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1. Introduction.

Suppose that M is a compact Fano manifold. That is, M is a compact
Kahler manifold with positive first Chern class. One of the most important
problems in Kéhler geometry is the existence of Kéhler metrics of constant
scalar curvature. It is believed that the problem is related to certain notion
of stability in the sense of Geometric Invariant Theory.

In Tian [17] and Donaldson [4], the notion of K stability was introduced.
In the first three sections of this paper, we use the notations in [17] to derive
our theorems. In the last section, we discuss the definition of [4] and some
observations motivated by that paper.

Let M be a Fano manifold that is embedded in CP™ by the k-th power
of the anticanonical line bundle, where k is a positive integer. Let o(t) be a
one parameter family of automorphisms of CP™. We write

J(t)[Z()7"' 7Zn] = [tAOZ()’... 7t>\nZn]

for integers Ao, - -+, A\, with > \; = 0. Then we can define a family of metrics
wy = o(t)*wps on M such that aw; € ¢1(M), where « is a rational number.
Let M(w,w;) be the K energy with respect to the metric aw and aw; (for
the definition of the K energy, see next section). It is known that

.. d

%E)I(l) ta/\/l(w,wt) =A (1.1)
exists [17]. If M(w,w:) has a lower bound, then A < 0. Since the one
parameter family of automorphisms o(t) is generated by the holomorphic
vector field X =) )\Z-Zi%, we come up with the following definition [17]:
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Definition 1.1. We say that M is K stable if for any holomorphic vector
field X on CP™ with Ao, -+ , A\, integers and A3 + -+ + A2 £ 0,

d
lim t— .
lim dt./\/l(w,wt) <0
If the above quantity is nonpositive for all vectors X on CP", we say M is
K semistable.

The general setting which relates the K energy and the Futaki invariant
(in the case of hypersurface) is as follows: Let M be a hypersurface of C'P".
Let X be a vector field of CP™. Suppose M is defined by a polynomial
F =0 and let F; = o(—t)*F. The degeneration of M by X is defined as the
hypersurface in C x CP" by G(t,Z) = Fy(Z) = 0. The central fiber of the
degeneration is defined as the intersection of the degeneration with the set
{0} x CP", excluding the factor ¢ = 0.

In [2] or [17], the quantity A in (1.1) is represented as the (real part)
of the (generalized) Futaki invariant of the central fiber if the central fiber
is a normal variety. It is not hard to see that the exact same proof can go
through if we assume that the central fiber does not have multiplicity greater
than 1. In particular, we can define the Futaki invariant on algebraic cycles
with multiplicity 1 pretty much the same way as in the smooth case.

Remark 1.1. For the sake of simplicity, we don’t distinguish the notations
of K stability and K semi-stability in this paper. K stable in this paper
means either K stable or K semi-stable. On the other side, for the applica-
tions in Geometric Invariant Theory, we just need to assume that ¢ is a real
number and Ag, - - , A, are rational numbers, although the main idea of this
paper extends to the case where ¢, Ag, -+ , A\, are complex numbers.

The motivation of our work is to find an effective way to verify the
K stability for hypersurfaces. In general, this is a harder problem than the
problem of finding an effective way to compute the Futaki invariant, because
the K energy is the nonlinear version of the “Futaki” invariant(see [10]). By
the work of [2] or [17], if the central fiber is normal, the quantity A is the real
part of the corresponding Futaki invariant. However, the technical difficulty
in the proof is that the degeneration of a hypersurface under a one parameter
subgroup is “generically” an algebraic cycle of multiplication greater than
1. If that is the case, we would not be able to generalize the argument
in [2] directly. In fact, our result shows that the limit may not depend on
the central fiber alone. To see this, we consider the “generic” case where
the central fiber is represented by the algebraic cycle Zéo e Zino= 0. All
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the information of the central fiber is contained in the vector (ig,--- ,ip).
However, (1.6) shows that we have the other term

> [ @ - i

that can’t be recovered from the central fiber. Thus the left hand side of (1.6)
depends not only on the central fiber, but also on the whole degeneration
Ft.

In this paper, we overcome the above difficulty in the case that the central
fiber is of multiplicity greater than one. We first represent the K energy into
an explicitly formula(Theorem 2.5). Then we carefully analyze the integrand
in the formula by using some analytic techniques and a recent result of Phong
and Sturm [14] to get the conclusion.

This paper can be viewed as a nonlinearized version of the paper [5] of the
author, where the Futaki invariant of a hypersurface of C P" was computed.

Phong and Sturm studied K stability for arbitrary smooth manifolds in
C PN [13]. They also studied the linearized version, i.e., the computation of
the Futaki invariant, in [15]. In order to establish the result in the general
case, they make use of the Chow point and Deligne pair. The Chow point,
which is a hypersurface of some Grassmannian, contains all the information
of the original manifold.

The Chow stability (which is closely related to K stability) was studied
by Paul [11] and more recently by Paul and Tian [12], where they have
formulated the stability in terms of double Chow points.

Before stating the main result, we setup notations: let M be defined by
the zeros of the polynomial

p 7 .
F=Y a;Zy° 25" (1.2)
1=0

of degree d. Let (Mg, -+, A,) be rational numbers satisfying > A\; = 0. Let

A= M: A 1.3
Z k) (13)
Let
Mi A 1.4
QO(.T(), , L 0<zl£lp Z kak + Z Oék.ilfk ( )
and let
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Then we have the following

Theorem 1.1. For “generic” (See section 3 for details) (o, -+ ,\n), we
have

d
lim £ M(t
lim ¢, M(2)

2 Md—D(n+1) &[>, )
T d <_ n +§/0 ©i(w)(p5(z) — 1)d3:> .

Since for a Kéhler-Einstein manifold, the K energy has a lower bound,
we have the following:

(1.6)

Theorem 1.2. If M is a Kdhler-Einstein hypersurface with positive first
Chern class, then we have

Ad - 1T)l(n 0,5 /O°° o (2)(f)(x) — 1)dz < 0
=0

for any Ao+, Ay € R with Y \; = 0.

Proof of Theorem 1.2. The expression in the theorem is continuous and
homogeneous with respect to Ag,- -+, A,. So by taking the limit, we proved
that the inequality is valid for any choice of Ag, -+, A\, € R. O

This paper is a refinement of the paper [7]. We rewrite the introduction
of this paper in order to cite the important papers of Donaldson [4], Phong-
Sturm [13, 15]. We also give some new observations in the last section
motivated by the work [4].

Acknowledgment. The author thanks P. Li, D.H. Phong and G. Tian
for the encouragement during the preparation of this paper. Special thanks
to L. Katzarkov who helped the author clarify a lot of concepts in algebraic
geometry. The author had discussions on this topic with D. H. Phong and
J. Sturm during his visit to Le Centre de Recherches Mathématiques at Uni-
versité de Montréal in summer, 2003. Their thoughts influence the current
version of this paper. Finally, the author thanks the referee for the careful
reading of this very technical paper.

2. An explicit formula for the K energy.

In this section, we give an explicit formula for the K energy of smooth
hypersurfaces of C'P".
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First, let’s recall the definition of the K energy [10]. Let M be a compact
Kéhler manifold with positive first Chern class ¢;(M). Let wy,w; € ¢1(M)
and let w1 = wop + %855 for a smooth function &, We put ws = wg +
sgﬁgﬁ and define

Mnwn == [ ([ et —mr)as. e

where R(ws) is the scalar curvature of the metric, m is the complex dimension
of M, and V is the volume of X with respect to wg. The functional M, which
is called the K energy by Mabuchi, has the properties:

Proposition 2.1. Using the notations as above, we have
1. M(wp,w1) = —M(w1,wp),
2. M(wp,w1) + M(wy,w2) = M(wg,ws),

where wg, w1, ws € c1(X), and are Kahler metrics.

From now on, let’s assume that w is the Kéhler form of the Fubini-Study
metric of CP™. Let M be a hypersurface in C'P™ defined by the polynomial
F = 0 of degree d. Of course, we need d < n to insure that M is Fano.
Let Ao, -+ , A\, be integers such that ) " ;A; = 0. Let F} be the polynomial
defined by

Fi(Zo,-  Zyp) = F(t7Zy,--- ,t7Z,),

and let M; be the hypersurface defined by the zero set of F;. Geometri-
cally, M; is the image of M under the automorphism o(t¢) generated by the
holomorphic vector field X = Y " )‘iZiaiZf The automorphisms o(t) can
be written as o(t)([Zo, -+ , Zn]) = [t} Zy, - -- ,t* Z,]. Using these automor-
phisms, one can define a family of Kéhler forms w; = o(t)*w on M. It is easy
to see that both (n —d+ 1)w and (n —d+ 1)w; are Kéhler forms of M in the
cohomological class ¢1(M). Define M(t) = M((n—d+1)w, (n—d+1)w;). It
is a well known result [10] that if M admits a K&hler-Einstein metric, then
M(t) has a lower bound.

Proposition 2.2. Using the notations as above, we have

t%M(t) = w /Mt(Ric(w|Mt) — (n—d+ w02,
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where 0 is defined as " )
g — _ im0 ilZil
doico 1 Zil?

and Ric(w|pr,) is the Ricci form of w|yy, .

(2.2)

Proof. It basically follows from Proposition 2.1. Also see [2, Lemma 2.1]
for details. g

The following lemma can be found in [16], we include the proof here for
the sake of completeness.

Lemma 2.1. Let M be the smooth hypersurface defined as the zero of {F =
0}. We use w to denote the Fubini-Study metric on CP™ as well as the
Kdahler form on M, which is the restriction of w on M. Let

[VE]?
¢ =log — — (2.3)
(im0 ‘ZiP)(d !
where [Zy, - -, Zy| is the homogeneous coordinate in CP™. Then we have
V=1 _
Ric(w) —(n—d+ 1w = —2—885. (2.4)
T

Proof. Without losing generality, we prove the above lemma on the open
set

1 .
UO = {[Z(), ,Zn]HZ()’ > §’Zj’7j = 1’ ’n}

in CP™. The local coordinate system on Uy is z = (21, -+ , z,) where z; =
Zi/Zy for i = 1,---n. Under this coordinate system, the Fubini-Study metric
can be written as

w:—\/__l fdz-/\d?:\/__lzn:( I
A A S P CEN FRE

o )dZZ Ndzj, (2.5)

where |2]? = Y |2|?. Let’s further assume that in a small open set V of Uy,
from the equation F' = 0, we can solve z;. Namely,

21 = 2z1(22, + ,2n) (2.6)

for a holomorphic function z;. Let the Kéhler form w on V', under the local
coordinate system (za,--- , z,), be written as

w = Z gzjdzZ Ndzj,

1,J=2
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and let a; = g—z,i = 2,---,n. Then by (2.5) and (2.6), we have

- O 2jZ; Z;Z104 21%ZiGj
YT TR RR T W+ P2 A+ P (T PP
n a;a; B |21 |2aﬁj
L+ (427>
for i,j = 2,--- ,n. We want to compute the determinant det(gﬁ). In order

to do this, we let

1+ |22

Then
1

— K-, i,j=2-,n. 2.7
1+ o2 i Y " @7)

gij =
Let

A:(CLQ"" 7a’n);
B = (Zo+Z1a2, -+ ,Zn + Z10p).

Then the matrix K = (K;;) can be represented by

K=1+ATA- BTB.
1+ |22
A straightforward computation gives
1 _
KAT = (1 HAT - ———(BAT)BY;
(1+lal") 1+|Z|2( B
KBT = (ABT)AT + (1 - B )BT
1422

Thus the vector space spanned by the vectors A, B is K-invariant. Fur-
thermore, on the complement of the vector space, K is the identity. So we
have

B|? R
det K = (1 (1 — | BAT|?
e (1 + lal?)( 1+,2‘2)+1+,2‘2! |
. n (2.8)
_ 2 . 2
— 1+‘Z’2(1+\a] + | E a;z; — z1]°).

=2
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Let f be the defining function of M on Uy, i.e.

71 Zn, F
=F(1,=,..., ) = —.
Then of
0z D21 F
e N 2.9
g =z (29)
1

where we define Fj, = aa_gk for k =0,--- ,n. Thus by the homogeneity of F,
we have

n n
Zi Fi Z1
(Zaizi) -2 =— <Z ZE) - 70

=2 = (2.10)
R Fy
Zoky (221 if3) Fy
on M. Using (2.7), (2.8), and (2.10), we have
1 1 <
det g~ = Fi). 2.11
9:5 (1+|Z|2)” |F1|2(kzo‘ k‘ ) ( )

Then by (2.3)
1 1
3

. . 6
(1 + |Z|2)n7d+1 ’g_zjilg

det gz} =

(2.4) follows from the formula of the Ricci curvature and the above equation.
O

In order to represent the K energy in terms of the polynomial F', we
need the following purely algebraic lemma:

Lemma 2.2. With the same notations as above, let n be a (1,1) form on
CP". Let m:C"1 — CP" be the projection. Let

i V=1 < _
TN = > agdzZi AdZ;. (2.12)
i,j=0
Then on M,
A n—2 — ‘ P ,J vJ n—1 2.13
nAw n_1 <Z0 a; ‘VF‘Q w ( )

for |22 = 3214 | Zif?.
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Remark 2.1. The righthand side of (2.13) is well defined because a; for
i,7 =0,---  n are homogeneous functions of order (—2).

Proof. As in the proof of the previous lemma, we can consider the problem
only on Uy N { dF # 0}, without losing generality. Define A on CP" as
follows:

nA wn—2 — ( \4 _1)71—1(_1)%(71—1)(71—2)

2T
n o X . (2.14)

: Z(—l)ZﬂAﬁdzl/\---/\dzi---/\dzn/\d?1/\"-/\dEj"'/\dEn,

i,j=1

~

where the ‘hat’ symbol “ over dz; and dz; means these two differential

forms are deleted from the expression. Define b = (by,--- ,b,) by
821 821 F2 Fn
b=(1,—as, - ,—ay) = (1, — o=, -+, —=2) = (1,22, , =),
(1= —a) = (=52 2 )
Then by (2.14), we have
n A" 2 _ ( \4 _1)7171(_1)%(7171)(7172)
27
(2.15)

n
17]21
on M. Thus in order to prove (2.13), we just need to compute Aﬁbl@j
To this end, let
v—=1

n
n= ? Z akide VAN dzl, (216)
k=1
and fix r, s. By (2.14), we have

V-1 V=1 <
o dzy NdZg N T Z agdzp N dzp A w2

k=1 (2.17)
) (—1)2(= D=2 ()=l g e A A dE,.

= ( V-1
Y o
We also have the following algebraic fact:

dzr/\d_/\ Zakldzk/\d_l/\w

k=1

(2.18)

n

1
S Tl O TAED SYLTLIN I

a,f=1 a,B=1
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By (2.5), we have

V=1\" Lo 1
"= = T b2 kD — < ANdzZp,. 2.1
w ( 5 nl(—1)2 ECEEE 21N ANdZ (2.19)
Comparing (2.17), (2.18) and (2.19), we have
n—2)! - as r
Ars = W< Z< Z 9%, (2.20)
for r,s =1,--- ,n. By (2.20), we have
(n—2)!
A — e
Zl =
" . . (2.21)
( Z ga,@aaﬁ Z g7b;ib; — Z gajgiﬂaaﬁbigj)'
a,B=1 1,j=1 ,7,0,0=1

We need the following

Lemma 2.3. Using the same notations as above, we have

n
> g Pag = |Zo(1+ |2) Za (2.22)
a,B=1 1=0
n
- VF|?
> gbib = (1+ |z|2)’ | , (2.23)
“ |F1)?
i,7=1
nooo_ S _F.F
g T a,3=0 B
> 09 angbibs = 1 ZoP (L + |27 =2 ‘Fj“f . (229
i, 3=1 !
where a7 is defined in (2.12).
Proof. Comparing (2.12) and (2.16), we have
ay = gy - | Zof?, kL # 0;
n — 2 .
Z’i=1 Ziaii - _aoi ’ ‘Z()’ ’ l # 0’ (225)

Z?:1 Zjty5 = —lyg - 1 Zol?, k#0;
n — ~
> oijm #iZja5 = dgg - | Zol?.

Since g% = (14 |2|)(dap + 2aZp), by (2.25) , we have

n

n
Z g G = (1+ ‘Z’ ) Z (Gap + zazﬂ)aaﬁ = ‘Z‘Q Zdaa-
a=0

a,f=1 a,B=1
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This proves (2.22). By (2.10), we have

n
E Zibi = ——
=1

on M. Thus (2.23) and (2.24) follow from a straightforward computation
using the above equation. O

Continuation of the Proof of Lemma 2.2. By Lemma 2.3, we have

n n n
OFLTED WLUEED S

a,B=1 i,j=1 i,5,a,0=1
; . (2.26)
VEP? [ & " agFF;
—1712(1 2y2| o ij
21+ 0 R | 28— 2 o
1= INES
By (2.11),
n—1
wn—l I —1 (_1)%(71—1)(71—2) (n — 1)' ‘VF‘Q
27 (14|22 |F1)? (2.27)
cdzg N+ ANdzy NdZo A - -+ dZ,.
(2.13) follows from (2.15), (2.21), (2.26) and (2.27). O

Lemma 2.4. Let & be the function defined in (2.3) and let 6 be defined in
(2.2). Then we have

/=1 _
~___OENDO AW
2

n n 2.28)
1 XE N\ — S Ml Fel? 1 (
= — F +&=k=02 P (d—1)0 | W™ L
n—1 ( kZO (NFP)k VP
Furthermore, we have
=1 _
—/ DENDO N W2
(2.29)

B n—l/z(]VF]2> Fiew Tn—1 /9
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Proof. Let n = g@f A 00 and let

/1 & _
1,7=0
Then we have
09 09
az = =
77 9z, 0z

A straightforward computation gives

i&._‘ _ = Dm0 X E)eF e+ 3o Ml Fl? (d— 1)i
pr i |Z|*|VF? |22

and

YijoaghiFi  XF-3h o FpFiFy

VE2 2]V E[*

on M. Thus by Lemma 2.2, we got (2.28). Using Lemma 2.2 again for
n= %85«9, we have

V-1 - 2 D im0 Ml Fil? )
9N 2 = —nf =0 n=1, 2.
o 000 N\ w n—l( nb + S2aE Jw (2.30)
(2.29) follows from (2.28), (2.30) and the Stokes Theorem. O

Although not needed in this paper, we give a simple proof of the follow-
ing formula for the Futaki invariant in [5] as an application of Lemma 2.1,
Lemma 2.2 and Lemma 2.4.

Corollary 2.1. Let M be a smooth hypersurface in C'P" defined by the
homogeneous polynomial F' = 0 of degree d. Let X be a vector in C'P"
satisfying

XF =kF. (2.31)

The Futaki invariant is defined as
F(X)=— / X(&w"
M

Then
Fx) = D=1 (2.32)
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Proof. We have

i(X)w = —%59. (2.33)

Since X leave M invariant, we have

0—/Mi(X)(8§/\w /ng” Yy (n-1) / —agAaeAw

By the above equation and (2.31), from Lemma 2.4, we have

F(X) = —R/M Wl (n—d+1) /M g1

By [5, Theorem 5.1], we have

Hwnfl — E
M n

(2.32) follows from the above two equations. O
Finally, we have the following

Theorem 2.5. The K energy M(t) can be represented as

0= | (7 (-5 (), 7

(2.34)
+(n —d+ 1)/ Hw”_1>> dr,
where
Fr(Zoy--  Zy) = F(17% Zo, -, 7 Z),
and M is the zero set of Fr = 0. In particular, we have
d XF; _
K ( 1,2 (), T
M o= ok (2.35)

+(n—d+1) /Mt Gw”_1> .

Proof. The theorem follows from Proposition 2.2, Lemma 2.1 and
Lemma 2.4. O
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3. The limit of the derivative of the K energy.

In this section, we compute the limit lim tM’(¢) using Theorem 2.5. First,

t—
we need some combinatoric preparations.
Let (0;,04),i = 0,--- ,p be a sequence of pair of nonnegative rational

numbers. dy = 0. We assume that the sequence is “generic” in the sense
that

1. All 6;,(: = 0,---,p) are distinct numbers(that implies ¢; > 0,7 =
]-7 o 7p)a

2. None of the three lines defined by ;(x) = 6; + oz, (i = 0,--- ,p)
intersect at the same point.

Define (ig,ri), (k = 0,--- ,m) inductively as follows: let i = 0,79 = 0.
If (ig,rr) has been defined, then

1. If for any r > 7y
Oi, T oy <& +oir (1 F k),
then let m = k and stop;

2. If not, then define ix11 and rgyq > 7 such that

Oif, + 04Tkl = Oip oy + Oip i Th1 < 05 + 0iTgy1, (3.1)
where ¢ = 17 Y 2 Since ((5“ O'Z)’Z = 0’ ... pare “generic”, the choice
of (ix, k) is unique for (k =0,--- ,;m) .

We have the following obvious

Lemma 3.1. (ig,7x),(k =0,1,---) is a finite sequence. In particular, the
sequence stops at (i, ™).

Proof. By the construction of ix’s, we have
Tig > 04 > 00> 04, > 0.

Thus all 4’s must be distinct. But 0 < i < p. So the length of the sequence
is at most p + 1. O
Let
Y(x) = Min(d; + o;z). (3.2)
>0
The function ¢ (z) is a piecewise linear function, whose derivative exists
almost everywhere. 7y, (k = 1,--- ,m) are the non-smooth points of ¢(x).
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Lemma 3.2. Assuming that o;,, =0, we have

m—1 00
> (b + 8+ o~ D = [ @ @) =D 63

k=0

Proof. First, let’s remark that for x large enough, ¢ = §;,, is a constant.
Thus the integral in the lemma is convergent.
By definition of ri(k = 0,--- ,m) in (3.1), we have

=0, + 5ik+1 = (Jik - o-ik+1)rk+1

for k=0,--- ,m — 1. Thus we have
m—1 m—1
Z(—% + 0y )04y, + 04y, — repa(of, — o5 )+ (8ig — bi,)-
k=0 k=0

The second term of the above equation is equal to

- /000 ' (x)dx

For the first term, using the summation by parts, we have

m—1 m—1 )
Z Trt1(o ZkH) = 71(04)* + Z o; (Thy1 —18) = / V' (x)*dx
k=0 k=1 0

Combining the above two equations, we get (3.3). O

Consider the smooth hypersurface M C CP"™ defined by the polynomial
F =0 of degree d. Let X = >"" /N ZaZ be the vector field for integers
(Ao, -+, An) such that > A\; = 0. Let M, be defined by the equation

Fi(Zo,-- , Zn) = F(t™Zy,--- , 17 Z,). (3.4)
We write F; as
F =9 iaitéizgé . 7%, (3.5)
where 6p =0, and §; > 0,i =1,--- ,p. By (3.4), we have
X0 2gh) = (0 + ) 250 - 25 (36)
fori=0,---,p

In what follows we assume that the choice of (Ao, -+, A,) is “generic” in
the following sense:



616 Zhiqgin Lu

1. All ¢;’s are distinct;

2. None of the three lines defined by §; + ozi;x fori=0,--- ,p intersect at
the same points, where k =0,--- ,n.

Without losing generality, we may assume that ag = 1, and 0 = §g < 41 <
0y < --- < 6, . We also assume that ag, - - - , a, are all non-zero. Furthermore,
since M is smooth, we see that for each 0 < k < n, thereisan 0 < i <p
such that a}; = 0.

Let U; = {[Zo, -+ , Zy) € CP"||Z;| > 1|Z;|,j = 0,--- ,n}. Then UU; =
CP". Let Py ={Z; =0} and P;; = P,NPjfori# jandi,j=0,---,n. Let
o > 0 be chosen so that o < él\z/[;{l(él) (Note that 1}@1{1(51) > 0) and define

Vi ={z€ CP"d(z,Py) < [t|°}, i #£4,i,j =0, ,n,

where d(-,-) is the distance induced by the Fubini-Study metric on C'P™.
0
By (3.5), we see that t—°F, — Z50...Z%% as t — 0. Intuitively, M,

0
goes to the hyperplanes defined by Zgo e Zﬁ‘% = 0. This turns out to be
essentially true by the following Lemma;:

Lemma 3.3. There is a 01 > o such that for any 0 < k <n and
[Z07 e 7ZTL] € (Mt - U?,]:O‘/Zg) N Uk"

one can find a unique | # k such that

l o
— | < |t|7?
‘Zk d
for t small enough, where [Zy,- -+ , Zy,] € M.
Proof. By (3.5) we have

p Min(6;
1288 708 < 903 a2z, 0 (3.7)
=1
Thus if for any [ # k,

7
‘—l > Je,

Zy,

we could have .
1250 - 20| > |t] 714 2| .
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This is a contradiction since we choose o7 such that
1.
o<o; < aMm(éi)-

i>1

O
We are now going to prove that for ¢ small enough, the connected com-
ponents of M\ U sz are graphs of functions over P;, where

P = Py = UjziVij.

To see this, we let

Qi:{[ZO’... 7Zi7"' 7Zn”[207 ’Zi_l’(l)’ZH_l’... 7Zn] GB}’

fori=0,---,n. By (1.4) and (1.5), we have

o(z0, - ) = Min (64 6 + adag + - - + ol ay), (3.8)
0<i<p
and )
(pk(x) = Ol\g/liigp(é +6; + 04296), (3'9)

for k=0,--- ,n.

Remark 3.1. ¢ and ¢ (k = 0,--- ,n) are defined even if g, -, \, are
not choosing “generically”. In the special case when

XF = kF,
we have

(z) = — in o’
©i(x) K+ (Olé/glgpaz )T

for 0 <i<nandzx >0. If M is a normal variety, we have

Min o] =0 or 1.
0<j<p

In particular, in this case
¢i(x)(pi(z) —1) =0

for 0 <14 < n. Using this and Theorem 1.1, we recover the main result in [2]
for hypersurfaces.
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Proposition 3.1. Using the notations as above, we have

"/ XF, —
M@ 575 \IVE? ) 4

a0 /0 (@) () — D)da,

fori=0,--- ,nast— 0.

(3.10)

Proof. For the sake of simplicity, we omit unimportant constants in an
inequality. Thus in the proof of this proposition, A < B means there is a
constant C' independent of ¢ such that A < CB.

We just need to prove the theorem for the case i = 1. If af = 0, then
the proposition is automatically true since ¢} = 0. Thus we assume that
o > 1. We work on M; N QN Uy , without losing generality.

We assume that (z1, -+, 2,) = (g—é, . 7%) on Uy. Then F; = 0 can be
written as ,
f:Zait‘Sizflzl "'zg‘; =0 (3.11)
i=0

with ag = 1 and § = O(see (3.5)). The sequence (&;,ai),(i = 0,---,p)
is assumed to be a “generic” sequence mentioned at the beginning of this
section.

For (21, ,2n) € P, NU,y, we have
|25 = [¢]7,
fori=2--- n. Let =1, ,o/f“ —o/f““,k =0,---,m) be the (0/‘1’c -

a!*1)-th roots of

. Tt 1 i i i
_azk+1 t‘sikH*‘Sik Zgzg —aF o Za:zk+l—0t:zk_
aik "
In the following lemma, we give the solutions of z; = z1(z2,--- , z,) of

the equation f = 0. Of course, they are multiple solutions.

Lemma 3.4. For o > 0 small enough, there is a constant g > 0 such that
the solutions of z1 of f = 0 satisfies

|21 — & < &7 [t
for(i=1,--- ,ai’“ — ailk“,k: =0,---,m—1). Furthermore, the balls Bf =

VRS z2—=&" <& or (1 = ,"',a‘ —oz‘ ,k=0,-+-,m— 0]
C Bl < |kt =1 F—af" k=0 1) d
not intersect each other.
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Proof. In the proof, the scripts i, k are always running in (i = 1,- - ,o/f“ —
o/f“,k = 0,---,m — 1), unless otherwise stated. We choose €; > 0 such
that

g1 < Min Min (6 +6; +air — r .
1 ogkgmz‘;éz‘k,z‘kH( + 0 + afrpp1 — 1(rr41))

Define fi and gj as follows

ik s Tt aik+1

_ 51 a’ik Qp) 'Lk 1 e9] n
fe =a; t%% 2" -2 + @iy U 2 ez ,

and
g = [ — [

By the definition of ff , we have

[t 07 < Jef| < Jeprenn e

for some constant C independent of ¢. We also have

\t\‘s\gkl < ’t’w1(m+1)+61—d0

on Bf and

|t|5|fk:| > |t|¢1(rk+1)+50+d0

on OBF. We choose o small enough such that e; — do > %51 and gp small
enough such that g9 < iel Thus we have

| fel > |9l

on BF. By the Rouché Theorem, fi and f = fi+ gi have the same number
of solutions in Bf . Since fr has only one solution in Bf , we prove the first
claim of the lemma. Next, if ¢ is small enough, we have a constant C' such
that

|€F — 81| > OMax(|¢F], €51)).

Thus if ¢ is small enough, Bf’s do not intersect each other. U

Continuation of the proof of Proposition 3.1. For simplicity, let F' =
F;. For fixed i, k, attaching the Bf in the above lemma for each p € Py N Uy,
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we get a bundle BF. On each bundle B, since || > [t|”, we have

A

= |VF|? F F?
(048 )af + (045 )y
- ail’“ - ailk“
(0 + G (@ (o = 1) — o (@) 1) (1)
(0}t —aj )2
— 5+ _5ikazlk + 5ik+1a1 o ""Z (03 Zéikﬂ)(azlk + o 1) +o(1)
aff —aft!
(3.12)
ast — 0 for k=0,---,m — 1, where o(1) is a quantity that goes to zero as

t — 0. By the same argument, the above equation is also true for p € P, NU,
for [ # 0. Thus the equation is true for p € P;. On the other hand, by (3.11),
we have

det ™ = o(1) (3.13)

as t — 0, where 7 : Q; — ]51 is the projection. This is because g%; =

—F},/Fy — 0 for z € P;. Thus by (3.12) and (3.13), we have

[ XF
M:NQ1 A=0 |VFt| A

m—1
= (009 + 3" (83, — 8. (@ +af ! — 1))vol(CP") + o(1)
k=0

as t — 0. The proposition follows from Lemma 3.2 and the fact
vol(CP" 1) = 1. O

Lemma 3.5. Let p be a fized point in M; and let d(z,p) be the distance
from x € CP™ to p defined by the Fubini-Study metric. Let By(e) = {z €
CP"|d(xz,p) < €}. Then there are constants C,o independent of p and t
such that

/ W'l < 0?2 loge™! (3.14)
MtﬂBp(é)

for t small enough, where € = |t|.
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Proof. Consider the cut-off function p : R — R such that p > 0 is smooth,
p=1on[0,1] and p =0 on (—oo, —1] U [2,+00). Then we have

/ wnfl S / p(d(x,p) )wnfl'
M:NBp(e) My €

Let F}; be the defining function of M;. Then in the sense of distribution, we

have
V-1 = |32 _
o 001log —(Z?:o Zi) = [My] — dw.
Thus we have
d xZ, d z, n
JEE / o222, (3.15)
M, g Cpn 13

We have an easy estimate for the first term of the right hand side of (3.15):

d
/ o8Py 0 om (3.16)
cpn €
For the second term, assume that p € Uy = {[Zo, - , Z,]||Z0| > £1Z;|,j =

1,---,n}. Then by (3.5)
F = t(SZ(C)lftv

0 0
where f; — fo = z?l -+~ zp™ # 0. Thus using integration by parts, we have

d(x,p) vV—1 = ‘EtP ~1
—00log —=——=mw"
/CP" L € ) 27 8 (Zz‘:o |Zz'|2)d

(3.17)
C
<cem i S| [ toglpiavy
€ |z|<2e

)

where dV = (g)”dzl AN dzy A -+ A\ dzZ, is the Euclidean measure and
1212 = |21+ + |20 Rescahng the second term of the above integral, we
have

C

— / log | fi|dVo| = Ce*2loge™t + Ce*2
|2|<2¢

= , (3.18)

/ log | f4]dVa
|z|<2
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where fy(z1,--+ ,zn) = fi(ez1, -+ ,ezp) /et T By (3.5), if ¢ is small
0

~ 0
enough, we have f; — 2,7 ---z,". By a theorem of Phong and Sturm [14],
we have

/ log | fi|~'dVo < C (3.19)
|z|<2

for ¢ small enough. (3.14) follows from (3.15), (3.16), (3.17), (3.18)
and (3.19). O

Lemma 3.6. There exists a constant C > 0 such that for t small
Z/ WL < COJt* log |t
iy VM

Proof. Let ¢ = |t|?. Fixing 14,7, there is a constant C( independent of ¢
such that one can find points p1,--- ,pn, € P;j for m = [62(;:—(14], satisfying

m
kngpk (€) D Py.

Thus by the above lemma, we have

m
/ wnfl S § :/ wnfl.
VENM; k MM Bp, (|t]e+¢€)

ij =1

By Lemma 3.5, we have

C

/ W < me%_Q loge™! = Ce?loge™t.
ViENM; €

The lemma follows since € = |t]7. O

Lemma 3.7. There exists a constant C' independent of t such that for any
measurable subset E of M,

< C+/log |t|~1 - v/meas(E),

/ DEN OO A w2
E

where the functions & and 0 are defined in (2.3) and (2.2), respectively.

Proof. Since M, is a submanifold, the Ricci curvature has an upper bound.
Thus from (2.3), we have a constant C' such that
V1 _

s
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On the other hand, since [t} Zy,--- ,t"Z,] € M, iff [Zy,--- , Z,] € M, we

have
n

IVEP( Zo, - 3 Z) = 2N (Zo, -+ Zn).
=0

Since M is smooth, we have
~Clog|t|™ < |¢| < Clog [t|™!

for some constant C. Using integration by parts, from (3.20), and the above
estimate, we have

[ 1wt <c [ (el gt < Cloglei .
Mt Mt
If ' is a measurable subset of M;, then we have

/8§A50Aw”_2 S/ |0€| < C'log |t|~'y/meas(E)
E E

by the Cauchy inequality. O
Proof of Theorem 1.1. By Proposition 3.1, we have

[ 2 (FrE), e
thUQz A=0 t A

(3.21)
—a= Y [T @) - e+ o)
i=0 70
as t — 0. We are going to prove that
XF; ) 1
F)aw™ = o(1) 3.22
/Mt\ o (wzw @ ( (322)
as t — 0. In order to see this, let’s recall that we have
1 "/ XF,
—85/\89A — / < > (F¥)a
/Mt\ u Qs 2 n—1 Mt\iQOQi (Az:() IVF %) 4

o Nl (F)il? e
-& _IOVFLpt)_‘ +(d - 1)9>w !
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Do Al (F)?

NDE are bounded, we have

by Lemma 2.4. Since 6§ and the function

"/ XF, > S
ot F)a
/Mt\iQOQi Z (’VFt‘Q A( t

A=0
by (2.28). By Lemma 3.7 the righthanded side of the above equation is less
than or equal to

CVTog T fmeas(\ §) @0) -+ meas(4 ) @)

If we can prove that there is a constant C' such that

Wl < / (10g] + e,
Mt\igoQi

n
M\ igO Q; C z‘%‘vi?t' (3.23)

Then (3.22) will follow from Lemma 3.6. To see (3.23), let’s consider a
point p € M\ ‘Qo Q;. Without losing generality, we assume that p € Uy. By
(3.7), we can find a k # 0 such that

| Z| < [t]7]Zo]
for ¢ small enough. By definition, p ¢ Q. Thus there is a j # 0, k such that
1251 < 18171 Zo]

Thus p € Vﬁ;t for some constant C. (3.23) is proved.
Combining (3.21) and (3.22), we have

Y X5 Faw"t=— _" 00435 () — 1dx + o
/Mt/go(WFtP)A(F”A ==00= 32 [ e~ D+ olt)

as t — 0. Finally, since 6 is a bounded function

fuw" = B 4 0(1)
My Mo
0 0
as t — 0, where My is defined as the zero set of Zgo - Zp™ = 0 counting
the multiplicity. In [5, Theorem 5.1], it is proved that

fu" 1 = 9
My n

By (2.35), we have
tM/(t) = % (‘5(” +hd-1) Z/Ooo o) (@) — 1)dx> +o(1)

n ‘
=0

as t — 0 and Theorem 1.1 is proved. O
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4. Further Discussions.

In this section, we study the relations between the K-stability and the Chow-
Mumford stability for algebraic varieties. First, we have the following

Definition 4.1. Using our notations in the first section, then for a hypersur-
face M (not necessarily smooth) of C P™ defined by a polynomial F' in (1.2),
it is Chow-Mumford stable if A\ > 0 for any (A,--- ,\,) with Y_\; = 0,
where X is defined in (1.3). It is Chow-Mumford unstable, if A\ < 0 for any
()\0, e ,)\n) with Z)‘Z =0.

Using Theorem 1.1, we have the following

Proposition 4.1. If M is K-stable, then M is not Chow-Mumford unstable.

Proof. Let (Ao, --,\,) be an arbitrary (n + 1) rational numbers with
>>Ai = 0. Then we can perturb (Ag,---,A,) so that it is “generic”. By
Theorem 1.1 we have

A=D1, Z/OOO () (9(x) — 1)dz < 0.
=0

n

Since the second term above is nonnegative, we have A > 0. This is a
contradiction. (]

A well-known fact about the smooth hypersurface is that it is always
Chow-Mumford stable. So the above proposition gives no new information
about the stability. However, it would be interesting to generalize the notion
of K stability into singular varieties.

In [16], Tian defined the generalized K energy on normal varieties. In
the case of hypersurfaces, we can define the K energy for algebraic cycles of
multiplicity one. The following lemma is interesting:

Lemma 4.1. Let M be a divisor of CP™ defined by a homogeneous polyno-
mial F of multiplicity one'. Then M(t) in (2.34) is well-defined and we call
M(t) the generalized K energy on M.

Remark 4.1. Clearly a normal hypersurface is defined by an irreducible
polynomial. So the above result is a generalization of the result in [16] in
the case of hypersurfaces. But the proof below is essentially the same as in
that paper.

LA polynomial is of multiplicity one, if {F = 0} N {VF = 0} is of codimension
at least 2.
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By Lemma 2.4, Lemma 4.1 follows from the following

Lemma 4.2. Let £ be defined by Lemma 2.1. Then we have

/ 10¢[w™™ < +o0.
M

Proof. Let M; be an irreducible component of M and let 7; : Mi - M; be
a smooth resolution of M;. Then 7} (ef) is an analytic function on M;. Thus
we have
[ im P ) < 4o (@)

We also have

V1 _

—00& > —Cw

2w

for some constant C' on M;. Let sup& = C;. Then we have
1 _
— (V-1906 + Cw) Aw™ 2 > 0.
/Micl—sﬂ“ ¢+ Cw) S
Consequently we have

1
—_0¢)Pw" ! < Fo0. 4.2
fy v 42
Since M has only finitely many components. Using the Cauchy inequality,
we have

n—1\2 1 2, n—1 _ 2, n—1
(/M 98" < /M (Cr =&+ 1)2’85’ “ /M(C1 LW

The lemma thus follows from (4.1) and (4.2). O

By the above lemma, we can define K stability for singular varieties. It
is interesting to compare K stability with Chow-Mumford stability for these
singular varieties. A more interesting and nonlinear problem would be that
whether the K energy is proper and whether the Moser-Trudinger inequality
is true for Fano hypersurfaces. The author strongly believe that they are
true, regardless of the existence of Kéhler-Einstein metrics.

We end up this paper by giving some observations related to the recent
work of Donaldson [4]. We first setup the notations.

Let (M,L) be a polarised Kahler manifold. That is, L is an ample
line bundle over the compact complex manifold M. We have the following
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setting of the metrics: let h be a Hermitian metric on the line bundle L with
positive curvature Ric (h). We use wy, = Ric (h) to be the Kahler metric of
the manifold X. The pair of metrics (h,wy,) induces an L? metric on the
complex vector space HY(M, L™), where m is a large integer. Let Sy, , Sy
be an orthonormal basis of H%(M, L™) under the L? metric. The quantity

d
= Y |ISil?
i=1

plays an important role in complex geometry. In particular, integrating the
quantity 7,,, we get the Riemann-Roch Theorem:

dim H°(M, L™) = / Nmw" = / Td(R)e™,
M M

where R is the curvature tensor of the metric w, and Td(R) is the Todd
polynomial of R.

By the result of Catlin [1] and Zelditch [18] (independently), there is an
asymptotic expansion

d

ai ag
S12 ~ m™ o 2R 4.3
;H il ~m(ag + — o ) (43)
in the sense that
d
2 aj A C(kvlaX)
2 NS = m oo+ 20+ ) LT

where the constant C(k,[l, X) depends on k,l and the manifold M. If for
some m, we can make the quantity 7, a constant, then the manifold M is
Hilbert-Mumford stable [9, 19]. This result was used by Donaldson [3] in his
work to prove the stability of manifolds with constant scalar curvature.

In [6], the author proved that

a0:1

D[

al = 5p
= 380+ H(IRI? - 4|Ricf? + 3p%)

)

S
%)

where R, Ric, p represent the curvature, the Ricci curvature and the scalar
curvature of the Kéhler metric wy. The author also proved in the same paper
that ar (k € Z)is a universal polynomial of the curvature and its derivatives.
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Because of the above results, we can view (4.3) as a kind of local
Riemann-Roch Theorem. It would be very interesting to find the general
formula of ay,.

The first section of the paper [4] hints that there might be relations
between the coefficients {a} and the equivariant cohomology. The following
observation of the author supports such a speculation.

We assume that M is embedded to CPY and L is the restriction of the
hyperplane bundle to M. Let X be a holomorphic vector field on CPY that
is tangent to X. Let 6 be the Hamiltonian function of X. That is,

V-1
U X)w = 78«9,
where w is the Kahler metric of M. Let (z1,--- ,2,) be a local holomorphic
coordinates of M. We define

0
VX :Xlka—zk ®dZ[,

where )
0X
Xf=—+T5,X™
'S s +Lim

The following identity is straightforward
—1_
(X)R=——0VX,
27
where R = Rj‘k;i is the curvature tensor. Then we have the following identi-
ties:
Jar @00dVar = gy [oy Tdo(R + VX) (w + 0)"
Sy @19V =~y [y Tdi(R+ VX)(w +6)"
Jay @20dVa = —ﬁ Joy Tdo(R+ VX)(w+ g)n-1
+21 [y Tdi(R+ VX)Abu"
where Tdy, is the k-th homogeneous polynomial of the Todd invariant func-
tion. These identities can be verified directly. The third identity is compli-
cated so that it should not be a coincident.
By the above observation, we have the following

(4.4)

Proposition 4.2. Using the notations as above, then [, ap0dVy; for k =
0,1,2 are independent of the choice of the Kahler metric in the fixed polar-
ization ¢1(L). They are generalized Futaki invariants.



K Energy and K Stability on Hypersurfaces 629

Proof. We have (0 —¢(X))(w+0) =0 and (0 —«(X))(R+VX) =0. Thus
the integrand a6 is closed under the operator & — +(X). The proposition
follows from this fact. (]

There are several directions realted to this observation. First, it would be
interesting to see that the expansion (4.3) is related to the (generalized) Fu-
taki invariants; second it may be possible to find the general formula of {ay}
in terms of equivariant cohomology; more importantly, in [8], we pointed
out that ar = f is an elliptic equation, where f is a smooth function. In
particular, a1 = const is the equation for finding Ké&hler metrics of constant
scalar curvature. Thus prescribing ax for k > 1 is interesting. We will study
these questions in our subsequent papers.
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