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The Mean Curvature Flow Smoothes Lipschitz

Submanifolds

Mu-Tao Wang

The mean curvature flow is the gradient flow of volume functionals
on the space of submanifolds. We prove a fundamental regular-
ity result of the mean curvature flow in this paper: a Lipschitz
submanifold with small local Lipschitz norm becomes smooth in-
stantly along the mean curvature flow. This generalizes the regu-
larity theorem of Ecker and Huisken for Lipschitz hypersurfaces. In
particular, any submanifold of the Euclidean space with a contin-
uous induced metric can be smoothed out by the mean curvature
flow. The smallness assumption is necessary in the higher codi-
mension case in view of an example of Lawson and Osserman. The
stationary phase of the mean curvature flow corresponds to min-
imal submanifolds. Our result thus generalizes Morrey’s classical
theorem on the smoothness of C1 minimal submanifolds.

1. Introduction.

Let F : Σ → R
N be an isometric immersion of a compact n-dimensional

manifold Σ in the Euclidean space. The mean curvature flow of F is a
family of immersions Ft : Σ → R

N that satisfies

d

dt
Ft(x) = H(x, t) (1.1)

F0 = F

where H(x, t) is the mean curvature vector of Σt ≡ Ft(Σ) at Ft(x). In terms
of local coordinates x1, · · · , xn on Σ, the mean curvature flow is the solution

Ft = FA(x1, · · · , xn, t), A = 1, · · · , N

of the following system of parabolic equations

1The author is partially supported by NSF grant DMS 0306049 and a Sloan
Research Fellowship.
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∂FA

∂t
=

∑
i,j,B

gij PAB
∂2FB

∂xi∂xj
, A = 1, · · · , N

where gij = (gij)−1 is the inverse of the induced metric gij =
∑

A
∂FA

∂xi
∂FA

∂xj .
PAB = δAB − gkl ∂F

A

∂xk
∂FB

∂xl at any point p ∈ Σt is the projection to the normal
space, the orthogonal complement to the tangent space of Σt at p.

By the first variation formula, the mean curvature flow is the gradient
flow of volume functionals on the space of submanifolds. The well-known
formula H = ∆ΣF suggests (1.1) should be viewed as the heat equation of
submanifolds. Here ∆Σ denotes the Laplace operator of the induced metric
gij on Σ.

This paper discusses the smoothing property of the mean curvature flow.
It was proved by Ecker and Huisken in [4] that any complete hypersurface
in R

N satisfying local uniform Lipschitz condition becomes smooth instantly
along the mean curvature flow. In this paper, we proved the following gen-
eralization in the arbitrary codimension case.

Theorem A Let Σ be a compact n-dimensional Lipschitz submanifold of
R
n+m. There exists a positive constant K depending on n and m such that

if Σ satisfies the K local Lipschitz condition, then the mean curvature flow
of Σ has a smooth solution on some time interval (0, T ].

The time T can be estimated in terms of K. The K local Lipschitz
condition will be defined in §5. Under this condition Σ is allowed to have
corners but the corners of Σ cannot be too sharp. This condition should
be necessary in view of an example of Lawson and Osserman. In [5], they
constructed a stable minimal cone in R

7 that is a Lipschitz graph over R
4.

Since minimal submanifolds are stationary phase of the mean curvature
flow, Theorem A indeed generalizes a classical theorem of Morrey [6] which
asserts any C1 minimal submanifold is smooth.

Corollary A Any minimal submanifold satisfying the K local Lipschitz con-
dition is smooth.

We remark that any C1 submanifold satisfies the K local Lipschitz con-
dition.

The strategy of the proof follows that of [4]. We prove an a priori cur-
vature estimates for smooth submanifolds in terms of a controlled Lipschitz
bound. We then approximate Σ by smooth submanifolds and show the
mean curvature flow of the approximating submanifolds converges to that
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of Σ which is now smooth for t > 0. The global version of such estimate in
arbitrary codimension already appeared in [7] and [8]. I would like to thank
Professor R. Schoen who suggested me to localize these estimates.

I am grateful to Professor D. H. Phong and Professor S.-T. Yau for their
constant advice, encouragement and support. I would also like to thank
Professor G. Perelman for interesting remarks and Professor T. Ilmanen for
helpful discussions.

2. Preliminaries.

Let Ft : Σ → R
n+m be the mean curvature flow of a compact n-dimensional

smooth submanifold. We shall assume Σt is locally given as a graph over
some R

n. We choose an orthonormal basis {ai}i=1···n for this R
n and an or-

thonormal basis {aα}α=n+1···n+m for the orthogonal complement R
m. Then

Ω = a∗1 ∧ · · · ∧ a∗n can be viewed as an n form on R
n+m which corresponds

to the volume form of the R
n. Define the function ∗Ω on Σt by

∗Ω =
Ω(∂Ft

∂x1 , · · · ∂Ft
∂xn )√

det gij
.

This function is the Jacobian of the projection from Σt onto R
n and 0 <

∗Ω ≤ 1 whenever Σt can be written as a graph over R
n. At any point p ∈ Σt,

we can choose an oriented orthonormal basis {ei}i=1···n for the tangent space
TpΣt and ∗Ω = Ω(e1, · · · , en). We can also choose an orthonormal basis
{eα}α=n+1···n+m for the normal space NpΣt, then the second fundamental
form A = {hαij} is represented by hαij = 〈∇eiej , eα〉. The convention that
i, j, k denote tangent indices and α, β, γ normal indices are followed.

With these notations we recall the following evolution equations from [7]
and [8].

Lemma 2.1. Let Ω be a parallel n form on R
n+m. Along the mean curva-

ture flow, we have

(
d

dt
− ∆) ∗ Ω = ∗Ω|A|2 (2.1)

− 2
∑
α,β,k

[Ωαβ3···nhα1khβ2k + · · · + Ω1···(n−2)αβhα(n−1)khβnk]



584 Mu-Tao Wang

where Ωαβ3···n = Ω(eα, eβ , e3, · · · , en) and

(
d

dt
− ∆)|A|2 = −2|∇A|2 (2.2)

+ 2
∑

α,γ,i,m

(
∑
k

hαikhγmk − hαmkhγik)2 + 2
∑
i,j,m,k

(
∑
α

hαijhαmk)2

where ∆ is the Laplace operator of the induced metric on Σt.

Proof. We shall compute the first formula in terms of local coordinates. For
a calculation of the first and second formula in moving frames, please see [7].

Let Ft : Σ → R
n+m be a mean curvature flow given by

Ft = (F 1(x1, · · · , xn, t), · · · , FN (x1, · · · , xn, t))
where (x1, · · · , xn) are local coordinates on Σ. In the following calculation,
we shall suppress the time index t.

The induced metric is gij = 〈 ∂F
∂xi ,

∂F
∂xj 〉 = IAB

∂FA

∂xi
∂FB

∂xj .
Let Ω be a parallel n-form on R

n+m. We are interested in the time-
dependent function

∗Ω =
Ω( ∂F

∂x1 , · · · , ∂F∂xn )√
det gij

.

Now

d

dt
∗ Ω =

1√
det gij

d

dt
(Ω(

∂F

∂x1
, · · · , ∂F

∂xn
)) + ∗Ω d

dt

1√
det gij

and

d

dt
(Ω(

∂F

∂x1
, · · · , ∂F

∂xn
)) = Ω(

∂H

∂x1
· · · ∂F

∂xn
) + · · · + Ω(

∂F

∂x1
· · · ∂H

∂xn
).

Recall along any mean curvature flow, we have

d

dt

√
det gij = −|H|2√det gij

After this calculation we no longer need to vary the time variable and
at a given time and a point p we may assume gij = δij and det gij = 1.
Therefore

d

dt
∗ Ω = Ω(

∂H

∂x1
· · · ∂F

∂xn
) + · · · + Ω(

∂F

∂x1
· · · ∂H

∂xn
) + ∗Ω|H|2.
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Now decompose ∂H
∂xi into normal and tangent parts,

∂H

∂xi
= ∇iH + (

∂H

∂xi
)T = ∇iH − 〈H, ∂2F

∂xi∂xj
〉 ∂F
∂xj

where ∇iH is the covariant derivative of H as a normal vector field.
Thus

d

dt
∗ Ω = Ω(∇1H · · · ∂F

∂xn
) + · · ·Ω(

∂F

∂x1
· · · ∇nH). (2.3)

At this point p, we may further assume we have a normal coordinate
system so that ∂

∂xi (gkl) = 0 at p and thus
∑

l gklΓ
l
ij = 〈 ∂2F

∂xk∂xi ,
∂F
∂xj 〉 = 0.

∂2F
∂xk∂xi is in the normal direction representing the second fundamental form
and is denoted by Hki.

Now the induced Laplacian at p is ∆ = gkl ∂
∂xk

∂
∂xl = ∂2

∂xk∂xk . Therefore,

∆ ∗ Ω =
∂2

∂xk∂xk
(Ω(

∂F

∂x1
, · · · , ∂F

∂xn
)) + ∗Ω ∂2

∂xk∂xk
(

1√
det gij

). (2.4)

The first term on the righthand side is

∂

∂xk
(Ω(

∂

∂xk
∂F

∂x1
, · · · , ∂F

∂xn
) + · · · + Ω(

∂F

∂x1
, · · · , ∂

∂xk
∂F

∂xn
))

= Ω(
∂2

∂xk∂xk
∂F

∂x1
, · · · ∂F

∂xn
) + · · · + Ω(

∂F

∂x1
,

∂2

∂xk∂xk
∂F

∂xn
)

+ 2[Ω(Hk1,Hk2,
∂F

∂x3
, · · · , ∂F

∂xn
) + · · ·Ω(

∂F

∂x1
, · · · ,Hk n−1,Hk n)].

Decompose ∂3FA

∂xk∂xk∂xi into tangent and normal parts:

∂3FA

∂xk∂xk∂xi
= (IAB

∂3FA

∂xk∂xk∂xi
∂FB

∂xm
)
∂FA

∂xm
+ (

∂3FA

∂xk∂xk∂xi
)⊥.

Now

(
∂3FA

∂xk∂xk∂xi
)⊥ = [

∂

∂xk
(Γpki

∂F

∂xp
+Hki)]⊥

= (
∂

∂xk
Hki)⊥

= ∇kHki

= ∇iH
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where we use the Codazzi equation ∇kHij = ∇iHkj.
Therefore, the first term on the right hand side of equation of (2.4)

becomes

∗ ΩIAB
∂3FA

∂xk∂xk∂xi
∂FB

∂xi

+ Ω(∇1H,
∂F

∂x2
, · · · , ∂F

∂xn
) + Ω(

∂F

∂x1
, · · · ,∇nH)

+ 2[Ω(Hk1,Hk2,
∂F

∂x3
, · · · , ∂F

∂xn
) + · · ·Ω(

∂F

∂x1
, · · · ,Hk n−1,Hk n)].

The second term on the right hand side of equation (2.4) is

∗Ω ∂2

∂xk∂xk
(

1√
det gij

) = ∗Ω ∂

∂xk
(−1

2
(det gij)−3/2 ∂

∂xk
(det gij))

= ∗Ω ∂

∂xk
[−1

2
(det gij)−3/2(

∂

∂xk
(gij)gji) det gij ]

= −1
2
∗ Ω((

∂2

∂xk∂xk
gij)gji).

In the last equality, we use
√

det gij = 1 at p.
Now

∂2

∂xk∂xk
gij =

∂2

∂xk∂xk
(IAB

∂FA

∂xi
∂FB

∂xj
)

= 2
∂

∂xk
(IAB

∂2FA

∂xk∂xi
∂FB

∂xj
)

= 2(IAB
∂3FA

∂xk∂xk∂xi
+ IAB

∂2FA

∂xk∂xi
∂2FB

∂xk∂xj
)

Therefore the second term in equation (2.4) is

∗Ω ∂2

∂xk∂xk
(

1√
det gij

) = ∗Ω
∑
i,k

[−IAB ∂3FA

∂xk∂xk∂xi
∂FB

∂xi
−IAB ∂2FA

∂xk∂xi
∂2FB

∂xk∂xi
]

We arrive at
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∆ ∗ Ω = − ∗ Ω|A|2

+ Ω(∇1H,
∂F

∂x2
, · · · , ∂F

∂xn
) + Ω(

∂F

∂x1
, · · · ,∇nH)

+ 2[Ω(Hk1,Hk2,
∂F

∂x3
, · · · , ∂F

∂xn
) + · · ·Ω(

∂F

∂x1
, · · · ,Hk n−1,Hk n)].

Combine this with equation (2.3) we obtain the desired formula. �

The proof of Theorem A utilizes the evolution equation of ∗Ω when Ω
is not necessarily parallel. The derivation is the same as the parallel case
except the derivatives of Ω will be involved. The formula for a general
ambient Riemannian manifold is derived in §3 of [9]. Let y1, · · · , yn+m be
the fixed coordinates on R

n+m and Ω =
∑

A1<···<An
ΩA1,···Andy

1 ∧ · · · ∧ dyAn

be a general n form in R
n+m.

Lemma 2.2. Let Ω be a general n-form on R
n+m. At a point p of Σt, we

choose our coordinates so that { ∂F
∂xi } is orthonormal and ∂2F

∂xi∂xj is in the

normal direction. With respect to the orthonormal basis {ei = ∂F
∂xi } we have

(
d

dt
− ∆) ∗ Ω = ∗Ω|A|2 (2.5)

− 2
∑
α,β,k

[Ωαβ3···nhα1khβ2k + · · · + Ω1···(n−2)αβhα(n−1)khβnk]

− ∗(trΣtD
2Ω) − 2

∑
α,k

[(Dek
Ω)α2···nhα1k + · · · + (Dek

Ω)1···n−1,αhαnk]

where

trΣtD
2Ω =

∑
A1<···<An,k

(D2ΩA1,··· ,An)(ek, ek)dy1 ∧ · · · ∧ dyAn

and
Dek

Ω =
∑

A1<···<An

〈DΩA1,··· ,An , ek〉dy1 ∧ · · · ∧ dyAn .

D2ΩA1,··· ,An and DΩA1,··· ,An are just the ordinary Hessian and gradient of
the function ΩA1,··· ,An on R

n+m.

Proof. This follows from the general formula in §3 of [9] by noting that, in
the notation of [9],

(∇M )2(ek, ek)Ω = ∇M
ek
∇M
ek

Ω −∇M
∇M

ek
ek

Ω
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and ∇M
ek
ek = H by our choice of (∇M

ek
ek)T = 0 at the point of calculation.

�

Let u denote the distance function to the reference R
n, then u2 =∑

α〈F, aα〉2. The following two equations will be used in the localization
of estimates.

Lemma 2.3.

(
d

dt
− ∆)|F |2 = −2n (2.6)

(
d

dt
− ∆)u2 = −2

∑
i,α

〈ei, aα〉2 (2.7)

Proof. The equation for |F |2 is derived as the following:

d

dt
|F |2 = 2〈dF

dt
, F 〉 = 2〈∆F,F 〉,

∆|F |2 = 2〈∆F,F 〉 + 2|∇F |2,
and

|∇F |2 =
∑
i

|∇eiF |2 =
∑
i

|ei|2 = n.

The equation for u2 is derived similarly.

d

dt
u2 = 2

∑
α

〈F, aα〉〈dF
dt
, aα〉 = 2

∑
α

〈F, aα〉〈∆F, aα〉

where we used H = ∆ΣF . Now

∆u2 = 2
∑
α

〈∇F, aα〉2 + 2〈F, aα〉〈∆F, aα〉.

The derivation is completed by noting
∑

α〈∇F, aα〉2 =
∑

α

∑
i〈∇eiF, aα〉.

�

Given any submanifold Σ of R
n+m, denote by Nδ(Σ) = {z|d(z,Σ) < δ}

the δ tubular neighborhood of Σ in R
n+m. The following proposition controls

the Hausdorff distance between Σ and Σt along the mean curvature flow.
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Proposition 2.1. Let Σ be a smooth compact submanifold in R
n+m, then

N√
δ2−2nt(Σt) ⊂ Nδ(Σ).

Proof. We claim for y0 ∈ R
n+m if Bδ(y0)∩Σ is empty, so is B√

δ2−2nt(y0)∩Σt.
We may assume y0 is the origin, let

ϕ = |F (x, t)|2 − δ2 + 2nt.

By equation (2.6), ( ddt − ∆)ϕ = 0. ϕ > 0 at t = 0, so by the maximum
principle, we have ϕ > 0 afterwards. �

Set δ =
√

2nt, we obtain

Corollary 2.1. Σt remains in the
√

2nt neighborhood of Σ.

3. Local gradient estimates.

If Σt is locally given as the graph of a vector-valued function f : U ⊂ R
n →

R
m. ∗Ω is in fact the Jacobian of the projection map from Σt to R

n and in
terms of f

∗Ω =
1√

det(I + (df)Tdf)

where (df)T is the adjoint of df . Any lower bound of ∗Ω gives an upper
bound for |df |.

Lemma 3.1. If ∗Ω > 1√
2
, then

(
d

dt
− ∆) ∗ Ω ≥ (2 − 1

(∗Ω)2
)|A|2.

Proof. As in [8], we can rewrite equation (2.1) in terms of the singular values
λi, i = 1 · · · ,min{n,m} of df , for any local defining function of Σt.

(
d

dt
− ∆) ∗ Ω (3.1)

= ∗Ω{
∑
α,l,k

h2
αlk − 2

∑
k,i<j

λiλjhn+i,ikhn+j,jk + 2
∑
k,i<j

λiλjhn+j,ikhn+i,jk]}
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where the index i, j runs from 1 to min{n,m}.
Because ∗Ω− 1√

2
> 0 and ∗Ω = 1√∏n

i=1(1+λ2
i )

, we have
∏n
i=1(1 +λ2

i ) < 2.

Denote δ = 2 −∏n
i=1(1 + λ2

i ) > 0. It is clear that∏
i

(1 + λ2
i ) ≥ 1 +

∑
i

λ2
i

and we derive ∑
i

λ2
i ≤ 1 − δ, and |λiλj| ≤ 1 − δ

As in [8] by completing square we obtain

(
d

dt
− ∆) ∗ Ω ≥ δ|A|2.

�

Following the notation in Theorem 2.1 of [4]. Let y0 be an arbitrary
point in R

n+m. ϕ(y, t) = R2 − |y − y0|2 − 2nt and ϕ+ denotes the positive
part of ϕ.

Lemma 3.2. Let f be a bounded function defined on Σt with f ≥ δ1 > 0
for some δ1 and ( ddt − ∆)f ≥ 0. Let v = 1

f then v satisfies

v(F, t)ϕ+(F, t) ≤ sup
Σ0

vϕ+

Proof. The proof is adapted from Theorem 2.1 in [4]. We may assume y0 is
the origin. Set

η(x, t) = (|F (x, t)|2 −R2 + 2nt)2.

Then by equation (2.6),

(
d

dt
− ∆)η = −2|∇|F |2|2.

Now

(
d

dt
− ∆)v2 = −2f−3(

d

dt
− ∆)f − 6f−4|∇f |2 ≤ −6|∇v|2.

Combine these two equations we obtain
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(
d

dt
− ∆)(v2η) = (

d

dt
− ∆)v2η + (

d

dt
− ∆)ηv2 − 2∇v2 · ∇η

≤ −6|∇v|2η − 2|∇|F |2|2v2 − 2∇v2 · ∇η.

As in [4], observe that

−2∇v2 · ∇η = −6v∇v∇η + η−1∇η∇(v2η) − 4|∇|F |2|2v2.

Therefore,

(
d

dt
− ∆)(v2η) ≤ −6|∇v|2η − 6|∇|F |2|2v2 − 6v∇v · ∇η + η−1∇η · ∇(v2η).

Apply Young’s inequality to the term 6v∇v · ∇η and we have

6v∇v · ∇η ≤ 6|∇v|2η +
3
2
v2η−1(η′)2|∇|F |2|2 = 6|∇v|2η + 6|∇|F |2|2v2.

The estimate follows by replacing η by ϕ+ and applying the maximum
principle. �

4. Local curvature estimates.

The following local comparison lemma generalizes Theorem 3.1 in [4]. It
applies to other heat equations and is interesting in its own right. Let r be
a non-negative function on Σt satisfying

|( d
dt

− ∆)r| ≤ c4

and
|∇r|2 ≤ c5r.

In later application r(x, t) will be |F (x, t) − y0|2 + 2nt or |F (x, t)|2 −
u2(F (x, t)). Both functions satisfy the above assumptions by equations (2.6)
and (2.7).

Lemma 4.1. Let h and f be positive bounded functions on Σt so that
f ≥ δ2 > 0 for some δ2. We assume

(
d

dt
− ∆)h ≤ c1h

3
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and

(
d

dt
− ∆)f ≥ c2fh

2.

Let R > 0 be a constant such that Σt ∩ {r(x, t) ≤ R2} is compact and
0 < θ < 1. If 0 < c1 ≤ c2 then the following estimate holds

sup
r(x,t)≤θR2

h2 ≤ c0(1 − θ)−2(t−1 +R−2) sup
s∈[0,t]

sup
r(x,s)≤R2

1
f4

where c0 is a constant depending only on c1, c3, c4 and c5 .

Remark 4.1. We remark that the condition f ≥ δ2 > 0 is used so that
1/f is well-defined and the condition 0 < c1 ≤ c2 is used so that equation
(4.1)(see below) has a favorable sign.

Proof. First of all, we calculate the evolution equation satisfied by h2:

(
d

dt
− ∆)h2 = 2h(

d

dt
− ∆)h− 2|∇h|2 ≤ 2c1h4 − 2|∇h|2.

Denote v = 1
f , then

(
d

dt
− ∆)v2 = −2f−3(

d

dt
− ∆)f − 6f−4|∇f |2 ≤ −2c2v2h2 − 6|∇v|2.

As in [4], we consider ϕ(v2) for a positive and increasing function ϕ to
be determined later. Thus

(
d

dt
−∆)ϕ = ϕ′(

d

dt
−∆)v2−ϕ′′|∇v2|2 ≤ −2c2ϕ′v2h2−6ϕ′|∇v|2−4ϕ′′v2|∇v|2.

We obtain

(
d

dt
− ∆)(h2ϕ) = (

d

dt
− ∆)h2ϕ+ (

d

dt
− ∆)ϕh2 − 2∇h2 · ∇ϕ

≤ 2(c1ϕ− c2ϕ
′v2)h4 − 2|∇h|2ϕ− (6ϕ′ + 4ϕ′′v2)h2|∇v|2

− 2∇h2 · ∇ϕ.

Now break the term −2∇h2 · ∇ϕ into two equal parts. One of them is

−∇h2 · ∇ϕ = −ϕ−1∇ϕ∇(h2ϕ) + ϕ−1|∇ϕ|2h2,

while the other can be estimated by
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−∇h2 · ∇ϕ = −2h∇h · ∇ϕ ≤ 2|∇h|2ϕ+
1
2
ϕ−1|∇ϕ|2h2.

Since ϕ−1|∇ϕ|2h2 = 4ϕ−1(ϕ′)2v2|∇v|2h2, we arrive at

(
d

dt
− ∆)(h2ϕ) ≤ 2(c1ϕ− c2ϕ

′v2)h4 − ϕ−1∇ϕ · ∇(h2ϕ)

− (6ϕ′(1 − ϕ−1ϕ′v2) + 4ϕ′′v2)h2|∇v|2.

Now using an idea of Caffarelli, Nirenberg and Spruck in [2], we set
ϕ(v2) = v2

1−kv2 where k = 1
2 infs∈[0,t] inf{r(x,s)≤R2} v−2. Then

c1ϕ− c2ϕ
′v2 =

(c1 − c2)v2 − c1kv
4

(1 − kv2)2
≤ −c1kϕ2, (4.1)

6ϕ′(1 − ϕ−1ϕ′v2) + 4ϕ′′v2 =
2k

(1 − kv2)2
ϕ,

and
ϕ−1∇ϕ = 2ϕv−3∇v.

Thus g = h2ϕ satisfies

(
d

dt
− ∆)g ≤ −2c1kg2 − 2k

(1 − kv2)2
|∇v|2g − 2ϕv−3∇v · ∇g.

The rest of the proof is the same as that of Theorem 3.1 in [4]. The term
− 2k

(1−kv2)2 |∇v|2g helps to cancel similar order terms in later calculations. �

Corollary 4.1. Let P be a positive bounded function with P ≥ δ3 > 0. If
P satisfies

(
d

dt
− ∆)P ≥ 5P |A|2

on Σs ∩ {|y − y0| ≤ R2 − 2ns}, s ∈ [0, t], then for any 0 < θ < 1,

sup
Σt∩{|y−y0|2≤θR2−2nt}

|A|2 ≤ c0(1−θ)−2(
1
R2

+
1
t
) sup
s∈[0,t]

sup
Σs∩{|y−y0|2≤R2−2ns}

1
P 4

.
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Proof. We first estimate the higher order terms in equation (2.2):∑
α,γ,i,m

(
∑
k

hαikhγmk − hαmkhγik)2

≤
∑

α,γ,i,m

[2(
∑
k

hαikhγmk)2 + 2(
∑
k

hαmkhγik)2]

≤ 2
∑

α,γ,i,m

(
∑
k

h2
αik)(

∑
k

h2
γmk) + 2

∑
α,γ,i,m

(
∑
k

h2
αmk)(

∑
k

h2
γik)

≤ 4|A|4

and

∑
i,j,m,k

(
∑
α

hαijhαmk)2∑
i,j,m,k

(
∑
α

h2
αij)(

∑
α

h2
αmk)

≤ |A|4.
Therefore we have

(
d

dt
− ∆)|A|2 ≤ 10|A|4 − 2|∇A|2. (4.2)

Since

(
d

dt
− ∆)|A|2 = 2|A|( d

dt
− ∆)|A| − 2|∇|A||2

Schwartz’ inequality gives |∇|A||2 ≤ |∇A|2. Therefore

(
d

dt
− ∆)|A| ≤ 5|A|3

The corollary follows by choosing r = |F (x, t)−y0|2 +2nt in Lemma 4.1.
�

5. Proof of Theorem A.

First we define the local Lipschitz condition:

Definition 5.1. Given any positive K < 1, a compact n-dimensional sub-
manifold Σ of R

n+m is said to satisfy the K local Lipschitz condition if there
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exists a r0 > such that Σ∩Bq(r0) for each q ∈ Σ can be written as the graph
of a vector valued Lipschitz function fq over an n-dimensional affine space
Lq through q with 1√

det(I+(dfq)T dfq)
> K.

We are ready to prove Theorem A.

Proof of Theorem A. First we assume Σ is a smooth compact submanifold
that satisfies the K local Lipschitz condition for K to be determined in
the proof. Denote the volume form of Lq by ΩLq , the assumption implies
∗ΩLq > K on Σ∩Bq(r0). The idea is to construct an n-form Ω by “averaging”
ΩLq so that ∗Ω gives the desired positive function in Corollary 4.1.

Choose a subset {qν}ν∈Λ ⊂ Σ such that {Bqν ( r05 )}ν∈Λ are maximally
pairwise disjoint and ∪q∈ΣBq( r05 ) ⊂ ∪ν∈ΛBqν (r0). We can arrange that for
each q ∈ Σ, there exists a qν with Bq( r05 ) ⊂ Bqν (4r0

5 ).
It is clear that

N r0
5

(Σ) ⊂ ∪q∈ΣBq(
r0
5

).

Set t0 = r20
50n , by Corollary 2.1 we have

Σt ⊂ N r0
5

(Σ) for t ∈ [0, t0]. (5.1)

Let Ων be the volume form of the affine space Lqν and ϕν be a cut-off
function such that 0 < ϕν < 1 on Bqν (r0), ϕν = 1 on Bqν (4r0

5 ) and ϕν = 0
outside Bqν (r0). Therefore |Dϕν | ≤ c6

r0
and |D2ϕν | ≤ c7

r20
. Take pµ = ϕµ∑

ν∈Λ ϕν

to be the partition of unity of ∪ν∈ΛBqν (r0). We claim

Lemma 5.1. For any µ ∈ Λ and y ∈ N r0
5

(Σ), we have |Dpµ|(y) ≤ c8
r0

and

|D2pµ|(y) ≤ c9
r20

where c8 and c9 depend on n and m.

Proof. Given any y ∈ N r0
5

(Σ), there is a q ∈ Σ and qν so that y ∈ Bq( r05 ) ⊂
Bqν (4r0

5 ). Therefore ϕν(y) = 1 for this ν and thus
∑

ν∈Λ ϕν(y) > 1 for any
y ∈ N r0

5
(Σ). On the other hand, the number of ϕν such that ϕν(y) > 0 for

any y is bounded by a constant depending on n+m.
The lemma follows by estimating

Dpµ =
Dϕµ∑
ν ϕν

− ϕµD(
∑

ν ϕν)
(
∑

ν ϕν)2

and
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D2pµ =
D2ϕµ∑
ν ϕν

− 2
(Dϕµ)D(

∑
ν ϕν)

(
∑

ν ϕν)2
− ϕµD

2(
∑

ν ϕν)
(
∑

ν ϕν)2
+ 2

ϕµ|D(
∑

ν ϕν)|2
(
∑

ν ϕν)3
.

�

Now define
Ω =

∑
ν∈Λ

pνΩν , (5.2)

Ω is an n-form on R
n+m supported in ∪ν∈ΛBqν (r0).

We notice that DΩ =
∑

ν(Dpν)Ων and D2Ω =
∑

ν(D
2pν)Ων , therefore

by Lemma 2.2, we derive

(
d

dt
− ∆) ∗ Ω ≥ ∗Ω|A|2 (5.3)

− 2
∑
α,β,k

[Ωαβ3···nhα1khβ2k + · · · + Ω1···(n−2)αβhα(n−1)khβnk]

− c10 − c11|A|

where c10 and c11 are constants depending on n,m, and r0.
Initially ∗Ων > K whenever pν > 0 and

∑
pν>0 pν = 1, so we have

∗Ω =
∑

ν pν ∗ Ων > K on Σ. Because each Ων , as a vector in ∧n(Rn+m)∗,
has L2 norm |Ων |2 = 1, we have |Ω|2 ≤ 1 as Ω is a convex combination of
L2 unit vectors.

Let K0 < K be a positive constant to be determined and by assumption
∗Ω > K > K0 on Σ. For any positive constant ε < K − K0 (for example
ε = K−K0

2 ), set c12 = c10 + 1
4εc

2
11. We claim

∗Ω + c12t > K (5.4)

on Σt for t ∈ [0, t1] where

t1 = min{K −K0 − ε

c12
, t0}.

This is proved by the maximum principle. Suppose inequality (5.4) is vi-
olated at some t2 < t1 for the first time. Then ∗Ω + c12t ≥ K on [0, t2]
and thus ∗Ω ≥ K0 + ε on [0, t2]. This implies Ωαβ3···n ≤

√
1 −K2

0 since
e1 ∧ · · · ∧ en is orthogonal to eα ∧ eβ ∧ e3 ∧ · · · ∧ en and |Ω|2 ≤ 1. This
estimate holds for other similar terms inside the bracket on the right hand
side of inequality (5.3) . It follows that
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(
d

dt
− ∆) ∗ Ω ≥

(
∗Ω − c13

√
1 −K2

0

)
|A|2 − c10 − c11|A| on [0, t2].

where c13 is a combinatorial constant depending on n and m.
Now we choose K0 close to 1 so that K0 − c13

√
1 −K2

0 = c14 > 0. Again
c14 depends on n and m. Using the inequality c11|A| ≤ 1

4εc
2
11 + ε|A|2, we

obtain

(
d

dt
− ∆) ∗ Ω ≥

(
∗Ω − c13

√
1 −K2

0 − ε

)
|A|2 − c10 − 1

4ε
c211

or
(
d

dt
− ∆)(∗Ω + c12t) ≥ (∗Ω − c13

√
1 −K2

0 − ε)|A|2. (5.5)

Because ∗Ω > K0 + ε, it is easy to see ∗Ω − c13
√

1 −K2
0 − ε > K0 −

c13
√

1 −K2
0 = c14. By the maximum principle ∗Ω + c12t is increasing in

[0, t1].
Next we claim we can choose K close to 1 to produce the desired positive

bounded function in Corollary 4.1. Indeed, write equation (5.5) as

(
d

dt
− ∆)[∗Ω + c12t−K] ≥ ∗Ω − c13

√
1 −K2

0 − ε

∗Ω + c12t−K
[∗Ω + c12t−K]|A|2

and recall this holds for t ∈ [0, t1]. We claim if K is close to 1, there exists
a T ≤ t1 such that

min
0≤t≤T

min
1≥x>K−c12t

x− c13
√

1 −K2
0 − ε

x+ c12t−K
> 5.

First of all, under 1 ≥ x > K − c12t, we have

x− c13
√

1 −K2
0 − ε

x+ c12t−K
>
K − c12t− c13

√
1 −K2

0 − ε

1 + c12t−K

When t = 0 this is
K − c13

√
1 −K2

0 − ε

1 −K
.

Since K > K0 + ε, the last expression is greater than

K0 − c13
√

1 −K2
0

1 −K
=

c14
1 −K

.
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Now we can choose K close to 1 so that this is greater than 5. The
dependence of the constants are as the following: c13 is a combinatorial
constant depending on n and m, we determine K0 and c14 from

K0 − c13

√
1 −K2

0 = c14

and then K is determined by

c14
1 −K

> 5.

Therefore K depends only on n and m. The time T is determined by

(K − c12t− c13
√

1 −K2
0 − ε)

1 + c12t−K
> 0

for t ∈ [0, T ] and T ≤ t1 = min{K−K0−ε
c12

, t0}.
We then approximate a Lipschitz submanifold that satisfies the K local

Lipschitz condition by smooth submanifolds with the same bound on ∗Ω. By
Corollary 4.1, we have the uniform bound of |A|2 and all higher derivatives
bound for |A|2 can be obtained as in [4]. Therefore the approximating mean
curvature flows converge to a mean curvature flow that is smooth for t ∈
(0, T ] and the theorem is proved. �

In the codimension one case, equation (4.2) becomes

(
d

dt
− ∆)|A|2 ≤ 2|A|4 − 2|∇A|2.

Now Corollary 4.1 still holds under the weaker assumption

(
d

dt
− ∆)P ≥ P |A|2.

On the other hand, in this case equation (5.3) becomes

(
d

dt
− ∆) ∗ Ω ≥ ∗Ω|A|2 − c10 − c11|A|,

so we can use ∗Ω in Corollary 4.1 to give Ecker-Huisken’s local curvature
estimate in [4].

We remark the theorem is also true when the ambient space is replaced
by a complete Riemannian manifolds with bounded geometry. The ambient
curvature only results in lower order terms in the evolution equation and the
proof works if we shrink the time interval a little bit.



The Mean Curvature Flow Smoothes Lipschitz Submanifolds 599

References.

[1] S. Angenent, Parabolic equations for curves on surfaces. II. Intersections,
blow-up and generalized solutions. Ann. of Math. (2) 133 (1991).

[2] L. Caffarelli, L. Nirenberg and J. Spruck, On a form of Bernstein’s
theorem. Analyse mathmatique et applications, 55–66, Gauthier-Villars,
Montrouge, 1988.

[3] K. Ecker and G. Huisken, Mean curvature evolution of entire graphs.
Ann. of Math. (2) 130 (1989), no. 3, 453–471.

[4] K. Ecker and G. Huisken, Interior estimates for hypersurfaces moving by
mean curvature. Invent. Math. 105 (1991), no. 3, 547–569.

[5] Lawson, H. B., Jr. and Osserman, R. Non-existence, non-uniqueness and
irregularity of solutions to the minimal surface system. Acta Math. 139
(1977), no. 1-2, 1–17.

[6] C. B. Morrey, Multiple integrals in the calculus of variations. Springer-
Verlag, New York, 1966.

[7] M.-T. Wang, Mean curvature flow of surfaces in Einstein four-manifolds.
J. Differential Geom. 57 (2001), no. 2, 301-338.

[8] M.-T. Wang, Long-time existence and convergence of graphic mean cur-
vature flow in arbitrary codimension. Invent. Math. 148 (2002) 3, 525-
543.

[9] M.-T. Wang, Subsets of grassmannians preserved by mean curvature flow.
preprint, 2002.

Received August 2003.


