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K Energy and K Stability on Hypersurfaces
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1. Introduction.

Suppose that M is a compact Fano manifold. That is, M is a compact
Kähler manifold with positive first Chern class. One of the most important
problems in Kähler geometry is the existence of Kähler metrics of constant
scalar curvature. It is believed that the problem is related to certain notion
of stability in the sense of Geometric Invariant Theory.

In Tian [17] and Donaldson [4], the notion of K stability was introduced.
In the first three sections of this paper, we use the notations in [17] to derive
our theorems. In the last section, we discuss the definition of [4] and some
observations motivated by that paper.

Let M be a Fano manifold that is embedded in CPn by the k-th power
of the anticanonical line bundle, where k is a positive integer. Let σ(t) be a
one parameter family of automorphisms of CPn. We write

σ(t)[Z0, · · · , Zn] = [tλ0Z0, · · · , tλnZn]

for integers λ0, · · · , λn with
∑
λi = 0. Then we can define a family of metrics

ωt = σ(t)∗ωFS on M such that αωt ∈ c1(M), where α is a rational number.
Let M(ω, ωt) be the K energy with respect to the metric αω and αωt (for
the definition of the K energy, see next section). It is known that

lim
t→0

t
d

dt
M(ω, ωt) = A (1.1)

exists [17]. If M(ω, ωt) has a lower bound, then A ≤ 0. Since the one
parameter family of automorphisms σ(t) is generated by the holomorphic
vector field X =

∑
λiZi

∂
∂Zi

, we come up with the following definition [17]:

1Supported by the NSF grant DMS 0204667 and the Alfred P. Sloan Research
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Definition 1.1. We say that M is K stable if for any holomorphic vector
field X on CPn with λ0, · · · , λn integers and λ2

0 + · · · + λ2
n �= 0,

lim
t→0

t
d

dt
M(ω, ωt) < 0.

If the above quantity is nonpositive for all vectors X on CPn, we say M is
K semistable.

The general setting which relates the K energy and the Futaki invariant
(in the case of hypersurface) is as follows: Let M be a hypersurface of CPn.
Let X be a vector field of CPn. Suppose M is defined by a polynomial
F = 0 and let Ft = σ(−t)∗F . The degeneration of M by X is defined as the
hypersurface in C × CPn by G(t, Z) = Ft(Z) = 0. The central fiber of the
degeneration is defined as the intersection of the degeneration with the set
{0} × CPn, excluding the factor t = 0.

In [2] or [17], the quantity A in (1.1) is represented as the (real part)
of the (generalized) Futaki invariant of the central fiber if the central fiber
is a normal variety. It is not hard to see that the exact same proof can go
through if we assume that the central fiber does not have multiplicity greater
than 1. In particular, we can define the Futaki invariant on algebraic cycles
with multiplicity 1 pretty much the same way as in the smooth case.

Remark 1.1. For the sake of simplicity, we don’t distinguish the notations
of K stability and K semi-stability in this paper. K stable in this paper
means either K stable or K semi-stable. On the other side, for the applica-
tions in Geometric Invariant Theory, we just need to assume that t is a real
number and λ0, · · · , λn are rational numbers, although the main idea of this
paper extends to the case where t, λ0, · · · , λn are complex numbers.

The motivation of our work is to find an effective way to verify the
K stability for hypersurfaces. In general, this is a harder problem than the
problem of finding an effective way to compute the Futaki invariant, because
the K energy is the nonlinear version of the “Futaki” invariant(see [10]). By
the work of [2] or [17], if the central fiber is normal, the quantity A is the real
part of the corresponding Futaki invariant. However, the technical difficulty
in the proof is that the degeneration of a hypersurface under a one parameter
subgroup is “generically” an algebraic cycle of multiplication greater than
1. If that is the case, we would not be able to generalize the argument
in [2] directly. In fact, our result shows that the limit may not depend on
the central fiber alone. To see this, we consider the “generic” case where
the central fiber is represented by the algebraic cycle Zi00 · · ·Zinn = 0. All
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the information of the central fiber is contained in the vector (i0, · · · , in).
However, (1.6) shows that we have the other term

n∑
i=0

∫ ∞

0
ϕ′
i(x)(ϕ

′
i(x) − 1)dx

that can’t be recovered from the central fiber. Thus the left hand side of (1.6)
depends not only on the central fiber, but also on the whole degeneration
Ft.

In this paper, we overcome the above difficulty in the case that the central
fiber is of multiplicity greater than one. We first represent the K energy into
an explicitly formula(Theorem 2.5). Then we carefully analyze the integrand
in the formula by using some analytic techniques and a recent result of Phong
and Sturm [14] to get the conclusion.

This paper can be viewed as a nonlinearized version of the paper [5] of the
author, where the Futaki invariant of a hypersurface of CPn was computed.

Phong and Sturm studied K stability for arbitrary smooth manifolds in
CPN [13]. They also studied the linearized version, i.e., the computation of
the Futaki invariant, in [15]. In order to establish the result in the general
case, they make use of the Chow point and Deligne pair. The Chow point,
which is a hypersurface of some Grassmannian, contains all the information
of the original manifold.

The Chow stability (which is closely related to K stability) was studied
by Paul [11] and more recently by Paul and Tian [12], where they have
formulated the stability in terms of double Chow points.

Before stating the main result, we setup notations: let M be defined by
the zeros of the polynomial

F =
p∑
i=0

aiZ
αi

0
0 · · ·Zαi

n
n (1.2)

of degree d. Let (λ0, · · · , λn) be rational numbers satisfying
∑
λi = 0. Let

λ = Max
0≤i≤p

(
n∑
k=0

λkα
i
k). (1.3)

Let

ϕ(x0, · · · , xn) = Min
0≤i≤p

(−
n∑
k=0

λkα
i
k +

n∑
k=0

αikxk), (1.4)

and let
ϕi(x) = ϕ(0, · · · , x

i
, · · · , 0). (1.5)
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Then we have the following

Theorem 1.1. For “generic” (See section 3 for details) (λ0, · · · , λn), we
have

lim
r→0

t
d

dt
M(t)

=
2
d

(
−λ(d− 1)(n + 1)

n
+

n∑
i=0

∫ ∞

0
ϕ′
i(x)(ϕ

′
i(x) − 1)dx

)
.

(1.6)

Since for a Kähler-Einstein manifold, the K energy has a lower bound,
we have the following:

Theorem 1.2. If M is a Kähler-Einstein hypersurface with positive first
Chern class, then we have

−λ(d− 1)(n+ 1)
n

+
n∑
i=0

∫ ∞

0
ϕ′
i(x)(ϕ

′
i(x) − 1)dx ≤ 0

for any λ0 · · · , λn ∈ R with
∑
λi = 0.

Proof of Theorem 1.2. The expression in the theorem is continuous and
homogeneous with respect to λ0, · · · , λn. So by taking the limit, we proved
that the inequality is valid for any choice of λ0, · · · , λn ∈ R. �

This paper is a refinement of the paper [7]. We rewrite the introduction
of this paper in order to cite the important papers of Donaldson [4], Phong-
Sturm [13, 15]. We also give some new observations in the last section
motivated by the work [4].

Acknowledgment. The author thanks P. Li, D.H. Phong and G. Tian
for the encouragement during the preparation of this paper. Special thanks
to L. Katzarkov who helped the author clarify a lot of concepts in algebraic
geometry. The author had discussions on this topic with D. H. Phong and
J. Sturm during his visit to Le Centre de Recherches Mathématiques at Uni-
versité de Montréal in summer, 2003. Their thoughts influence the current
version of this paper. Finally, the author thanks the referee for the careful
reading of this very technical paper.

2. An explicit formula for the K energy.

In this section, we give an explicit formula for the K energy of smooth
hypersurfaces of CPn.
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First, let’s recall the definition of the K energy [10]. Let M be a compact
Kähler manifold with positive first Chern class c1(M). Let ω0, ω1 ∈ c1(M)
and let ω1 = ω0 +

√−1
2π ∂∂ξ for a smooth function ξ. We put ωs = ω0 +

s
√−1
2π ∂∂ξ and define

M(ω0, ω1) = − 1
V

∫ 1

0

(∫
X
ξ(R(ωs) −m)ωms

)
ds, (2.1)

whereR(ωs) is the scalar curvature of the metric, m is the complex dimension
of M , and V is the volume of X with respect to ω0. The functional M, which
is called the K energy by Mabuchi, has the properties:

Proposition 2.1. Using the notations as above, we have

1. M(ω0, ω1) = −M(ω1, ω0),

2. M(ω0, ω1) + M(ω1, ω2) = M(ω0, ω2),

where ω0, ω1, ω2 ∈ c1(X), and are Kähler metrics.

From now on, let’s assume that ω is the Kähler form of the Fubini-Study
metric of CPn. Let M be a hypersurface in CPn defined by the polynomial
F = 0 of degree d. Of course, we need d ≤ n to insure that M is Fano.
Let λ0, · · · , λn be integers such that

∑n
i=0 λi = 0. Let Ft be the polynomial

defined by
Ft(Z0, · · · , Zn) = F (t−λ0Z0, · · · , t−λnZn),

and let Mt be the hypersurface defined by the zero set of Ft. Geometri-
cally, Mt is the image of M under the automorphism σ(t) generated by the
holomorphic vector field X =

∑n
i=0 λiZi

∂
∂Zi

. The automorphisms σ(t) can
be written as σ(t)([Z0, · · · , Zn]) = [tλ0Z0, · · · , tλnZn]. Using these automor-
phisms, one can define a family of Kähler forms ωt = σ(t)∗ω on M . It is easy
to see that both (n−d+1)ω and (n−d+1)ωt are Kähler forms of M in the
cohomological class c1(M). Define M(t) = M((n−d+1)ω, (n−d+1)ωt). It
is a well known result [10] that if M admits a Kähler-Einstein metric, then
M(t) has a lower bound.

Proposition 2.2. Using the notations as above, we have

t
d

dt
M(t) =

2(n − 1)
d

∫
Mt

(Ric(ω|Mt) − (n− d+ 1)ω|Mt)θω
n−2,
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where θ is defined as

θ = −
∑n

i=0 λi|Zi|2∑n
i=0 |Zi|2

, (2.2)

and Ric(ω|Mt) is the Ricci form of ω|Mt .

Proof. It basically follows from Proposition 2.1. Also see [2, Lemma 2.1]
for details. �

The following lemma can be found in [16], we include the proof here for
the sake of completeness.

Lemma 2.1. Let M be the smooth hypersurface defined as the zero of {F =
0}. We use ω to denote the Fubini-Study metric on CPn as well as the
Kähler form on M , which is the restriction of ω on M . Let

ξ = log
|∇F |2

(
∑n

i=0 |Zi|2)(d−1)
, (2.3)

where [Z0, · · · , Zn] is the homogeneous coordinate in CPn. Then we have

Ric(ω) − (n− d+ 1)ω = −
√−1
2π

∂∂ξ. (2.4)

Proof. Without losing generality, we prove the above lemma on the open
set

U0 = {[Z0, · · · , Zn]||Z0| > 1
2
|Zj |, j = 1, · · · , n}

in CPn. The local coordinate system on U0 is z = (z1, · · · , zn) where zi =
Zi/Z0 for i = 1, · · · n. Under this coordinate system, the Fubini-Study metric
can be written as

ω =
√−1
2π

gijdzi ∧ dzj =
√−1
2π

n∑
i,j=1

(
δij

1 + |z|2 − zjzi
(1 + |z|2)2 )dzi ∧ dzj, (2.5)

where |z|2 =
∑ |zi|2. Let’s further assume that in a small open set V of U0,

from the equation F = 0, we can solve z1. Namely,

z1 = z1(z2, · · · , zn) (2.6)

for a holomorphic function z1. Let the Kähler form ω on V , under the local
coordinate system (z2, · · · , zn), be written as

ω =
√−1
2π

n∑
i,j=2

g̃ijdzi ∧ dzj ,
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and let ai = ∂z1
∂zi
, i = 2, · · · , n. Then by (2.5) and (2.6), we have

g̃ij =
δij

1 + |z|2 − zjzi
(1 + |z|2)2 − zjz1ai

(1 + |z|2)2 − z1ziaj
(1 + |z|2)2

+
aiaj

1 + |z|2 − |z1|2aiaj
(1 + |z|2)2 ,

for i, j = 2, · · · , n. We want to compute the determinant det(g̃ij). In order
to do this, we let

Kij = δij + aiaj − 1
1 + |z|2 (zi + z1ai)(zj + z1aj).

Then
g̃ij =

1
1 + |z|2Kij , i, j = 2, · · · , n. (2.7)

Let

A = (a2, · · · , an);
B = (z2 + z1a2, · · · , zn + z1an).

Then the matrix K = (Kij) can be represented by

K = I +ATA− 1
1 + |z|2B

TB.

A straightforward computation gives

KAT = (1 + |a|2)AT − 1
1 + |z|2 (BAT )BT ;

KBT = (ABT )AT + (1 − |B|2
1 + |z|2 )BT .

Thus the vector space spanned by the vectors A, B is K-invariant. Fur-
thermore, on the complement of the vector space, K is the identity. So we
have

detK = (1 + |a|2)(1 − |B|2
1 + |z|2 ) +

1
1 + |z|2 |BA

T |2

=
1

1 + |z|2 (1 + |a|2 + |
n∑
i=2

aizi − z1|2).
(2.8)
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Let f be the defining function of M on U0, i.e.

f = F (1,
Z1

Z0
, · · · , Zn

Z0
) =

F

Zd0
.

Then
∂z1
∂zk

= −
∂f
∂zk

∂f
∂z1

= −Fk
F1
, (k = 2, · · · , n) (2.9)

where we define Fk = ∂F
∂Zk

for k = 0, · · · , n. Thus by the homogeneity of F ,
we have

(
n∑
i=2

aizi) − z1 = −
(

n∑
i=2

Zi
Z0

Fi
F1

)
− Z1

Z0

= − 1
Z0F1

(
n∑
i=1

ZiFi) =
F0

F1

(2.10)

on M . Using (2.7), (2.8), and (2.10), we have

det g̃ij =
1

(1 + |z|2)n
1

|F1|2 (
n∑
k=0

|Fk|2). (2.11)

Then by (2.3)

det g̃ij =
1

(1 + |z|2)n−d+1
· 1

| ∂f∂z1 |2
· eξ .

(2.4) follows from the formula of the Ricci curvature and the above equation.
�

In order to represent the K energy in terms of the polynomial F , we
need the following purely algebraic lemma:

Lemma 2.2. With the same notations as above, let η be a (1, 1) form on
CPn. Let π : Cn+1 → CPn be the projection. Let

π∗η =
√−1
2π

n∑
i,j=0

ãijdZi ∧ dZj. (2.12)

Then on M ,

η ∧ ωn−2 =
|Z|2
n− 1

(
n∑
i=0

ãii −
∑n

i,j=0 ãijFjF i

|∇F |2
)
ωn−1 (2.13)

for |Z|2 =
∑n

i=0 |Zi|2.
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Remark 2.1. The righthand side of (2.13) is well defined because ãij for
i, j = 0, · · · , n are homogeneous functions of order (−2).

Proof. As in the proof of the previous lemma, we can consider the problem
only on U0 ∩ { ∂F

∂Z1
�= 0}, without losing generality. Define Aij on CPn as

follows:

η ∧ ωn−2 = (
√−1
2π

)n−1(−1)
1
2
(n−1)(n−2)

·
n∑

i,j=1

(−1)i+jAijdz1 ∧ · · · ∧ d̂zi · · · ∧ dzn ∧ dz1 ∧ · · · ∧ ˆdzj · · · ∧ dzn,
(2.14)

where the ‘hat’ symbol “ ˆ ” over dzj and dzj means these two differential
forms are deleted from the expression. Define b = (b1, · · · , bn) by

b = (1,−a2, · · · ,−an) = (1,−∂z1
∂z2

, · · · ,−∂z1
∂zn

) = (1,
F2

F1
, · · · , Fn

F1
).

Then by (2.14), we have

η ∧ ωn−2 = (
√−1
2π

)n−1(−1)
1
2
(n−1)(n−2)

·
n∑

i,j=1

Aijbibjdz2 ∧ · · · ∧ dzn ∧ dz2 ∧ · · · ∧ dzn
(2.15)

on M . Thus in order to prove (2.13), we just need to compute
∑
Aijbibj .

To this end, let

η =
√−1
2π

n∑
k,l=1

akldzk ∧ dzl, (2.16)

and fix r, s. By (2.14), we have
√−1
2π

dzr ∧ dzs ∧
√−1
2π

n∑
k,l=1

akldzk ∧ dzl ∧ ωn−2

= (
√−1
2π

)n(−1)
1
2
(n−1)(n−2)(−1)n−1Arsdz1 ∧ · · · ∧ dzn.

(2.17)

We also have the following algebraic fact:
√−1
2π

dzr ∧ dzs ∧
√−1
2π

n∑
k,l=1

akldzk ∧ dzl ∧ ωn−2

=
1

n(n− 1)

⎛⎝ n∑
α,β=1

(gαβaαβ)g
rs −

n∑
α,β=1

gαsgrβaαβ

⎞⎠ωn.

(2.18)



610 Zhiqin Lu

By (2.5), we have

ωn =
(√−1

2π

)n
n!(−1)

1
2
n(n−1) 1

(1 + |z|2)n+1
dz1 ∧ · · · ∧ dzn. (2.19)

Comparing (2.17), (2.18) and (2.19), we have

Ars =
(n− 2)!

(1 + |z|2)n+1
(

n∑
α,β=1

(gαβaαβ)g
rs −

n∑
α,β=1

gαsgrβaαβ), (2.20)

for r, s = 1, · · · , n. By (2.20), we have
n∑

i,j=1

Aijbibj =
(n− 2)!

(1 + |z|2)n+1

· (
n∑

α,β=1

gαβaαβ

n∑
i,j=1

gijbibj −
n∑

i,j,α,β=1

gαjgiβaαβbibj).

(2.21)

We need the following

Lemma 2.3. Using the same notations as above, we have

n∑
α,β=1

gαβaαβ = |Z0|2(1 + |z|2)
n∑
i=0

ãii, (2.22)

n∑
i,j=1

gijbibj = (1 + |z|2) |∇F |
2

|F1|2 , (2.23)

n∑
i,j,α,β=1

gαjgiβaαβbibj = |Z0|2(1 + |z|2)2
∑n

α,β=0 ãαβFαFβ

|F1|2 , (2.24)

where ãij is defined in (2.12).

Proof. Comparing (2.12) and (2.16), we have⎧⎪⎪⎨⎪⎪⎩
akl = ãkl · |Z0|2, k, l �= 0;∑n

i=1 ziail = −ã0l · |Z0|2, l �= 0;∑n
j=1 zjakj = −ãk0 · |Z0|2, k �= 0;∑n
i,j=1 zizjaij = ã00 · |Z0|2.

(2.25)

Since gαβ = (1 + |z|2)(δαβ + zαzβ), by (2.25) , we have
n∑

α,β=1

gαβaαβ = (1 + |z|2)
n∑

α,β=1

(δαβ + zαzβ)aαβ = |Z|2
n∑
α=0

ãαα.
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This proves (2.22). By (2.10), we have

n∑
i=1

zibi = −F0

F1

on M . Thus (2.23) and (2.24) follow from a straightforward computation
using the above equation. �
Continuation of the Proof of Lemma 2.2. By Lemma 2.3, we have

n∑
α,β=1

gαβaαβ

n∑
i,j=1

gijbibj −
n∑

i,j,α,β=1

gαjgiβaαβbibj

= |Z0|2(1 + |z|2)2 |∇F |
2

|F1|2

⎛⎝ n∑
i=0

ãii −
n∑

i,j=0

ãijFjF i

|∇F |2

⎞⎠ .

(2.26)

By (2.11),

ωn−1 =
(√−1

2π

)n−1

(−1)
1
2
(n−1)(n−2) (n− 1)!

(1 + |z|2)n
|∇F |2
|F1|2

· dz2 ∧ · · · ∧ dzn ∧ dz2 ∧ · · · dzn.
(2.27)

(2.13) follows from (2.15), (2.21), (2.26) and (2.27). �

Lemma 2.4. Let ξ be the function defined in (2.3) and let θ be defined in
(2.2). Then we have

√−1
2π

∂ξ ∧ ∂θ ∧ ωn−2

=
1

n− 1

(
−

n∑
k=0

(
XF

|∇F |2
)
k

Fk +
∑n

k=0 λk|Fk|2
|∇F |2 − (d− 1)θ

)
ωn−1.

(2.28)

Furthermore, we have

√−1
2π

∫
M
∂ξ ∧ ∂θ ∧ ωn−2

= − 1
n− 1

∫
M

n∑
k=0

(
XF

|∇F |2
)
k

Fkω
n−1 +

n− d+ 1
n− 1

∫
M
θωn−1.

(2.29)
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Proof. Let η =
√−1
2π ∂ξ ∧ ∂θ and let

π∗η =
√−1
2π

n∑
i,j=0

ãijdZi ∧ dZj.

Then we have

ãij =
∂ξ

∂Zi
· ∂θ

∂Zj
.

A straightforward computation gives

n∑
i=0

ãii =
−∑n

k=0(XF )kF k +
∑n

k=0 λk|Fk|2
|Z|2|∇F |2 − (d− 1)

θ

|Z|2 ,

and ∑n
i,j=0 ãijFjF i

|∇F |2 = −XF ·∑n
i,k=0 FikF iF k

|Z|2|∇F |4
on M . Thus by Lemma 2.2, we got (2.28). Using Lemma 2.2 again for
η =

√−1
2π ∂∂θ, we have

√−1
2π

∂∂θ ∧ ωn−2 =
1

n− 1
(−nθ +

∑n
k=0 λk|Fk|2
|∇F |2 )ωn−1. (2.30)

(2.29) follows from (2.28), (2.30) and the Stokes Theorem. �
Although not needed in this paper, we give a simple proof of the follow-

ing formula for the Futaki invariant in [5] as an application of Lemma 2.1,
Lemma 2.2 and Lemma 2.4.

Corollary 2.1. Let M be a smooth hypersurface in CPn defined by the
homogeneous polynomial F = 0 of degree d. Let X be a vector in CPn

satisfying

XF = κF. (2.31)

The Futaki invariant is defined as

F(X) = −
∫
M
X(ξ)ωn−1.

Then

F(X) = −(n+ 1)(d − 1)
n

κ. (2.32)



K Energy and K Stability on Hypersurfaces 613

Proof. We have

i(X)ω = −
√−1
2π

∂θ. (2.33)

Since X leave M invariant, we have

0 =
∫
M
i(X)(∂ξ ∧ ωn−1) =

∫
M
Xξωn−1 + (n− 1)

∫
M

√−1
2π

∂ξ ∧ ∂θ ∧ ωn−2.

By the above equation and (2.31), from Lemma 2.4, we have

F(X) = −κ
∫
M
ωn−1 + (n− d+ 1)

∫
M
θωn−1.

By [5, Theorem 5.1], we have ∫
M
θωn−1 =

κ

n
.

(2.32) follows from the above two equations. �
Finally, we have the following

Theorem 2.5. The K energy M(t) can be represented as

M(t) =
2
d

∫ t

1

(∫
Mτ

1
τ

(
−

n∑
k=0

(
XFτ
|∇Fτ |2

)
k

(Fτ )kωn−1

+(n− d+ 1)
∫
Mτ

θωn−1

))
dτ,

(2.34)

where
Fτ (Z0, · · · , Zn) = F (τ−λ0Z0, · · · , τ−λnZn),

and Mτ is the zero set of Fτ = 0. In particular, we have

t
d

dt
M(t) =

2
d

(
−
∫
Mt

n∑
k=0

(
XFt
|∇Ft|2

)
k

(Ft)kωn−1

+(n− d+ 1)
∫
Mt

θωn−1

)
.

(2.35)

Proof. The theorem follows from Proposition 2.2, Lemma 2.1 and
Lemma 2.4. �
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3. The limit of the derivative of the K energy.

In this section, we compute the limit lim
t→0

tM′(t) using Theorem 2.5. First,
we need some combinatoric preparations.

Let (δi, σi), i = 0, · · · , p be a sequence of pair of nonnegative rational
numbers. δ0 = 0. We assume that the sequence is “generic” in the sense
that

1. All δi, (i = 0, · · · , p) are distinct numbers(that implies δi > 0, i =
1, · · · , p);

2. None of the three lines defined by ψi(x) = δi + σix, (i = 0, · · · , p)
intersect at the same point.

Define (ik, rk), (k = 0, · · · ,m) inductively as follows: let i0 = 0, r0 = 0.
If (ik, rk) has been defined, then

1. If for any r > rk

δik + σikr < δi + σir (i �= ik),

then let m = k and stop;

2. If not, then define ik+1 and rk+1 > rk such that

δik + σikrk+1 = δik+1
+ σik+1

rk+1 ≤ δi + σirk+1, (3.1)

where i = 1, · · · , p. Since (δi, σi), i = 0, · · · , p are “generic”, the choice
of (ik, rk) is unique for (k = 0, · · · ,m) .

We have the following obvious

Lemma 3.1. (ik, rk), (k = 0, 1, · · · ) is a finite sequence. In particular, the
sequence stops at (im, rm).

Proof. By the construction of ik’s, we have

σi0 > σi1 > · · · > σik > · · · .
Thus all ik’s must be distinct. But 0 ≤ ik ≤ p. So the length of the sequence
is at most p+ 1. �

Let
ψ(x) = Min

i≥0
(δi + σix). (3.2)

The function ψ(x) is a piecewise linear function, whose derivative exists
almost everywhere. rk, (k = 1, · · · ,m) are the non-smooth points of ψ(x).
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Lemma 3.2. Assuming that σim = 0, we have

m−1∑
k=0

(−δik + δik+1
)(σik + σik+1

− 1) =
∫ ∞

0
ψ′(x)(ψ′(x) − 1)dx. (3.3)

Proof. First, let’s remark that for x large enough, ψ ≡ δim is a constant.
Thus the integral in the lemma is convergent.

By definition of rk(k = 0, · · · ,m) in (3.1), we have

−δik + δik+1
= (σik − σik+1

)rk+1

for k = 0, · · · ,m− 1. Thus we have

m−1∑
k=0

(−δik + δik+1
)(σik + σik+1

− 1) =
m−1∑
k=0

rk+1(σ2
ik
− σ2

ik+1
) + (δi0 − δim).

The second term of the above equation is equal to

−
∫ ∞

0
ψ′(x)dx.

For the first term, using the summation by parts, we have

m−1∑
k=0

rk+1(σ2
ik
− σ2

ik+1
) = r1(σi0)

2 +
m−1∑
k=1

σ2
ik

(rk+1 − rk) =
∫ ∞

0
ψ′(x)2dx.

Combining the above two equations, we get (3.3). �
Consider the smooth hypersurface M ⊂ CPn defined by the polynomial

F = 0 of degree d. Let X =
∑n

i=0 λiZi
∂
∂Zi

be the vector field for integers
(λ0, · · · , λn) such that

∑
λi = 0. Let Mt be defined by the equation

Ft(Z0, · · · , Zn) = F (t−λ0Z0, · · · , t−λnZn). (3.4)

We write Ft as

Ft = tδ
p∑
i=0

ait
δiZ

αi
0

0 · · ·Zαi
n

n , (3.5)

where δ0 = 0, and δi ≥ 0, i = 1, · · · , p. By (3.4), we have

X(Zα
i
0

0 · · ·Zαi
n

n ) = −(δi + δ)Zα
i
0

0 · · ·Zαi
n

n (3.6)

for i = 0, · · · , p.
In what follows we assume that the choice of (λ0, · · · , λn) is “generic” in

the following sense:
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1. All δi’s are distinct;

2. None of the three lines defined by δi+αikx for i = 0, · · · , p intersect at
the same points, where k = 0, · · · , n.

Without losing generality, we may assume that a0 = 1, and 0 = δ0 < δ1 <
δ2 < · · · < δp . We also assume that a0, · · · , ap are all non-zero. Furthermore,
since M is smooth, we see that for each 0 ≤ k ≤ n, there is an 0 ≤ i ≤ p
such that αik = 0.

Let Ui = {[Z0, · · · , Zn] ∈ CPn||Zi| > 1
2 |Zj |, j = 0, · · · , n}. Then ∪Ui =

CPn. Let Pi = {Zi = 0} and Pij = Pi ∩Pj for i �= j and i, j = 0, · · · , n. Let
σ > 0 be chosen so that σ < 1

dMin
i≥1

(δi) (Note that Min
i≥1

(δi) > 0) and define

V t
ij = {z ∈ CPn|d(z, Pij) < |t|σ}, i �= j, i, j = 0, · · · , n,

where d(·, ·) is the distance induced by the Fubini-Study metric on CPn.

By (3.5), we see that t−δFt → Z
α0

0
0 · · ·Zα0

n
n as t → 0. Intuitively, Mt

goes to the hyperplanes defined by Z
α0

0
0 · · ·Zα0

n
n = 0. This turns out to be

essentially true by the following Lemma:

Lemma 3.3. There is a σ1 > σ such that for any 0 ≤ k ≤ n and

[Z0, · · · , Zn] ∈ (Mt − ∪ni,j=0V
t
ij) ∩ Uk,

one can find a unique l �= k such that∣∣∣∣ZlZk
∣∣∣∣ < |t|σ1

for t small enough, where [Z0, · · · , Zn] ∈Mt.

Proof. By (3.5) we have

|Zα0
0

0 · · ·Zα0
n

n | ≤ 2d
p∑
i=1

|ai||t|
Min
i≥1

(δi)|Zk|d. (3.7)

Thus if for any l �= k, ∣∣∣∣ ZlZk
∣∣∣∣ ≥ |t|σ1 ,

we could have
|Zα0

0
0 · · ·Zα0

n
n | ≥ |t|σ1d|Zk|d.
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This is a contradiction since we choose σ1 such that

σ < σ1 <
1
d
Min
i≥1

(δi).

�
We are now going to prove that for t small enough, the connected com-

ponents of Mt\ ∪ V t
ij are graphs of functions over P̃i, where

P̃i = Pi − ∪j �=iV t
ij .

To see this, we let

Qi = {[Z0, · · · , Zi, · · · , Zn]|[Z0, · · · , Zi−1, 0
i
, Zi+1, · · · , Zn] ∈ P̃i},

for i = 0, · · · , n. By (1.4) and (1.5), we have

ϕ(x0, · · · , xn) = Min
0≤i≤p

(δ + δi + αi0x0 + · · · + αinxn), (3.8)

and
ϕk(x) = Min

0≤i≤p
(δ + δi + αikx), (3.9)

for k = 0, · · · , n.

Remark 3.1. ϕ and ϕk (k = 0, · · · , n) are defined even if λ0, · · · , λn are
not choosing “generically”. In the special case when

XF = κF,

we have
ϕi(x) = −κ+ ( Min

0≤j≤p
αji )x

for 0 ≤ i ≤ n and x ≥ 0. If M is a normal variety, we have

Min
0≤j≤p

αji = 0 or 1.

In particular, in this case

ϕ′
i(x)(ϕ

′
i(x) − 1) = 0

for 0 ≤ i ≤ n. Using this and Theorem 1.1, we recover the main result in [2]
for hypersurfaces.
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Proposition 3.1. Using the notations as above, we have∫
Mt∩Qi

n∑
A=0

(
XFt
|∇Ft|2

)
A

(Ft)Aωn−1

→ −δα0
i −

∫ ∞

0
ϕ′
i(x)(ϕ

′
i(x) − 1)dx,

(3.10)

for i = 0, · · · , n as t→ 0.

Proof. For the sake of simplicity, we omit unimportant constants in an
inequality. Thus in the proof of this proposition, A ≤ B means there is a
constant C independent of t such that A ≤ CB.

We just need to prove the theorem for the case i = 1. If α0
1 = 0, then

the proposition is automatically true since ϕ′
1 ≡ 0. Thus we assume that

α0
1 ≥ 1. We work on Mt ∩Q1 ∩ U0 , without losing generality.

We assume that (z1, · · · , zn) = (Z1
Z0
, · · · , Zn

Z0
) on U0. Then Ft = 0 can be

written as

f =
p∑
i=0

ait
δiz

αi
1

1 · · · zαi
n

n = 0 (3.11)

with a0 = 1 and δ0 = 0(see (3.5)). The sequence (δi, αi1), (i = 0, · · · , p)
is assumed to be a “generic” sequence mentioned at the beginning of this
section.

For (z1, · · · , zn) ∈ P̃1 ∩ U0, we have

|zi| ≥ |t|σ,
for i = 2, · · · , n. Let ξki (i = 1, · · · , αik1 − α

ik+1

1 , k = 0, · · · ,m) be the (αik1 −
α
ik+1

1 )-th roots of

−aik+1

aik
tδik+1

−δik zα
ik+1
2 −αik

2
2 · · · zα

ik+1
n −αik

n
n .

In the following lemma, we give the solutions of z1 = z1(z2, · · · , zn) of
the equation f = 0. Of course, they are multiple solutions.

Lemma 3.4. For σ > 0 small enough, there is a constant ε0 > 0 such that
the solutions of z1 of f = 0 satisfies

|z1 − ξki | ≤ |ξki | · |t|ε0

for (i = 1, · · · , αik1 − α
ik+1

1 , k = 0, · · · ,m− 1). Furthermore, the balls Bk
i =

{z ∈ C||z − ξki | ≤ |ξki ||t|ε0} for (i = 1, · · · , αik1 − α
ik+1

1 , k = 0, · · · ,m− 1) do
not intersect each other.
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Proof. In the proof, the scripts i, k are always running in (i = 1, · · · , αik1 −
α
ik+1

1 , k = 0, · · · ,m − 1), unless otherwise stated. We choose ε1 > 0 such
that

ε1 < Min
0≤k≤m

Min
i�=ik,ik+1

(δ + δi + αi1rk+1 − ϕ1(rk+1)).

Define fk and gk as follows

fk = aikt
δik z

α
ik
1

1 · · · zαik
n

n + aik+1
tδik+1z

α
ik+1
1

1 · · · zα
ik+1
n

n ,

and

gk = f − fk.

By the definition of ξki , we have

|t|rk+1+Cσ ≤ |ξki | ≤ |t|rk+1−Cσ

for some constant C independent of t. We also have

|t|δ |gk| ≤ |t|ϕ1(rk+1)+ε1−dσ

on Bk
i and

|t|δ|fk| ≥ |t|ϕ1(rk+1)+ε0+dσ

on ∂Bk
i . We choose σ small enough such that ε1 − dσ > 3

4ε1 and ε0 small
enough such that ε0 ≤ 1

4ε1 Thus we have

|fk| > |gk|

on ∂Bk
i . By the Rouché Theorem, fk and f = fk+gk have the same number

of solutions in Bk
i . Since fk has only one solution in Bk

i , we prove the first
claim of the lemma. Next, if t is small enough, we have a constant C such
that

|ξki − ξk1i1 | ≥ CMax(|ξki |, |ξk1i1 |).

Thus if t is small enough, Bk
i ’s do not intersect each other. �

Continuation of the proof of Proposition 3.1. For simplicity, let F =
Ft. For fixed i, k, attaching the Bk

i in the above lemma for each p ∈ P̃1∩U0,
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we get a bundle B̃k
i . On each bundle B̃k

i , since |zi| > |t|σ, we have

n∑
A=0

(
XF

|∇F |2
)
A

(FA) =
(XF )1
F1

− (XF )F11

F 2
1

+ o(1)

=
−(δ + δik)αik1 + (δ + δik+1

)αik+1

1

αik1 − α
ik+1

1

− (−δik + δik+1
)(αik1 (αik1 − 1) − α

ik+1

1 (αik+1

1 − 1))

(αik1 − α
ik+1

1 )2
+ o(1)

= −δ +
−δikαik1 + δik+1

α
ik+1

1 + (δik − δik+1
)(αik1 + α

ik+1

1 − 1)

αik1 − α
ik+1

1

+ o(1)

(3.12)

as t → 0 for k = 0, · · · ,m− 1, where o(1) is a quantity that goes to zero as
t→ 0. By the same argument, the above equation is also true for p ∈ P̃1∩Ul
for l �= 0. Thus the equation is true for p ∈ P̃1. On the other hand, by (3.11),
we have

det π = o(1) (3.13)

as t → 0, where π : Q1 → P̃1 is the projection. This is because ∂z1
∂zk

=
−Fk/F1 → 0 for x ∈ P̃1. Thus by (3.12) and (3.13), we have∫

Mt∩Q1

n∑
A=0

(
XFt
|∇Ft|2

)
A

(Ft)Aωn−1

= (−δα0
1 +

m−1∑
k=0

(δik − δik+1
)(αik1 + α

ik+1

1 − 1))vol(CPn−1) + o(1)

as t → 0. The proposition follows from Lemma 3.2 and the fact
vol(CPn−1) = 1. �

Lemma 3.5. Let p be a fixed point in Mt and let d(x, p) be the distance
from x ∈ CPn to p defined by the Fubini-Study metric. Let Bp(ε) = {x ∈
CPn|d(x, p) < ε}. Then there are constants C, σ independent of p and t
such that ∫

Mt∩Bp(ε)
ωn−1 ≤ Cε2n−2 log ε−1 (3.14)

for t small enough, where ε = |t|σ.
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Proof. Consider the cut-off function ρ : R → R such that ρ ≥ 0 is smooth,
ρ ≡ 1 on [0, 1] and ρ ≡ 0 on (−∞,−1] ∪ [2,+∞). Then we have∫

Mt∩Bp(ε)
ωn−1 ≤

∫
Mt

ρ(
d(x, p)
ε

)ωn−1.

Let Ft be the defining function of Mt. Then in the sense of distribution, we
have √−1

2π
∂∂ log

|Ft|2
(
∑n

i=0 |Zi|2)d
= [Mt] − dω.

Thus we have∫
Mt

ρ(
d(x, p)
ε

)ωn−1 = d

∫
CPn

ρ(
d(x, p)
ε

)ωn (3.15)

+
∫
CPn

ρ

√−1
2π

∂∂ log
|Ft|2

(
∑n

i=0 |Zi|2)d
ωn−1.

We have an easy estimate for the first term of the right hand side of (3.15):∫
CPn

ρ(
d(x, p)
ε

)ωn ≤ Cε2n. (3.16)

For the second term, assume that p ∈ U0 = {[Z0, · · · , Zn]||Z0| > 1
2 |Zj |, j =

1, · · · , n}. Then by (3.5)
Ft = tδZd0ft,

where ft → f0 = z
α0

1
1 · · · zα0

n
n �≡ 0. Thus using integration by parts, we have∫

CPn

ρ(
d(x, p)
ε

)
√−1
2π

∂∂ log
|Ft|2

(
∑n

i=0 |Zi|2)d
ωn−1

≤ Cε2n +
C

ε2

∣∣∣∣∣
∫
|z|≤2ε

log |ft|dV0

∣∣∣∣∣ ,
(3.17)

where dV0 = (
√−1
2π )ndz1 ∧ dz1 ∧ · · · ∧ dzn is the Euclidean measure and

|z|2 = |z1|2 + · · ·+ |zn|2. Rescaling the second term of the above integral, we
have

C

ε2

∣∣∣∣∣
∫
|z|≤2ε

log |ft|dV0

∣∣∣∣∣ = Cε2n−2 log ε−1 +Cε2n−2

∣∣∣∣∣
∫
|z|≤2

log |f̃t|dV0

∣∣∣∣∣ , (3.18)
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where f̃t(z1, · · · , zn) = ft(εz1, · · · , εzn)/εα0
1+···+α0

n . By (3.5), if σ is small

enough, we have f̃t → z
α0

1
1 · · · zα0

n
n . By a theorem of Phong and Sturm [14],

we have ∫
|z|≤2

log |ft|−1dV0 ≤ C (3.19)

for t small enough. (3.14) follows from (3.15), (3.16), (3.17), (3.18)
and (3.19). �

Lemma 3.6. There exists a constant C > 0 such that for t small∑
i�=j

∫
V t

ij∩Mt

ωn−1 ≤ C|t|2σ log |t|−1.

Proof. Let ε = |t|σ. Fixing i, j, there is a constant C0 independent of ε
such that one can find points p1, · · · , pm ∈ Pij for m = [ C0

ε2n−4 ], satisfying

m∪
k=1

Bpk
(ε) ⊃ Pij .

Thus by the above lemma, we have∫
V t

ij∩Mt

ωn−1 ≤
m∑
k=1

∫
Mt∩Bpk

(|t|σ+ε)
ωn−1.

By Lemma 3.5, we have∫
V t

ij∩Mt

ωn−1 ≤ C

ε2n−4
ε2n−2 log ε−1 = Cε2 log ε−1.

The lemma follows since ε = |t|σ. �

Lemma 3.7. There exists a constant C independent of t such that for any
measurable subset E of Mt∣∣∣∣∫

E
∂ξ ∧ ∂θ ∧ ωn−2

∣∣∣∣ ≤ C
√

log |t|−1 ·
√

meas(E),

where the functions ξ and θ are defined in (2.3) and (2.2), respectively.

Proof. Since Mt is a submanifold, the Ricci curvature has an upper bound.
Thus from (2.3), we have a constant C such that

−
√−1
2π

∂∂ξ ≤ Cω. (3.20)
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On the other hand, since [tλ0Z0, · · · , tλnZn] ∈ Mt iff [Z0, · · · , Zn] ∈ M , we
have

|∇Ft|2(tλ0Z0, · · · , tλnZn) =
n∑
l=0

|t|−2λl |Fl|2(Z0, · · · , Zn).

Since M is smooth, we have

−C log |t|−1 ≤ |ξ| ≤ C log |t|−1

for some constant C. Using integration by parts, from (3.20), and the above
estimate, we have∫

Mt

|∇ξ|2ωn−1 ≤ C

∫
Mt

(|ξ| + log |t|−1)ωn−1 ≤ C log |t|−1.

If E is a measurable subset of Mt, then we have∣∣∣∣∫
E
∂ξ ∧ ∂θ ∧ ωn−2

∣∣∣∣ ≤ ∫
E
|∂ξ| ≤ C log |t|−1

√
meas(E)

by the Cauchy inequality. �
Proof of Theorem 1.1. By Proposition 3.1, we have

n∑
i=0

∫
Mt∩∪Qi

n∑
A=0

(
XFt
|∇Ft|2

)
A

(Ft)Aωn−1

= −δd−
n∑
i=0

∫ ∞

0
ϕ′
i(x)(ϕ

′
i(x) − 1)dx + o(1)

(3.21)

as t→ 0. We are going to prove that∫
Mt\

n∪
i=0

Qi

n∑
A=0

(
XFt
|∇Ft|2

)
A

(Ft)Aωn−1 = o(1) (3.22)

as t→ 0. In order to see this, let’s recall that we have∫
Mt\

n∪
i=0

Qi

√−1
2π

∂ξ ∧ ∂θ ∧ ωn−2 = − 1
n− 1

∫
Mt\

n∪
i=0

Qi

(
n∑

A=0

(
XFt
|∇Ft|2

)
A

(Ft)A

−
∑n

i=0 λi|(Ft)i|2
|∇Ft|2 + (d− 1)θ

)
ωn−1



624 Zhiqin Lu

by Lemma 2.4. Since θ and the function
∑n

i=0 λi|(Ft)i|2
|∇(Ft)|2 are bounded, we have∫

Mt\
n∪

i=0
Qi

∣∣∣∣∣
n∑

A=0

(
XFt
|∇Ft|2

)
A

(Ft)A

∣∣∣∣∣ωn−1 ≤
∫
Mt\

n∪
i=0

Qi

(|∂ξ| + 1)ωn−1,

by (2.28). By Lemma 3.7 the righthanded side of the above equation is less
than or equal to

C
√

log |t|−1

√
meas(Mt\

n∪
i=0

Qi) + meas(Mt\
n∪
i=0

Qi).

If we can prove that there is a constant C such that

Mt\
n∪
i=0

Qi ⊂ ∪
i�=j
V Ct
ij . (3.23)

Then (3.22) will follow from Lemma 3.6. To see (3.23), let’s consider a
point p ∈Mt\

n∪
i=0

Qi. Without losing generality, we assume that p ∈ U0. By

(3.7), we can find a k �= 0 such that

|Zk| ≤ |t|σ|Z0|
for t small enough. By definition, p /∈ Qk. Thus there is a j �= 0, k such that

|Zj | ≤ |t|σ|Z0|
Thus p ∈ V Ct

jk for some constant C. (3.23) is proved.
Combining (3.21) and (3.22), we have∫

Mt

n∑
A=0

(
XFt
|∇Ft|2

)
A

(F t)Aωn−1 = −δd−
n∑
i=0

∫ ∞

0
ϕ′
i(x)(ϕ

′
i(x) − 1)dx+ o(1)

as t→ 0. Finally, since θ is a bounded function∫
Mt

θωn−1 =
∫
M0

θωn−1 + o(1)

as t → 0, where M0 is defined as the zero set of Zα
0
0

0 · · ·Zα0
n

n = 0 counting
the multiplicity. In [5, Theorem 5.1], it is proved that∫

M0

θωn−1 = − δ

n
.

By (2.35), we have

tM′(t) =
2
d

(
δ(n + 1)(d − 1)

n
+

n∑
i=0

∫ ∞

0
ϕ′
i(x)(ϕ

′
i(x) − 1)dx

)
+ o(1)

as t→ 0 and Theorem 1.1 is proved. �
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4. Further Discussions.

In this section, we study the relations between theK-stability and the Chow-
Mumford stability for algebraic varieties. First, we have the following

Definition 4.1. Using our notations in the first section, then for a hypersur-
face M (not necessarily smooth) of CPn defined by a polynomial F in (1.2),
it is Chow-Mumford stable if λ > 0 for any (λ1, · · · , λn) with

∑
λi = 0,

where λ is defined in (1.3). It is Chow-Mumford unstable, if λ < 0 for any
(λ0, · · · , λn) with

∑
λi = 0.

Using Theorem 1.1, we have the following

Proposition 4.1. IfM isK-stable, thenM is not Chow-Mumford unstable.

Proof. Let (λ0, · · · , λn) be an arbitrary (n + 1) rational numbers with∑
λi = 0. Then we can perturb (λ0, · · · , λn) so that it is “generic”. By

Theorem 1.1 we have

−λ(d− 1)(n + 1)
n

+
n∑
i=0

∫ ∞

0
ϕ′
i(x)(ϕ

′
i(x) − 1)dx ≤ 0.

Since the second term above is nonnegative, we have λ ≥ 0. This is a
contradiction. �

A well-known fact about the smooth hypersurface is that it is always
Chow-Mumford stable. So the above proposition gives no new information
about the stability. However, it would be interesting to generalize the notion
of K stability into singular varieties.

In [16], Tian defined the generalized K energy on normal varieties. In
the case of hypersurfaces, we can define the K energy for algebraic cycles of
multiplicity one. The following lemma is interesting:

Lemma 4.1. Let M be a divisor of CPn defined by a homogeneous polyno-
mial F of multiplicity one1. Then M(t) in (2.34) is well-defined and we call
M(t) the generalized K energy on M .

Remark 4.1. Clearly a normal hypersurface is defined by an irreducible
polynomial. So the above result is a generalization of the result in [16] in
the case of hypersurfaces. But the proof below is essentially the same as in
that paper.

1A polynomial is of multiplicity one, if {F = 0} ∩ {∇F = 0} is of codimension
at least 2.
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By Lemma 2.4, Lemma 4.1 follows from the following

Lemma 4.2. Let ξ be defined by Lemma 2.1. Then we have∫
M

|∂ξ|ωn−1 < +∞.

Proof. Let Mi be an irreducible component of M and let πi : M̃i →Mi be
a smooth resolution of Mi. Then π∗i (e

ξ) is an analytic function on M̃i. Thus
we have ∫

M̃i

|π∗i (ξ)|2π∗i (ωn−1) < +∞. (4.1)

We also have √−1
2π

∂∂ ξ ≥ −Cω
for some constant C on Mi. Let sup ξ = C1. Then we have∫

M̃i

1
C1 − ξ + 1

(
√−1∂∂ξ + Cω) ∧ ωn−2 ≥ 0.

Consequently we have∫
M

1
(C1 − ξ + 1)2

|∂ξ|2ωn−1 < +∞. (4.2)

Since M has only finitely many components. Using the Cauchy inequality,
we have

(
∫
M

|∂ξ|ωn−1)2 ≤
∫
M

1
(C1 − ξ + 1)2

|∂ξ|2ωn−1

∫
M

(C1 − ξ + 1)2ωn−1.

The lemma thus follows from (4.1) and (4.2). �
By the above lemma, we can define K stability for singular varieties. It

is interesting to compare K stability with Chow-Mumford stability for these
singular varieties. A more interesting and nonlinear problem would be that
whether the K energy is proper and whether the Moser-Trudinger inequality
is true for Fano hypersurfaces. The author strongly believe that they are
true, regardless of the existence of Kähler-Einstein metrics.

We end up this paper by giving some observations related to the recent
work of Donaldson [4]. We first setup the notations.

Let (M,L) be a polarised Kähler manifold. That is, L is an ample
line bundle over the compact complex manifold M . We have the following
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setting of the metrics: let h be a Hermitian metric on the line bundle L with
positive curvature Ric (h). We use ωh = Ric (h) to be the Kähler metric of
the manifold X. The pair of metrics (h, ωh) induces an L2 metric on the
complex vector space H0(M,Lm), where m is a large integer. Let S1, · · · , Sd
be an orthonormal basis of H0(M,Lm) under the L2 metric. The quantity

ηm =
d∑
i=1

||Si||2

plays an important role in complex geometry. In particular, integrating the
quantity ηm, we get the Riemann-Roch Theorem:

dimH0(M,Lm) =
∫
M
ηmω

n =
∫
M

Td(R)emω ,

where R is the curvature tensor of the metric ω, and Td(R) is the Todd
polynomial of R.

By the result of Catlin [1] and Zelditch [18] (independently), there is an
asymptotic expansion

d∑
i=1

||Si||2 ∼ mn(a0 +
a1

m
+ · · · + ak

mk
+ · · · ) (4.3)

in the sense that∣∣∣∣∣
∣∣∣∣∣
d∑
i=1

||Si||2 −mn(a0 +
a1

m
+ · · · + ak

mk
)

∣∣∣∣∣
∣∣∣∣∣
Cl

≤ C(k, l,X)
mk+1

,

where the constant C(k, l,X) depends on k, l and the manifold M . If for
some m, we can make the quantity ηm a constant, then the manifold M is
Hilbert-Mumford stable [9, 19]. This result was used by Donaldson [3] in his
work to prove the stability of manifolds with constant scalar curvature.

In [6], the author proved that⎧⎨⎩
a0 = 1
a1 = 1

2ρ
a2 = 1

3∆ρ+ 1
24 (|R|2 − 4|Ric|2 + 3ρ2)

,

where R,Ric, ρ represent the curvature, the Ricci curvature and the scalar
curvature of the Kähler metric ωh. The author also proved in the same paper
that ak (k ∈ Z) is a universal polynomial of the curvature and its derivatives.
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Because of the above results, we can view (4.3) as a kind of local
Riemann-Roch Theorem. It would be very interesting to find the general
formula of ak.

The first section of the paper [4] hints that there might be relations
between the coefficients {ak} and the equivariant cohomology. The following
observation of the author supports such a speculation.

We assume that M is embedded to CPN and L is the restriction of the
hyperplane bundle to M . Let X be a holomorphic vector field on CPN that
is tangent to X. Let θ be the Hamiltonian function of X. That is,

ι(X)ω =
√−1
2π

∂θ,

where ω is the Kähler metric of M . Let (z1, · · · , zn) be a local holomorphic
coordinates of M . We define

∇X = Xk
l

∂

∂zk
⊗ dzl,

where

Xk
l =

∂Xk

∂zl
+ ΓklmX

m.

The following identity is straightforward

ι(X)R =
√−1
2π

∂∇X,

where R = Ri
jkl

is the curvature tensor. Then we have the following identi-
ties: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫
M a0θdVM = 1

(n+1)!

∫
M Td0(R + ∇X)(ω + θ)n+1∫

M a1θdVM = − 1
(n)!

∫
M Td1(R+ ∇X)(ω + θ)n∫

M a2θdVM = − 1
(n−1)!

∫
M Td2(R+ ∇X)(ω + θ)n−1

+ 1
n!

∫
M Td1(R+ ∇X)∆θωn

, (4.4)

where Tdk is the k-th homogeneous polynomial of the Todd invariant func-
tion. These identities can be verified directly. The third identity is compli-
cated so that it should not be a coincident.

By the above observation, we have the following

Proposition 4.2. Using the notations as above, then
∫
M akθdVM for k =

0, 1, 2 are independent of the choice of the Kähler metric in the fixed polar-
ization c1(L). They are generalized Futaki invariants.
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Proof. We have (∂ − ι(X))(ω + θ) = 0 and (∂ − ι(X))(R+∇X) = 0. Thus
the integrand akθ is closed under the operator ∂ − ι(X). The proposition
follows from this fact. �

There are several directions realted to this observation. First, it would be
interesting to see that the expansion (4.3) is related to the (generalized) Fu-
taki invariants; second it may be possible to find the general formula of {ak}
in terms of equivariant cohomology; more importantly, in [8], we pointed
out that ak = f is an elliptic equation, where f is a smooth function. In
particular, a1 = const is the equation for finding Kähler metrics of constant
scalar curvature. Thus prescribing ak for k > 1 is interesting. We will study
these questions in our subsequent papers.
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