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The Mean Curvature Flow Smoothes Lipschitz
Submanifolds

Mu-Tao WANG

The mean curvature flow is the gradient flow of volume functionals
on the space of submanifolds. We prove a fundamental regular-
ity result of the mean curvature flow in this paper: a Lipschitz
submanifold with small local Lipschitz norm becomes smooth in-
stantly along the mean curvature flow. This generalizes the regu-
larity theorem of Ecker and Huisken for Lipschitz hypersurfaces. In
particular, any submanifold of the Euclidean space with a contin-
uous induced metric can be smoothed out by the mean curvature
flow. The smallness assumption is necessary in the higher codi-
mension case in view of an example of Lawson and Osserman. The
stationary phase of the mean curvature flow corresponds to min-
imal submanifolds. Our result thus generalizes Morrey’s classical
theorem on the smoothness of C'! minimal submanifolds.

1. Introduction.

Let F : ¥ — RY be an isometric immersion of a compact n-dimensional
manifold ¥ in the Euclidean space. The mean curvature flow of F' is a
family of immersions F; : ¥ — RY that satisfies
d
L Fyw) = H(x,1) (L1)
dt
FhW=F

where H(x,t) is the mean curvature vector of ¥; = F(X) at Fy(z). In terms

of local coordinates z!,--- , 2" on ¥, the mean curvature flow is the solution

Fy,=FAgt, o 2™ t), A=1,--- N

of the following system of parabolic equations

!The author is partially supported by NSF grant DMS 0306049 and a Sloan
Research Fellowship.
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where g = (g;;)! is the inverse of the induced metric g;; = > 4 %%.

Pjsf‘ = 5§ — gM %I;,? % at any point p € 3; is the projection to the normal

space, the orthogonal complement to the tangent space of ¥; at p.

By the first variation formula, the mean curvature flow is the gradient
flow of volume functionals on the space of submanifolds. The well-known
formula H = AxF suggests (1.1) should be viewed as the heat equation of
submanifolds. Here Ay. denotes the Laplace operator of the induced metric
gij on >

This paper discusses the smoothing property of the mean curvature flow.
It was proved by Ecker and Huisken in [4] that any complete hypersurface
in RY satisfying local uniform Lipschitz condition becomes smooth instantly
along the mean curvature flow. In this paper, we proved the following gen-

eralization in the arbitrary codimension case.

Theorem A Let ¥ be a compact n-dimensional Lipschitz submanifold of
R™™ . There exists a positive constant K depending on n and m such that
if X satisfies the K local Lipschitz condition, then the mean curvature flow
of ¥ has a smooth solution on some time interval (0,T].

The time T can be estimated in terms of K. The K local Lipschitz
condition will be defined in §5. Under this condition X is allowed to have
corners but the corners of ¥ cannot be too sharp. This condition should
be necessary in view of an example of Lawson and Osserman. In [5], they
constructed a stable minimal cone in R” that is a Lipschitz graph over R%.

Since minimal submanifolds are stationary phase of the mean curvature
flow, Theorem A indeed generalizes a classical theorem of Morrey [6] which
asserts any C'! minimal submanifold is smooth.

Corollary A Any minimal submanifold satisfying the K local Lipschitz con-
dition is smooth.

We remark that any C! submanifold satisfies the K local Lipschitz con-
dition.

The strategy of the proof follows that of [4]. We prove an a priori cur-
vature estimates for smooth submanifolds in terms of a controlled Lipschitz
bound. We then approximate ¥ by smooth submanifolds and show the
mean curvature flow of the approximating submanifolds converges to that
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of 3 which is now smooth for ¢ > 0. The global version of such estimate in
arbitrary codimension already appeared in [7] and [8]. I would like to thank
Professor R. Schoen who suggested me to localize these estimates.

I am grateful to Professor D. H. Phong and Professor S.-T. Yau for their
constant advice, encouragement and support. I would also like to thank
Professor G. Perelman for interesting remarks and Professor T. Ilmanen for
helpful discussions.

2. Preliminaries.

Let F} : ¥ — R™™™ be the mean curvature flow of a compact n-dimensional
smooth submanifold. We shall assume ¥; is locally given as a graph over
some R™. We choose an orthonormal basis {a;};=1..., for this R" and an or-
thonormal basis {aqa }a=n+1.-nt+m for the orthogonal complement R™. Then
Q =aj A--- Aa) can be viewed as an n form on R™"" which corresponds
to the volume form of the R™. Define the function %2 on ¥; by

UGet - Gk)

\/det 9ij

This function is the Jacobian of the projection from 3; onto R™ and 0 <
*{) < 1 whenever ¥; can be written as a graph over R". At any point p € Y,
we can choose an oriented orthonormal basis {e;};=1..., for the tangent space
Tp,YX: and *Q = Q(eq,--- ,e,). We can also choose an orthonormal basis
{€ea}a=n+1.-n+m for the normal space N,3;, then the second fundamental
form A = {hqi;} is represented by haij = (Ve,€j,€q). The convention that
1, 7, k denote tangent indices and «, 3,y normal indices are followed.

%) =

With these notations we recall the following evolution equations from [7]
and [8].

Lemma 2.1. Let Q be a parallel n form on R"™™ . Along the mean curva-
ture flow, we have

(% —A) xQ = x0|A]? (2.1)
—2 Z [Qa,@3~~~nhalkh,82k ot Ql---(n72)aﬁha(nf1)kh,@nk]
o8,k
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where Qag3... = Q(eq,€8,€3, -+ ,€n) and
d 2 2
(5 = A)AP = -2V 4 (2.2)
+ 22 (Z haikh'ymk - hamkh'yik)Q + 22 (Z haijhozmk)2
a,'y,i,m k ivjvmvk a

where A is the Laplace operator of the induced metric on ;.

Proof. We shall compute the first formula in terms of local coordinates. For
a calculation of the first and second formula in moving frames, please see [7].
Let F; : ¥ — R™™ be a mean curvature flow given by

Ft e (Fl(x:L’ ’xn’t)’... ’FN(xl’ ’xn7t))

where (x1,--- ,2™) are local coordinates on . In the following calculation,
we shall suppress the time index ¢.
OF OF oFA 9FB

The induced metric is g;; = (57, 5,7) = 1AB S+ 5.7 -
Let Q be a parallel n-form on R*™™., We are interested in the time-
dependent function

Je) Je)
R IC e
w/detgij
Now
d 1 d oF oF d 1
0= o= ... 2= 0n—-_ -
dt " ,/detgijdt( (&cl’ ’8x"))+* dt \/det g;;
and
d oF oF oH oF oF OH
dt( (6:1:1’ ’3:1:”)) (8:51 8x”)+ + (8:51 3:1:”)

Recall along any mean curvature flow, we have

d
E\/detgzj = —|H|2\/detgl-j

After this calculation we no longer need to vary the time variable and
at a given time and a point p we may assume g;; = d;; and det g;; = 1.
Therefore

d oH OF oF oH
_*Q_Q(_.. ++Q($%)

L= QIH|?.
dt ozt 3:1:") +0|H]
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Now decompose gg into normal and tangent parts,
OH OH O*F  OF
- =V,;H N =V,H— (H, ————)=—
ox? + (6:1:’) < ortoxI ) o’
where V,;H is the covariant derivative of H as a normal vector field.
Thus
d oF oF
—%xQ=Q(V{H - —)+ - Q(=—---V,H). 2.3
dt* (V1 6:1:")+ (8901 ) (2:3)

At this point p, we may further assume we have a normal coordinate
. 2 .

sysgtem so that %(le) = 0 at p and thus ), glelij = <a:?kgx“%> = 0.
&?k gxi is in the normal direction representing the second fundamental form
and is denoted by Hp;.

Now the induced Laplacian at p is A = g*

o 0 92
Dok Dl = Dok oLk Therefore,

0?2 oF oF 0? 1
A Q = Q —_ e e _ Q A 2'4
i 3$k3xk( (8:161’ ’ 8:5”)) T Oxkozk ( y/det gz‘j) 24)

The first term on the righthand side is

0 0 OF oF oF 0 OF
836"7( (8:5"7 oxl’ ’8x”)+ + (6:1:1’ ’3:1:’“8:5”))
Oxkoxk 0z’ Oxm Oxl’ Oxkoxk Ox™

OF OF oF
+ 2[Q(Hk‘17Hk27 @7' o 7%) + - Q(@u e 7Hkn—17Hk‘n)]'

Decompose % into tangent and normal parts:
Pra 1 PrA 8FB)8FA o PrA )
OxkozFort N AP 9rkorkoxi oxm 9am T \OxkOrkdxi’
Now
»PrA 0, OF n
Grrarror) = lgur Thiggy + i)
0
= (WHki)l
= Vi Hg;

=V;H
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where we use the Codazzi equation Vi H;; = V;Hy;.
Therefore, the first term on the right hand side of equation of (2.4)
becomes

ey PFA  OFB
AB 5k ork ozt o
oF oF oF
+Q(V1H,W,~' ,W)‘FQ(@,"‘ ,VnH)
oF oF oF
+ 2[Q(Hk‘17Hk‘27 %7 Ty %) + - Q(@u e 7Hk‘n—17Hk‘n)]'

The second term on the right hand side of equation (2.4) is

0?2 1 B o 1 iy 9
oo aergs) ok (Tgldeton) T gpr detai))
0 1 - 9 y
— *QW[—Q(detgij) 3/2(@(91,],)9] ) det gi;]
_ 1 0?

- _Z I W [}

In the last equality, we use /det g;; = 1 at p.
Now

H? o 9?2 ( aFAﬁFB)
02k 0zk 99 T 9k ok VAP ot 9a
0 O?FA QFB
8&0"7( AB Sk drt O )
aSFA aQFA 32FB
I . . .
AB 5k ok o +14B Ok Oxt 8:1:’“8:1:3)

:2(

Therefore the second term in equation (2.4) is

0? 1 3 ) P*F4 9’FP
#() k k( ):*QZ[_IAB & k - - _IABTT
0z"0z" " | /det g;; — Ox®0x*0x" Ox* Ox®0xt Ox*0x*

We arrive at
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A*Q:—*Q\AP

OF OF OF
+ (vl P Ox2’ ’8$n)+ (83?1’ 7v )
OF OF OF
UV Hiy. Hroo —— oo Ve Qoo Hao 1 Ho ).
[ ( k1, k27ax37 ’ax”)+ (8561’ s Mkn—1, kn)]
Combine this with equation (2.3) we obtain the desired formula. O

The proof of Theorem A utilizes the evolution equation of *{2 when (2
is not necessarily parallel. The derivation is the same as the parallel case
except the derivatives of ) will be involved. The formula for a general
ambient Riemannian manifold is derived in §3 of [9]. Let y',--- ,4™™™ be
the fixed coordinates on R"*™ and Q@ =37, _ 4 Qaya, dyt A+ N dyn
be a general n form in R**™,

Lemma 2.2. Let Q be a general n-form on R"t™. At a point p of X, we

choose our coordinates so that { o I\ is orthonormal and 5 Za - Is in the
normal direction. With respect to the orthonormal basis {e; = x’} we have
d
(E —A)x Q= xQ|AJ (2.5)
-2 Z [QaﬁS---nhalkhﬂQk ++ Ql---(n—2)a,@ho¢(n—1)khﬁnk]
a7ﬂ7k
- *(tTZtDQ -2 Z a2 ‘n alk + - (DekQ)l~~~n—l,ahomk]
where
try, D*Q = Z (D*Qa, .. a,)(er, er)dy A - A dy™n

A << An k

and
De, Q=Y (DQa, . a,ex)dy’ Ao Adyn
A1<<Apn

D?Qy, ... a, and DQy, ... a, are just the ordinary Hessian and gradient of
the function Qy, ... a, on R"™.

Proof. This follows from the general formula in §3 of [9] by noting that, in
the notation of [9],

(VM2 (ex,en)2 = VIV Q - vaekQ
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and Ve, = H by our choice of (Vé‘fek)T = 0 at the point of calculation.
O

Let u denote the distance function to the reference R™, then u? =
S (F,aa)% The following two equations will be used in the localization
of estimates.

Lemma 2.3.

(% —A)|F?=—-2n (2.6)

d
(5 —A)* = —22 €irao)? (2.7)

Proof. The equation for |F'|? is derived as the following:

d dF
—|F]? =2(—,F)=2(AF,F
7 | <dt ) = 2(AF F),

A|F|? = 2(AF,F) + 2|VF|?,

VF[? = ZIVeZFI2 Zlezl2

The equation for u? is derived similarly.

and

d , dF
=2 Za:<F, Ga){— ta) =2 Za:<F, ao)(AF, ay)
where we used H = Axl'. Now

Au? =2 Z(VF, ao)? 4 2(F, ao ) (AF, ay).

The derivation is completed by noting > (VF,aq)? =3, > (Ve F, aq).
O

Given any submanifold 3 of R denote by Ns(X) = {z]d(z,3) < ¢}
the ¢ tubular neighborhood of ¥ in R®»*™. The following proposition controls
the Hausdorff distance between X and ¥; along the mean curvature flow.
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Proposition 2.1. Let ¥ be a smooth compact submanifold in R**™, then

N, s=571(E¢) C Ns(2).

Proof. We claim for yo € R™""™ if Bs(yo) "X is empty, 50 is B /55— (y0) NE¢.
We may assume yq is the origin, let
© = |F(x,t)]* — 6% + 2nt.
By equation (2.6), (% —A)p=0. ¢ >0at t=0, so by the maximum

principle, we have ¢ > 0 afterwards. O

Set & = v/2nt, we obtain

Corollary 2.1. ¥; remains in the v/2nt neighborhood of ¥..
3. Local gradient estimates.

If 3 is locally given as the graph of a vector-valued function f: U C R” —
R™. %€} is in fact the Jacobian of the projection map from 3; to R™ and in
terms of f

*() = !
 det(I + (df)Tdf)

where (df)T is the adjoint of df. Any lower bound of *{ gives an upper
bound for |df|.

Lemma 3.1. If xQ) > %, then

d 1

A

Proof. As in [8], we can rewrite equation (2.1) in terms of the singular values
Xiyi=1-+- min{n,m} of df, for any local defining function of ¥;.

d

— —A)*xQ 3.1
(5 —A)* (3.1)
=D hor =2 ) Aidhniakhnggn +2 ) Nidjhngjikhni ]}

a,lk k,i<j k,i<j
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where the index 7, j runs from 1 to min{n,m}.

1 R n 2
Because %) — %> 0 and % = — o we have [[}"(1+ ;) < 2.

Denote § = 2 — [[i;(1 4+ A?) > 0. It is clear that

[Ta+x) =1+ ¥

K3 3

and we derive

D AT<1-6, and [N <16
i
As in [8] by completing square we obtain

d
— —A)xQ > 5|42
(5= 8) Q254

g

Following the notation in Theorem 2.1 of [4]. Let yo be an arbitrary
point in R™*™. o(y,t) = R — |y — yo|®> — 2nt and ¢, denotes the positive
part of ¢.

Lemma 3.2. Let f be a bounded function defined on ¥; with f > 61 > 0
for some ¢; and (% —A)f>0. Let v = % then v satisfies

v(F,t)p4 (F,t) < supuvpy
o
Proof. The proof is adapted from Theorem 2.1 in [4]. We may assume yg is
the origin. Set

Then by equation (2.6),

d
LAy = —2V|FP
(5 — A IVIF]
Now
d 9 _3,d —4 2 2
(5 =AW = =2f7 (o = A)f = 6f|VFI" < —6]Vo[".

Combine these two equations we obtain
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d 2 _ i o 2 i o 2 2

< —6|Vol*n — 2|V|F)?|2v* — 2Vv? - V1.
As in [4], observe that

—2Ve? - Vi = —60VuVn + 17 ViV (v%n) — 4|V |F|? 202,
Therefore,

d
(o = D)(*n) < =6|Vul*n = 6|V FI*[*v* — 6uVv - Vi + 0~ V- V(v™n).

Apply Young’s inequality to the term 6vVwv - Vi and we have
3
6vVv -V < 6|Vol*n + §v2n*1(n’)2\V]F]2]2 = 6|Vv|?n + 6|V|F|?|*v2.

The estimate follows by replacing 1 by ¢4 and applying the maximum
principle. U

4. Local curvature estimates.
The following local comparison lemma generalizes Theorem 3.1 in [4]. It

applies to other heat equations and is interesting in its own right. Let r be
a non-negative function on ¥; satisfying

(5= Ayl < e
and
|Vr|? < csr.

In later application r(x,t) will be |F(x,t) — yo|*> + 2nt or |F(z,t)* —
u?(F(z,t)). Both functions satisfy the above assumptions by equations (2.6)
and (2.7).

Lemma 4.1. Let h and f be positive bounded functions on ¥; so that
f = 62 > 0 for some 6. We assume
d

— — AV < ¢ h?
(7 —Ah=a
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and J
LAV > eofh?
(dt )f > caf b

Let R > 0 be a constant such that ¥; N {r(z,t) < R?} is compact and
0<6<1. If0 < c; <co then the following estimate holds

sup h*<co(1—-0)2(t '+ R?) sup sup —
r(x,t)<OR2 s€[0,t] r(z,s) f

where cq is a constant depending only on c1, c3, ¢4 and cs .

Remark 4.1. We remark that the condition f > 6o > 0 is used so that
1/f is well-defined and the condition 0 < ¢; < ¢y is used so that equation
(4.1)(see below) has a favorable sign.

Proof. First of all, we calculate the evolution equation satisfied by h?:

d d
(5~ A)h? = 2h(— = A)h — 2|Vh|? < 2¢,h% — 2|VR|?.

Denote v = %, then

(% AW = —2f (_ — A)f = 6f AV FI? < —2c20%h2 — 6]Vu|?.

As in [4], we consider p(v?) for a positive and increasing function ¢ to
be determined later. Thus

d d
(dt A)p = (d——A) — | V2?2 < =200 h2 — 6 |Vu|* — 49" v? | Vo).

We obtain

(i—A)(fﬂ ) = (i — AW (i — A)ph? —2Vh? -V

dt dt dt
<2(c1p — e v?)ht = 2|Vh|*p — (6" + 49" %) h?|V?
—2Vh? . V.

Now break the term —2Vh? - Vg into two equal parts. One of them is

—Vh? - Vo = —p7 VeV (h*p) + ¢~ Vel *h?,
while the other can be estimated by
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—Vh? .V = —2hVh -V < 2|Vh|*p + %@‘HV@\Q}LQ.

Since p~1|Vo|?h? = 4071 (¢)20?|Vo|?h2, we arrive at
(5~ D)%) < 2 — g — o7V V(i)
— (6¢/(1 — 7' ¢'v%) + 49" 0?) | Vo],

Now using an idea of Caffarelli, Nirenberg and Spruck in [2], we set
2 . . —
o(v?) = Tz Where k = %mee[O,ﬂ inf (@) <Rr2} U 2. Then

c1 — e)v? — erkvt
c1p — cap'v? = g (12_) kv2)21 < —erke?, (4.1)
2k
6 1— -1 7.2 4 1/ 2
@' (1= ¢'v?) + 4" = A RE?

and
-1 _ -3
0 Vo =2pv °Vu.

Thus g = h?¢p satisfies

2k
5 |Vo|?g — 2003V - Vg.

d
_- _ < =
( A)g < —2c1kg? A= ko?)

dt

The rest of the proof is the same as that of Theorem 3.1 in [4]. The term
—%|V@|29 helps to cancel similar order terms in later calculations. [J

Corollary 4.1. Let P be a positive bounded function with P > d3 > 0. If
P satisfies

d
— — A)P >5P|A]?
(dt )P > 5P|A|

on Xs N {|y — yo| < R? — 2ns}, s € [0,t], then for any 0 < 6 < 1,

1
sup JA]? < co(1-60)"%(—= 5+ ) sup sup .
Sin{|ly—yo|2<OR2—2nt} R s€[0,t] Zsn{|ly—yo|2<R2—2ns} P
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Proof. We first estimate the higher order terms in equation (2.2):

Z (Z haik:h'ymk - hamkh'yik)2

ay,i,m  k

< Z Z haikh'ymk 2 + 2 Z hamkh'yik)Q]

a,y,t,m

<2 Z Zhonk Zh'ymk +2 Z Zhamk Z 'Ylk)
a,v,i,m  k ayyim  k k

< 4/A[*

and

Z (Z haij hamk:)2

i,j,mk @
2 QP QO W)
i7j7m ko«

<A
Therefore we have

d
(5~ A)|AP? < 10/A1* — 2|V A2 (4.2)

Since

d d
— — A)AP? = 2|A|(— — A)|A] — 2|V |A4]?
(5 = A)APR = 214](5 — A)A] - 2V]4]

Schwartz’ inequality gives |V|A||? < |VAJ2. Therefore

d
— — A)JA| < 5|A]P
(5= M)Al <514

The corollary follows by choosing r = |F(x,t) —yo|? +2nt in Lemma 4.1.
(]

5. Proof of Theorem A.

First we define the local Lipschitz condition:

Definition 5.1. Given any positive K < 1, a compact n-dimensional sub-
manifold ¥ of R"*™ is said to satisfy the K local Lipschitz condition if there
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exists a ro > such that ¥ N By(rg) for each ¢ € ¥ can be written as the graph
of a vector valued Lipschitz function f, over an n-dimensional affine space
L4 through q with

1
> K
V/det(I+(dfq)Tdfq)
We are ready to prove Theorem A.

Proof of Theorem A. First we assume Y is a smooth compact submanifold
that satisfies the K local Lipschitz condition for K to be determined in
the proof. Denote the volume form of L, by €, the assumption implies
*Qp, > K on ¥NBy(ro). Theidea is to construct an n-form by “averaging”
Qp, so that xQ gives the desired positive function in Corollary 4.1.

Choose a subset {g,},en C X such that {Bg, (%)} er are maximally
pairwise disjoint and UgexBy(%2) C UyeaBy, (r0). We can arrange that for
each ¢ € X, there exists a g, with B, (%) C qu(%).

It is clear that

To
N%o (E) - ququ(g).

2
L)

Set 19 = g3, by Corollary 2.1 we have

¥ € Nea (%) for ¢ € [0, k). (5.1)

Let €2, be the volume form of the affine space L,, and ¢, be a cut-off

function such that 0 < ¢, < 1 on By, (r9), ¥, =1 on qu(%) and ¢, =0
outside By, (ro). Therefore |[Dyp, | < £ and |D*p,| < . Take p, = 5 wiso
0 ve v

to be the partition of unity of U,ca By, (19). We claim

Lemma 5.1. For any € A and y € N%O(E), we have |Dp,|(y) < & and

)
1D?pul(y) < i—% where cg and cg depend on n and m.

Proof. Given any y € N%o (%), there is a ¢ € ¥ and ¢, so that y € By(%) C
By, (22). Therefore ¢, (y) = 1 for this v and thus 3,5 ¢, (y) > 1 for any
y € N%O(E). On the other hand, the number of ¢, such that ¢, (y) > 0 for
any y is bounded by a constant depending on n + m.

The lemma follows by estimating

Dy, 0uD(, 00)

Don =S o T T )

and
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o D’y (D)D) euD (X, 00) | eul D, e0))?
= T (T, o) oo T e
]

Now define

0= ZPVQV7 (52)

veEA

Q is an n-form on R™™™ supported in U,ep By, (10)-
We notice that D2 = " (Dp,)Q, and D?Q = Y (D?p, )N, therefore
by Lemma 2.2, we derive

(% —A)x Q> xQ|AP (5.3)
—2 Z [Qaﬁ&--nhalkhﬁ% +eee Ql---(n72)aﬂha(nf1)khﬁnk]
a,0.k
—c10 — cn1] A

where ¢ and ¢;1 are constants depending on n,m, and rg.

Initially %€, > K whenever p, > 0 and Zpu>0 p, = 1, so we have
*Q =3 p,*Q, > K on X. Because each (2, as a vector in A™(R™T)*]
has L? norm |©2,|> = 1, we have |©2]> < 1 as § is a convex combination of
L? unit vectors.

Let Ky < K be a positive constant to be determined and by assumption
x() > K > Ky on X. For any positive constant ¢ < K — K (for example

€= %), set c19 = c10 + ic%l. We claim
*Q 4 cpot > K (5.4)
on ¥ for t € [0,t;] where
—Kn—
tl = min{ 0 E,to}.

This is proved by the maximum principle. Suppose inequality (5.4) is vi-
olated at some to < t; for the first time. Then *Q + cjot > K on [0, ts]
and thus xQ > K + € on [0,t2]. This implies Qug3.., < /1 — KZ since
er N\ --- A\ ey is orthogonal to e, Aeg Aes A--- Ae, and |Q? < 1. This
estimate holds for other similar terms inside the bracket on the right hand
side of inequality (5.3) . It follows that
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d /S
(% — A) * Q) Z (*Q — (13 1-— Kg) ’A‘Q — C10 — Cll‘A’ on [0,152].

where c13 is a combinatorial constant depending on n and m.

Now we choose Ky close to 1 so that Ky —ci3v/1 — Kg =cy4 > 0. Again
c14 depends on n and m. Using the inequality c11]|A| < 1¢i; + €|Af*, we
obtain

d 1
(E_A)*Qz <*Q—613\/1—Kg—6> |A|2—610—ZC%1

(% — A)(*Q + ciat) > (+Q — c131/1 — K§ — €)|A]*. (5.5)

Because *Q) > Ky + ¢, it is easy to see *{) — c134/1 — Kg —e> Ko —
c13v/ 1 — Kg = c14. By the maximum principle {2 + cq9t is increasing in
[0,¢1].

Next we claim we can choose K close to 1 to produce the desired positive
bounded function in Corollary 4.1. Indeed, write equation (5.5) as

or

d *Q) — c130/1 — K2 — ¢
(o = D)2+ ennt — K] > *Qljmt_[g [+Q + 1ot — K]|AJ?

and recall this holds for ¢ € [0,¢;]. We claim if K is close to 1, there exists
a T <ty such that

] ] x—ci13v/1 — K2 —¢
min min 13 0 > 5.

0<t<T 1>x>K —cyot T+ ciot — K

First of all, under 1 > = > K — c19t, we have

x_cl3\/1_Kg—€>K—012t—013\/1—Kg—6

T+ cpt — K 14+ cot — K
When ¢ = 0 this is
K—Clgx/l—Kg—E
1-K '

Since K > Kj + ¢, the last expression is greater than

KO — 013\/1 — Kg _ Cl4

1-K 1-K°
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Now we can choose K close to 1 so that this is greater than 5. The
dependence of the constants are as the following: c¢13 is a combinatorial
constant depending on n and m, we determine Ky and c14 from

K0—613 1—K32614

and then K is determined by

Cl4
1-K

Therefore K depends only on n and m. The time 7' is determined by

(K — c1ot — 013\/1 — Kg — 6)

1+cpt—K

> 5.

>0

fort €[0,T] and T' < t; = min{%,to}.

We then approximate a Lipschitz submanifold that satisfies the K local
Lipschitz condition by smooth submanifolds with the same bound on *€). By
Corollary 4.1, we have the uniform bound of |A|? and all higher derivatives
bound for |A|? can be obtained as in [4]. Therefore the approximating mean
curvature flows converge to a mean curvature flow that is smooth for ¢t €
(0,7T] and the theorem is proved. O

In the codimension one case, equation (4.2) becomes

d
(a — A)AP2 <21A1" —2|VA]A

Now Corollary 4.1 still holds under the weaker assumption

d 2
- _ > .
(5 —A)P = PlA

On the other hand, in this case equation (5.3) becomes

(% — A) % Q > #Q|A* — c19 — c11]4],
so we can use x{) in Corollary 4.1 to give Ecker-Huisken’s local curvature
estimate in [4].

We remark the theorem is also true when the ambient space is replaced
by a complete Riemannian manifolds with bounded geometry. The ambient
curvature only results in lower order terms in the evolution equation and the
proof works if we shrink the time interval a little bit.



1]

2]

[9]
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