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Asymptotics of the Heat Flow on a Manifold with

Smooth Boundary

Alessandro Savo

On a compact Riemannian manifold with smooth boundary, we
study the solution of the heat equation with smooth initial data and
Dirichlet boundary conditions. We compute the whole asymptotic
series of the gradient of the solution at any boundary point, and
apply these results to the asymptotics of the heat content with
homogeneous and inhomogeneous boundary conditions.

1. Introduction.

Let Ω be a C∞−smooth, compact Riemannian manifold with C∞−smooth
boundary, and let ϕ ∈ C∞(Ω). Our main object of study is the solution
ϕt(x) = ϕ(t, x) of the heat equation on Ω with initial conditions ϕ and
Dirichlet boundary conditions; hence ϕ(t, x) satisfies:⎧⎪⎪⎨⎪⎪⎩

(∆ +
∂

∂t
)ϕ(t, x) = 0

ϕ(0, x) = ϕ(x) for all x ∈ Ω
ϕ(t, y) = 0 for all t > 0, y ∈ ∂Ω.

(1.1)

We are interested in the small time behavior of ϕ(t, x) near the boundary of
Ω, and we study the following problems.
Gradient asymptotics. Pick a point y ∈ ∂Ω, and let ν be the inward unit
normal vector to ∂Ω at y. Compute the asymptotics, as t→ 0, of

∂ϕ

∂ν
(t, y) = ”heat flow” at time t, at the point y ∈ ∂Ω.

Heat content asymptotics. Let ψ ∈ C∞(Ω) be an auxiliary test-function.
Compute the asymptotics, as t→ 0, of the heat content function:

β[ϕ,ψ](t) =
∫

Ω
ϕ(t, x)ψ(x)dx. (1.2)
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There has been intensive research on this problem, and its generalizations.
See for example [vdB-D], [vdB-D-G], [vdB-G1], [vdB-LG], [G], [McA2], [P-J],
[S1], [S3].
Inhomogeneous heat content asymptotics. This problem was con-
sidered in [vdB-G2]. Let Φ(y) ∈ C∞(∂Ω), and now let Φ(t, x) denote the
solution of the heat equation on Ω with zero initial data and boundary tem-
perature prescribed by Φ(y) (that is, Φ(t, y) = Φ(y) for all t > 0, y ∈ ∂Ω).
Compute the asymptotics, as t → 0, of the inhomogeneous heat content
function:

β̃[Φ](t) =
∫

Ω
Φ(t, x)dx. (1.3)

The small time behavior of each of the above problems is given by an
asymptotic series in integral powers of

√
t: we will give recursive formulas

for the calculation of all the coefficients of these expansions (see Theorems
2.1, 2.2, 2.3 in the next section).

All these problems have a natural physical interpretation. In fact, view-
ing the function ϕ(t, x) as temperature, we see that β[ϕ, 1](t) measures the
total heat held by the manifold at time t, assuming that the initial tem-
perature is prescribed by ϕ(x) and that the boundary is refrigerated (i.e.
kept at temperature zero) at all times. A similar interpretation holds for the
inhomogeneous case. Using Green’s formula, one sees that:

− d

dt
β[ϕ, 1](t) =

∫
∂Ω

∂ϕ

∂ν
(t, y)dy (1.4)

so the integral in the right-hand side measures the rate at which the manifold
is losing heat (if ϕ ≥ 0), due to boundary refrigeration; its integrand can
then be interpreted as the ”heat flow” at the point y, at time t.

In fact, the knowledge of the asymptotics of
∂ϕ

∂ν
(t, y), together with

Green’s formula, leads to the solution of the last two problems: hence the
calculation of the gradient asymptotics is the most basic among the three,
and its solution, Theorem 2.1, should be regarded as the main result of this
paper.

From a geometer’s point of view, the first two problems above are already
interesting when one takes unit initial data, that is ϕ(x) ≡ 1. Then the
coefficients of the asymptotic series under consideration are purely geometric
invariants which describe how the geometry of the manifold (i.e. curvature,
second fundamental form of ∂Ω) affects the heat diffusion for small times.

The main feature of our approach is that the asymptotic expansions
under consideration can all be expressed, and can be completely computed,
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in terms of a family of differential operators

Dk, k ∈ N,

acting on C∞(U), where U is a tubular neighborhood of ∂Ω, taken small so
that the distance function from the boundary of the manifold is smooth on U .
This family is defined in the next section by a set of recursive formulae (see
Definition 2.5). The operators Dk come from a simple algebraic structure:
in fact they all belong to the algebra A = A(N,∆) generated by the Laplace
operator ∆ of the ambient manifold Ω, and by the first order operator N
acting on ϕ ∈ C∞(U) as follows:

Nϕ = 2〈∇ϕ,∇ρ〉 − ϕ∆ρ (1.5)

where ρ(x) = dist(x, ∂Ω) is the distance function from the boundary. The
algebra A has a natural grading given by the order, and each Dk will be a
(non-commutative) polynomial in N and ∆ of homogeneous degree k − 1.
We give here the explicit expression of D1, . . . ,D8; the higher order Dk’s can
be computed by applying the algorithm in Definition 2.5.

Table 1.1. The operators D1, . . . ,D8:

D1 =
2√
π
Id;

D2 =
1
2
N ;

D3 =
1

6
√
π

[
N2 − 4∆

]
;

D4 = − 1
16

[∆N + 3N∆] ;

D5 = − 1
240

√
π

[
N4 + 16N2∆ + 8N∆N − 48∆2

]
;

D6 =
1

768
[
∆N3−N3∆ +N∆N2 −N2∆N + 40N∆2 + 8∆2N + 16∆N∆

]
;

D7 =
1

6720
√
π

[
N6+120N2∆2+4N3∆N+4N2∆N2 + 4N∆N3 + 72(N∆)2

+40N∆2N + 8N4∆ + 8∆N2∆ + 8(∆N)2 − 8∆2N2 − 320∆3
]
;

D8 = − 1
24576

[
40∆3N + 8∆N3∆ + 280N∆3 + 8N∆2N2 − 8N2∆2N

+ 72∆2N∆ + 120∆N∆2 + 4∆2N3 + 4∆N∆N2 + 4∆N2∆N + 4N∆N2∆

−12N3∆2 + ∆N5 +N∆N4 −N4∆N − 12N(N∆)2 −N5∆
]
.
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The operators Dk have been introduced in our previous paper [S1] for
the computation of the asymptotic series of the heat content β[ϕ, 1](t). The
present paper in fact strengthens and completes the results of [S1], and
enables us to give a unified computation of the asymptotic expansions under
consideration, which does not follow directly from [S1].

The present results are valid for smooth boundaries. About the singular
case: the first three terms of the asymptotic expansion of the heat content
β[1, 1](t) were computed in [vdB-S] for a polygonal domain in the Euclidean
plane, and in our paper [S3] for a convex polyhedral domain in the Euclidean
space of arbitrary dimension. It should be said, however, that both the
polyhedral case in [S3] and the smooth case considered in this paper (and
in [S1]) are treated essentially by the same method (which uses the distance
function from the boundary), and the same reduction to a one-dimensional
heat equation. Our method yields (in principle) explicit estimates for the
remainder terms, even though we don’t pursue this here; for estimates of
the heat content which are valid for all times, and not just asymptotically
as t→ 0, we refer to [S1].

2. Main Results.

Let us then state our main results. From now on, Dk will denote the k−th
operator obtained by the algorithm of Definition 2.5.
Gradient asymptotics. What follows is in fact the main result of the
paper.

Theorem 2.1. Let ϕ(x) ∈ C∞(Ω), and let ϕ(t, x) be the solution of (1.1).
Fix y ∈ ∂Ω, and let ν denote the inward unit vector, normal to ∂Ω at y.
Then one has, asymptotically as t→ 0:

∂ϕ

∂ν
(t, y) ∼ ϕ(y)√

π
· 1√

t
+

∞∑
k=0

D̃kϕ(y) · tk/2,

where D̃k is the differential operator of order k + 1:

D̃k = (1 +
k

2
)Dk+2, k ≥ 0.

The asymptotics of
∂ϕ

∂ν
(t, y) depend on certain jets of the initial data ϕ at

the chosen point y; the theorem says in particular that all these jets can be
written in terms of only two operators: N and ∆.
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Heat content asymptotics. Recall the definition (1.2) of the heat con-
tent β[ϕ,ψ](t). The small time behavior of the heat content is given by an
asymptotic series, as t→ 0:

β[ϕ,ψ](t) ∼
∫

Ω
ϕψ −

∞∑
k=1

βk[ϕ,ψ] · tk/2 (2.1)

for certain invariants βk[ϕ,ψ]. Note that βk is symmetric in ϕ and ψ; this
is because

β[ϕ,ψ](t) =
∫

Ω×Ω
k(t, x, y)ϕ(x)ψ(y)dxdy (2.2)

where k(t, x, y) is the Dirichlet heat kernel of Ω, which is in fact symmetric
in x and y.

We recall previous calculations. For Euclidean domains, β1[1, 1] was
computed in [vdB-D] and β2[1, 1] was computed in [vdB-LG]. Then the co-
efficients βk[ϕ,ψ] where computed in [vdB-G] for k ≤ 4 (for any vector
bundle Laplacian), and β5[1, 1] was computed in [vdB-G2]. In our previous
paper [S1], we give a closed formula for the coefficients βk[1, ψ]; precisely,
for all k ≥ 1:

βk[1, ψ] =
∫
∂Ω
Dkψ.

Our next theorem generalizes this result by giving a closed formula for
βk[ϕ,ψ], as follows.

Theorem 2.2 (i) Let ψ ∈ C∞(Ω), and let h be a harmonic function on Ω.
Then, for all k ≥ 1:

βk[h, ψ] =
∫
∂Ω
hDkψ

(ii) Now let ϕ,ψ ∈ C∞(Ω) be arbitrary. Then β1[ϕ,ψ] =
∫
∂Ω ϕD1ψ =

2√
π

∫
∂Ω ϕψ, and for all n ≥ 1:

β2n[ϕ,ψ] =
n−1∑
j=0

(−1)j
(n− j)!
n!

∫
∂Ω

∆jϕ ·D2n−2jψ +
(−1)n−1

n!

∫
Ω

∆nϕ · ψ

β2n+1[ϕ,ψ] =
n∑
j=0

(−1)j
Γ(n+ 3/2 − j)

Γ(n+ 3/2)

∫
∂Ω

∆jϕ ·D2n−2j+1ψ

Inhomogeneous heat content asymptotics. Fix Φ(y) ∈ C∞(∂Ω), and
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consider the solution Φ(t, x) of the heat equation:⎧⎪⎪⎨⎪⎪⎩
(∆ +

∂

∂t
)Φ(t, x) = 0

Φ(0, x) = 0 for all x ∈ Ω
Φ(t, y) = Φ(y) for all t > 0, y ∈ ∂Ω

(2.3)

As shown in [vdB-G2], the corresponding heat content function has an
asymptotic expansion, as t→ 0, of type:∫

Ω
Φ(t, x)dx ∼

∞∑
k=1

β̃k[Φ]tk/2 (2.4)

for certain invariants β̃k[Φ]. The main result of [vdB-G2] is that there exist
local invariants Bk ∈ C∞(∂Ω) such that, for all k ∈ N:

β̃k[Φ] =
∫
∂Ω

Φ(y)Bk(y)dy, (2.5)

Moreover, the invariants B1, . . . , B4 and
∫
∂ΩB5 were explicitly computed.

We compute below the complete asymptotics of the following more gen-
eral problem, obtained by adding a smooth density ψ(x).

Theorem 2.3. Let Φ(t, x) be as in (2.3), and let ψ ∈ C∞(Ω). Then, as
t→ 0: ∫

Ω
Φ(t, x)ψ(x)dx ∼

∞∑
k=1

[∫
∂Ω

Φ(y)Dkψ(y) dy
]
tk/2.

In particular, the invariants Bk in (2.5) have a simple expression in terms of
the operators Dk:

Corollary 2.4. For all k ∈ N one has Bk = Dk1.

As the operators Dk are computable, Corollary 2.4 gives an effective
formula for the computation of the Bk’s.

Let us now recall from [S1] the algorithm which defines our operators.
The definition of Dk. First define the family of operators Rkj, Skj ∈ A
by: ⎧⎪⎨⎪⎩

R00 = Id, S00 = 0, Rkj = Skj = 0 if k < 0 or j < 0

Rkj = −(N2 + ∆)Rk−1,j +NSk−1,j

Skj = NRk−1,j−1 + ∆NRk−1,j − ∆Sk−1,j.

(2.6)
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Now set: {a, b} =
Γ(a+ b+ 1/2)

(a+ b)!Γ(a+ 1/2)
, and define the operators Zn, αn ∈ A,

n ≥ 0, by:

Zn+1 =
n∑
j=0

{n+ 1, j − 1}Rn+j,j; αn =
n+1∑
j=0

{n, j}Sn+j,j. (2.7)

Definition 2.5. The operators Dk are defined recursively as follows:

D1 =
2√
π
Id,

D2n =
1√
π

n∑
i=1

Γ(i+ 1
2)Γ(n − i+ 1

2)
n!

D2i−1αn−i,

D2n+1 =
1√
π
Zn+1 +

1√
π

n∑
i=1

i!Γ(n− i+ 1
2)

Γ(n+ 3
2)

D2iαn−i.

2.1. Calculations in terms of curvature.

In this sub-section, we want to express the coefficients of the asymptotic
expansions of Theorems 2.1-2.3 in more geometric form. These expansions
are completely calculated in terms of the invariants Dkϕ and D̃kϕ; here, we
want to write these invariants in terms of the jets of ϕ and the curvatures of
Ω, i.e. the Riemann tensor of Ω (and its covariant derivatives) and the sec-
ond fundamental form of ∂Ω (and its covariant derivatives). We write below
the geometric expression of the first four terms of the gradient asymptotics
with arbitrary initial data ϕ(x) ∈ C∞(Ω), and the geometric form of the
first five invariants Bk = Dk1 of Theorem 2.3 (see Table 2.6 below; recall
that B1, . . . , B4,

∫
∂ΩB5 were explicitly computed in [vdB-G2]). Note that,

as D̃k = (1 + k/2)Dk+2, this will also immediately give the first five terms
of the gradient asymptotics with unit initial condition. It is clear that one
could write the higher order terms in geometric form just by a straightfor-
ward calculation, following the procedure exposed below. This conversion
procedure is taken from [S3], in which we wrote the geometric expression of
the invariants

∫
∂ΩDk1 for k ≤ 6.

In what follows, we consider the tubular neighborhood of ∂Ω given by
U = {x ∈ Ω : ρ(x) < ε}, where ε is small so that the distance function ρ is
smooth on U . We set:

η = ∆ρ and ν = ∇ρ.



678 Alessandro Savo

If we consider the foliation of U by the level sets ρ−1(r), which are smooth
hypersurfaces, then ν is a smooth vector field of unit length, everywhere
normal to the leaves; moreover ∇νν ≡ 0 on U . Let S be the field of endo-
morphisms of TU defined by S(X) = −∇Xν. Restricted to the leaf ρ−1(r)
(in particular, to ∂Ω), S is clearly the shape operator of ρ−1(r) (resp. of
∂Ω), and tr S = η = ∆ρ; hence η is a multiple of the mean curvature of
the level sets of ρ. In this notation, the operator N acts on ϕ ∈ C∞(U) as
follows:

Nϕ = 2
∂ϕ

∂ν
− ηϕ. (2.8)

Gradient asymptotics. Recall that, if ϕ ∈ C∞(Ω), then the asymptotic

expansion of
∂ϕ

∂ν
(t, y) at y ∈ ∂Ω, where ϕ(t, x) is the solution of (1.1), is

given by:
∂ϕ

∂ν
(t, y) ∼ ϕ(y)√

π
· 1√

t
+

∞∑
k=0

D̃kϕ(y) · tk/2.

Using Table 1.1 and (2.8), and recalling that D̃k = (1 + k
2 )Dk+2, we obtain

the following calculations.
Coefficient of t0:

D̃0ϕ(y) =
1
2
Nϕ(y)

=
∂ϕ

∂ν
(y) − 1

2
η(y)ϕ(y).

(2.9)

Coefficient of t1/2:

D̃1ϕ(y) =
1

4
√
π

(N2 − 4∆)ϕ(y)

=
1

4
√
π

[
4
∂2ϕ

∂ν2
− 4η

∂ϕ

∂ν
+ (η2 − 2

∂η

∂ν
)ϕ − 4∆ϕ

]
(y).

(2.10)

Coefficient of t:

D̃2ϕ(y) = −1
8
(∆N + 3N∆)ϕ(y)

= −1
8

[
2∆

∂ϕ

∂ν
+ 6

∂

∂ν
∆ϕ− 4η∆ϕ + 2〈∇η,∇ϕ〉 − ϕ∆η

]
(y)

(2.11)

We stop here for brevity.
Next, let us express the coefficients only in terms of the jets of ϕ, the

curvature tensor and the second fundamental form S. To achieve this, we
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need to convert in this geometric form the jets of the function η = ∆ρ, like
∂η

∂ν
and ∆η, and more generally all the invariants of type Aη, where the

operator A ∈ A. Let then Rν denote the endomorphism of TU which takes
the vector field X to Rν(X)

def→ =R(ν,X)ν, where R is the curvature tensor
of Ω (note that the trace of Rν is the Ricci tensor Ric (ν, ν) at ν).

One has the formula:
∇νS = Rν + S2, (2.12)

and, by taking traces:

∂η

∂ν
= tr(Rν + S2) = Ric(ν, ν) + ‖S‖2. (2.13)

All normal derivatives of η can now be obtained by iterating (2.12). Let ∇
denote the Levi-Civita connection of the level hypersurfaces ρ−1(r), δ the
”tangential” divergence and ∆ = δ ◦ ∇ the tangential Laplacian. Splitting

the ambient Laplacian in its tangential and radial parts ∆ϕ = ∆ϕ− ∂2ϕ

∂ν2
+

η
∂ϕ

∂ν
one sees that:

∆η = ∆η − tr(∇νRν + 2S ◦ Rν + 2S3) + η tr(Rν + S2) (2.14)

Subsituting (2.13) and (2.14) into (2.10) and (2.11) we get the desired geo-
metric form of D̃0ϕ, D̃1ϕ, D̃2ϕ.

To simplify formulas, we now set ϕ ≡ 1: this case is important because
it permits to isolate the geometry of the heat flow asymptotics. As ∆1 = 0
and N1 = −η, making use of Table 1.1 and of what we have just said, we
obtain the following table.
Table 2.6. The invariants B1 = D11, . . . , B5 = D51 are:

D11 =
2√
π

;

D21 = −1
2
η;

D31 = − 1
6
√
π

[
2 tr(Rν + S2) − η2

]
;

D41 =
1
16

[
η tr(Rν + S2) − tr(∇νRν + 2S ◦ Rν + 2S3) + ∆η

]
;

D51 =
1

240
√
π

[
−8 tr(∇2

νRν + 2R2
ν + 8S2 ◦ Rν + 2S ◦ ∇νRν + 6S4)

+8η tr(∇νRν + 2S ◦ Rν + 2S3) + 4η2 tr(Rν + S2)

+4[tr(Rν + S2)]2 − η4 + 16
∂

∂ν
∆η − 8η∆η

]
.
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It remains to put the term
∂

∂ν
∆η in geometric form. One has:

∂

∂ν
∆η = ∆(

∂η

∂ν
) + ‖∇η‖2 + 2δ ◦ S(∇η)

= ∆
(
Ric(ν, ν)) + ∆(‖S‖2

)
+ ‖∇η‖2 + 2δ ◦ S(∇η).

(2.15)

which follows from computing explicitly the bracket operators [∇ν ,∇] and
[∇ν , δ] (see [S3] for more details). The higher order invariants can be dealt
with similarly, but their geometric expressions are longer, and we omit writ-
ing them explicitly.

Remark 2.7. Modulo notational changes, our coefficients B1, . . . , B4 as in
Table 2.6 agree with those of [vdB-G2] (the B4’s look different, but are indeed
the same invariant). It is perhaps worth observing that all the geometric
invariants arising from the heat flow and heat content asymptotics do not
depend on the full curvature tensor R, but only on the tensor Rν (that is,
R(ν, ·, ν, ·)) and on its covariant derivatives in the normal direction ν.

Remark 2.8. By the symmetry of the coefficients βk[ϕ,ψ] with respect to
ϕ and ψ (see (2.2)) we see that, if ϕ and ψ are both harmonic on Ω then,
from Theorem 2.2(i) one has, for all k ∈ N:∫

∂Ω
ϕDkψ =

∫
∂Ω
ψDkϕ (2.16)

which hints at a self-adjointy property of Dk. Precisely, let us define the
operator D̂k, acting on C∞(∂Ω) by the rule:

D̂kΦ = (DkΦ̂)|∂Ω (2.17)

where Φ ∈ C∞(∂Ω) and Φ̂ denotes its harmonic extension to Ω. Then it
is easy to verify from (2.16) that D̂k is indeed self-adjoint with respect to
the L2−inner product of ∂Ω. Hence, the small time asymptotics of the heat
flow with harmonic initial data are completely determined by the family of
self-adjoint operators D̂k acting on C∞(∂Ω).

The scheme of the paper. All results are consequences of our main
theorem (Theorem 3.2), which is stated in the next section. Also in section
3 we prove Theorems 2.1, 2.2 and 2.3. Section 4 will be entirely devoted to
the proof of the main theorem.
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3. The Main Theorem.

Let ρ(x) = dist(x, ∂Ω) be the distance function from the boundary, and let:

Ω(r) = {x ∈ Ω : ρ(x) > r}. (3.1)

If Rinj > 0 denotes the injectivity radius of the normal exponential map of
∂Ω, then ρ will be smooth on the neighborhood U of ∂Ω, where

U = {x ∈ Ω : ρ(x) < Rinj/2}. (3.2)

Our first aim is to show that, for small times, the gradient asymptotics at
y ∈ ∂Ω depend only on the behavior of the initial data near ∂Ω, that is, on
the tubular neighborhood U . Loosely speaking, this is a consequence of the
so-called ”Principle of not feeling the boundary”.

Proposition 3.1. Assume that ψ ∈ C∞(Ω) is supported away from ∂Ω,
say on U ′ = Ω(Rinj/4). Then, for any fixed y ∈ ∂Ω one has, as t→ 0:

∂ψ

∂ν
(t, y) = O(tm)

for all m ≥ 1. Moreover, if h is harmonic and non-negative on Ω then, for
all k ∈ N one has:

βk[h, ψ] = 0.

For the proof, see Appendix A. The consequence is that, in Theorems 2.1
and 2.2(i), we can assume that ϕ is supported on U : in fact, if it is not so,
by using a partition of unity we can write ϕ = ϕ′ +ψ, with ϕ′ supported on
U and ψ supported on U ′, and work with the function ϕ′ instead.

We can now state the main Theorem, in the form that we need. We fix
the harmonic function h on Ω, and let ht(x) = h(t, x) denote the solution of
(1.1) with initial data h. Write

β[h, ϕ](t) =
∫

Ω
hϕ− I[h]ϕ(t) (3.3)

where

I[h]ϕ(t) =
∫

Ω
(h− ht)ϕ. (3.4)

Then, the main theorem can be stated as follows.
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Theorem 3.2. Let h be harmonic and non-negative on Ω. Assume that
ϕ ∈ C∞(Ω) is supported in the tubular neighborhood U of ∂Ω. Then, for
all m ≥ 1 and t > 0 one has:

I[h]ϕ(t) =
m∑
k=1

[∫
∂Ω
h ·Dkϕ

]
tk/2 +O(t(m+1)/2),

where the Dk’s are the operators of Definition 2.5.
Here and in what follows, O(t(m+1)/2) denotes a smooth function of t > 0

such that, for all 0 < t ≤ 1:

|O(t(m+1)/2)| ≤
{
C1(m,ϕ)

∫
Ω
h+ C2(m,ϕ)

∫
∂Ω
h

}
· t(m+1)/2

for positive constants C1(m,ϕ) and C2(m,ϕ) depending only on m and ϕ.

For the proof of Theorem 3.2, see the next section. We give below the
proofs of Theorems 2.1, 2.2 and 2.3.
Proof of Theorem 2.1. Let us fix ϕ(x) ∈ C∞(Ω) and y ∈ ∂Ω. We have
to prove that, as t→ 0:

∂ϕ

∂ν
(t, y) ∼ ϕ(y)√

π
· 1√

t
+

∞∑
k=0

D̃kϕ(y) · tk/2, (3.5)

where ϕ(t, x) is the solution of (1.1). By Proposition 3.1, we can assume
that ϕ is supported on U . Fix a sequence of positive smooth functions
fn ∈ C∞(∂Ω) converging, as n → ∞, to the Dirac distribution δy of ∂Ω.
One could take, for example

fn(x) = k∂Ω(1/n, x, y) (3.6)

where k∂Ω denotes the heat kernel of the closed manifold ∂Ω. Fix n and let
hn : Ω → R be the harmonic function which extends fn. Then hn is positive
for all n. By Theorem 3.2, and the fact that β[hn, ϕ](t) = β[ϕ, hn](t) for all
t, one has that, for all m ≥ 1:∫

Ω
hn(ϕ− ϕt) =

m∑
k=1

[∫
∂Ω
hn ·Dkϕ

]
· tk/2 +On(t(m+1)/2) (3.7)

where On(t(m+1)/2) denotes a smooth function with the property:

|On(t(m+1)/2)| ≤
{
C1(m,ϕ)

∫
Ω
hn + C2(m,ϕ)

∫
∂Ω
hn

}
· t(m+1)/2. (3.8)
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for all 0 < t ≤ 1. The theorem will follow by passing to the limit, as n→ ∞,
in (3.7), where t > 0 is now kept fixed. In detail, first observe that, for all
g ∈ C0(Ω), one has that

lim
n→∞

∫
Ω
hng =

∂ψ

∂ν
(y) (3.9)

where ψ is the solution of: {
∆ψ = g on Ω;
ψ = 0 on ∂Ω.

(3.10)

(3.9) is immediately verified by applying Green’s formula to the integral∫
Ω hn∆ψ and then taking the limit as n→ ∞.

Consider the function:

ψ(t, x) =
∫ t

0
ϕ(τ, x)dτ (3.11)

Then ψ(t, x) is smooth on (0,∞) × Ω and satisfies{
∆ψ(t, x) = ϕ(x) − ϕ(t, x) for all (t, x) ∈ (0,∞) × Ω;
ψ(t, z) = 0 for all t > 0, z ∈ ∂Ω.

(3.12)

Fix t > 0. Passing to the limit as n → ∞ in (3.7) and using (3.9) for
g(x) = ϕ(x) − ϕ(t, x) we obtain:

∂ψ

∂ν
(t, y) =

m∑
k=1

Dkϕ(y) · tk/2 +R(t) (3.13)

with R(t) being O(t(m+1)/2) as t→ 0, in fact (see 3.8):

|R(t)| ≤
{
C1(m,ϕ)

∂µ

∂ν
(y) + C2(m,ϕ)

}
· t(m+1)/2, (3.14)

for all 0 < t ≤ 1. Here µ(x) is the solution of{
∆µ = 1 on Ω;
µ = 0 on ∂Ω.

As m is arbitrary (3.13) and (3.14) imply that, as t→ 0:

∂ψ

∂ν
(t, y) ∼

∞∑
k=1

Dkϕ(y) · tk/2. (3.15)
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Differentiating both sides of (3.15) with respect to t, and observing that
∂

∂t

∂ψ

∂ν
(t, y) =

∂ϕ

∂ν
(t, y), we obtain:

∂ϕ

∂ν
(t, y) ∼

∞∑
k=1

k

2
Dkϕ(y) · tk/2−1

and, as D1ϕ(y) = 2/
√
πϕ(y), we obtain the final assertion. �

Proof of Theorem 2.2. (i) Let ψ ∈ C∞(Ω) and h be harmonic. We have
to prove that, for all k ≥ 1:

βk[h, ψ] =
∫
∂Ω
hDkψ (3.16)

Assume first that h ≥ 0. By the remark following Proposition 3.1, we can
assume that ψ is supported on U : then the assertion follows immediately
from the theorem. If h is negative somewhere, we can always write it as a
difference of two non-negative harmonic functions, and (3.16) continues to
be true.

We prove (ii). Assume first that ϕ vanishes on the boundary. Then, by
the symmetry of β and Green’s formula one has, for all t > 0:

d

dt
β[ϕ,ψ](t) =

d

dt
β[ψ,ϕ](t)

= −β[ψ,∆ϕ](t)
= −β[∆ϕ,ψ](t).

(3.17)

Differentiating the asymptotic series in (2.1), and equating it with the
asymptotic series on the right-hand side of (3.17), one obtains:

β1[ϕ,ψ] = 0; β2[ϕ,ψ] =
∫

Ω
ψ∆ϕ, (3.18)

and, for all k ≥ 3:

βk[ϕ,ψ] = −2
k
βk−2[∆ϕ,ψ]. (3.19)

Now let ϕ be arbitrary. We can decompose ϕ = ϕ1+ϕ2 where ϕ1 is harmonic
on Ω and ϕ2 vanishes on the boundary. Hence, by part (i) and (3.19) one
has, for k ≥ 3:

βk[ϕ,ψ] = βk[ϕ1, ψ] + βk[ϕ2, ψ]

=
∫
∂Ω
ϕ1Dkψ − 2

k
βk−2[∆ϕ2, ψ]

=
∫
∂Ω
ϕDkψ − 2

k
βk−2[∆ϕ,ψ]

(3.20)
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Statement (ii) now follows by induction. �

Proof of Theorem 2.3. Let Φ(y) ∈ C∞(∂Ω), and Φ(t, x) be the solution
of (2.3). We have to show that, for all ψ ∈ C∞(Ω), one has, as t→ 0:∫

Ω
Φ(t, x)ψ(x)dx ∼

∞∑
k=1

[∫
∂Ω

Φ ·Dkψ

]
tk/2. (3.21)

Observe that, if h is the harmonic extension of Φ to Ω, then the solution
Φ(t, x) of (2.3) can be written: Φ(t, x) = h(x)−h(t, x) with h(t, x) denoting
the solution of (1.1) having initial data h(x). Recalling (2.1), by Theorem
2.2(i) one has: ∫

Ω
Φ(t, x)ψ(x)dx =

∫
Ω
(h(x) − h(t, x))ψ(x)dx

∼
∞∑
k=1

βk[h, ψ] · tk/2

=
∞∑
k=1

∫
∂Ω
hDkψ · tk/2

=
∞∑
k=1

∫
∂Ω

ΦDkψ · tk/2

(3.22)

�

4. Proof of Theorem 3.2.

The notation and the idea of the proof. In this section, we fix the
non-negative function h(x) on Ω once and for all. We denote by C∞

c (U)
the space of smooth functions on Ω which are compactly supported in the
tubular neighborhood U defined in (3.2). It is clear that, as the distance
function ρ is smooth on U , the algebra A of operators generated by N and
∆ will take elements of C∞

c (U) to elements of C∞
c (U). For t > 0, we denote

by ht the function ht(x) ≡ h(t, x), solution of (1.1) with initial data h(x);
setting I[h]ϕ(t) =

∫
Ω(h − ht)ϕ, we must prove that, for all t > 0,m ≥ 1 and

ϕ ∈ C∞
c (U) one has:

I[h]ϕ(t) =
m∑
k=1

∫
∂Ω
hDkϕ · tk/2 +O(t(m+1)/2), (4.1)
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where Dk are the operators of Definition 2.5 and where the remainder term
satisfies

|O(t(m+1)/2)| ≤
{
C1(m,ϕ)

∫
Ω
h+ C2(m,ϕ)

∫
∂Ω
h

}
· t(m+1)/2 (4.2)

for all 0 < t ≤ 1 and for positive constants C1(m,ϕ) and C2(m,ϕ) depending
only on m and ϕ.

Our basic idea is to introduce an auxiliary variable r ∈ (0,∞) (the dis-
tance from the boundary of Ω) and study the integral:

I[h]ϕ(t, r) =
∫

Ω(r)
(h− ht)ϕ (4.3)

where Ω(r) = {x ∈ Ω : ρ(x) > r} is the set of points at distance greater
than r from the boundary. Note that I[h]ϕ(t) is just the value of I[h]ϕ(t, r) at
r = 0. We study the one dimensional heat equation satisfied by I[h]ϕ(t, r);
by Duhamel principle, we then write it in terms of the one-dimensional heat
kernel, which is explicit, and thus we can make the necessary calculations.
The argument given here is an extension of that presented in [S1], where
we compute the asymptotics of the heat content β[1, ψ](t) (see (1.2)); in
other words, in this paper we carry the scheme of the proof of [S1] with
the non-negative harmonic function h(x) replacing the constant function 1.
This extension is very fruitful because, as shown in the previous section, it
leads to a unified calculation of the three asymptotics problems presented in
the Introduction, and shows how the operators Dk play a central role in the
heat flow asymptotics.

Many of the preparatory lemmas of [S1] carry over our case with little
or no change. However, special care must be taken in proving the form of
the remainder term in Theorem 3.2 (see Appendix C) which is needed in the
proof of Theorem 2.1.

Before starting the proof, let us note that I[h]ϕ(t, r) is supported on
(0,∞) × [0, a), where a = Rinj/2. It is easy to show that:

∂

∂r
I[h]ϕ(t, r) = −

∫
ρ−1(r)

(h− ht)ϕ. (4.4)

As ‖∇ρ‖ = 1 on U , the level sets ρ−1(r) are smooth hypersurfaces of Ω for
r ∈ [0, a); therefore:

Remark 4.1. I[h]ϕ(t, r) is smooth on (0,∞) × [0, a), for all ϕ ∈ C∞
c (U).
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We will extend I[h]ϕ to a smooth function on (0,∞) × [0,∞) by setting
it equal to zero for r ≥ a.

Step 1: the proof for m = 1. This step is needed in the proof for arbitrary
m, and provides a simple illustration of the general procedure.

By applying Lemma 4.5(i) to w(t, x) = h(x) − h(t, x) and recalling no-
tation (4.25), we see that I[h]ϕ(t, r) satisfies the following heat equation on
the half-line:(

− ∂2

∂r2
+
∂

∂t

)
I[h]ϕ(t, r) =

∫
ρ−1(r)

(h− ht)Nϕ−
∫

Ω(r)
(h− ht)∆ϕ. (4.5)

Let e(t, r, s) be the heat kernel of the half-line [0,∞) subject to the Neumann
boundary condition at 0. Explicitly

e(t, r, s) =
1√
4πt

(
e−(r−s)2/4t + e−(r+s)2/4t

)
(4.6)

and in particular:

e(t, r, 0) =
1√
πt
e−r

2/4t. (4.7)

By the principle of Duhamel (see Prop. 4.3(ii) with F = I[h]ϕ and r = 0),
we can write I[h]ϕ(t, 0) as follows:

I[h]ϕ(t, 0) =
∫ ∞

0
e(t, r, 0)I[h]ϕ(0, r) dr − 1√

π

∫ t

0

∂

∂r
I[h]ϕ(τ, 0)(t − τ)−1/2 dτ

+
∫ t

0

∫ ∞

0
e(t− τ, r, 0)LI[h]ϕ(τ, r) dr dτ.

(4.8)

where L = − ∂2

∂r2
+

∂

∂τ
is the one-dimensional heat operator, so that

LI[h]ϕ(τ, r) is given by the right-hand side of (4.5). We use (4.8 ) to prove
the theorem for m = 1.

Proposition 4.2. Let h and ϕ be as above. Then:

I[h]ϕ(t) =
2√
π

∫
∂Ω
hϕ · √t+O(t) =

∫
∂Ω
hD1ϕ · √t+O(t)

where |O(t)| ≤ [
C1(ϕ)

∫
Ω h+ C2(ϕ)

∫
∂Ω h

] · t, for constants C1(ϕ) and C2(ϕ)
depending only on ϕ.
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Proof. One has I[h]ϕ(0, r) = 0 for all r, and, by (4.4) and the Dirichlet
conditions imposed on hτ :

− ∂

∂r
I[h]ϕ(τ, 0) =

∫
∂Ω
hϕ (4.9)

for all τ > 0. Now
∫∞
0 e(t − τ, r, 0)dr = 1 for all τ < t; hence, taking into

account (4.8), the proof will be complete if we show that, for all (τ, r):

|LI[h]ϕ(τ, r)| ≤ C1(ϕ)
∫

Ω
h+ C2(ϕ)

∫
∂Ω
h. (4.10)

Now, by (4.5):

|LI[h]ϕ(τ, r)| ≤
∫
ρ−1(r)

|h− hτ ||Nϕ| +
∫

Ω(r)
|h− hτ ||∆ϕ|. (4.11)

We first observe that, for all τ > 0, x ∈ Ω:

0 ≤ h(x) − h(τ, x) ≤ h(x) (4.12)

In fact, as h ≥ 0, one has also h(τ, ·) ≥ 0; now h(t, x) is never increasing in
t because, if k(t, x, y) is the Dirichlet heat kernel of Ω, then:

∂h

∂t
(t, x) = −

∫
∂Ω

∂k

∂ν
(t, x, y)h(y) dy ≤ 0, (4.13)

hence h(t, x) ≤ h(x) for all t and (4.12) is proved. As ϕ is supported on U ,
one then has, for all (τ, r):∫

Ω(r)
|h− hτ ||∆ϕ| ≤ sup

U
|∆ϕ| ·

∫
Ω
h. (4.14)

Next, we observe that, for r < a = Rinj/2, one has, by Green’s formula:∫
ρ−1(r)

h =
∫
∂Ω
h−

∫
{x:0<ρ(x)<r}

h∆ρ

≤
∫
∂Ω
h+ sup

U
|∆ρ| ·

∫
Ω
h

(4.15)

hence, for all (τ, r):∫
ρ−1(r)

|h− hτ ||Nϕ| ≤
∫
ρ−1(r)

h|Nϕ|

≤ sup
U

|Nϕ| ·
[∫

∂Ω
h+ sup

U
|∆ρ| ·

∫
Ω
h

] (4.16)



Asymptotics of the Heat Flow 689

Taken together, (4.11), (4.14) and (4.16) prove (4.10). �

Step 2. Iterated Duhamel Principle. To obtain the theorem for all
m, the idea is to iterate Duhamel principle, by applying it to LI[h]ϕ(t, r),
substituting into the double integral of (4.8), and so on. The result of the
iteration is stated in the next proposition for an arbitrary function F (t, r)
which is assumed smooth on (0,∞) × [0,∞), and which satisfies certain
finiteness properties. To this regard, let us say that

F (0, ·) = lim
t→0+

F (t, ·) (4.17)

exists in the sense of distributions if, for all ψ ∈ C∞([0,∞)), the limit:∫ ∞

0
F (0, r)ψ(r)dr = lim

t→0+

∫ ∞

0
F (t, r)ψ(r)dr (4.18)

exists and is finite. We also set

F (0, 0) = lim
t→0+

F (t, 0) (4.19)

whenever the limit exists and is finite. Then one has (see Lemma 5.4 of
[S1]):

Proposition 4.3. (Iterated Duhamel formula) Let F (t, r) be smooth on
(0,∞) × [0,∞), and let L be the one dimensional heat operator. Assume
that:

(i) LkF (0, ·) exists in the sense of distributions for all k ≥ 0;

(ii) As t→ 0, both LkF (t, 0) and
∂

∂r
LkF (t, 0) converge to a finite limit, for

all k ≥ 0. Then, for all t > 0, and r ≥ 0:

F (t, r) =
∫ ∞

0
e(t, r, s)F (0, s)ds −

∫ t

0
e(t− τ, r, 0)

∂

∂r
F (τ, 0)dτ

+
∫ t

0

∫ ∞

0
e(t− τ, r, s)LF (τ, s) dr dτ,

and for all m ∈ N, and t > 0:

F (t, 0) =
m∑
k=0

tk

k!

∫ ∞

0
e(t, r, 0)LkF (0, r) dr

− 1√
π

m∑
k=0

1
k!

∫ t

0

∂

∂r
LkF (τ, 0)(t − τ)k−1/2 dτ

+
1
m!

∫ t

0

∫ ∞

0
e(t− τ, r, 0)Lm+1F (τ, r)(t− τ)m dr dτ.
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At this point, however, a technical difficulty arises, since the iterated
Duhamel formula cannot directly be applied to F = I[h]ϕ because for k ≥ 3
this function does not satisfy the assumptions (i) and (ii) of Proposition 4.3.
To get around this difficulty, we will then approximate I[h]ϕ by a family of
functions I[h,ε]ϕ, ε > 0, which do verify the above conditions, apply Duhamel
principle and then pass to the limit as ε tends to zero.

Step 3. An approximation to I[h]ϕ. Fix ε so that 0 < ε < a = Rinj/2,
and let hε(t, x) be the solution of the heat equation on Ω which satisfies
Dirichlet boundary conditions and which has initial conditions

hε(0, x) =

{
0 if ρ(x) < ε

h(x) if ρ(x) ≥ ε.
(4.20)

Now hε(0, ·) tends pointwise to h(·) as ε→ 0 and is supported in the interior
of Ω; in particular, for any fixed pair (t, x) one has

lim
ε→0

hε(t, x) = h(t, x). (4.21)

Now set:
I[h,ε]ϕ(t, r) =

∫
Ω(r)

(h(x) − hε(t, x))ϕ(x)dx. (4.22)

By the Lebesgue bounded convergence theorem, for any t > 0 one has

I[h]ϕ(t, 0) = lim
ε→0

I[h,ε]ϕ(t, 0). (4.23)

Step 4. The Duhamel formula can be applied to I[h,ε]ϕ. In this
subsection, we first write an expression for the power LkI[h,ε]ϕ (and its partial
derivative with respect to r): this will involve the algebra A, and is done in
Lemma 4.5 below. Then, in Lemma 4.6, we show that the limit distributions
LkI[h,ε]ϕ(0, ·) exist for all ε, and we compute them explicitly.

For convenience, let us introduce the following notation:

Λ[h,ε]ϕ(t, r) =
∫
ρ−1(r)

(h(x) − hε(t, x))ϕ(x)dx

= − ∂

∂r
I[h,ε]ϕ(t, r).

(4.24)

The next lemma applies not anly to the functions I[h,ε]ϕ and Λ[h,ε]ϕ, but to
all functions of (t, r) of the type:

I[w]ϕ(t, r) =
∫

Ω(r)
w(t, x)ϕ(x)dx; Λ[w]ϕ(t, r) =

∫
ρ−1(r)

w(t, x)ϕ(x)dx,

(4.25)
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where w(t, x) is any solution of the heat equation on Ω.
First, recall the operators Rkj and Skj defined in (2.6), and introduce a

family of operators Pkj, Qkj ∈ A, defined by the same recursive formulas,
but with different initial conditions; precisely⎧⎪⎨⎪⎩

P00 = 0, Q00 = Id, Pkj = Qkj = 0 if k < 0 or j < 0

Pkj = −(N2 + ∆)Pk−1,j +NQk−1,j

Qkj = NPk−1,j−1 + ∆NPk−1,j − ∆Qk−1,j

(4.26)

One easily proves by induction that

Remark 4.4. The operator Pkj has order 2(k − j) − 1, and is zero for
2j > k − 1; the operators Qkj and Rkj have order 2(k − j) and are zero for
2j > k, and the operator Skj has order 2(k−j)+1 and is zero for 2j > k+1.

Lemma 4.5. Let w(t, x) be any solution of the heat equation on Ω, and let
I[w]ϕ and Λ[w]ϕ be the functions defined in (4.25), with ϕ ∈ C∞

c (U). Let L
be the 1-dim. heat operator. Then, as functions of (t, r) ∈ (0,∞) × [0,∞):

(i) LI[w]ϕ = Λ[w]Nϕ− I[w]∆ϕ;

(ii) for all k ∈ N:

LkI[w]ϕ =
∞∑
j=0

∂j

∂tj
(
Λ[w]Pkj + I[w]Qkj

)
ϕ,

LkΛ[w]ϕ =
∞∑
j=0

∂j

∂tj
(
Λ[w]Rkj + I[w]Skj

)
ϕ.

Both sums are finite by Remark 4.4 (in fact in the first sum j ≤ [k2 ] and in

the second sum j ≤ [k+1
2 ]).

Proof. See [S1], Lemma 5.6. �
Now, in order to prove that I[h,ε]ϕ(t, r) satisfies the assumption (i) and

(ii) of Proposition 4.3, it is clearly enough, by Lemma 4.5 applied to w(t, x) =

h(x)−hε(t, x), to check those conditions on functions of type
∂j

∂tj
Λ[h,ε]ϕ and

∂j

∂tj
I[h,ε]ϕ, where ϕ ∈ C∞

c (U) and j ∈ N are arbitrary. Here is the relevant
calculation.

Lemma 4.6. Let ϕ ∈ C∞
c (U), ψ ∈ C∞([0,∞)), ε ∈ (0, a), and set

ψ(−1)(r) =
∫ r
0 ψ(s) ds. Then:
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∫ ∞

0

∂j

∂tj
Λ[h,ε]ϕ(0, r)ψ(r) dr =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫

Ω\Ω(ε)
hϕ(ψ ◦ ρ) if j = 0

(−1)j−1

∫
Ω(ε)

h∆j(ϕ(ψ ◦ ρ)) if j ≥ 1,

(i)

∫ ∞

0

∂j

∂tj
I[h,ε]ϕ(0, r)ψ(r) dr =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫

Ω\Ω(ε)
hϕ(ψ(−1) ◦ ρ) if j = 0

(−1)j−1

∫
Ω(ε)

h∆j(ϕ(ψ(−1) ◦ ρ)) if j ≥ 1,

(ii)

∂j

∂tj
Λ[h,ε]ϕ(t, 0) =

⎧⎨⎩
∫
∂Ω
hϕ if j = 0

0 if j ≥ 1
for all t ≥ 0, (iii)

∂j

∂tj
I[h,ε]ϕ(0, 0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫

Ω\Ω(ε)
hϕ if j = 0

(−1)j−1

∫
Ω(ε)

h∆jϕ if j ≥ 1.
(iv)

Proof. See Appendix B. �

From the previous two Lemmas, we see that I[h,ε]ϕ(t, r) satisfies the as-
sumptions of Proposition 4.3 for all ε sufficiently small. We apply Duhamel

principle to it, and pass to the limit as ε tends to zero. As
∂

∂r
LkI[h,ε]ϕ =

−LkΛ[h,ε]ϕ, we have:

Lemma 4.7. Let ϕ ∈ C∞
c (U). Then, for all m ∈ N, and for all t > 0:

I[h]ϕ(t, 0) = Z
(m)
[h] (t) +

1√
π
B

(m)
[h] (t) +O(t

m+1
2 ),

where:

Z
(m)
[h] (t) = lim

ε→0

m∑
k=0

tk

k!

∫ ∞

0
e(t, r, 0)LkI[h,ε]ϕ(0, r) dr;

B
(m)
[h] (t) = lim

ε→0

m∑
k=0

1
k!

∫ t

0
LkΛ[h,ε]ϕ(τ, 0)(t − τ)k−1/2 dτ,
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and O(t
m+1

2 ) satisfies (4.2).

Proof. We just need to show that:

lim
ε→0

∫ t

0

∫ ∞

0
(t− τ)me(t− τ, r, 0)Lm+1I[h,ε]ϕ(τ, r) dr dτ (4.27)

is O(t
m+1

2 ) as t→ 0 in the sense of (4.2). This is done in Appendix C. �

Step 5. The end of the proof. Note that Z(m)
[h] (t) and B(m)

[h] (t) in Lemma
4.7 are explicitly computable from Lemmas 4.5 and 4.6. At this point the
problem is merely a combinatorial one, and amounts to group together the
terms with the same power of t. The recursivity nature of our final results
will come from the term B

(m)
[h] (t).

Lemma 4.8. For all m ∈ N and ϕ ∈ C∞
c (U), we have:

I[h]ϕ(t, 0) =
1√
π

[ m+1
2

]∑
k=1

∫
∂Ω
hZkϕ · tk−1/2

+
1√
π

[ m−1
2

]∑
k=0

∫ t

0
I[h]αkϕ(τ, 0)(t − τ)k−1/2 dτ +O(t

m+1
2 ),

where Zk =
∑k−1

j=0{k, j − 1}Rk+j−1,j and αk =
∑k+1

j=0{k, j}Sk+j,j are the
operators already defined in (2.7).

Proof. The proof is a straightforward extension of the proof of Lemma 5.8
in [S1], done when h ≡ 1. We omit it. �

We can now prove the final formula (4.1); that is, for all m ∈ N, and for
all ϕ ∈ C∞

c (U), we have, as t→ 0:

I[h]ϕ(t, 0) =
m∑
k=1

∫
∂Ω
hDkϕ · tk/2 +O(t

m+1
2 ) (4.28)

The proof is by induction on m. Now (4.28) is true for m = 1 by Proposition
4.2. Assume that it is true for m− 1. Then, for all k = 0, . . . , [m−1

2 ]:

I[h]αkϕ(τ, 0) =
m−1∑
j=1

∫
∂Ω
hDjαkϕ · τ j/2 +O(τm/2). (4.29)
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Substituting (4.29) in Lemma 4.8:

I[h]ϕ(t, 0) =
1√
π

[ m+1
2

]∑
k=1

∫
∂Ω
hZkϕ · tk−1/2

+
1√
π

[ m−1
2

]∑
k=0

m−1∑
j=1

Γ( j2 + 1)Γ(k + 1
2 )

Γ(k + j+3
2 )

∫
∂Ω
hDjαkϕ · tk+ j+1

2 +O(t
m+1

2 ).

(4.30)
We look at the coefficient βm[h, ϕ] of tm/2 in the right-hand side of (4.30).

If m = 2n is even, then there is no contribution from the first sum, and the
index j in the second sum must be odd, say j = 2i − 1, with i = 1, . . . , n.
Then k = n− i, and we get:

β2n[h, ϕ] =
1√
π

n∑
i=1

Γ(i+ 1
2 )Γ(n− i+ 1

2)
Γ(n+ 1)

∫
∂Ω
hD2i−1αn−iϕ

=
∫
∂Ω
hD2nϕ,

(4.31)

by the recursive definition of D2n. If m = 2n + 1 is odd, then j must be
even, say j = 2i, with i = 1, . . . , n, and we get:

β2n+1[h, ϕ] =
1√
π

∫
∂Ω
hZn+1ϕ+

1√
π

n∑
i=1

Γ(i+ 1)Γ(n − i+ 1
2)

Γ(n+ 3
2)

∫
∂Ω
hD2iαn−iϕ

=
∫
∂Ω
hD2n+1ϕ.

(4.32)
Hence βm[h, ϕ] =

∫
∂Ω hDmϕ for all m; as the remainder term O(t

m+1
2 ) sat-

isfies (4.2), the proof of Theorem 3.2 is now complete. �

Appendix A.

Proposition 3.1. Assume that ϕ ∈ C∞(Ω) is supported away from ∂Ω,
say on U ′ = Ω(Rinj/4). Then, for all j ≥ 0, y0 ∈ ∂Ω and t > 0 one has:

|∂ϕ
∂ν

(t, y0)| ≤ 1
j!

sup
Ω

|∆j+1ϕ| · ∂µ
∂ν

(y0) · tj,

where µ ∈ C∞(Ω) is the solution of ∆µ = 1 on Ω, µ|∂Ω = 0. Moreover, if h
is harmonic on Ω and non-negative, then, for all j ≥ 0:

|β[h, ϕ](t) −
∫

Ω
hϕ| ≤ 1

j!
sup
Ω

|∆jϕ| ·
∫

Ω
h · tj.
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Proof. Let f(y) ∈ C∞(∂Ω), f ≥ 0. Let f̂(x) be the harmonic extension
of f to Ω and f̂(t, x) the solution of the heat equation on Ω with Dirichlet
boundary conditions and initial data f̂(x). Then, by Green’s formula and
the fact that ϕ is supported away from ∂Ω one has, for all t > 0:∫

∂Ω

∂ϕ

∂ν
(t, y)f(y)dy = − d

dt
β[ϕ, f̂ ](t)

= − d

dt
β[f̂ , ϕ](t)

=
∫

Ω
∆f̂(t, x)ϕ(x)dx

=
∫

Ω
f̂(t, x)∆ϕ(x)dx,

(A1)

We observe the elementary fact that, if g(t) is smooth for t > 0 and satisfies,
for all j ≥ 0:

lim
t→0

g(j)(t) = 0, |gj(t)| ≤ Cj for all t > 0, (A2)

then |g(t)| ≤ Cj/j! · tj for all t > 0 and j ≥ 0. Now take g(t) to be the
right-hand side of (A1). Then:

g(j)(t) = (−1)j
∫

Ω
f̂(t, x)∆j+1ϕ(x) dx

|g(j)(t)| ≤ sup
Ω

|∆j+1ϕ| ·
∫

Ω
f̂(x)dx,

(A3)

the second inequality following because f̂ is non-negative, hence 0 ≤
f̂(t, x) ≤ f̂(x) for all t > 0, x ∈ Ω (see (4.12)). Hence g(t) satisfies the
conditions (A2), so that, by (A1), for all t > 0:

|
∫
∂Ω

∂ϕ

∂ν
(t, y)f(y)dy| ≤ 1

j!
sup
Ω

|∆j+1ϕ| ·
∫

Ω
f̂(x)dx · tj (A4)

For the first assertion of the Proposition, we take a sequence fn ∈ C∞(∂Ω),
fn ≥ 0, converging to the Dirac distribution δy0 of ∂Ω as n → ∞; we apply
(A4) with f = fn and we let n→ ∞.

For the second assertion, we take

g(t) = β[h, ϕ](t) −
∫

Ω
hϕ =

∫
Ω
(h(t, x) − h(x))ϕ(x) dx

and proceed similarly.
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Appendix B: Proof of Lemma 4.6.

Let ϕ ∈ C∞
c (U). From (4.24) and the co-area formula:∫ ∞

0

∂j

∂tj
Λ[h,ε]ϕ(0, r)ψ(r) dr

= lim
t→0

∫ ∞

0

{
∂j

∂tj

∫
ρ−1(r)

(h(x) − hε(t, x))ϕ(x)dx

}
ψ(r) dr

= (−1)j−1 lim
t→0

∫ ∞

0

{∫
ρ−1(r)

∆jhε(t, x)ϕ(x)dx

}
ψ(r)dr

= (−1)j−1 lim
t→0

∫
Ω

∆jhε(t, x)ϕ(x)ψ(ρ(x))dx.

(B1)

As hε(0, x) is supported away from ∂Ω we see that, as t→ 0, hε(t, ·) converges
to zero, together with all its derivatives, uniformly on ∂Ω. Hence, for all
f ∈ C∞

c (U) and j ≥ 0:

lim
t→0

∫
Ω

∆jhε(t, x)f(x) dx =
∫

Ω
hε(0, x)∆jf(x) dx

=
∫

Ω(ε)
h(x)∆jf(x) dx.

(B2)

Applying (B2) to f(x) = ϕ(x) ·ψ(ρ(x)) and substituting in (B1), we get (i).
(ii) follows by the co-area formula and integration by parts. (iii) and (iv)
can be proved similarly.

Appendix C: Proof of Lemma 4.7.

The scope of this appendix is to show that, if ϕ ∈ C∞
c (U), then

lim
ε→0

∫ t

0

∫ ∞

0
(t− τ)me(t− τ, r, 0)Lm+1I[h,ε]ϕ(τ, r) dr dτ = O(t

m+1
2 ) (C1)

with O(t
m+1

2 ) satisfying the property stated in the main theorem, that is,
for 0 < t ≤ 1:

|O(t
m+1

2 )| ≤
{
C1(m,ϕ)

∫
Ω
h+C2(m,ϕ)

∫
∂Ω
h

}
t(m+1)/2 (C2)

for positive constants C1(m,ϕ) and C2(m,ϕ) not depending on h, but only
onm and on an upper bound of the derivatives of ϕ, up to an order depending
on m.
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From the expression of Lm+1I[h,ε] given in Lemma 4.5 (ii), and the fact
that Pkj = 0 for 2j ≥ k and Qkj = 0 for 2j ≥ k + 1, one sees that:

Lm+1I[h,ε]ϕ =
[m/2]∑
j=0

∂j

∂tj
Λ[h,ε]Pm+1,jϕ+

[(m+1)/2]∑
j=0

∂j

∂tj
I[h,ε]Qm+1,jϕ. (C3)

Hence it is enough to show that, for any ϕ ∈ C∞
c (U) one has, for j ≤ m+ 1

2
:

lim
ε→0

∫ t

0

∫ ∞

0
ψm(t− τ, r)

∂j

∂τ j
I[h,ε]ϕ(τ, r) dr dτ = O(t

m+1
2 ) (C4)

and for j ≤ m

2
:

lim
ε→0

∫ t

0

∫ ∞

0
ψm(t− τ, r)

∂j

∂τ j
Λ[h,ε]ϕ(τ, r) dr dτ = O(t

m+1
2 ) (C5)

in the sense of (C2), and where we set:

ψm(t, r) = tme(t, r, 0) =
1√
π
tm−1/2e−r

2/4t. (A5)

We prove (C4), (C5) can be proved in a similar way. The procedure is
straightforward, and amounts to integrate by parts repeatedly with respect
to the τ variable in (C4). We can assume that m ≥ 1. Set, for a, b ≥ 0 (resp.
a ≥ 0, b ≥ 1):

Iε[a, b](t) =
∫ t

0

∫ ∞

0

∂a

∂ta
ψm(t− τ, r)

∂b

∂τ b
I[h,ε]ϕ(τ, r) dr dτ,

Lε[a, b](t) =
∫ ∞

0

∂a

∂ta
ψm(t, r)

∂b−1

∂τ b−1
I[h,ε]ϕ(0, r) dr.

(C7)

Sublemma 1. For all a, b such that a ≥ 0, b ≥ 1 and a+ b = j ≤ (m+1)/2,
one has

Iε[a, b](t) = Iε[a+ 1, b− 1](t) − Lε[a, b](t),
so that, for all j ≤ (m+ 1)/2, one has

lim
ε→0

∫ t

0

∫ ∞

0
ψm(t− τ, r)

∂j

∂τ j
I[h,ε]ϕ(τ, r) dr dτ

= lim
ε→0

Iε[0, j](t) = lim
ε→0

[
Iε[j, 0](t) −

j−1∑
i=0

Lε[i, j − i](t)

]
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Sublemma 2. If j ≤ (m+ 1)/2 then, for all ε > 0, and t ≤ 1:

|Iε[j, 0](t)| ≤ C3(m,ϕ)
∫

Ω
h · t(m+1)/2

Sublemma 3. If a+ b = j ≤ m+ 1
2

, then, for all t ≤ 1:

| lim
ε→0

Lε[a, b](t)| ≤
{
C4(m,ϕ)

∫
∂Ω
h+ C5(m,ϕ)

∫
Ω
h

}
· t(m+1)/2.

In the above, Ci(m,ϕ) denote positive constants depending only on m and
ϕ. Clearly, (C4) will follow from these facts. It remains to prove the three
sublemmas.

Proof of Sublemma 1. First we observe that there are numerical constants
γi such that:

∂a

∂ta
ψm(t, r) =

a∑
i=0

γi · r2iψm−a−i(t, r). (C8)

Now, with ε1 and ε2 denoting small positive numbers, one has that:

Iε[a, b](t) = lim
(ε1,ε2)→(0,0)

∫ t−ε2

ε1

∫ ∞

0

∂a

∂ta
ψm(t− τ, r)

∂b

∂τ b
I[h,ε]ϕ(τ, r) dr dτ

(C9)
We invert the order of integration in (C9), and then, integrating by parts in
the τ−variable:∫ ∞

0

∫ t−ε2

ε1

∂a

∂ta
ψm(t− τ, r)

∂b

∂τ b
I[h,ε]ϕ(τ, r)dτdr

=
∫ ∞

0

∂a

∂ta
ψm(ε2, r)

∂b−1

∂τ b−1
I[h,ε]ϕ(t− ε2, r)dr

−
∫ ∞

0

∂a

∂ta
ψm(t− ε1, r)

∂b−1

∂τ b−1
I[h,ε]ϕ(ε1, r)dr

+
∫ t−ε2

ε1

∫ ∞

0

∂a+1

∂ta+1
ψm(t− τ, r)

∂b−1

∂τ b−1
I[h,ε]ϕ(τ, r)drdτ.

(C10)

The first formula follows by passing to the limit on ε1 and ε2 in (C.10), and
by observing that

lim
ε2→0

∫ ∞

0

∂a

∂ta
ψm(ε2, r)

∂b−1

∂τ b−1
I[h,ε]ϕ(t− ε2, r)dr = 0. (C11)
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In fact, a ≤ j − b ≤ j − 1 and 2j ≤ m+ 1 imply m− a− i ≥ 1 for all i; from

(C8) we see that as ε2 → 0 the distribution
∂a

∂ta
ψm(ε2, r) will approach zero.

The second formula in the Sublemma follows from the first. �
Proof of Sublemma 2. We start by observing that, for all τ > 0, r ≥ 0:

|I[h,ε]ϕ(τ, r)| ≤ sup
Ω

|ϕ|
∫

Ω
h, (C12)

which follows because, as hε(x) ≤ h(x) for all x ∈ Ω, one has, by the
maximum principle and (4.12):

0 ≤ hε(τ, x) ≤ h(τ, x) ≤ h(x). (C13)

From (C7),(C8),(C12) and the identity:∫ ∞

0
r2ie(t− τ, r, 0)dr = δi(t− τ)i

with δi = 4i√
π
Γ(i+ 1

2), one gets:

|Iε[j, 0](t)|= |
∫ t

0

∫ ∞

0

∂j

∂tj
ψm(t− τ, r)I[h,ε]ϕ(τ, r) dr dτ |

= |
j∑
i=0

γi ·
∫ t

0
(t− τ)m−j−i

{∫ ∞

0
r2ie(t− τ, r, 0)I[h,ε]ϕ(τ, r) dr

}
dτ |

≤ sup
Ω

|ϕ| ·
∫

Ω
h ·

j∑
i=0

|γi|δi · tm−j+1

≤ C3(m,ϕ) ·
∫

Ω
h · t(m+1)/2

(C14)
because m− j + 1 ≥ (m+ 1)/2. �

Proof of Sublemma 3. As a consequence of Lemma 4.6, we prove below that,
if ψ(r) is even at r = 0 and j ≥ 1, then:

lim
ε→0

∫ ∞

0
ψ(r)

∂j

∂tj
I[h,ε]ϕ(0, r)dr =

j−1∑
i=0

ψ(2i)(0)
{∫

∂Ω
hVijϕ+

∫
Ω
hV ′

ijϕ

}
(C15)

for certain operators Vij , V ′
ij . (What is important here is that the highest

order derivative of ψ(r) which occurs in the expression is 2j − 2). Assuming
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(C15) for the moment, we can prove the estimate of the Sublemma as follows.

For a fixed t ∈ (0, 1], take ψ(r) =
∂a

∂ta
ψm(t, r), which is even in the variable

r, and j = b− 1. We assume that b ≥ 2, because if b = 1 the limit below is
simply zero. Then, from (C15):

| lim
ε→0

Lε[a, b](t)| = lim
ε→0

∫ ∞

0

∂a

∂ta
ψm(t, r)

∂b−1

∂tb−1
I[h,ε]ϕ(0, r)dr

≤
{
C ′

4(m,ϕ)
∫
∂Ω
h+ C ′

5(m,ϕ)
∫

Ω
h

} b−2∑
i=0

| ∂
2i

∂r2i
∂a

∂ta
ψm(t, 0)|.

(C16)
Using (C8), one verifies easily that there is a numerical constant c such that,
for all i ≤ b− 2:

∂2i

∂r2i
∂a

∂ta
ψm(t, 0) = ctm−a−i−1/2 ≤ ct(m+2)/2 (C17)

(the last inequality holds because a+ i ≤ a+ b− 2 ≤ m− 3
2

, hence m− a−
i− 1

2 ≥ m+ 2
2

). Substituting (C17) in (C16), we get the desired estimate.

It remains to show (C15). Let ϕ ∈ C∞
c (U); from the formula:

∆(ϕ · (ψ ◦ ρ)) = −(ψ′′ ◦ ρ)ϕ− (ψ′ ◦ ρ)Nϕ+ (ψ ◦ ρ)∆ϕ (C18)

one sees that there exist operators Wij ∈ A such that, for all j:

∆j(ϕ · (ψ ◦ ρ)) =
2j∑
i=0

(ψ(i) ◦ ρ)Wijϕ. (C19)

From Lemma 4.6 (ii) and Green’s formula:

lim
ε→0

∫ ∞

0
ψ(r)

∂j

∂tj
I[h,ε]ϕ(0, r)dr = (−1)j−1

∫
Ω
h∆j(ϕ · (ψ(−1) ◦ ρ))

= (−1)j−1

∫
∂Ω

[
h
∂

∂ν
∆j−1(ϕ · (ψ(−1) ◦ ρ)) − ∂h

∂ν
· ∆j−1(ϕ · (ψ(−1) ◦ ρ))

]
.

(C20)
Now apply (C19) and use Green’s formula again to transform the second
boundary integral into an expression like the right-hand side of (C15).
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Università di Roma, La Sapienza

Via Antonio Scarpa 16, 00161 Roma

savo@dmmm.uniroma1.it

Received April 18, 2002.


