescu [Se88]. However, the metrics in our context are
much more special.

In the class of flat tori T b, the discussion of equality reduces to an ex-
tremal problem for Euclidean lattices, studied by A.-M. Bergé and J. Mar-
tinet [BM89]. Namely, a flat torus T b realizes equality if its deck transforma-
tions form a so-called dual-critical lattice of rank b, cf. Definition 3.1. Thus,
if b = n, then Theorem 1.2 implies that (X, g) is a flat torus R

n/L, for a
suitable dual-critical lattice L ⊂ R

n.
If dim(X) = b1(X) and all harmonic 1-forms have constant norm, G.

Paternain [Pa01, Corollary 2] proved that X is flat. The relation of the
present work to [Pa01] is further clarified in Remark 6.4.

D. Kotschick [Ko01] defines the concept of formal Riemannian metric
and proves, in particular, that for such a metric all harmonic forms (of
arbitrary degree) have constant norm. Moreover, if n = b then M is flat
[Ko01, Theorem 7], while in general one has b ≤ n [Ko01, Theorem 6]. Both
of these statements parallel our discussion of equality in (1.1).

Remark 1.4. P. A. Nagy and C. Vernicos [NV03] study Riemannian man-
ifolds (X, g) with all harmonic one-forms of constant norm in the case
b1(X) = dimX−1. Assuming that X is compact, orientable and connected,
they prove that X is diffeomorphic to a two-step nilmanifold.

Systolic inequalities are metric-independent inequalities involving mini-
mal volumes of homology (or 1-dimensional homotopy) classes in a Rieman-
nian manifold. They have a certain similarity to the classical isoperimetric
inequality. Over the past few years it has become clear that systolic inequal-
ities are systematically violated as soon as an unstable k-systole with k ≥ 2
is involved, cf. [Ka95, BabK98, BKS98, Bab02, Ka02].

On the other hand, a number of systolic inequalities, including those
involving stable and conformal systoles, may be found in the survey [Gr96],
as well as in the more recent works [BK03, Ka03]. See the recent survey
[CK03, Figure 4.1] for a 2-D map of systolic geometry, which places such
results in mutual relation.

Systolic inequalities with optimal constants are rare. In addition to the
ones by C. Loewner (2.9) and J. Hebda (2.10), there are the inequalities by
P.M. Pu [Pu52] for the projective plane, as well as [Bav86], [Sa88] for the
Klein bottle, and [Gr99, pp. 259-260] for higher dimensional tori, cf. [CK03,
inequality (5.14)]. A different optimal generalisation of Loewner’s inequality
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as well as of the inequality implied in [Gr99, pp. 259-260], is studied in
[IK04, BCIK1, BCIK2].

2. Norms on (co-)homology and definition of systoles.

In this section we assume that X is a compact, oriented and connected
manifold, dimX = n, with Riemannian metric g. For 1 ≤ p ≤ ∞ we define
the Lp-norm ‖ ‖∗p on Hk(X,R) and the dual norms ‖ ‖p on the dual space
Hk(X,R)∗ = Hk(X,R). Then k-systoles of (X, g) will be defined as the
minima of such norms on non-zero elements in the integer lattice Hk(X,Z)R

in Hk(X,R).
The Lp-norms on Hk(X,R), k ∈ {0, . . . , n}, are quotient norms of the

corresponding norms on closed forms. For ω ∈ ΩkX and 1 ≤ p <∞ we set

‖ω‖p =
(∫

X
‖ωx ‖p dvoln(x)

) 1
p

,

where
‖ωx‖ = max

{
ωx(v1, . . . , vk)

∣∣ |vi| ≤ 1 for 1 ≤ i ≤ k
}

is the pointwise comass norm of ωx. For p = ∞, we set

‖ω‖∞ = max
x∈X

‖ωx ‖ .

In the cases k = 1 and k = n− 1 which are mainly of interest in the present
paper, this comass norm coincides with the usual (Euclidean) norm |ωx|
induced by g. So, for 1- or (n − 1)-forms ω, we will often use the symbol
|ω|p instead of ‖ω‖p.

If α ∈ Hk(X,R) and 1 ≤ p ≤ ∞, we define

‖α‖∗p= inf{‖ω‖p | ω ∈ α},

where the expression ω ∈ α means that ω is a smooth closed k-form rep-
resenting α. For p = 2, Hodge theory implies that every cohomology class
α contains a unique harmonic form ω. If k ∈ {1, n − 1}, this form ω is
characterized by the equality |ω|2 = ‖α‖∗2. In particular, the norm ‖ ‖∗2
on H1(X,R) and Hn−1(X,R) is induced by the L2 scalar product 〈, 〉, on
harmonic forms.

The non-degenerate Kronecker pairing

[, ] : Hk(X,R) ×Hk(X,R) → R
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induced by integration of closed forms over cycles, allows us to define a
norm ‖ ‖p on Hk(X,R) dual to the Lp-norm ‖ ‖∗p on Hk(X,R). Thus, given
h ∈ Hk(X,R), we set

‖h‖p= max
{
[h, α]

∣∣∣α ∈ Hk(X,R), ‖α‖∗p≤ 1
}
.

Given a lattice L in a finite-dimensional normed vector space (V, ‖ ‖), we
denote by

λ1(L) = λ1(L, ‖ ‖) (2.1)

the minimal norm of a non-zero lattice vector. Then the stable k-systole
stsysk(g) is defined as follows:

stsysk(g) = λ1

(
Hk (X,Z)R, ‖ ‖∞

)
. (2.2)

Here Hk(X,Z)R denotes the lattice of integral classes in Hk(X,R).
The following geometric interpretation of the norm ‖ ‖∞ is well known

and not obvious, cf. [Fe74, 4.10 and 5.8] or [Gr99, 4.18 and 4.35]. Given an
integer class h ∈ Hk(X,Z), let volk(h) denote the infimum of the Rieman-
nian volumes of all integer k-cycles representing h. Let hR denote the class
corresponding to h in Hk(X,R). H. Federer proved the equality

‖hR‖∞ = lim
i→∞

1
i
volk(ih), (2.3)

which is the origin of the term stable norm for ‖ ‖∞.
One also has the (homological) k-systoles, denoted sysk and defined by

sysk(g) = min
{
volk(h)

∣∣ h ∈ Hk (X,Z) \ {0}} . (2.4)

If Hk(X,Z) is torsion-free, then stsysk(g) ≤ sysk(g). It is a result due to
H. Federer [Fe74, 5.10] that, in the assumption that X is orientable, one has

‖h‖∞= voln−1(h) for all h ∈ Hn−1(X,Z), (2.5)

and hence
stsysn−1(g) = sysn−1(g). (2.6)

It is not difficult to see that sysn−1(g) is the infimum of the (n− 1)-volumes
of compact, orientable, non-separating hypersurfaces in X.

For p = n
k , the norms ‖ ‖∗p on Hk(X,R) and ‖ ‖p on Hk(X,R) are

conformally invariant. Hence the quantity

confsysk(g) = λ1

(
Hk(X,Z)R, ‖ ‖n

k

)
(2.7)
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is conformally invariant, and is called the conformal k-systole of (X, g). If
h ∈ Hk(X,R) then the quantity ‖h‖n

k
is the supremum of the stable norms

of h with respect to all metrics that are conformal to g and have unit volume,
cf. [Gr83, 7.4.A]. In particular, one has

stsysk(g) ≤ confsysk(g)voln(g)
k
n . (2.8)

However, the supremum of stsysk(g̃) over all unit volume metrics g̃ conformal
to g may be smaller than confsysk(g). Indeed, the usual systole and the
conformal systole obey dramatically different asymptotic bounds even in the
case of surfaces. Thus, P. Buser and P. Sarnak [BS94] construct a sequence
of surfaces Σs of genus s → ∞, satisfying an asymptotically infinite lower
bound

confsys1(Σs)2 ≥ c log s as s→ ∞,

for a suitable constant c > 0. An asymptotically vanishing upper bound

sys1(Σs)2

area(Σs)
≤ C

(log s)2

s

appears in [Gr96]. Now we can state the known systolic inequalities that are
generalized by Theorem 1.1.

Loewner’s inequality. (see [Pu52]) Every riemannian metric g on the
torus T 2 satisfies

sys1(g)
2 ≤ 2√

3
area(g). (2.9)

A metric satisfying the case of equality in (2.9) is homothetic to the quo-
tient of C by the lattice spanned by the cube roots of unity.

Note that in the case of the 2-torus, the quantity sys1(g) is the length
of the shortest noncontractible loop in (T 2, g). For higher genus surfaces,
Loewner’s inequality is satisfied by hyperelliptic conformal classes, and in
particular by all genus 2 surfaces [KS04, KL04].

Hebda’s inequality. ([He86, Theorem A]) Let X be a compact, orientable,
n-dimensional manifold with first Betti number b1(X,R) = 1. Then every
Riemannian metric g on X satisfies

stsys1(g)sysn−1(g) ≤ voln(g) (2.10)

with equality if and only if (X, g) admits a Riemannian submersion with
connected minimal fibers onto a circle.
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Note that inequality (1.1) is a generalization of (2.9), while (2.10) follows
as a special case of inequality (2.8). Indeed, the first Bergé-Martinet constant
γ′1 equals one, while γ′2 = 2√

3
, cf. [BM89, Proposition 2.13] and Section 3.

3. Dual-critical lattices of Bergé and Martinet.

Theorem 1.1 involves a constant γ′b, called the Bergé-Martinet constant. It
is defined by setting, in the notation of formula (2.1),

γ′b = sup
{
λ1(L)λ1(L∗)

∣∣∣L ⊆ (Rb, | |)
}
, (3.1)

where the supremum is extended over all lattices L in R
b with a euclidean

norm | | and where L∗ denotes the lattice dual to L. The supremum defining
γ′b is attained, cf. [BM89].

Definition 3.1. A lattice L realizing the supremum in formula (3.1) is
called dual-critical.

Remark 3.2. The constants γ′b and the dual-critical lattices in R
b are ex-

plicitly known for b ≤ 4, cf. [BM89, Proposition 2.13]. In particular, we
have γ′1 = 1, γ′2 = 2√

3
.

Example 3.3. In dimension 3, the value of the Bergé-Martinet constant,

γ′3 =
√

3
2 = 1.2247 . . ., is slightly below the Hermite constant γ3 = 2

1
3 =

1.2599 . . .. It is attained by the face-centered cubic lattice, which is not
isodual [MH73, p. 31], [BM89, Proposition 2.13(iii)], [CS94].

In general, the following facts are known about the constants γ′b:

γ′b ≤ γb ≤ 2
3
b for all b ≥ 2

and
b

2πe
(1 + o(1)) ≤ γ′b ≤

b

πe
(1 + o(1)) as b→ ∞,

cf. [LLS90, pp. 334 and 337].

4. Jacobi variety and Abel-Jacobi map.

Note that the flat torus R
b/L in Theorem 1.2 is isometric to the Jacobi

variety
J1(X) = H1(X,R)/H1(X,Z)R (4.1)
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of X, and the Riemannian submersion is the Abel-Jacobi map

AX : X → J1(X), (4.2)

induced by the harmonic one-forms on X, originally introduced by A. Lich-
nerowicz [Li69], cf. [Gr99, 4.21].

More precisely, let E be the space of harmonic 1-forms on X, with dual
E∗ canonically identified withH1(X,R). By integrating an integral harmonic
1-form along paths from a basepoint x0 ∈ X, we obtain a map to R/Z =
S1. In order to define a map X → J1(X) without choosing a basis for
cohomology, we argue as follows. Let x be a point in the universal cover X̃
of X. Thus x is represented by a point of X together with a path c from
x0 to it. By integrating along the path c, we obtain a linear form, h→ ∫

c h,
on E. We thus obtain a map X̃ → E∗ = H1(X,R), which, furthermore,
descends to a map

AX : X → E∗, c �→
(
h �→

∫
c
h

)
, (4.3)

where X is the universal free abelian cover. By passing to quotients, this
map descends to the Abel-Jacobi map (4.2). The Abel-Jacobi map is unique
up to translations of the Jacobi torus.

5. Summary of the proofs.

The proof of Theorem 1.1, which will be completed in Section 9, depends on
two results. First we prove that for conjugate exponents p ∈ [1,∞] and q,
the Poincaré duality map

PDR : (H1(X,R), ‖ ‖∗p) → (Hn−1(X,R), ‖ ‖q)

is an isometry, see Proposition 7.1. On the other hand, the Hölder inequality
implies a chain of inequalities for the norms ‖ ‖∗p on H1(X,R), see Proposi-
tion 8.1, and, dually, opposite inequalities for the norms ‖ ‖p on H1(X,R).
This allows us to reduce inequality (1.1) to the case p = 2 where the norms
are Euclidean, so that the definition (3.1) of γ′b applies. If one has equality
in (1.1), and if α ∈ H1(X,Z)R is a nonzero element of minimal L2-norm,
then the chain of inequalities for ‖α‖∗p reduces to equality for all p, and we
conclude that the harmonic representative of α has constant norm.

Similarly, the L2-dual of every nonzero h ∈ H1(X,Z)R of minimal dual
L2-norm is represented by a harmonic one-form of constant norm, as well.
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Using a result of Bergé and Martinet [BM89] on dual-critical lattices, we
then prove that equality in (1.1) implies that all harmonic one-forms have
constant norm. Finally, the Riemannian submersion is the Abel-Jacobi map
AX of formula (4.2), see Section 6.

In the case b1(X) = 1, J. Hebda [He86] remarked already that equality
in his inequality (2.10) implies the existence of a nonzero harmonic one-form
with constant norm, and hence of a Riemannian submersion with minimal
fibers over a circle.

Although Riemannian submersions over flat tori with minimal fibers are
relatively simple objects, it is not immediately clear what choices one has
in constructing all of them. In the case b1(X) = 1, J. Hebda [He86] de-
scribes the simplest class of examples, namely local Riemannian products.
In Theorem 12.6, we present a construction that starts with a submersion
F : X → Tm over a flat torus, and characterizes all Riemannian metrics on
X for which F is a Riemannian submersion with minimal fibers.

More specifically, we can prescribe arbitrary metrics of fixed volume on
the fibers. To determine the metric, one additionally has to choose a suitable
horizontal distribution. This choice depends on the choice of a linear map
from R

m into the Lie algebra of vertical vector fields on X that preserve
the volume elements of the fibers. If the fiber dimension, dimX − m, is
greater than one, this Lie algebra is infinite-dimensional. In particular, in
this case the Riemannian metrics satisfying the case of equality in (1.1) are
much more flexible than local Riemannian products.

Remark 5.1. There are compact manifolds that admit a submersion to the
circle, but do not carry a Riemannian metric possessing a nontrivial local
product structure, e.g. hyperbolic manifolds fibering over a circle. Thus,
our construction yields new topological types of examples even in the case
b1(X) = 1.

6. Harmonic one-forms of constant norm and flat tori.

Most of the material of this section appears in [ES64, pp. 127-128]. We
include the proofs of Lemma 6.1 and Proposition 6.3 for convenience. The
proofs are mostly straightforward calculations in local Riemannian geometry.

First we give a geometric characterisation of the existence of a nonzero
harmonic one-form of constant (pointwise) norm on a Riemannian manifold
(X, g).
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Lemma 6.1. If θ �= 0 is a harmonic one-form of constant norm, then the
leaves of the distribution ker θ are minimal, and the vector field Vθ that is
g-dual to θ has geodesic flow lines orthogonal to ker θ.

Conversely, given a transversely oriented foliation of X by minimal hy-
persurfaces, such that the orthogonal foliation consists of geodesics, there
exists a unique harmonic one-form θ with |θ| = 1, such that ker θ is every-
where tangent to the foliation by minimal hypersurfaces, and such that θ is
positive on the oriented normals to the leaves.

Proof. Since dθ = 0, we can locally find a primitive f of θ, i.e. df = θ
and hence gradf = Vθ. The condition d∗θ = 0 translates into div(gradf) =
∆f = 0. Since |Vθ| = |θ| is constant, for all vector fields W on X we have

0 = g(∇WVθ, Vθ) = Hess(f)(W,Vθ) = g (W,∇Vθ
Vθ) .

Hence ∇Vθ
Vθ = 0, i.e. the flow lines of Vθ are geodesics. Since Vθ is normal to

the leaves, while |Vθ| is constant and ∇Vθ
Vθ = 0, the condition div(Vθ) = 0

is equivalent to the fact that the mean curvature of the leaves of ker(θ)
vanishes.

Conversely, let θ be the one-form with |θ| = 1 that defines the given
foliation by minimal hypersurfaces and is positive on the oriented normals.
We want to prove that θ is closed. Since the orthogonal foliation is geodesic
by assumption, we have ∇Vθ

Vθ = 0. If h is a locally defined regular function
whose level sets are leaves of ker(θ), then gradh = λVθ for some nowhere
vanishing function λ. Then for all vector fields W,Z we have

Hess(h)(W,Z) = W (λ)g(Vθ, Z) + λg(∇WVθ, Z).

Hence the bilinear form

(W,Z) → g(∇WVθ, Z)

is symmetric if W and Z are orthogonal to Vθ. Since ∇Vθ
Vθ = 0 and 0 =

W (|Vθ|2) = 2g(∇WVθ, Vθ), we conclude that

g(∇WVθ, Z) = g(∇ZVθ,W )

for all vector fields W,Z. This implies dθ = 0. As above, we see that
the minimality of the leaves, together with the conditions |Vθ| = 1 and
∇Vθ

Vθ = 0, imply div(Vθ) = 0, and hence d∗θ = 0. �
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Remark 6.2. If dimX = 2 and if X carries a nonzero harmonic one-form θ
of constant norm, then X is flat and, in particular, every harmonic one-form
has constant norm. This can be seen as follows. According to Lemma 6.1, the
form θ induces two orthogonal foliations by geodesics. So the Gauss-Bonnet
formula applied to small geodesic squares implies that X is flat. Then the
lift of a harmonic one-form on X to the universal cover is constant.

Recall that a closed one-form is called integral if its integrals over arbi-
trary closed curves are integers.

Proposition 6.3. For Riemannian manifolds (X, g) the following two prop-
erties are equivalent:

(i) There exists a flat torus (Tm, g) and a Riemannian submersion F :
(X, g) → (Tm, g) with minimal fibers.

(ii) The set of harmonic one-forms of constant norm contains an m-di-
mensional vector space generated by integral one-forms.

Proof of the implication (i) ⇒ (ii). Since g is flat, every harmonic one-
form θ on (Tm, g) has constant norm. Integral forms pull back to integral
forms, and so it suffices to prove that F ∗θ is a harmonic one-form of norm
|F ∗θ| = |θ|. This equality is true since F is a Riemannian submersion. To
show that F ∗θ is harmonic, note that F ∗θ is closed and of constant norm.
This implies that the foliation orthogonal to ker

(
F ∗θ

)
is geodesic if θ �= 0, cf.

the proof of Lemma 6.1. By Lemma 6.1, it remains to show that the leaves of
the foliation ker

(
F ∗θ

)
are minimal. This is a consequence of the minimality

of the fibers of F , together with the fact that the leaves of ker
(
F ∗θ

)
are

geodesic in horizontal directions. Namely, if v ∈ ker
(
F ∗θ|x

)
is orthogonal

to the fiber Fx = F−1(F (x)) through x and if c is the geodesic in X with
ċ(0) = v, then ċ(t) ∈ ker

(
F ∗θ|c(t)

)
for all t. �

Proof of the implication (ii) ⇒ (i). Let θ1, . . . , θm be linearly independent

integral harmonic one-forms on X, such that all linear combinations
m∑
i=1

riθi

with ri ∈ R have constant norm. Note that this last property is equivalent
to the constancy of all scalar products g∗(θi, θj) with respect to the dual
metric g∗. Let

(
gij

)
denote the matrix inverse to

(
g∗(θi , θj)

)
. Since the θi

are integral, there exist functions Fi: X → R/Z such that dFi = θi. Then
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the map
F = (F1, . . . , Fm) : X → R

m/Zm

is a Riemannian submersion from (X, g) to R
m/Zm endowed with the con-

stant metric g =
∑
gijdxi ⊗ dxj . It remains to prove that the fibers of F

are minimal. We can find a global orthonormal frame field V1, . . . , Vm for
the horizontal bundle H = ker(DF )⊥ ⊆ TX by taking the g-dual of appro-
priate constant linear combinations of θ1, . . . , θm. Locally we can complete
V1, . . . , Vm to an orthonormal frame field V1, . . . , Vn for TX. Since V1, . . . , Vm
are g-dual to harmonic one-forms, we know that

n∑
j=1

g
(∇VjVi, Vj

)
= divVi = 0

for 1 ≤ i ≤ m, cf. the proof of Lemma 6.1. On the other hand, Lemma 6.1
implies ∇VjVj = 0 for 1 ≤ j ≤ m, and hence

g
(∇VjVi, Vj

)
= Vj(g(Vi, Vj)) = 0

for 1 ≤ j ≤ m, 1 ≤ i ≤ n. The preceding equations imply that

n∑
j=m+1

g
(∇VjVi, Vj

)
= 0

for 1 ≤ i ≤ m. Since V1, . . . , Vm are orthogonal to the fibers of F , this says
that the mean curvature vector of the fibers of F vanishes. �

Remark 6.4. In the case m = dim(X), the statement of Proposition 6.3
also follows from the arguments employed by G. Paternain to prove [Pa01,
Corollary 2]. These arguments are global and use the solution of the E.
Hopf conjecture by D. Burago and S. Ivanov. They do not apply in the case
m < dim(X).

In the corollary below, we show that a Riemannian submersion F as in
Proposition 6.3(i) is uniquely determined by the metric g on X and by the
induced map F∗:H1(X,Z) → H1(Tm,Z).

Corollary 6.5. Suppose I : (X0, g0) → (X1, g1) is an isometry and for
i = 0, 1 we are given Riemannian submersions Fi with minimal fibers from
(Xi, gi) to flat tori (Tm, gi). If there exists an automorphism A of H1(Tm,Z)
such that (F1 ◦ I)∗ = A ◦ (F0)∗ then there exists an isometry I = (Tm, g0) →
(Tm, g1) such that I ◦ F0 = F1 ◦ I.
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X0
I

��

F0

��

X1

F1

��

(Tm, g0)
I

�������� (Tm, g1)

Figure 1: Construction of isometry I

Proof. Let Li ⊆ R
m be the lattice of deck transformations of (Tm, gi). Then

we can identify A with a linear map J : R
m → R

m such that J(L0) = L1. If

J : R
m/L0 → R

m/L1

denotes the diffeomorphism induced by J , then our assumption implies that
(F1 ◦ I)∗ =

(
J ◦ F0

)
∗. Hence, if θ is a constant one-form on R

m/L1, then
the closed one-forms (F1 ◦ I)∗θ and

(
J ◦ F0

)∗
θ are cohomologous. From the

proof of Proposition 6.3, we know that (F1 ◦ I)∗θ and
(
J ◦ F0

)∗
θ are har-

monic with respect to g0. By the uniqueness of the harmonic representative
of a cohomology class, we conclude that

(F1 ◦ I)∗θ =
(
J ◦ F0

)∗
θ

for every constant one-form on R
m/L1. This implies the existence of v ∈

R
m/L1 such that

F1 ◦ I = J ◦ F0 + v.

If we define I : R
m/L0 → R

m/L1 by I(y) = J(y) + v, then I satisfies
F1 ◦ I = I ◦ F0, as illustrated in Figure 1. The map I is a diffeomorphism
and a (local) isometry since I is an isometry, and F0 and F1 are Riemannian
submersions. �

7. Norm duality and the cup product.

In this section, we assume that (X, g) is a compact, n-dimensional, oriented,
and connected Riemannian manifold. For k ∈ {1, n − 1} we consider the
norms ‖ ‖∗p on Hk(X,R) and ‖ ‖p on Hk(X,R) defined in Section 2.

In Proposition 7.1, we prove that for every pair of conjugate ex-
ponents p ∈ [1,∞] and q, the Poincaré duality map is an isome-
try between

(
H1(X,R), ‖ ‖p

)
and (Hn−1(X,R), ‖ ‖q), respectively between(

Hn−1(X,R), ‖ ‖p
)

and (H1(X,R), ‖ ‖q).
The results of the present section will be used in Sections 9 and 11

to prove the systolic inequality in Theorem 1.1 and to analyze the case of
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equality. For completeness and future reference, some of them are proved in
greater generality than necessary for these applications.

Proposition 7.1. Let p ∈ [1,∞] and q be conjugate exponents. Then the
normed spaces

(
H1(X,R), ‖ ‖∗p

)
and

(
Hn−1(X,R), ‖ ‖∗q

)
are dual to each

other with respect to the cup product.

Remark 7.2. The claim of Proposition 7.1 is equivalent to either of the
following two statements:

1. The Poincaré duality map

PDR :
(
H1(X,R), ‖ ‖∗p

) → (
Hn−1(X,R), ‖ ‖q

)
is an isometry.

2. The Poincaré duality map

PDR :
(
Hn−1(X,R), ‖ ‖∗q

) → (
H1 (X,R), ‖ ‖p

)
is an isometry.

Proof of Proposition 7.1. A key idea is the application of the Hodge star op-
erator in a suitable measurable context, cf. formula (7.3). Let α ∈ H1(X,R),
β ∈ Hn−1(X,R). If ω (respectively, π) is a closed form representing α (re-
spectively, β), then the cup product α ∪ β satisfies

PDR(α ∪ β) =
∫
X
ω ∧ π.

Since one- and (n − 1)-forms take values in the set of simple covectors, we
can use [Fe69, p. 32] and the Hölder inequality to estimate∣∣∣∣∫

X
ω ∧ π

∣∣∣∣ ≤ ∫
X
|ωx| |πx|dvoln(x) ≤ |ω|p|π|q.

This proves
PDR(α ∪ β) ≤ ‖α‖∗p‖β‖∗q (7.1)

It remains to show that for every α ∈ H1(X,R) \ {0}, there exists β ∈
Hn−1(X,R) \ {0} such that

PDR(α ∪ β) = ‖α‖∗p‖β‖∗q , (7.2)
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or, conversely, that for every β ∈ Hn−1(X,R) \ {0}, there exists α ∈
H1(X,R) \ {0} such that (7.2) holds. Assume first that 2 ≤ p < ∞. It
is shown in [Si70, Proof of Lemma 4.2] that there exists a one-form ω in the
Lp-closure of α such that |ω|p = ‖α‖∗p. It follows from [Ha92, Theorem 5.1]
that the form

π = |ω|p−2(∗ω) (7.3)

is weakly closed and determines a class β ∈ Hn−1(X,R) such that ‖β‖∗q =
|π|q. This implies 0 �= α ∪ β = ‖α‖∗p‖β‖∗q .

If 1 < p < 2 and hence 2 < q < ∞, we can apply analogous arguments
starting with an arbitrary β ∈ Hn−1(X,R) \ {0}. We then obtain α ∈
H1(X,R) \ {0} such that (7.2) holds. Finally we treat the case p = ∞ and
q = 1. The proof in the case p = 1 and q = ∞ is completely analogous.
According to Remark 7.2, it suffices to prove that the map

PDR :
(
Hn−1(X,R), ‖ ‖∗1

) → (H1(X,R), ‖ ‖∞)

is an isometry. From (7.1) we conclude that ‖PDR(β)‖∞ ≤ ‖β‖∗1 for every
β ∈ Hn−1(X,R). To prove the opposite inequality, we use some elementary
facts from geometric measure theory. Recall that a closed normal one-current
is a linear functional T : Ω1X → R such that T (df) = 0 for every f ∈
C∞(M,R) and such that its mass M(T ), defined by

M(T ) = sup{T (ω) | ω ∈ Ω1(M), |ω|∞ ≤ 1},

is finite. Every closed normal one-current T determines a homology class
[T ] ∈ H1(X,R) such that [[T ], α] = T (ω) whenever ω ∈ α. Every closed
(n− 1)-form π defines a closed normal one-current Tπ by setting

Tπ(ω) =
∫
X
ω ∧ π.

Such one-currents are called smooth. One easily sees that

M(Tπ) = |π|1

and
PDR(π) = ±[Tπ]

Functional analysis implies that for every h ∈ H1(X,R), there exists a closed
normal one-current T such that [T ] = h and M(T ) = ‖h‖∞, cf. [Fe74,
Section 3].
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We can smooth this T , cf. [Fe74, 4.1.18], and obtain a sequence πi ∈
PD−1

R
(h) such that

lim
i→∞

|πi|1 = lim
i→∞

M(Tπi) = M(T ) = ‖h‖∞.

This implies ‖PD−1
R

(h)‖∗1 ≤ ‖h‖∞. �

8. Hölder inequality in cohomology and case of equality.

The Hölder inequality implies inequalities between the Lp norms ‖ ‖p for
different values of p. We will prove that the harmonic representative of a
cohomology class α ∈ H1(X,R) has constant norm if and only if for some
(and hence for every) p �= 2, the inequality relating the L2- and the Lp-norm
is an equality at α. For p = ∞, this follows from [Pa01, Theorem C].

Proposition 8.1. For every α ∈ H1(X,R), the function

p ∈ [1,∞] → ‖α‖∗pvoln(g)−
1
p

is weakly increasing. For p ∈ [1,∞] \ {2}, the equality ‖α‖∗pvoln(g)−
1
p =

‖α‖∗2voln(g)−
1
2 holds if and only if the harmonic representative of α has

constant norm.

Proof. The monotonicity follows from Hölder inequality. Next, we assume
that the harmonic representative ω of α has constant norm. Due to the
monotonicity, it suffices to prove that

‖α‖∗∞ ≤ ‖α‖∗2voln(g)−
1
2 ≤ ‖α‖∗1voln(g)−1

The first inequality follows directly from the constancy of |ωx|. To prove the
second inequality, let (ωi)i∈N be a sequence of representatives of α such that
limi→∞ |ωi|1 = ‖α‖∗1. Since ωi − ω is exact and ω is harmonic, we see that
〈ωi − ω, ω〉 = 0. Since |ωx| is constant, we conclude that

|ω|22 = 〈ωi, ω〉2 ≤ |ωi|1|ω|2voln(g)− 1
2

and hence
‖α‖∗1voln(g)−

1
2 ≥ ‖α‖∗2.

Finally, we assume that p ∈ [1,∞] \ {2} and that

‖α‖∗pvoln(g)−
1
p = ‖α‖∗2vol (n)−

1
2 , (8.1)
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and prove that the harmonic representative ω of α has constant norm. Due
to the monotonicity, it suffices to treat the cases 1 < p < 2 and 2 < p < ∞.
If 1 < p < 2, the discussion of equality in the Hölder inequality implies that
ω has constant norm. If 2 < p < ∞, then there exists a one-form ω in the
Lp-closure of α such that |ω|p = ‖α‖∗p, cf. [Si70, proof of Lemma 4.2]. Now
the Hölder inequality and (8.1) imply

|ω|2voln(g)−
1
2 ≤ |ω|pvoln(g)−

1
p

= ‖α‖∗pvoln(g)−
1
p

= ‖α‖∗2voln(g)−
1
2 .

Hence ω is the harmonic representative of α, the first inequality is an equality,
and the norm of ω is constant. �

Let 〈 , 〉∗2 denote the scalar product on H1(X,R), with norm ‖ ‖∗2.
Thus, if we identify H1(X,R) with the space of harmonic one-forms, then
〈 , 〉∗2 corresponds to the L2-scalar product. We define an isomorphism
I : H1(X,R) → H1(X,R) by

〈I(h), α〉∗L2 = [h, α] for h ∈ H1(X,R), α ∈ H1(X,R). (8.2)

Note that ‖h‖2 = ‖I(h)‖∗2 for all h ∈ H1(X,R). Proposition 8.1 implies the
following corollary.

Corollary 8.2. For every h ∈ H1(X,R), the function

p ∈ [1,∞] → ‖h‖pvoln(g)
1
p

is (weakly) decreasing. For p ∈ [1,∞] \ {2}, the equality ‖h‖pvoln(g)
1
p =

‖h‖2voln(g)
1
2 holds if and only if the harmonic representative of I(h) has

constant norm.

Similarly, we can combine Propositions 7.1 and 8.1 to obtain the following
corollary.

Corollary 8.3. For every k ∈ Hn−1(X,R), the function

p ∈ [1,∞] → ‖k‖pvoln(g)
1
p

is (weakly) decreasing. For p ∈ [1,∞] \ {2}, the equality ‖k‖pvoln(g)
1
p =

‖k‖2voln(g)
1
2 holds if and only if the harmonic representative of PD−1

R
(k)

has constant norm.
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9. Proof of Theorem 1.1.

We assume that (X, g) is a compact, oriented, and connected Riemannian
manifold with b = b1(X,R) ≥ 1. We first show how the results proved in
Sections 7 and 8 imply Theorem 1.1:

confsys1(g)sysn−1(g) ≤ γ′bvoln(g)
n−1

n , (9.1)

where n = dim(X) and γ′b is the Bergé-Martinet constant. Note that in-
equality (9.1) is true also for disconnected manifolds once we know (9.1) for
connected ones.

Proof of Theorem 1.1. The Euclidean vector spaces (H1(X,R), ‖ ‖2) and
(Hn−1(X,R), ‖ ‖2) are dual to each other with respect to the intersection
pairing defined by

h · k = [h,PD−1
R

(k)].

This follows from the fact that the map PDR :
(
H1(X,R), ‖ ‖∗2

) →
(Hn−1(X,R), ‖ ‖2) is an isometry, cf. Remark 7.2. Moreover, the pair of
lattices H1(X,Z)R ⊂ H1(X,R) and Hn−1(X,Z)R ⊂ Hn−1(X,R) are dual
to each other with respect to this pairing, cf. [BK03, Section 3]. Hence,
formula (3.1) for the Bergé-Martinet constant γ′b implies that

λ1

(
H1 (X,Z)R, ‖ ‖2

)
λ1

(
Hn−1(X,Z)R, ‖ ‖2

) ≤ γ′b,

where b = b1(X). Invoking Corollaries 8.2 and 8.3, we obtain for all p, p′ ∈
[2,∞]:

λ1

(
H1 (X,Z)R, ‖ ‖p

)
λ1

(
Hn−1(X,Z)R, ‖ ‖p′

) ≤ γ′bvoln(g)
1− 1

p
− 1

p′ (9.2)

Now we specify parameter values to p = n and p′ = ∞. Then inequality (9.2)
specifies to (9.1), cf. definition of confsys1 in formula (2.7), as well as (2.2)
and (2.6). �

Note that the inequality ‖α‖∗L2 (voln(g))
1
2 ≥ ‖PDRα‖∞ for a class α ∈

H1(X,R) can also be proved more directly, as follows. Let α ∈ H1(X,Z)R

be a nonzero element in the integer lattice, and let ω ∈ α be the harmonic
1-form. Then there exists a map f : X → S1 = R/Z such that df = ω. Using
the Cauchy-Schwartz inequality and the coarea formula, cf. [Fe69, 3.2.11],
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[Ch93, p. 267], we obtain

‖α‖∗L2(voln(g))1/2 = |ω|2(voln(g))1/2

≥
∫
X
|df |dvoln

=
∫
S1

voln−1(f−1(t))dt

≥ ‖PD(α)‖∞,

(9.3)

since the hypersurface f−1(t) is Poincaré dual to α for every regular value
of t.

10. Consequences of equality and criterion of dual-perfection.

We now collect some consequences of equality in (9.1). From Corollaries 8.2
and 8.3, combined with Remark 6.2 (if n = 2), we obtain Lemma 10.2 below.

Definition 10.1. A vector v ∈ (L, ‖ ‖) is called short if ‖v‖ = λ1(L, ‖ ‖).

Lemma 10.2. Assume equality holds in (9.1). Then

1. if α ∈ (H1(X,Z)R, ‖ ‖∗2) is short, then the harmonic representative of
α has constant norm;

2. if h ∈ (H1(X,Z)R, ‖ ‖2) is short, then the harmonic representative of
I(h) ∈ H1(X,R) as in (8.2) has constant norm.

Given a pair of dual lattices L and L∗ in Euclidean space (E, ‖ ‖2),
consider the sets of short vectors

S(L) =
{
α ∈ L ∣∣ ‖α‖2 = λ1(L)

}
,

S(L∗) =
{
β ∈ L∗ ∣∣ ‖β‖2 = λ1(L∗)

}
,

so that S(L) ∪ S(L∗) ⊂ E. Let Q(E) denote the vector space of symmetric
bilinear forms on E, and let ϕ : E → Q(E)∗ be the map defined by

ϕ(γ)(q) = q(γ, γ)

for γ ∈ E and q ∈ Q(E).

Definition 10.3 ([BM89]). A pair (L,L∗) of dual lattices in Euclidean
space is called dual-perfect if the set ϕ(S(L) ∪ S(L∗)) generates Q(E)∗ as a
vector space.
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The following was proved in [BM89, item 3.10].

Theorem 10.4. Every dual-critical pair is dual-perfect.

Note that a compact, oriented Riemannian manifold for which equality
holds in (9.2) is necessarily connected.

Proposition 10.5. Let (X, g) be a compact, oriented Riemannian n-
manifold with positive first Betti number b = b1(X,R). Assume that

confsys1(g)sysn−1(g) = γ′bvoln(g)
n−1

n .

Then every harmonic one-form on (X, g) has constant norm.

Proof. By Hodge theory, the space E of harmonic 1-forms onX endowed with
the L2 scalar product is canonically isometric to the space

(
H1(X,R), ‖ ‖∗2

)
.

In E we have the pair of dual lattices L and L∗ that correspond to H1(X,Z)R

and I (H1(X,Z)R).
In the terminology of [BM89], our assumption says that the pair (L,L∗)

is dual-critical. By Theorem 10.4, the pair (L,L∗) is dual-perfect in the sense
of Definition 10.3. In our situation, we have a canonical map p : X → Q(E),
x �→ px, defined by

px(α, β) = 〈α(x), β(x)〉
for α, β ∈ E. By Lemma 10.2, every γ ∈ S(L) ∪ S(L∗) is a harmonic form
of constant norm. This means that ϕ(γ) ∈ Q(E)∗ is constant on the image
p(X) ⊆ Q(E) of p. Since the elements ϕ(γ), γ ∈ S(L) ∪ S(L∗) generate
Q(E)∗, every element of Q(E)∗ is constant on p(X). In particular, if γ ∈ E
then

ϕ(γ)(px) = px(γ, γ) = |γ(x)|2
does not depend on x ∈ X. �

Remark 10.6. In terms of matrix traces, the argument above can be para-
phrased as follows. The vectors s ∈ S(L)∪S(L∗) give rise to rank 1 symmet-
ric matrices sst ∈ Sym(Rb). A quadratic form qA(x) defined by a symmetric
matrix A gives rise to a linear map Q : Sym(Rb) → R by the formula

Q(xxt) = qA(x) = xtAx = Tr(xtAx) = Tr(Axxt).

Therefore, the map Q is uniquely determined by its values on the elements
sst ∈ Sym(Rb), which form a spanning set by dual-perfection. It follows
that every harmonic 1-form on X has constant norm.
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Remark 10.7. The following question was asked by A. Katok in 2002. Does
there exist an example of a Riemannian metric with a pair of harmonic one-
forms of constant norm, whose pointwise scalar product is not constant?
Such an example is, in fact, constructed in [NV03], showing that the Bergé-
Martinet criterion (Theorem 10.4) cannot be bypassed in the proof of The-
orem 1.2.

11. Proof of Theorem 1.2.

Assume first that there exists a Riemannian submersion F with connected,
minimal fibers of a compact, oriented, n-dimensional Riemannian manifold
(X, g), with first Betti number b ≥ 1, onto a flat torus R

b/L where L denotes
a lattice in Euclidean space (Rb, | |). We will show that in such a situation,
we necessarily have

stsys1(g) = λ1(L),
confsys1(g) = λ1(L)voln(g)−

1
n ,

sysn−1(g) = λ1(L∗)voln(g).
(11.1)

If L is dual-critical, formulas (11.1) imply that stsys1(g)sysn−1(g) =
γ′bvoln(g) and confsys1(g)sysn−1(g) = γ′bvoln(g)

n−1
n . First note that the har-

monic one-forms on X are precisely the pull-backs of the constant one-forms
on R

b/L, and hence all of them have constant norm, cf. Proposition 6.3.
Now Corollaries 8.2 and 8.3 imply that, up to the factor voln(g)

1
p
− 1

2 , the
Lp-norms on H1(X,R) and on Hn−1(X,R) coincide with the L2-norms ‖ ‖2.
In particular, we have

stsys1(g) = λ1

(
H1 (X,Z)R, ‖ ‖2

)
voln(g)

1
2 , (11.2)

and
confsys1(g) = stsys1(g)voln(g)

− 1
n , (11.3)

and furthermore,

sysn−1(g) = λ1

(
Hn−1(X,Z)R, ‖ ‖2

)
voln(g)

1
2 . (11.4)

By Remark 7.2, the Poincaré duality map

PDR : H1(X,R) → Hn−1(X,R)

preserves the L2-norms. Since it maps H1(X,Z)R onto Hn−1(X,Z)R, cf.
[BK03, Section 3], equation (11.4) is equivalent to

sysn−1(g) = λ1

(
H1(X,Z)R, ‖ ‖∗2

)
voln(g)

1
2 . (11.5)
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Since the fibers of the submersion F are connected, the induced homo-
morphism π1(X) → π1(Rb/L) is onto, and hence we obtain an epimor-
phism H1(X,Z) → H1(Rb/L,Z). Since b = b1(X,R), the epimorphism
F∗ : H1(X,Z)R → H1(Rb/L,Z)R is an isomorphism. By duality, the map
F ∗ : H1(Rb/L,Z)R → H1(X,Z)R is an isomorphism. Now H1(Rb/L,Z)R

can be identified with the dual lattice, L∗. An element θ ∈ L∗ satisfies

‖F ∗θ‖∗2 = |θ|voln(g)
1
2 .

Hence, equations (11.2), (11.3), and (11.5) imply our claim, equation (11.1).
Conversely, we assume that confsys1(g)sysn−1(g) = γ′bvoln(g)

n−1
n . Then

Proposition 10.5 implies that every harmonic one-form on X has constant
norm. Integrating harmonic one-forms that form a basis for the integer
lattice in H1(X,R), we obtain a Riemannian submersion F with minimal
fibers from (X, g) onto a flat torus R

b/L, cf. (6.3). Since we obtain F from
a basis of the integer lattice H1(X,Z)R, we see that

F ∗ : H1(Rb/L,Z)R → H1(X,Z)R

is an isomorphism. It follows that F induces an epimorphism at the level of
fundamental groups, and hence the fibers of F are connected. Note that the
first part of the proof implies the identities confsys1(g) = λ1(L)voln(g)−

1
n

and sysn−1(g) = λ1(L∗)voln(g). Hence λ1(L)λ1(L∗) = γ′b, and therefore L
is dual-critical.

12. Construction of all extremal metrics.

In this section we will present a construction that starts with a submersion
F : X → Tm of a compact manifold X to a flat torus, and provides all
Riemannian metrics on X for which F is a Riemannian submersion with
minimal fibers. If X admits a submersion to T b, where b = b1(X,R), this
construction provides all metrics on X for which all harmonic one-forms have
constant norm, cf. Proposition 6.3.

In this construction, we can prescribe arbitrary metrics of fixed volume
on the fibers of F . This does not determine the metric on X uniquely.
We additionally have to define a horizontal distribution H transverse to the
vertical distribution V = ker(dF ). The choice of H is restricted by the
requirement that the horizontal lift of every flow on the base has to preserve
the volume elements of the fibers. The necessity of this condition follows
from the requirement that all fibers be minimal, cf. Lemma 12.3. We start
by providing a multiparameter variant of J. Moser’s theorem [Mo65] on the
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existence of volume-preserving diffeomorphisms. This will allow us to find
the horizontal distributions, starting with an arbitrary family of metrics on
the fibers of constant volume.

We first explain the setting and fix some notation. Let F : X → Y
denote a submersion between compact, connected and oriented manifolds X
and Y .

Definition 12.1. Let −XF denote the set of projectable vector fields on X.
Namely, a vector field V on X is in −XF if there exists a vector field W on Y
such that DF ◦ V = W ◦ F .

Such a vector field W on Y will be called the projection of V ∈ −XF and it will
be denoted by W = F∗(V ). In the literature on foliations, projectable vector
fields are also called “basic” or “foliate”. Note that −XF is a Lie subalgebra of
the Lie algebra of all vector fields onX. Furthermore, F∗ is a homomorphism
from the Lie algebra −XF to the Lie algebra −X (Y ) of all vector fields on Y .
In terms of the flow, Φ, of V ∈ −XF , and the flow, Ψ, of F∗(V ) = W , the
relation DF ◦ V = W ◦ F is equivalent to

F ◦ Φt = Ψt ◦ F for all t ∈ R.

In particular, if y ∈ Y then Φt maps the fiber F−1(y) to the fiber F−1(Ψt(y)).
We denote the diffeomorphism Φt|F−1(y) by Φt,y.

In addition, we assume that on every fiber F−1(y), we are given a volume
element αy ∈ Ωn−m(F−1(y)), where dimX = n and dimY = m, that varies
smoothly with y ∈ Y . We say that the flow Φ of V ∈ −XF preserves α =
(αy)y∈Y if

Φ∗
t,yα

ψt(y) = αy,

for all (t, y) ∈ R×Y . We denote by −X (α) the Lie subalgebra of all projectable
vector fields whose flows preserve α.

Proposition 12.2. The homomorphism F∗ : −X (α) → −X (Y ) is an epimor-
phism of Lie algebras.

This multiparameter version of J. Moser’s theorem [Mo65] can be proved
along the lines of the original proof in [Mo65].

Now we specialize the preceding discussion to the case of a Riemannian
submersion F : X → Y between Riemannian manifolds X and Y , where
dimX = n, dimY = m. Actually, the discussion is purely local. Every
flow Ψ on Y has a unique horizontal lift Φ to X, i.e. Φ is the flow on X
whose flow lines are the horizontal lifts of the flow lines of Ψ. Equivalently, if
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Ψ is the flow of the vector field W on Y , then Φ is the flow of the horizontal
lift V of W defined by requiring that V ∈ −XF , F∗(V ) = W and that V
is everywhere horizontal, i.e. orthogonal to the vertical distribution V =
ker(dF ). Obviously, the horizontal lift of any flow on Y maps fibers of F to
fibers of F .

Lemma 12.3. Suppose F : X → Y is a Riemannian submersion between
oriented Riemannian manifolds. Then all the fibers of F are minimal sub-
manifolds if and only if the horizontal lift of every flow on Y maps the volume
elements of the fibers of F to each other.

Proof. This follows from [Ru79, Proposition 1]. �

Remark 12.4. Actually, the “if”-part in Lemma 12.3 is true under the
following seemingly weaker assumption. For every y ∈ Y there are m vector
fields on Y that are linearly independent at y and whose flows have horizontal
lifts that preserve the volume elements of the fibers of F .

Let us now assume that F is a submersion of a compact, oriented and
connected n-manifold X onto a flat torus R

m/L where L is a lattice in
Euclidean space R

m. Moreover, we assume that for all y ∈ R
m/L, we are

given a volume element αy on F−1(y) that depends smoothly on y.
We let −X c(α) denote the set of all vector fields V ∈ −X (α) such that

dF (V ) = (dF 1(V ), . . . , dFm(V )) is a constant vector in R
m.

Obviously −X c(α) is a linear subspace of −X (α) and

lF : −X c(α) → R
m, lF (V ) = dF (V ),

is a linear map. Proposition 12.2 implies

lF : −X c(α) → R
m is onto. (12.1)

To define a horizontal distribution H, we will choose a linear right inverse
H : R

m → −X c(α) to lF and set

Hx = {H(v)|x | v ∈ R
m} ⊆ TXx

for x ∈ X. Note that we have much freedom in the choice of H if n−m > 1.
The kernel of lF consists of those vertical vector fields V that preserve each
αy, i.e. on every fiber F−1(y) one has a vector field V y = V |F−1(y) whose
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flow preserves αy and that varies smoothly with y ∈ Tm. In particular,
ker(lF ) ⊆ −X c(α) is an infinite-dimensional Lie algebra if n−m > 1.

We are now in a position to describe our construction of metrics for which
a given submersion onto a flat torus is Riemannian and with minimal fibers.

Construction 12.5. Let X be a compact, oriented and connected n-
manifold and F : X → Tm = R

m/L a submersion onto a flat torus.

1) Choose a smooth family gy, y ∈ Tm, of Riemannian metrics on
the fibers F−1(y) of F , such that the total Riemannian volume of
(F−1(y), gy) does not depend on y ∈ Tm.

2) Let α = (αy)y∈Y denote the family of Riemannian volume forms on
the fibers of F . Choose a linear right inverse H : R

m → −X c(α) to lF
and define the subbundle H ⊆ TX by

Hx = {H(v)|x | v ∈ R
m}

for x ∈ X.

3) Now define a Riemannian metric g on X by requiring:

(a) The subbundles V = ker(dF ) and H are orthogonal to each other.

(b) For all x ∈ X the isomorphism dF x|Hx : Hx → R
m is an isometry.

(c) For all y ∈ Tm the inclusion (F−1(y), gy) → (X, g) is isometric.

Theorem 12.6. The Riemannian metrics g on X arising from Construc-
tion 12.5 are precisely those for which F : X → Tm = R

m/L is a Rieman-
nian submersion with minimal fibers.

Proof. Suppose g arises from the construction. Then properties (a) and (b)
imply that F is a Riemannian submersion. The vector fields Vi = H(ei),
1 ≤ i ≤ m, form an orthonormal frame field for H = V⊥. Because of (c) and
−X c(α) ⊆ −X (α), their flows preserve the volume elements induced by g on
the fibers. This implies that the fibers are minimal submanifolds of (X, g),
cf. Remark 12.4. Conversely, suppose g is a Riemannian metric on X such
that F : X → R

m/L is a Riemannian submersion with minimal fibers. We
describe how the metrics on the fibers and the map H have to be chosen
so that our construction yields g. For the metrics gy, y ∈ R

m/L, on the
fibers we must obviously take the metrics induced by g. If v ∈ R

m let θ be
the constant one-form on R

m/L that is dual to v with respect to the scalar
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product on R
m and let V be g-dual to F ∗θ. Now Lemma 12.3 implies that

V ∈ −X (α), where α = (αy)y∈Y denotes the volume elements induced by g on
the fibers. Moreover, lF (V ) = v, i.e. the (linear) map that maps v ∈ R

m

to V ∈ −X c(α) is a right inverse to lF which we take to be H. Then the
horizontal distribution H induced by H is g-orthogonal to V = ker(dF ) and
our construction applied to these choices of gy, y ∈ R

m/L, and H yields the
metric g. �

Corollary 6.5 shows to what extent our construction leads to non-
isometric metrics g, and how it depends on the submersion F and the flat
torus R

m/L.
If X admits a metric such that all harmonic one-forms have constant

norm, then there exists a submersion F : X → T b for b = b1(X,R), cf.
Proposition 6.3. Starting from such submersions F and from arbitrary flat
metrics on T b, our construction yields all metrics onX for which all harmonic
one-forms have constant norm.

Similarly, X can support metrics g for which equality holds in (1.1) only
if X admits a submersion onto T b for b = b1(X,R). Starting from such
submersions and from flat metrics on T b coming from dual-critical lattices
L ⊆ R

b, the construction yields all metrics on X satisfying equality in (1.1).
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nienne et leurs applications aux feuilletages compacts. Com-
ment. Math. Helv. 54 (1979), 224–239.

[Se88] Sergiescu, V.: Basic cohomology and tautness of Riemannian fo-
liations. Appendix B in: P. Molino, Riemannian foliations,, 235–
248. Progress in Math. 73, Birkhäuser, Boston-Basel 1988.
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