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Rigidity of CR-immersions into Spheres

PETER EBENFELT, X1A0JUN HUANG, AND DMITRI ZAITSEV

We consider local CR-immersions of a strictly pseudoconvex real
hypersurface M C C"*!, near a point p € M, into the unit sphere
S ¢ €™+ with d > 0. Our main result is that if there is such an
immersion f: (M,p) — S and d < n/2, then f is rigid in the sense
that any other immersion of (M, p) into S is of the form ¢ o f, where
¢ is a biholomorphic automorphism of the unit ball B ¢ C**e+1
As an application of this result, we show that an isolated singulary
of an irreducible analytic variety of codimension d in C"T9+! is
uniquely determined up to affine linear transformations by the local
CR geometry at a point of its Milnor link.

1. Introduction.

Let X be a complex-analytic (n + 1)-dimensional (not necessarily closed)
irreducible variety in C"T4+1 and S, a real hypersphere of radius € > 0 such
that the open ball B, (whose boundary is S.) as well as S, intersect X; for
convenience, we shall assume that the ball B, is centered at 0. The intersec-
tion K. := X NS; is then a real-analytic variety (whose set of regular points
is a real hypersurface) in X. Let us denote by M. C K. the relatively open
subset of points where X is nonsingular and meets the sphere transversally.
For instance, if X has an isolated singularity at 0 € X, then, for sufficiently
small generic € > 0, M, is all of K.; in this case, M, is sometimes called
the link of the singularity (X,0). In what follows, we shall refer to M. as
the S.-link (or simply the link) of the variety X, even though we do not
necessarily assume that e is small or that X has an isolated singularity at 0
(or even that the central point 0 is on X).
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If X' is another variety of dimension n+1 in C"T4+! and M! is the link of
X', and if there is a biholomorphic automorphism of the ball B. which sends
the variety X to X', then clearly the links M, and M/ are CR-equivalent
submanifolds of S.; we should point out here that the automorphisms of
the ball B, are linear fractional transformations of C"*t4+! which yield, by
restriction, all the CR automorphisms of the sphere S.. One may ask the
converse:

(Q) Does the local CR-structure of the manifold M. determine the variety
X uniquely (up to biholomorphic automorphisms of B.)?

That is, if X’ is another irreducible analytic variety of the same dimension
such that the S.-link of X' is locally CR-equivalent to that of X, must then
the varieties X and X’ be equivalent by a biholomorphic automorphism of
the ball B.? The answer is in general “no” as can be seen by the following
well known example.

Example 1.1. Consider the so-called Whitney map W: C*t! — C2?7+1,

Wz, ooy 2nt1) = (21, -« vy Zny 2120415 2220415 - - - Zn2n+1, Zr21+1)v (1.1)

which is finite and hence the image is an irreducible analytic variety
X C C?*! (of codimension d = n). The variety X is singular along
the the complex line 2y = -+ = 2z, = w; = ... = w, = 0, where
(%1, -+, Zn, W1, . .., Wpy1) denote the coordinates in C2"+1. Tt is well known
and easy to check that W maps the unit sphere in C"*! into the unit
sphere in C?"*!'.  Consequently, the link M; of X is locally spherical
(i.e. locally CR-equivalent to the sphere), and hence locally equivalent
to M, where M] is the intersection of the unit sphere with (n + 1)-plane
X' ={(z1,.--,2n,W1,...,Wp41): 21 = ... = 2, = 0}. However, the singular
variety X is clearly not biholomorphically equivalent (in any neighborhood
of 0) to the nonsingular variety X'.

On the other hand, it follows from the work of Webster [WT79],
Faran [Fa86], Cima-Suffridge [CS83] that if the link of X is locally spherical
and if the codimension d is strictly less than n (to exclude the situation in
Example 1.1 above) then X must be an (n + 1)-plane. This answers in the
affirmative the question (Q) above in this special case. See also the work of
Cima-Suffridge [CS90], Forstneric [F89], and the second author [Hu99] in
some other related directions.

In this paper, we shall consider the general form of the question (Q). We
shall prove that if the codimension of the variety X in C"*t4*! is less than half
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its dimension minus one, then the answer to (Q) is affirmative. More gen-
erally, we consider the situation where M, = M is a smooth (meaning here
always C*°) abstract CR-manifold of hypersurface type (a CR-hypersurface)
and prove the following:

Theorem 1.2. Let M be a connected smooth CR-hypersurface of dimen-
sion 2n + 1. If d < n/2, then any smooth CR-immersion f of M into the
unit sphere S in C**+%*1 s rigid. That is, any other smooth CR-immersion
f: M — S is related to f by f = p o f, where ¢ is a CR-automorphism of
S.

In the case d = 1, the conclusion in Theorem 1.2 follows from the work
of Webster [W79].

Theorem 1.2 can be directly applied to study the question (Q) above.
Let us first consider the case where X has an isolated singularity at 0 € X
and no other singularity of X is inside the ball B.. If X’ is another such
variety and if their links M., M! are locally CR equivalent at p € M. and
p’ € M/, then in view of Theorem 1.2 (the unit sphere in that theorem
can of course be replaced by a sphere of any radius) there is a biholomorphic
automorphism ¢ of B, (extending as a birational transformation of the whole
space C"*4+1) which sends an open piece of M. to an open piece of M. If
we, in addition, assume that X N B, and X’ N B, are connected, then we
conclude that ¢ sends X NB. to X’ N B.. Since the only singularities of
X and X' inside B, are at 0, ¢ must also send 0 to 0. By also using the
fact that the only biholomorphic automorphisms of the ball B, which fix the
origin are unitary linear transformation of C"t4+1 we obtain the following:

Corollary 1.3. Let X, X’ ¢ C*"*+! be irreducible complex analytic vari-
eties of codimension d through 0. Let M., M/ denote their manifolds of
regular intersection with a sphere S, of radius € > 0 centered at 0 € C"+4+1,
Assume that both X and X' have isolated singularities at 0, no other sin-
gular points in B., and X NB., X' N B, are connected. If d < n/2 and M.
and M are locally CR-equivalent at some points q¢ € M, and ¢’ € M., then
there exists a unitary linear transformation which maps X NB. to X’ N BL.

We can also consider the general case where X and X’ are not assumed
to have isolated singularities (and 0 is not necessarily a point on X N X’).
A similar argument to the one above yields the following result:

Corollary 1.4. Let X, X' C C*t%*+1 be irreducible complex analytic va-
rieties of codimension d and let M., M/ denote their manifolds of regular
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intersection with a sphere S, of radius ¢ > 0 centered at 0 € C"td+1. If
d < n/2 and M. and M. are locally CR-equivalent at some points q € M,
and ¢’ € M., then there exists a biholomorphic automorphism of the ball B,
whose birational extension to C"*t4+! sends (X, q) to (X',¢') (and X into a
subvariety containing X' as an open subset).

In a different direction, we also obtain the following result as a direct
consequence of Theorem 1.2; the simple argument needed to derive it from
Theorem 1.2 is left to the reader.

Corollary 1.5. Let D be a connected relatively compact open subset of a
complex manifold and assume that D has a smooth strictly pseudoconvex
boundary 0D. Assume that there is a proper embedding of D into the unit
ball B; ¢ C"t4*+! with d < n/2, which extends smoothly to the boundary
0D. If g is a local CR-diffeomorphism sending a relatively open piece of 0D
into D, then g extends as a biholomorphic automorphism of D.

Theorem 1.2 above will follow from the more general Theorem 2.1 below,
where a higher codimension d is allowed provided that M, is suitably degen-
erate. As a corollary, we recover the result about (n + 1)-planes mentioned
above.

The proof of Theorem 2.1 will be completed in §9. It decomposes natu-
rally into two parts. The first part consists of showing that if the mapping
is degenerate (in a certain sense to be defined in the next section), then the
image f(M) is in fact contained in the intersection of the sphere with a lower
dimensional complex plane (see Theorem 2.2). Using this fact, we reduce
the proof to the case where f is finitely nondegenerate (see §2). The reader
is referred to §2 for the statements of mentioned results and a more detailed
outline of the proof of Theorem 2.1.

2. Further results.

Let M be CR-hypersurface of dimension 2n+ 1 and denote by V = T M
CT M its CR-bundle; the reader is referred e.g. to [BER99] for basic notions
and facts about CR-manifolds (see also §3). Recall that a mapping f =
(fi,--s fx): M — C¥ is called CR if f.(V,) C T]?(’;)Ck for every p € M.
This is equivalent to saying that Lf; = 0 for every j = 1,...k and every
(0,1) vector field L (i.e. a section in V).

An important step in proving Theorem 1.2 will be to classify possible
CR-immersions according to their degeneracy. Let M C C"! be a real

hypersurface (and hence also a CR-manifold) and f: M — C"*! be a CR
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mapping sending M into M. We shall refer to d = 7t — n as the codimension
of the mapping f; thus, M is a real hypersurface in C**4+1 | Let p be a point
in M and p a local defining function for M near p := f(p) € M. Following
Lamel [LOla], define an increasing sequence of subspaces Ej(p) of the space
T;C L of (1,0) covectors as follows. Let Ly, ..., Ly be a basis of (0,1)
vector fields on M near p and define

Ex(p) := spanc{L” (pz' » [)(p) : J € (Z4)",0 < |J| < k} C TC"+

(2.1)
where pz = 0p is represented by vectors in C"*¥+1 in some local co-
ordinate system Z' near p; we use here standard multi-index notation
L) = L%l ..LImand |J]| == Ji + ... 4+ J,. One can show (cf. [LO1a]) that
Ey(p) is independent of the choice of local defining function p and coordi-
nates Z', as well as of the choice of basis of the CR vector fields L, ..., Ly.
We shall say, again following Lamel [LOla, LO1b] that f: (M,p) — M is
(ko, so0)-degenerate at p if sg is the minimum of the decreasing sequence of
codimensions of E(p) in C"4+1 e,

so = s(p) := mkin codim F(p) (2.2)

and k = kg is the smallest integer for which this minimum is attained. If
Ey(p) = T/C"*! for some k, ie. if f is (ko,0)-degenerate at p for some
ko, it is said to be kg-nondegenerate (at p) or finitely nondegenerate without
specifying kg.

Let us call the degeneracy of f the minimum of s(p) as defined in (2.2)
for p € M. We have the following result which, in view of Theorem 7.3 and
Proposition 7.1 below, implies Theorem 1.2.

Theorem 2.1. Let f: M — S be a smooth CR-immersion of a smooth
connected CR-hypersurface M of dimension 2n + 1 into the unit sphere S in
C"*9+! and denote by s be the degeneracy of f. If d — s < n/2, then f is
rigid among smooth CR-immersions having the same degeneracy. That is,
any other such CR-immersion f: M — S is related to f by f = @ o f, where
@ is a CR-automorphism of S.

It is not difficult to see from the definition that, if f(M) is contained in
a complex plane of codimension s in C*T4+1 then the degeneracy of f is at
least s. A important ingredient in the proof of Theorem 2.1 is the following
(partial) converse, which also seems to be of independent interest.
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Theorem 2.2. Let f: M — S be a smooth CR-immersion of a smooth
connected CR-hypersurface M of dimension 2n + 1 into the unit sphere S in
Cntd+1. Let s be the degeneracy of f. If d — s < n, then f(M) is contained
in the intersection of S with a complex plane P C C"t%t! of codimension s.
Moreover, if f: M — S is (ko, s)-nondegenerate at a point p € M, then it is
ko-nondegenerate there as a mapping f: M — SN P.

Another important ingredient in the proof of Theorem 1.2 will be the
CR analogue of the classical Gauss equation whic, as the reader may re-
call, relates the Riemannian curvature tensors of a manifold and its sub-
manifold with the second fundamental form composed with the Rieman-
nian metric (see e.g. [KN69]). The (extrinsic) second fundamental form for

a CR-mapping f: M — M between real hypersurfaces M C C"*! and
M c C™"4*1! can be defined (up to a scalar factor) by

(X, Yy) := (XY (py o f)(p)) € TLM/E(p), (2.3)

where 7: ngM — TIgM/El (p) is the projection and X, Y are any (1, 0) vector
fields on M extending given vectors X, Y, € Tp1 00\, In the case where M
(and hence also M) is strictly pseudoconvex, the Levi form of M (at D)
with respect to p defines an isomorphism ngM /E1(p) = Tﬁ1 ON ) f. T M
and hence the second fundamental form can be viewed as an C-bilinear
symmetric form

,: TROM x TN — THONr/ £, 17500 2.4
y2 P P P p

that does not depend anymore on the choice of 4. In §4 (see equation (4.7)),
we shall show that IT is indeed the second fundamental form (in the classical
sense) of f with respect to Webster’s pseudohermitian connection induced
by the CR-structure (and a choice of contact form). We shall say that the
second fundamental form of f is nmondegenerate at p if its values span the
target space. This is easily seen to be equivalent to Fy(p) = T}gC"erJrl or,
in the notation above, to f being 2-nondegenerate at p.

The CR analogue of the Weyl curvature tensor in Riemannian geometry
is given by the tangential pseudoconformal curvature tensor

. 71,0 1,0 1,0 1,0 1,0 0,1
S: THM x THM x THM x THM — CT,M/(TMM @ T M)

defined by Chern and Moser [CM74] for every Levi-nondegenerate CR-
hypersurface M (in fact, it is defined there as a tensor on a principal bundle
over M which can be pulled back to M as will be explained in §3, see also



Rigidity of CR-immersions 637

[WT79]). The role of the Riemannian metric itself is played by the Levi form
which can be invariantly seen as a Hermitian bilinear map

. 1,0 1,0 1,0 0,1
L: TYOM x TM°M — CT,M/(T}°M & TO'M).

In the following we identify the quotient Tﬁ1 M /f *Tp1 O M with the orthogonal

complement of f*Tp1 OM in Tﬁl’OM with respect to the Levi form of M. We

shall also use the notation f, for the mapping (CTpM/(Tpl’OM ST M) —
CTpM/(T,;° M@ T, M) induced by f,: CT,M — CT;M. The CR analogue
of the Gauss identity mentioned above can be now stated as follows.

Theorem 2.3. Let f: M — M be a smooth CR-immersion of a
smooth connected CR-hypersurface M into a strongly pseudoconvex CR-
hypersurface M. Denote by II the second fundamental form of f, by L and
S the Levi form and the tangential pseudoconformal curvature tensor for
M and by L and S the corresponding tensors for M. Then there exists a
Hermitian form H : Tpl’OM X Tpl’OM — C such that the identity

SV VLV V) = [S(V,V,V,V) = LIV, V), TI(V, V)
+ S LV,V)H(V,V)  (25)

holds for every V € Tpl’OM.

The reader is referred to §5 for more details on this Gauss equation and
to Proposition 5.2 from which it immediately follows. Here we only briefly
mention that the term involving H on the right hand side (which will be
called conformally equivalent to 0, cf. §3) can be expressed from (2.5) in
terms of S, L, L and IT and hence (2.5) can be given a more explicit form
(see (5.8)).

We conclude this section by giving an outline of the paper and proofs of
Theorems 2.2 and 2.1. In §3 we recall the construction of the pseudohermi-
tian connection defined by Webster [W78] on a given strongly pseudoconvex
CR-hypersurface with a fixed contact form and show the relation to the
pseudoconformal connection defined by Chern and Moser [CM74] in terms
of the forms (3.11). In §4 we show the existence of coframes suitably adapted
to a pair (M M ) of strongly pseudoconvex CR-hypersurfaces, where M is
a submanifold of M. It is further shown the relation of the pseudohermi-
tian connection with respect to such a coframe with the second fundamental
form as defined above. §5 is devoted to the proof of pseudohermitian and
pseudoconformal analogues of the Gauss equation (Propositions 5.1 and 5.2
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from which Theorem 2.3 follows). As one of the main consequences (see
Corollary 5.5(ii)) we obtain the following, which seems interesting in its own
right:

Under the assumptions of Theorem 1.2, the second fundamental form I1
at a point p € M is uniquely determined, up to a unitary transformation of
the target space, by the tangential pseudoconformal curvature tensor S of M
at p (and, hence, does not depend on f).

We also show (see Corollary 5.5(i)) that if d < n and M 1is the sphere,
then the second fundamental form of f wvanishes identically. Combining the
latter result with Theorem 2.1 above (s = d in this case), we recover the
result of Faran et al mentioned above, that any CR-immersion of the sphere
in C"*! into the sphere in C"*¥+1 with d < n, is equivalent (after compos-
ing to the left and right with automorphisms of the spheres) to the linear
embedding.

In §6 we express the forms defining the pseudoconformal connection of
M pulled back to M in terms of the corresponding forms for M and the
second fundamental form II of f under the additional assumption that II
is nondegenerate. If it is not, higher order covariant derivatives of II are
needed; this is dealt with in §7. We begin the latter section by showing how
covariant derivatives of Il can be used to determine the spaces Ej defined
in (2.1) (see Proposition 7.1). We then prove (Theorem 7.2) that, if f is ko-
nondegenerate, then the pseudonformal connection of M pulled back to M is
uniquely determined by the covariant derivatives of II up to order kg—1. The
second main result in §7 (Theorem 7.3) then states that equality of the latter
derivatives for two immersions always holds, after possibly a unitary change
of adapted coframes, provided that the codimension d < n/2. An important
technical point here is to obtain a commuting relation between the covariant
derivatives (Lemma 7.4). Finally, in §8 we recall from [CM74] how adapted
Q-frames on a sphere and their Maurer-Cartan forms are related to the
pseudoconformal connection forms (see (8.5)). We then complete the proof
of Theorem 2.1 in the case s = 0, i.e. when f is finitely nondegenerate at some
point. In this case the results of §7 yield that the covariant derivatives of
II and hence the pulled back pseudoconformal connection does not depend
on f. From (8.5) we further conclude that also Maurer-Cartan forms for
associated adapted Q-frames do not depend on f and the proof is completed
as in [W79] by general ODE arguments. §9 is mainly devoted to the proof of
Theorem 2.2 which is obtained as a consequence of the fact that the span of
certain vectors in a suitable adapted @)-frame is independent of the reference
point. Theorem 2.2 is then used to complete the proof of Theorem 2.1 by
reducing the general case to the case s = 0 treated in §8.
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3. Preliminaries.

Let M be a strictly pseudoconvex CR-manifold (which in this paper will
always be understood to be of hypersurface type) of dimension 2n + 1. We
shall write

T°M := TM NiTM C TM,
V=T""M:={X +iJX : X € T°M} c CTM :=TM @ C

for its maximal complex tangent bundle and CR-bundle respectively which
are both complex rank n bundles. Here J: T°M — T€°M is the complex
structure. We also consider the cotangent bundles

M := (Vo V)t 7'M = V. (3.1)

Thus, T°M and T'M are rank one and rank n + 1 subbundles of CT*M
respectively with 70 C 7M. The bundle 7'M is called the holomorphic
or (1,0) cotangent bundle of M. As usual, a section of AP(T'M) is called a
(p,0)-form on M. A real nonvanishing section # of TOM is called a contact
form. A choice of a contact form defines uniquely a real vector field T', the
characteristic (or Reeb) vector field of 6 (cf. e.g. [Ho98]), by

T.d6 =0, (6,T) =1, (3.2)

where _ denotes contraction (or interior multiplication). Indeed, since df
is a degenerate 2-form on T'M but nondegenerate on the real hyperplanes
defined by # = 0 in T'M, one can always find T satisfying (3.2) in the kernel
of df.

We will follow the notation of [CMT74] and [W78], in particular, we use
the summation convention and small Greek indices will always run over the
set {1,...,n}. A typical tensor will be written as S,° uv, Where an index
without (resp. with) conjugation indicates C-linear (resp. C-antilinear)
dependence in the corresponding argument. Here such a tensor S,° uv can
be considered as an R-multilinear complex-valued function on Vx V*xV x V.
The tensors will not be necessarily symmetric in their indices and hence
the order of the indices will be important and will be explicitly indicated.
Simultaneous conjugation of all indices corresponds to conjugation of the
tensor: Saﬁﬁ,, =5,5 u7- On the other hand, there is no a priori relation e.g.
between S, and S,”,,. The Levi form matrix (9,5) of M (relative to

a given contact form) and its inverse (go‘ﬁ) will be used to raise and lower
indices (without changing their order): Sazuw = 9,55 uw. More generally,
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the same notation will be used for indexed functions on M that may not
necessarily transform as tensors, e.g. for connection matrices etc.

If we choose a basis Ly, a = 1,...,n, of (1,0) vector fields (i.e. sections of
THOM = V), so that (T, Ly, Lg) is a frame for CT M, then the first equation
in (3.2) is equivalent to

df = ig,50% N 67, (3.3)

(9op) is the (Hermitian) Levi form matrix as above and (6,0%,6%) is the
coframe (i.e. a collection of linearly independent 1-forms spanning CT™*M)
dual to (T, Ly, Lz) (for brevity, we shall say that (0,0%) is the coframe dual
to (T, Ly)). Note that 6 and T are real whereas ¢ and L, always have
nontrivial real and imaginary parts.

Following Webster [W78], we call a coframe (6,0%) (and its dual frame
(T, Ly)), where 0 is a contact form, admissible if (3.3) holds or, equivalently,
if T is characteristic for 6 in the sense of (3.2). Observe that (by the unique-
ness of the Reeb vector field) for a given contact form 6 on M, the admissible
coframes are determined up to transformations

0% = ug™0”, (us®) € GL(C™). (3.4)

Every choice of a contact form 6 on M is called pseudohermitian structure
and defines a Hermitian metric on V' (and on V) via the (positive-definite)
Levi form. For every such 6, Tanaka [T75] and Webster [W78] defined a
pseudohermitian connection V on V (and also on CT M) which is expressed
relative to an admissible coframe (6,60%) by

Vi :=ws’® Lg, (3.5)
where the 1-forms wo” on M are uniquely determined by the conditions

do® = 0% Aw.” mod 6 A 67,

(3.6)
dgaﬁ =Wy3 + wﬁa.
The first condition in (3.6) can be rewritten as
doP = 0% ANwo® +ONTE, 7P = APLH7, AP = AP (3.7)

for suitable uniquely determined torsion matrix (Aﬁa), where the last sym-
metry relation holds automatically (see [W78]). (More precisely, the forms
we? and 78 are first defined in [W78] on the principal bundle P of all ad-
missible coframes (60,60%) on M with fixed 6 and are then pulled back to M
via a section of P corresponding to a choice of such a coframe.)
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The curvature of the pseudohermitian connection is given, in view of

W78, (1.27), (1.41)], by

dwa” —wa N = RoP 50" A"+ WP L0H N0~ WP (507 NO+i00 AT —iT NP,

(3.8)
where the functions R,” v and W, represent the pseudohermitian curva-
ture of (M, ). It has been noticed by Lee [Le88] that the components W,”,
can be in fact obtained as covariant derivatives of the torsion matrix A% in
(3.7). Here we denote the covariant differentiation operator with respect to
the pseudohermitian connection V also by V and its components by indices
preceded by a semicolumn, where the index 0 is used to denote the covariant
derivative with respect to T’; thus, e.g.

VAP G = dAP 5 + AFaw,’ — APpws” = APo00 4+ AP4.,0" + AP5507. (3.9)
In this notation the above mentioned relation reads [Le88, (2.4)]:

Wol, = Au?, WP = APy, (3.10)

)

We shall also need the Chern-Moser coframe bundle Y over M. Recall
[CM74, §4] that Y is the bundle of the coframes (w,w®,w®, ¢) on the real
line bundle mg: £ — M (of all contact forms) satisfying dw = ig,zw™ A
w? + w A p, where w® is in 75 (T"M) and w is the canonical form on F
given by w(0)(X) := 0((rg).X) for § € E, X € TyE. Similarly, canonical
forms w, w®, w®, ¢ are defined on Y (here the same letters are used as for the
coframe by a slight abuse of notation). Chern and Moser [CM74] showed
that these forms can be completed to a natural parallelism on Y given by
the coframe of 1-forms

(w’wa’wa’ @, (Pﬁav()oaa(paaw) (311)

defining the pseudoconformal connection on Y and satisfying the structure
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equations (see [CMT74] and its appendix)

PoB T PBa = 9aBPs
dw = iw" Aw, +w A @,
dw® = W' N p* +w A,
do = iwy A " +ios Aw’ +w A,
5 o
dpg®™ = " N, +iwg A p® —ipg Aw*—id3%p, AW — %w Nw+Pz%,

1
ds@“:wAtpa+<p“A<pu“—§wAw“+<I’“,

dip = p AP+ 2iph N, + 0,
(3.12)
where the curvature 2-forms ®3%, ®*, ¥ can be decomposed as

D% = S5 pw" Aw” + V%t Aw + VO gpw Aw”,
P =V wHt Aw” + P Aw + QW Aw, (3.13)
U = —2iPpwh A w” + R, Nw + Ryw” Aw,

where the functions S3* 7, V3*,, P,%, Qz%, R, together represent the pseu-
doconformal curvature of M (the indices of Sg®, here are interchanged com-
paring to [CMT74] to make them consistent with indices of R3® .z in (3.8)).
As in [CMT74] we restrict our attention here to coframes (¢,0%) for which the
Levi form (gaﬁ) is constant. The 1-forms ¢, %, p3®, 1 are uniquely deter-
mined by requiring the coefficients in (3.13) to satisfy certain symmetry and
trace conditions (see [CM74] and the appendix), e.g.

S Sz-=5_

QEH§:: uBav uuaﬁ =55 Sﬁuaﬁ ::Vauu ::fhu = 0. (3'14)

Vuﬁa’

Let us fix a contact form 6 that defines a section M — FE. Then any
admissible coframe (0,60%) for 7'M defines a unique section M — Y for
which the pullbacks of (w,w®) coincide with (0,60%) and the pullback of ¢
vanishes. As in [W78], we use this section to pull back the forms (3.11) to
M. We shall use the same notation for the pulled back forms on M (that
now depend on the choice of the admissible coframe). With this convention,
we have

0=w, 0“=w* ¢=0 (3.15)

on M. Now, in view of [W78, (3.8)], the pulled back tangential pseudocon-
formal curvature tensor S,° qw can be obtained from the tangential pseudo-
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hermitian curvature tensor R,” uw in (3.8) by

R, GIur + Ruﬁgaﬁ 4+ Rovg fha ngag R(gaﬁgw +9079,3 )

S, =R

aBuw aBuv n+ 2 (n + 1)(n + 2)
(3.16)
where
R, 5= R, 5 and R:= R\ (3.17)

are respectively the pseudohermitian Ricci and scalar curvature of (M,0).
Formula (3.16) expresses the fact that S5 - is the “traceless component” of
R oBuv with respect to the natural decomposition of the space of all tensors
1,5, with the symmetry condition as for S 5 in (3.14) into the direct
sum of the subspace of such tensors of trace zero (i.e. T,* 5 = 0) and the
subspace of “multiples of the Levi form”, i.e. tensors of the form

Taﬁ/ﬁ = Haﬁglﬁ + Huggaﬁ + Hapguﬁ + Huygaﬁ, (318)
where (H,5) is any Hermitian matrix. We shall call two tensors as above
conformally equivalent if their difference is of the form (3.18). In this ter-
minology, the right hand side of (3.16) (together with (3.17)) gives for any
tensor Raﬁw (with the above symmetry relations) its traceless component
which is the unique tensor of trace zero that is conformally equivalent to
R 5,5
The following result establishes relations between pseudoconformal and
pseudohermitian connection forms and is alluded to in [W78].

Proposition 3.1. Let M be a strictly pseudoconvex CR-manifold of hyper-
surface type of CR-dimension n, let wg®, 7 be defined by (3.6-3.7) with
respect to an admissible coframe (0,60%) and let pg®, ¢, 1 be the forms in
(3.11) pulled back to M using (0,6%) as above. Then we have the following
relations:

0" = wg® + Dg%0, % =7%+D,*0" + E*0, ¢ =iE,0" —iEz0" + B0

(3.19)
where ‘ ‘
~ ZRaE B ZRgaE
BT n+2 2n+1)(n+2)]
o (A%, — D7), (3.20)
2n+1 ’ ’

1 _ —
B = —(E", + E"y — 2AP" Ag, + 2D Dy,,).
n
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Proof. The formulas for ¢3* and D5 were proved in [W78]. The formula
for p® follows from the third equation in (3.12) and (3.7). Indeed, these two
equations yield

0 ANwo +OANTE = 09N 0P + 0 AP
Substituting the formula for ¢z in (3.19), we obtain
ONT? =D O N0+ 6 AP, (3.21)

which implies the formula for ¢* in (3.19) with some E®. Similarly, the
formula for ¢ in (3.19) with some B follows from equating the coefficients
of 6 in the pulled back fourth equation of (3.12) and using (3.15) (whence
dp=0on M).

To obtain the formula for £ in (3.20), we substitute the formulas (3.19)
for g, ¢“, ¢ in the pulled back sixth equation of (3.12) and use (3.3), (3.7),
the covariant derivative (3.9) (and the analogue for Dg®) and the formula
for @ in (3.13):

_ _ 1 _
VA% A"+ VD% NP +igm E*OM NO7 = —SUAT V0" NG mod 6.
(3.22)
By identifying the coefficient in front of # A 0V in (3.22) and using the
formula for ¢ in (3.19), we obtain
1

o Dua;; + Z'gu;Ea = iEgéﬂa + Vapj.

A%
2

The formula for E% in (3.20) is now obtained by summing over p and 7 and
using the trace condition V<, # = 0. Similarly, the formula for B follows by
substituting the formula for ¢ in pulled back last equation of (3.12) (mod
) and using the trace condition P,” = 0. i

4. Submanifolds of CR-manifolds; the second fundamental
form.

Let M be a strictly pseudoconvex CR-manifold of dimension 2n + 1 as be-
fore and f: M — M be an CR-immersion of M into another strictly pseu-
doconvex CR-manifold M of dimension 27 + 1, with rank n CR-bundle V.
Our arguments in the sequel will be of local nature and hence we shall as-
sume f to be an embedding. We shall use a” to denote objects associated
to M. Capital Latin indices A, B, etc, will run over the set {1,2,...,n}
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whereas Greek indices «, 3, etc, will run over {1,2,...,n} as above. More-
over, we shall let small Latin indices a, b, etc, run over the complementary
set {n+1,n+2,...,n}. Since M is strictly pseudoconvex and f an embed-
ding, it is well known that for any contact form @ on M the pullback f*(6)
(which for a CR-mapping f is always a section of T°M) is nonvanishing and,
hence, a contact form on M (In general, f*(é) may vanish, e.g. if f(M) is
contained in a complex-analytic subvariety of M ). We shall always choose
the coframe (6, 04) on M such that the pullback of (4, 0%) is a coframe for M
and hence drop the ~over the frames and coframes if there is no ambiguity.
It will be clear from the context if a form is pulled back to M or not.

We shall identify M with the submanifold f(M) of M and write M C M.
Then V becomes a rank n subbundle of V along M. It follows that the (real)
codimension of M in M is 2(7—n) and that there is a rank (7 —n) subbundle
N'M of T'M along M consisting of 1-forms on M whose pullbacks to M
(under f) vanish. We shall call N'M the holomorphic conormal bundle of
M in M. We shall say that the pseudohermitian structure (M 9) (or simply
0) is admissible for the pair (M, M) if the characteristic vector field T of 0 is
tangent to M (and hence coincides with the characteristic vector field of the
pullback of é) This is equivalent, as the reader can easily verify, to requiring
that for any admissible coframe (é, éA) on M, where A =1,...,7, the holo-
morphic conormal bundle N'M is spanned by suitable linear combinations
of the §4. Tt is easily seen that not all contact forms 0 are admissible for
(M, M ). However, we have the following statement:

Lemma 4.1. Let M C M be as above. Then any contact form on M can

be extended to a contact form 6 in a neighborhood of M in M such that 6
is admissible for (M, M). Moreover, the 1-jet of 0 is uniquely determined on
M.

Proof. Let 6 be any fixed extension of the given contact form on M to a
neighborhood of M in M. Any other extension is clearly of the form 6 = u,
where u is a smooth function on M near M with u|y; = 1. Let T be the
characteristic vector field of the restriction of 6 to M. Then 6 is admissible
for (M, M) if and only if Todf = 0, i.e. if T_dd — du = 0 along M. By the
assumptions, the latter identity holds when pulled back to M. Now it is
clear that there exists unique choice of du along M for which it holds also
in the normal direction. The required function u can be now constructed in
local coordinate charts and glued together via partition of unity. The proof
is complete. O
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By taking admissible coframes as in §3 and using the Gram-Schmidt
algorithm, we obtain the following corollary, where we take a little more
care to distinguish between M and its image f(M) in M.

Corollary 4.2. Let M and M be strictly pseudoconvex CR-manifolds of di-
mensions 2n+1 and 2n+1 respectively and f: M — M be a CR-embedding.
If (9,0%) is any admissible coframe on M, then in a neighborhood of any
point p € f(M) in M there exists an admissible coframe (0,0%) on M
with f*(0,0%,0%) = (0,6%,0). In particular, 0 is admissible for the pair
(f(M), M), ie. the characteristic vector field T is tangent to f(M). If the
Levi form of M with respect to (6,6%) is 6,5, then (6,64) can be chosen

such that the Levi form of M relative to it is also 0 A5 With this additional
property, the coframe (é, 64) is uniquely determined along M up to unitary
transformations in U(n) x U(fA — n).

Let us fix an admissible coframe (6,6%) on M and let (6,64) be an
admissible coframe on M near f(M). We shall say that (0,64) is adapted
to (0,0%) on M (or simply to M if the coframe on M is understood) if it
satisfies the conclusion of Corollary 4.2 with the requirement there for the
Levi form.

The fact that (8, 04) (where we omit a") is adapted to M implies, in view
of the construction (3.6), that if the pseudohermitian connection matrix of
(M,9) is op”, then that of (M,0) is (the pullback of) &s®. Similarly, the
pulled back torsion matrix 7 is 7%. Hence omitting a "~ over these pullbacks
will not cause any ambiguity and we shall do it in the sequel. By our
normalization of the Levi form, the second equation in (3.6) reduces to

wpg +wgp =0, (4.1)

where as before w4, = W5

The matrix of 1-forms (w,?) pulled back to M defines the second funda-
mental form of M (or more precisely of the embedding f). It was used e.g.
in [W79, Fa90] in the study of mapping problems. Since 6° is 0 on M, we
deduce by using equation (3.7) that, on M,

Wa? NOY+ TP N0 =0, (4.2)
which implies that

wa? = wabﬁ 65, wabg = nga, 7 =0. (4.3)
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We now relate so defined intrinsic second fundamental form (w,’s) with
the extrinsic one defined in §2 in case M is embedded as a real hypersurface
in C"*!. Given any admissible contact form 6 for (M, M), we can choose a
defining function of M near a point p = p € M such that § = i0p on M, ie.
in local coordinates Z’ in C**! vanishing at p we have

n+1

05
0=i> 2 d7,, (4.4)

k=1 k
where we pull back the forms d?ll, o ,d?;l 11 to M. Given further a coframe

(0,04 on M near p adapted to M and its dual frame (T, L4), we have

Lg(py o f) = —iLgadd = gge6° = gy6". (4.5)

Recall that we are in fact assuming that the Levi form has been normalized,
i.e. 945 = 0,45, even though we retain the notation g,5. Conjugating (4.5)
we see that the subspace Fj(p) C Tl,;(CfhLl in (2.1) is spanned by (6,60%),
where we use the standard identification T;M =T ;Cﬁﬂ. Applying L, to

both sides of (4.5) and using the analogue of (3.6) for M and (4.3), we
conclude that

LaLg(py o f) = gggLaJdéﬁ = —wagoﬂa = waagéﬁ mod 0,0%,  (4.6)

where we have used (4.1) for the last identity. Comparing with the extrinsic
definition of the second fundamental form (2.3) and identifying the spaces
in (2.3) and (2.4) via the Levi form of M as explained in §2, we conclude
that

(L, Lﬁ) = waaﬁ L, (4'7)

where with have identified L, with its equivalence classe in 7| ﬁl M / Tp1 M.
Conjugating (4.6) and comparing with (2.1) we see that the space Fy = Es(p)
is spanned (via the identification above) by the forms

0,0% w07 (4.8)

To interpret the higher order spaces Ej(p) in terms of the second fundamen-
tal form, we shall need the covariant differentials of the second fundamental
form with respect to the induced pseudoconformal connection, which will
be introduced in section 6. The discussion will therefore be postponed until
section 9.
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As a byproduct of the relation (4.7) we see that the bilinear map Tp1 O x
Tpl’OM — Tpl’OM/Tpl’OM defined by (wa”g) is independent of the choice of
the adapted coframe (6,64) in case M is locally CR-embeddable (in C*1).
More generally, if M is not CR-embeddable, one can still use approximate
embeddings constructed in [KZ01] (or direct computation of the change of
wa"g) to obtain the same conclusion.

5. CR analogue of the Gauss equation and applications.

The classical Gauss equation in Riemannian geometry relates the Rieman-
nian curvature tensors of a manifold and its submanifold with the second
fundamental form composed with the Riemannian metric (see e.g. [KN69]).
Our goal in this section will be to establish the pseudohermitian and pseu-
doconformal analogues of the Gauss equation and to apply them to obtain
rigidity properties of the second fundamental form.

As before we fix a coframe (6,04) adapted to M. We first compare
pseudohermitian curvature tensors Ry uv and RuB op of (M ,0) and (M, 0)
respectively. By comparing (3.8) and the corresponding equation for RaB D
pulled back to M and using Oo = woP, 7 = 7@ and Waﬂu = WaﬁM as a
consequence of (3.10), we conclude that on M,

R 5 0P N0+ wo® Awo” = Ry i 07 N 67 (5.1)
By using the symmetry (4.1), we conclude that, on M, we have
Ragum 0" A 07 — wa® A wg, = Raguw 0" A 67, (5.2)
This can also be written, in view of (4.3), after equating the coefficients of
O A OV as ) B
Raﬁuﬁ = Raﬁuﬁ + Yab waaﬂ wﬁbg’ (53)
The identity (5.3) relates the tangential pseudohermitian curvature tensors
of M and M with the second fundamental form of the embedding M into M
and hence can be viewed as pseudohermitian analogue of the Gauss equation.
We state it in an invariant form using the previously established relation
(4.7) between the extrinsic and intrinsic second fundamental forms IT and

(wa®g) given respectively by (2.3-2.4) and (4.3). For this, we view both
pseudohermitian curvature tensors as R-multilinear functions

R,R: TYOM x TYOM x TYOM x T'YOM — C

that are C-linear in the even and C-antilinear in the odd numbered argu-
ments. We further identify the quotient space T, pl 01 / Tp1 OM for p € M with
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the orthogonal complement of Tp1 O in Tp1 0N with respect to the Levi form
of M relative to 6 and then use this Levi form to define a canonical Hermi-
tian scalar product (,) on Tp'°M /Ty ° M. The identity (5.3) yields now the
following statement.

Proposition 5.1 (Pseudohermitian Gauss equation). Let M C M be

as above and 0 be a contact form on M that is admissible for the pair
(M, M). Then, for every p € M, the following holds:

R(X,Y,Z,V) = R(X,Y.Z,V) + (I(X,2),1(Y,V)), X,Y,ZV € T'M.
(5.4)

We next turn to a pseudoconformal analogue of the Gauss equation. It
follows immediately from (5.3) and (5.4) by taking traceless components of
both sides as discussed in §3. We write [T, 5 ] for the traceless component
of a tensor T3 . that can be computed by the formulas (3.16-3.17) (with
R 3,7 replaced by T, 5 ). Then (3.16) can be rewritten as

S

B = [R (5.5)

aﬁuﬁ] :

By taking traceless components of both sides in (5.3) and using (5.5) we now
obtain

[Raﬁw] = Saﬁ,m + [gag wa wgbv]- (5.6)

Note that, in contrast to (5.5), the left hand side of (5.6) may not be, in
general, equal to S WBup which is the (restriction of the) traceless component

of R ABcp With respect to the indices running from 1 to 7. However, we claim

that [Ram] = [%W]

trace component and a multiple of the Levi form (g,7) on M, the tensors

Indeed, according to the decomposition into zero

R ABcp and S ABcp are conformally equivalent with respect to the Levi form
(943), i-e. their difference is of the form analogous to (3. 18) with Greek
indices replaced by capital Latin ones. Since the Levi form of M restricts to
that of M, the restrictions R - and S - are conformally equivalent with
respect to (g,3) and the claim follows Hence (5.6) immediately yields the
desired relation between the tangential preudoconformal curvature tensors
of M and M and the second fundamental form:

[Saﬁuﬁ] = Saﬁuﬁ + [ga(_) waau wﬁbﬁ]a (57)
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or, using formulas (3.16-3.17) for the traceless part,

Sw’yaﬁ Guv + S’y’yuﬁ Jav + S’y’yaﬁ guﬁ + S’y’yuﬁ gaﬁ

oB =SB ~ n+ 2
S ’y (gaﬂgul/ + gauguﬁ) W a w757
(n+ D)(n+2) Jabo g ¥
Wy a W 5 Guw + Wy u w5 gow + Wy War 9,5 + Wy W ar 9o
n+2

_wyag wvaé(gagg@ + gaﬁguﬁ)
(n+1)(n+2)

(5.8)
When 7 = n + 1 and M is a sphere (so that ,SAYQEW = 0), the identity (5.8)
reduces to that obtained by Webster [W79, (2.14)]. As for the pseudohermi-
tian curvature, we also view the pseudoconformal curvature tensors (as well
as their zero trace components) as R-multilinear functions

S, S: TYWOM x THYOM x TYOM x THYOM — C

but now they are independent of #. Then, with the above notation, (5.7)
yields the following statement.

Proposition 5.2 (Pseudoconformal Gauss equation). For M C M as
above and every p € M, the following holds:

[S(X,Y,Z,V)|=S(X.Y,Z,V)+[(II(X, 2),1I(Y,V))], X.,Y,Z,VeT, M.
(5.9)

In the rest of this section we apply the Gauss equations (5.7-5.9) to the
case when M is the sphere and hence S 45cp = 0. Based on a lemma due
to the second author [Hu99], we show that the second fundamental form
in this case is uniquely determined up to unitary transformations by the
tangential pseudoconformal curvature S WBuw under suitable restrictions on
the dimensions n and n. We begin with an algebraic lemma.

Lemma 5.3. Let I1: C* x C* — C"" be a C-bilinear map and (-,-) an
Hermitian scalar product on C"~". Denote by S := [(II(-,-),II(-,-))] the
traceless component with respect to a fixed Hermitian scalar product (-,-)
on C" as above.

(i) IfT1 = 0, then also S = 0. The converse also holds under the assump-
tion n —n < n.
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(ii) If i—n < n/2, then Il is uniquely determined by S up to unitary trans-
formations of C*~™, i.e. if Il is another form, then S = [<H(-, O, (-, )>]
if and only if T = U o 11 for some U € GL(7 —n) preserving (-,-).

Proof. The first statement of (i) is trivial. By definition of the traceless
component, S = 0 implies (II(X, X),II(X, X)) = (X, X) H(X, X) for some
Hermitian form H(-,-) and all X € C". Then the second statement of (i)
follows directly from [Hu99, Lemma 3.2]. To show (ii) observe that, for II
and II as in the lemma, one similarly has

(I(X, X),I(X, X)) — (TI(X, X),II(X, X)) = (X,X) HX, X).

The restriction 7 — n < n/2 permits now to conclude from [Hu99, Lemma
3.2] that H(X,X) = 0. By polarizing the left hand side and using the
symmetries, we obtain

(X, Y),1(Z,V)) = (TI(X,Y),[(Z,V)), X,Y,Z,VeC" (510)

expressing the fact that the collections of vectors (H(X,Y)) vy and

(fI(X,Y)) vy have the same scalar products. Hence they can be trans-
formed into each other by a transformation U € GL(n — n) preserving (-, -).
Any such U satisfies the required conclusion proving (ii). O

Example 1.1 shows that (i) may not hold in case of equality 7 —n = n.
Furthermore, the conclusion of (ii) may not hold under the weaker inequality
n —n < n that was enough to obtain (i):

Example 5.4. For n := 2, n := 3, consider the standard scalar products

(-,-) on C? and (-,-) on C and define II and IT by their associated quadratic
forms Q := 427 + 2129 + 423 and Q := 427 — 2129 + 423 respectively. Then
the identity

|4z% + 2129 + 42% 2 |4z% — 2129 + 42’% 2 = 8(|21|2 + |22|2)(21§2 + Z129)

implies that [(II(-,-),TI(-,-))] = [<1:[(,),1:[(,)>] However, it is clear that
the conclusion of (ii) does not hold for IT and II.
The transformation U in Lemma 5.3 is clearly uniquely determined on

the image of II. We apply Lemma 5.3 to compare second fundamental forms
IT =11, and = p at a point p € M for two given embedding f, f M —
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M. Then, if the image of II is of constant dimension, in which case we say
that II is of constant rank, the transformation U can be chosen smoothly
depending on p (near any given point). We then obtain, as a consequence of
(5.9-5.7) and Lemma 5.3, the following result.

Corollary 5.5. Let f: M — M be a CR-embedding of a strictly pseudo-
convex CR-manifold of dimension 2n + 1 into the unit sphere M =S in
C™1. Denote by (wag) the second fundamental form matrix of f relative
to an admissible coframe (0,04) on M adapted to f(M).

(i) If wa®s = 0, then M is locally CR-equivalent to the unit sphere in
C"™*1. The converse also holds under the assumption 7 — n < n.

(ii) If i —n < n/2, then, for any p € M, (w,"g)(p) is uniquely determined
by (6,0%) up to unitary transformations of C*~", i.e. for any other
CR-embedding f: M — M and any coframe (0,04) on M adapted
to f(M) with f*(0,0%) = f*(0,0%), one has ©,%s(p) = wa®s(p) after
possibly a unitary change of (éa) near p. Moreover, if (waap) is of
constant rank near p, there there is such a unitary change of (0*) near
p for which @,%3 = w,"3 near p.

6. The induced pseudoconformal connection.

Let now (6,04) be an adapted coframe for the pair (M, M) as above and
let (3.11) be the 1-forms defining the parallelism on the bundle Y over M
pulled back to M by the coframe (6,6“) as described in §3. We use " for
the corresponding forms on M pulled back further to M, where the indices
run from 1 to 7. Recall that (w,w® w®) = (©,0% &%) = (0,0%6%) and
w* =0on M. In view of Proposition 3.1, we do not expect (pg®, ¢“, 1) and
(@ga,géo‘,iz)) to be equal. However, since wg® = wg® and 7% = 7% (see §4),
Proposition 3.1 implies

G = 0 +05%0, ¢ = +C, 0"+ F0, b = p+iF,0" —iFy6" 4 A6,
(6.1)

where
Cs®:= Dg* — Dg®, F*:=FE*—-E* A:=B-B

and ﬁga, E®, B are the analogues for M of the functions (3.20) restricted to
M.
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Let us first compute Cg® using the pseudohermitian Gauss equation ob-
tained in §5. In view of (3.20), we have

Z.Raﬁ B ’L.Rgaﬁ B iRaE n ’L.Rgaﬁ
n+2 2m+1D(MA+2) n+2 2n+1)(n+2)

Co5= (6.2)

where the pseudohermitian Ricci curvature tensors ﬁéaﬁ and Raﬁ are related
by

Raﬁ = Ruuaﬁ —wua wuaﬁ = Raﬁ - Raaaﬁ —wua Wuaﬁv (6.3)
where we have used the contraction of (5.3). The pseudohermitian scalar
curvature of R is now obtained by further contracting (6.3):

~

R=Ry" — Ry®\F — w, % why” (6.4)

Substituting (6.3-6.4) into (6.2), we obtain

o _ ey | iy ( 1 ; Jiftus
of T T 12 nt2 " \Ax2 ng2)tles
iwuau W“aygaﬁ i(Raauu + Ruu) 9o B iRgaﬁ

2n+1)(n+2)  2n+l(n+2)  2n+1)(R+2) (6.5)

We next express the contractions of the (tangential) pseudohermitian tensor
of M appearing here in terms of its (tangential) pseudoconformal curvature
tensor and the (pseudohermitian) Ricci and scalar curvature. For this, we
contract the analogue of (3.16) (using the analogue of (3.17)) for M over
a=n+1,...,7n, and restrict as before to the situation where g,5 = 6,5
(so that, in particular, gz = 0):

Ro"o5=Sa"o5 + f+ 2 (A D) +2) (6.6)
Contracting again for p = 1,...,n, we further obtain
ﬁcaauu _ gaa““ n nRk,® —i—ﬁ(:b_; n)R,* B (ﬁn—i(_nl)—(g)—iz) 67)
After substituting (6.6-6.7) in (6.5) and simplifying, we obtain
o= et tetatug)  HSS F et N
of n+2 2(n+1)(n +2)
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Thus the coefficients Caﬁ are completely determined by the second fun-
damental form w,®g and the tangential pseudoconformal curvature tensor
S ABcp of M pulled back to M.

Let us proceed to determine the F“. We compute dp® modulo 6 by
differentiating the second equation in (6.1) and using the sixth structure
equation in (3.12) pulled back to M and (3.15):

g™ = go“Ago,f”—%¢A9a+<1>a+(dc,,a—CM%,,“)AH”HFagWHHAHV mod 6.

(6.9)
On the other hand, by substituting (6.1) into the structure equation for dp®
and using Proposition 3.1 and (4.3) to replace ¢% A $,* by f)ya,gu A wg®
mod 6, we obtain

dg® = " N, 4+ C0” Aw,® 4+ D,%0" A w,®
1 _ N
— §(¢ NO% +iF,00 NOY —iFp0" AO%) + &% mod 6 (6.10)
and hence, using the covariant derivative (see §3),
DY+ VC, NG +iFgm0" A 67 = D,%0" A w,®
1 - .
- 5(z'FMe“ NOY +iFp0Y N 0Y) + 2% mod 0. (6.11)

Identifying coefficients in front of 6# A 67 and using (3.13) we obtain:

1 N
Duawao‘p — iFagup — §iF75Ha = Vaup — Vaup — Cua-y (612)

)

or, equivalently,

N

1 .
Dywe® —iF*8," = ZiF8,% = Vo) = V7 = 00, (6.13)

Recall that we have the symmetry relation w,®y = wy%a by (4.3) which
implies we®” = w,"* in view of (4.1). We also have the symmetries V*,7 =
V7,2 and V7,% = Ve, (see [CM74, (A.14)]). By subtracting (6.13) from
the same equation with v and « interchanged, we then obtain

1 1
§iF75ua — iiFo‘éu'y =C,7-C.“, (6.14)
which, after setting v = p and summing implies
-1
DR =t — O, (6.15)

2
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Thus, for n > 2, the coefficients F'“ (with respect to a fixed admissible
coframe (#,0%)) are completely determined by the covariant derivatives of
C,” (given in terms of the uniquely defined forms w,”) and hence, in view
of (6.8), by w,*s and S uBcp- 1t now follows from the first two equations
in (6.1) that the pulled back forms ¢,® and $® to M are completely de-
termined in terms of the fixed data of M and the pulled back tangential
pseudoconformal curvature tensor M.

Next, we repeat the procedure above to 1& By differentiating the third
equation in (6.1) and using the last equation of (3.12) and its analogue for
M pulled back to M, we obtain

2PN P+ 200% A o+ U = 2ip" A, + U+ d(iF,0" — iF,0” + Af) (6.16)
and using again (6.1),

2i(—C 7y A O* + Ciy 07 N O”) + 2i(C 7 Cipy + D" D)0 A 07 + 0
=V +iVE, ANO" —iDF; A 0" +iAg,z0" A" mod 0. (6.17)

By identifying the coefficients in front of # A 67, using (3.13) and (3.19), we
obtain

2i(C,Y Dy + Cpy DY) + 2i(C,Coy + D, Diy) — 2i Py
= —2iPH; — Z'FH;; — ’L'F;;M + /L‘Agllﬁ' (618)

By contracting, we obtain

nA = (Ft + F*y) - 2]5#“ +2(CC" + C DR + CFY DY + Duaﬁﬂa)a
(6.19)
where we have used the trace condition P,* = 0.

The coefficients D*, are given by (3.20) and hence are determined by the
coframe (#,0%). Suppose now in addition that the second fundamental form
(wa®p) is nondegenerate in the sense that the collection of vectors byg :=
(wan—l—l
view of (4.1) and hence we can solve for the coefficients D, in (6.12). Using
equation (6.19), we can then determine A. Hence, all the pulled back forms
in (6.1), as well as the forms @, = —@g, (see the analogue of (3.19) for M),
are uniquely determined by the second fundamental form and the pulled back
pseudoconformal curvature of M. Now, if the manifold M is the sphere, its
pseudoconformal curvature vanishes identically (see [CM74]) and the forms
above are uniquely determined by the second fundamental form. We shall

By ,wa%) spans C*~". Then wa'p = Waa = —Wgaf = —Wa"7 In
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show that, when M is the sphere, all the pulled back forms ¢ 45, @A,@ZA) on
M are determined by the second fundamental form. It remains to determine
op® and @® in this case. The choice of the 1-forms ¢® on M is always
determined up to

Séba = @ba + nba,ye'y + 7”I”Lb(17(97 + pbae, (620)
where, since Qg = — gy, We must have the symmetries
Nbay + My = Pea + Pgp = 0 (6.21)

in view of the first equation in (3.12). By the analogue of Proposition 3.1
for M and (4.3), we have

¢ = D0 + E°9, (6.22)

where we have used the vanishing of 6% on M. Since ﬁg“ has already been
determined, ¢® is determined up to

% = % + G (6.23)

for some G®. Since every possible choice of $p® and ¢* must satisfy the
structure equation (3.12) for dgz®, we conclude, by subtracting two such
possibilities from each other and using the analogue of (3.19) for M, (4.3)
and the vanishing of @ﬁ“ for the sphere, that

0= (wg’al” + Ds0) A (&" — &p*) + igsaG 0" A 6. (6.24)
By substituting (6.20) in (6.24), we first conclude, using the nondegeneracy
of w,g, that mp's =0 and, hence, by (6.21) that ny®, = 0. Now, it easily

follows from whatever is left in (6.24) that p,* = G* = 0. This completes
the proof of the following result.

Theorem 6.1. Let f: M — M be a CR-embedding of a strictly pseudo-
convex CR-manifold M of dimension 2n + 1, n > 2, into the unit sphere
M = S in C*'. Denote by (wa®g) the second fundamental form of f
relative to some coframe (6,04) on M adapted to f(M). If (wa®g) is non-
degenerate, then it uniquely determines (@BA,(/ADA,'&). That is, if there is
another CR-embeddings f : M — M having the same second fundamental
form (w,“g) relative to some coframe (0,64) on M adapted to f(M) with
f*(6,0%) = f*(#,0%), then necessarily

f*((;BAv (EAaqu) - f*((/sBAv @Aalﬁ)a (625)

where (pp?, @A,@ZA)) and (géBA, géA,i/A)) are the corresponding parts of paral-
lellisms pulled back to M.
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7. Finitely nondegenerate mappings.

In Theorem 6.1 above, we assumed that the second fundamental form of
the embedding is nondegenerate or, equivalently, that the embedding is 2-
nondegenerate. This condition can be relaxed to merely requiring that the
embedding is finitely nondegenerate, i.e. k-nondegenerate for some k. To do
this, we first interpret k-nondegeneracy of the embedding as a condition on
the second fundamental form that we view as a section in the vector bundle
of C-bilinear maps

THOM x TyOM — T0OM /TYOM,  pe M.

For sections of this bundle we have the covariant differential induced by the
pseudohermitian connections V and V on M and M respectively:

Vwa's = dwa® s = wu"p Do’ + wa’p D" — way Dp", (7.1)

As above, we also use e.g. w,“g;, to denote its component in the direction
07. Higher order covariant derivatives w,“g.,.... 5, are defined inductively in
a similar way:

1

a _ a b A a
VUJ% V258 dw’Yl Y25Y3--Y5 T+ Wy 237375 Wb

J (7.2)
_ W@ P
Y1253 i—1 KYi41-- Y5 e o
=1

To obtain the desired relation between finite nondegeneracy and covari-
ant derivatives of w,®3, we begin by applying L, to (4.6) and using the
analogue of (3.6) for M:

LoLaLs(py o f)= Lo sd(waaph®) = Ly (dwoaas N0 —waas 57 A0Y)  mod 6,67,

(7.3)
We now observe that the expression in the brackets on the right hand side
coincides with Vwags A 0% modulo Es (as defined in §2) which is spanned by
the conjugated forms (4.8). Hence we obtain

LyLoLg(py © f) = waapy 0°  mod Ey
and, by induction,

Ly, ... Ly LoLg(py o f) = waasm,...n 07 mod Ejy
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for any integer [ > 1, where Ej,; is as defined in §2 and is spanned by
0,0% waggimy...ns 0% 0<s<l-—1 (7.4)

Hence, we obtain the following generalization of the equivalence of 2-
nondegeneracy with nondegeneracy of the second fundamental form:

Proposition 7.1. For ky > 2, the embedding f: M — M s ko-
nondegenerate at a point p if and only if the equality

span{wy, o5,y Las 2 <1< kH(p) = Ny M (7.5)

holds for k > ko but not for k < kq. Furthermore, f is (ko, so)-nondegenerate
at p if and only if the codimension of the span on the left hand side in (7.5)

in the normal space Ny,) M is equal to sq for k > ko and strictly smaller for
k < ko.

We shall now prove the following alternative to Theorem 6.1. (The reader
should note that Theorem 7.2 is more general than Theorem 6.1 in that it
allows for a higher degree k of nondegeneracy, but is a little weaker than
Theorem 6.1 in the special case k = 2, i.e. in the case of nondegenerate
second fundamental form, since the theorem below requires also the covariant
derivatives w,"g.y to determine the induced pseudoconformal connection.)

Theorem 7.2. Let f: M — M be a k-nondegenerate CR-embedding of a
strictly pseudoconvex CR-manifold M of dimension 2n + 1, n > 2, into the
unit sphere M =S in C**'. Denote by (wag) the second fundamental form
of f relative to some coframe (0,04) on M adapted to f(M). Then the
covariant derivatives (wa"giy,....~; )Jo<j<k—1 uniquely determine (oA, p4, 1@)
That is, if f: M — M is another CR-embedding whose second fundamen-
tal form with respect to a coframe (6,64) on M adapted to f(M) with
£%(0,6%) = £*(8,6%) is denoted by @,%g then

waaﬁ;'yl...'yj = a)aaﬂ;'yl...’yja 0 S] <k- 17 (76)
implies f*(¢p®, &%) = [*(25%, $*, ).

Proof. Let us for brevity use the notation (pp4,$%,v) and (pp4, 4, v)
also for the pullbacks to M. If we examine the arguments above leading to
Theorem 6.1, we see that the nondegeneracy of the second fundamental form
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has not been used to obtain (p%, ¢*) = (¢5%, $*). To compare the normal
components $p% and ¢,* we write as before the general relation between
them in the form (6.20-6.21). In view of (7.2), the analogues of (3.19) for
M and the fact that &% = ws® (see §4), the equations (7.6) imply that

w’Ylb'YQ;’YS---'anba'Y =0, 2<j<k (7.7)

Since we assume f to be k-nondegenerate, we conclude from Proposition 7.1
that ny®, = 0 and hence, by (6.21), also m;*5 = 0. It follows that

Go" = P + po0 (7.8)
which, in turn, implies @ba = up® mod 6 and therefore
wa" gy = Wa g7y (7.9)
By the analogue of (3.19) for M and (4.3),
wa50° + Dy"0 = $o°, (7.10)

and similarly for éaa. We claim that ﬁa“ =
entiate (7.10), use the fourth identity in (3.1
coefficients of 08 A 67:

D, To see this, we differ-
2) for dp,® and identify the

wo g7 = i(9ayDp® + gavDa"), (7.11)

whose contraction yields

~

wugt =i(n+1)Dg". (7.12)

Thus, D,% is uniquely determined by w,”g~ proving the claim in view of
(7.9). Then ¢o®* = $® by (7.10) and the analogue of (3.19) for M implies
in view of (4.3) that ¢% and $® are related by (6.23) with suitable G°.
Moreover, it follows from equation (6.19) that A = A and hence ) =1
To finish the proof, we must show that p,® = G* = 0. For this, we
rewrite (6.24)
0= waspp 0% A O +iggG 0" N0 (7.13)

from which it follows that G = 0 (and w,*g pab = 0, which does not neces-
sarily imply p,” = 0 unless the second fundamental form is nondegenerate).
Hence ¢* = gé“. To conclude that p,” = 0, we differentiate the equation
(7.8), use the structure equations for 3, and ¢a" and identify the coefficient
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in front of 6 A 6 that yields igaﬁpab = 0 and hence clearly implies p,® = 0.
The proof of Theorem 7.2 is complete. g

Theorem 7.2 implies that the induced pseudoconformal connection is de-
termined by the second fundamental form and its covariant derivatives with
respect to this connection. We shall now prove these covariant derivatives,
in turn, are controlled by the (pseudoconformal) Gauss equation. The result
is the following.

Theorem 7.3. Let f: M — M be a CR-embedding of a strictly pseudo-

convex CR manifold of dimension 2n + 1 into the unit sphere M = S in
C™! with i —n < n/2. Denote by (w,"s) the second fundamental form of
f relative to a coframe (0,04) on M adapted to f(M) and by Wa Biyr,..y itS
covariant derivatives (with respect to the pseudohermitian structures on M
and M) Fix an integer k > 2 such that the space Ey = Ex(p) (spanned by
(7.4)) is of constant dimension for p € M. Then the collection of derivatives
Wry “yaiys,...y, for 2 <1 < k is uniquely determined by (6,0%) up to unitary
transformations of C"~", i.e. for any other CR-embedding f: M — M and
any coframe (5, 0~A) on M adapted to f(M) with f*(é, 6%) = 1*(0,6%), one
has

Oy “ervaeen = W ervaes 2 S UK, (7.14)

after a possible unitary change of (5“) (near any given point).

Proof. As in the proof of Lemma 5.3 and Corollary 5.5, it is sufficient to
prove that the collections of vectors

(w'yla’yQ;'y37"'7’YlLa)2§l§k and ((Ij’yla’yQ;'y37"'7’ylLG‘)QS[SI{ (7'15)

have the same scalar products with respect to (g,;) (where (7,L,4) and
(T, L) are dual frames to (6,04) and (8,04) respectively), i.e. that
9o W “v273, w&ng;Sg,...,Es = Gab D1 219350 @Slbgg;gg,...,gs’ 2<1l,s <k,
(7.16)
(the constant dimension assumption on Ej is needed to guarantee that that
the unitary change of (%) can be made smooth; otherwise a nonsmooth
change is still possible). For this, we observe that Saﬁw = 0 since M is the
unit sphere and rewrite the pseudoconformal Gauss equation (5.7) in this
case as
0==5

b
aﬁuﬁ + gal_) waali wﬁ vt Taﬁuﬁ’ (717)
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where T, 5,7 1s a tensor conformally equivalent to 0 (see §3), i.e. a linear

combination of 95> 9ovs 9,7 and g,z. More generally, we call a tensor

T, . arﬁl,m,fsal"'“tbl"'bq (and similar tensors with different order of indices)
conformally equivalent to 0 or conformally flat if it is a linear combination
ofgaiﬁj fore=1,...,r,5=1,...,s.

We will show (7.16) inductively by comparing covariant derivatives of the
right hand side in (7.17) and in its analogue for (6,6%). When calculating
the derivatives, the following two remarks with be of importance. First,
since we have assumed the Levi form matrix (g,7) to be constant, it is easy
to see that covariant derivatives of conformally flat tensors (with respect
to any connection) are always conformally flat. Second, in view of (7.11),
the “mixed” derivatives w,®g~ are conformally flat together with all their
higher order derivatives. Finally, in order to treat e.g. derivatives w,® 545 We
shall need the following lemma, which describes how covariant derivatives
commute.

Lemma 7.4. In the setting of Theorem 7.3, for any s > 2, we have a relation

a

1e-fbs a .
Wpn' poips.ops T T’y1...'ysaﬁ )

a _ a . — _u
“n Y2573 Vs B W Y2573 Ys Ba C’n...'ysaﬂ

(7.18)
where the tensor C_ _  z"*# depends only on (0,0%) (and not on the
embedding f) and T, . .a5" is conformally flat.

Proof. By observing that the left hand side of the identity (7.18) is a tensor,
it is enough to show, for each fixed point p € M, the identity at p with
respect to any particular choice of (6,64) depending smoothly on p. By
making a suitable unitary change of coframe % — u/gaﬂﬁ and 0 — u,?0° (in
the tangential and normal directions respectively), we may chose a coframe
smoothly depending on p with &.?(p) = &.(p) = 0. Relative to such a
coframe, the left hand side of (7.18) evaluated at p equals, in view of (7.2)
and (3.19), modulo a conformally flat tensor, to the coefficient in front of

6 A 67 in the expression

s

a ©wo_ b ~a
E :w'YI Y23 =1 B4 17 G0 Wr1 i vs AP (7.19)
j=1

where we have used that @,” = w,? (see §4). Next, we observe, by examining
the equations (6.1) and (6.8), that the coefficients in front of #* and 6° in
the pulled back forms ¢7 are uniquely determined by (6,60%) and the scalar
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products gz wa"y wﬁb;. The latter are, in turn, uniquely determined by
(0,60%) in view of Lemma 5.3 (ii) (applied to (7.17)). We then compute d¢,®
using the structure equation and the vanishing of 6% on M and of ¢3* and
Pp® at p modulo 6:

Aoy = ool N @t —idp P A" mod 6. (7.20)
In view of (4.1 — 4.3) and (3.19), the first term on the right hand side does
not contribute to the the coefficient in front of % A #P. Hence we conclude

that the coefficient in front of 6% A 65 in (7.19), at p, is of the required form.
This completes the proof of Lemma 7.4. g

We now return to the proof of Theorem 7.3 and show the required inden-
tities (7.16) by induction on the number of indices [ + s. The case | + s = 4
(i.e. | = s = 2) follows from Lemma 5.3 (ii) applied to (7.17). Since we have
chosen coframes for which the Levi form g,z is constant, we have

Vg5 =495 — 9c5 04" — gapp = —(@45 +@54) = 0.
In order to show (7.16) for any 2 < [,s < k with [ + s > 2 we covariantly
differentiate (7.17) for o = vy, p = 72, B = 61, v = d2 with respect to the
indices 73, ..., and Js,...,d, consequently. We obtain that the left hand
side in (7.16) is uniquely determlned by the covariant derivatives of S By
modulo a conformally flat tensor and modulo other scalar product terms
involving either derivatives of w,,“,, with respect to indices one of which

is 0; or derivatives of wglb& with respect to indices one of which is ~;. If
such an index appears at the beginning, the corresponding scalar product is
conformally flat in view of (7.11). Otherwise, by interchanging indices and
applying Lemma 7.4, we see that the scalar product term is equal, again
modulo a conformally flat tensor, to a sum of scalar products of the ex-
pressions on the right hand side of (7.18) and its derivatives. These scalar
products are linear combinations of the expressions on the left hand side
in (7.16) with a smaller number of indices [ + k. Hence, by the induction,
they are uniquely determined by (0, 0%). Summarizing, we obtain the equal-
ity in (7.16) modulo a conformally flat tensor 7. 5. The proof of
Theorem 7.3 is completed by applying [Hu99, Lemma 3 2] as in the proof of
Lemma 5.3 to conclude that Tm,...mél...,ds =0. O

8. Adapted @-frames and proof of Theorem 2.1 in case s = 0.

We embed C™*1 in projective space P! in the usual way, i.e. as the set
{¢® # 0} in the homogeneous coordinates [¢V : ¢! : ... : ¢"*!], and, following
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[CMT74, §1], realize the unit sphere as the quadric @ given in P"*! by the
equation (¢,¢) = 0, where the Hermitian scalar product (-,-) is defined by

(C.7) o= B¢ T8 (T — (O, (8.)

Recall here the index convention from previous sections: capital Latin in-
dices run from 1 to n. A Q-frame (see e.g. [CMT74]) is a unimodular basis
(Zo, Z1, ..., Zny1) of C*F2 (ie. det(Zo, ..., Zny1) = 1) such that Zp and
Ziy1, as points in P?1 are on @Q, the vectors (Z4) form an orthonormal
basis (relative to the inner product (8.1)) for the complex tangent space
to S at Zp and Zp4q and (Zi41, Zo) = i/2. (We shall denote the corre-
sponding points in P"*! also by Zy and Zj;,1; it should be clear from the
context whether the point is in C**2 or P"*1.) Equivalently, a Q-frame is
any unimodular basis satisfying

(Za,Za) =1, (Zpt1,20) = —(Zo, Ziy1) = 1/2,

while all other scalar products are zero.

On the space B of all Q-frames there is a natural free transitive action of
the group SU(n+ 1, 1) of unimodular (n+2) x (7 + 2) matrices that preserve
the inner product (8.1). Hence, any fixed S-frame defines an isomorphism
between B and SU(n+1,1). On the space B, there are Maurer-Cartan forms
7%, where capital Greek indices run from 0 to 7 + 1, defined by

dZy = WAQZQ (8.2)

and satisfying dmp® = Al A 7pft. Here the natural C*2-valued 1-forms
dZy on B are defined as differentials of the map (Zy,..., Zsy2) — Za.

Recall [CM74, W79] that a smoothly varying Q-frame (Zp) = (Za(p))
for p € Q is said to be adapted to Q if Zy(p) = p as points of PPF1. It is
shown in [CM74, §5] that, if we use an adapted @Q-frame to pull back the
1-forms A% from B to Q and set

L _
6 := §7To”+1, 04 :=m?, &= —m® +m, (8.3)

we obtain a coframe (0,64) on @Q and a form ¢ satisfying the structure
equation _

do =id ;50 N OB + O A€
In particular, it follows from (8.3) that the coframe (6¢,26) is dual to the
frame defined by (Z4,Zs+) on M and hence depends only on the values
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of (Zp) at the same points. Furthermore, there exists a unique section
M — Y for which the pullbacks of the forms (w,w®, ¢) in (3.11) are (6, 6%, ¢)
respectively. Then the pulled back forms (¢p?4, 4, v) are given by [CM74,
(5.8b)]

¢ =15 —0ptme®, 9N =2ma?, b= -4l (8.4)
As in [CM74, (5.30)], the pulled back forms 75 can be uniquely solved from
(8.3-8.4):

(+2)m° = —pc —&, mot = 04, mo" T = 20,
ma%=—ia, maP = paP+04"m ", A" = 2i04,
47Tﬁ+10 = —?/3, 27Tﬁ+1A = @Aa (ﬁ+2)77ﬁ+1ﬁ+1 = @5D+f-
(8.5)

Thus, the pullback of 7, is completely determined by the pullbacks
(9’ 9A7 3 @BAa @Av 1&)

In an adapted Q-frame (Z,), the vector Zy giving the referenc point
is determined up to a factor ¢t € C and a change (Zy,Za,Zst1) —
(tZo, Za,t~ ' Zs41) results in the change 6 — |t|?0 (see [CM74, (5.10)]).
Following [CMT74], denote by H; the subgroup of SU(n + 1,1) fixing the
point Zy in P! and the length of Zy in C**2. Then, there is a surjective
homomorphism H; — Gy, explicitly described in [CM74, (5.12)], onto the
group G acting transitively on the coframes (w,w?,w?,¢) (on the bundle
E where w is fixed) such that the relations (8.5) are preserved. We conclude,
in particular, that for any choice of an admissible coframe (#,64) on Q (as
defined in §3), there exists an adapted Q-frame (Z)) such that (8.5) holds
with & = 0.

Proof of Theorem 2.1 in case s = 0. Let f,f: M — S be two CR-
embeddings as in Theorem 1.2 and let p € M be a point where M is
ko-nondegenerate. Then the space Ej,(¢q) defined by (2.1) is of maximal
and hence constant dimension for ¢ € M near p. Choose any admissible
coframe (6,0%) on M near p (in the terminology of §3). Then Corollary 4.2
applied to f and f yields admissible coframes (,64) and (0,04) on S near
f(p) and f (p) respectively that are both adapted to (0,6%) as defined after
Corollary 4.2. Hence, by Theorem 7.3, there exists a further unitary change
of the coframe (,04) near f(p) such that one has the equality (7.14) for the
covariant derivatives up to order kg — 2 of the second fundamental forms of
f and f. Now Theorem 7.2 can be applied to conclude that the connection
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forms (¢pA, ¢*, 1) and (QEBA,QEA,@Z:)) coincide when pulled back via f and
f respectively.

As described above we realize the sphere S as the quadric () and construct
two adapted Q-frames (Z,) and (Z5) on Q near f(p) and f (p) respectively
such that the relations (8.5) and their analogues for f hold. We conlcude
that also the corresponding Maurer-Cartan forms (75?) and (7,%)
when pulled back to M via f and f respectively.

coincide

The end of the proof follows the line of [W78, Lemma (1.1)]. Since the
group SU(n + 1,1) acts transitively on the space of all Q-frames, we can
compose f with such a transformation to obtain Z(f(p)) = Za(f(p)). Now
the relation f*mpa®? = f*7,? implies that, along any sufficiently small real
curve in M, starting from p, both Q-frames Z,(f(q)) and Zx(f(q)) satisfy
the same first order ODE with the same initial values at p. Hence we must
have Zx(f(q)) = Za(f(q)) for ¢ € M near p and therefore f(q) = f(q) since
Zo(f(q)) and Zo(f(q)) give, as points in P**!, exactly the reference points by
the definition of the adapted frames. Finally, the global coincidence f = f
follows from the local one by the well known facts that any CR-manifold of
hypersurface type that is embeddable into a sphere is automatically mini-
mal and that that two CR-functions on a minimal connected CR-manifold
coincide if and only if they coincide in a nonempty open subset. O

9. Degenerate CR-immersions and Proofs of Theorems 2.2
and 2.1.

This section is devoted to the proof of Theorem 2.2, where we assume that
the CR-immersion f: M — S has degeneracy s > 1.

Proof of Theorem 2.2. As in the proof of Theorem 2.1 in case s = 0, we
choose an admissible coframe (6,64) on Q near f(pg), adapted to f(M),
where pg € M is now chosen such that the integer s(pg) defined in (2.2)
coincides with the degeneracy of f (which is the minimum of s(p) for all p €
M). As before, denote by (w.”3) the second fundamental form of f relative
to this coframe. Since the mapping f is constantly (ko, sg)-degenerate near
po, by Proposition 7.1, the dimension of the span in (7.5) for k = ko is
constant and equals to d := n — n — sg for p near py. For the remainder of
this proof, we shall use the indices *, # running over the set n+1,...,n+d
(possibly empty) and the indices 4,j running over n +d + 1,...,n. Then
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after a unitary change of the (6%) if necessary, we may assume that

Span{w%#’m;%,---m[’#’ 2 <1< ko}=span{Ly}, w’Ylj'YQW&--’Yl =0, [>2
(9.1)
We remark at this point that, if we can prove that the image f(M) lies in a
(n+ 1 — s)-dimensional plane P, then clearly the mapping f: M — SN P is
ko-nondegenerate since the normal space of M inside SN P would be = C%.
We can write ‘ ‘ o ‘
(I)#] = @#J,ﬂ“ + dj#]gey -+ @#309 (92)
for suitable coefficients dj#j " w#jy and @#jo. In view of the definition of
the covariant derivatives (7.1-7.2), (9.1) immediately implies

Wm#w;'ya,...md’#ju =0 (9.3)
for any [ > 2, and hence, '
Wyl = 0. (9.4)
Furthermore, in view of (3.19) and (4.3), (9.1) implies
¢’ = Do, @) =D, 0" + £ (9.5)
and
G = waT 0"+ D70, ¢F = D, Fo" + EF0. (9.6)

Differentiating (.’ and using the structure equations and the vanishing of
the pseudoconformal curvature of S, we obtain

wa 0" N Gp? = i(gap D, + g, Do?)0* A 67 mod 6. (9.7)

By using (3.19) and (9.2) to compute ¢4’ and identifying the coefficients of
0 A 07, we conclude that
wa#uw#jy = i(gapbuj + guyﬁaj). (98)

Since the right hand side is conformally flat (see §7), # runs over n +
1,...,n+d, and d =n —n — s < n by the assumptions of Theorem 2.2, it
follows from [Hu99, Lemma 3.2] (cf. e.g. the proof of Lemma 5.3) that

wa#ud)#jﬁ = (99)
and, consequently, D,J =o. Thus, we have

@o’ =0, ¢ =E0. (9.10)
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Substituting this information back into the structure equation for dp,?, us-
ing dpo’ =0, (9.2), (9.5) and (3.19), and this time identifying terms involv-
ing 0* A 6, we conclude that

We claim that <ﬁ#j = 0. To prove this it suffices to show

w’Yl#’YZVYSww’Yld)#jF = w'h#'m;%,mm (d)#jo + D#j) =0, [>2 (9'12)

We next differentiate (9.2) (with @x7, = 0 by (9.4)), use (3.19) and the
structure equation to compute d(ﬁ#j modulo € and identify the coefficients
in front of 8# A #” to conclude that the covariant derivative (:J#jy;’y is confor-
mally flat. Here the covariant derivative is understood with respect to the
induced pseudohermitian connection on the corresponding subspaces and
quotient spaces, where the indices are running. Hence, all higher order co-
variant derivatives ©75.,,, .. are also conformally flat (see §7). By taking
covariant derivatives of (9.9) we obtain that the first expression in (9.12) is
conformally flat. As before we conclude that it is actually zero by [Hu99,
Lemma 3.2] since d < n. Similarly we obtain conformal flatness of the co-
variant derivative w/., by identifying the coefficients in front of 6 A 6 in
the same identity. Again, all higher order derivatives are also conformally
flat and we obtain the vanishing of the second expression in (9.12) by taking
covariant derivatives of (9.11) and using [Hu99, Lemma 3.2]. This proves
(9.12) and hence the claim ¢4/ = 0 in view of (9.1). Finally, substituting
this information back into the structure equation for dp,’ = 0 and using
(9.10), we conclude that ¢/ = 0.

Now, we are in a position to complete the proof of Theorem 2.2. We
have shown that ¢,/ = ¢x/ = @/ = 0. As in §8 we realize the sphere S
as the quadric @ in P! and choose an adapted Q-frame (Z;) on Q = S
near f(p). We can further choose (Z,) satisfying (8.5) with £ = 0 for our
given admissible coframe (0, 64) as described in §8. It follows then from the
second row in (8.5) and the symmetry relation ¢ 5 = —¢5, that ;2 =0
for all Q except possibly 2 € {n+d+1,...,n}. Thus, we have

dZi=7’Z;, i,je{n+d+1,...,n}, (9.13)

expressing the property that derivatives of the vectors Z; are linear combi-
nations of Z; at every point. It follows that the span of Z; = Z;(p) must be
constant in the Grassmanian of C"*2 for p € M near py. Hence the vectors
Zp(p) lie in the constant (7 + 2 — s)-dimensional orthogonal subspace (with
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respect to the inner product (8.1)). Since, by definition of the adapted Q-
frame, Zy(p) gives the reference point p in P"*!, we conclude that f(p) is
contained in a fixed (7 + 1 — s)-dimensional plane P in C**! for p € M near
po. The minimality of M implies now the inclusion f(p) € P for all p € P
by the uniqueness of CR-functions. The last statement follows directly from
the definitions. The proof of Theorem 2.2 is complete. O

Proof of Theorem 2.1 in general case. Let f: M — S be as in the theorem
and denote by s its degeneracy. By Theorem 2.2, f can be seen as a kg-
nondegenerate CR-immersion near some point of M into a smaller sphere
S ¢ C*k=st1 The degeneracy of the immersion obtained of M into ' is
now 0. The required conclusion follows now from the case s = 0 considered
in §8. i
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