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Connected Sums of Special Lagrangian

Submanifolds
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Let M1 and M2 be special Lagrangian submanifolds of a compact
Calabi-Yau manifoldX that intersect transversely at a single point.
We can then think of M1 ∪M2 as a singular special Lagrangian
submanifold of X with a single isolated singularity. We investigate
when we can regularizeM1∪M2 in the following sense: There exists
a family of Calabi-Yau structures Xα on X and a family of special
Lagrangian submanifolds Mα of Xα such that Mα converges to
M1∪M2 and Xα converges to the original Calabi-Yau structure on
X . We prove that a regularization exists in two important cases:
(1) when dimC X = 3, Hol(X) = SU(3), and [M1] is not a multiple
of [M2] in H3(X), and (2) when X is a torus with dimC X ≥ 3,
M1 is flat, and the intersection of M1 and M2 satisfies a certain
angle criterion. One can easily construct examples of the second
case, and thus as a corollary we construct new examples of non-flat
special Lagrangian submanifolds of Calabi-Yau tori.

1. Introduction.

One of the fundamental problems in special Lagrangian geometry is to un-
derstand moduli spaces of special Lagrangian submanifolds (SLags). Much
interest in this problem arises from the study of mirror symmetry since it
is related to the SYZ Conjecture [15]. McLean’s deformation theorem [12]
together with some work by Hitchin [6] provide some understanding of these
moduli spaces locally near nonsingular SLags, but in order to understand
these moduli spaces globally, we need to understand singular SLags. Re-
cently, some research has focused on the more modest goal of understanding
SLags with isolated conical singularities. For example, see [8]. In order to
study SLags with isolated conical singularities, we need to know something
about the SLag cones in C

n on which these singularities are modelled. See
the work of Haskins [5] for more on SLag cones.

In this paper we restrict our attention to isolated conical singularities
modelled on a very simple type of SLag cone, namely, the union of two
transversely intersecting SLag planes in C

n. By the work of Lawlor [10], we
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know that such a SLag cone can be deformed through a family of nonsingular
SLags in C

n if the two planes meet a certain angle criterion to be described
later. (This criterion is always satisfied when n ≤ 3.) This local regulariza-
tion holds out hope that if we have a singular SLag with this simple type of
singularity, then it can be globally regularized, that is, it can be deformed
through a family of nonsingular SLags. This simple type of singularity arises
when a connected, immersed SLag intersects itself, and when two embedded
SLags intersect. The first case has already been treated by Yng-Ing Lee [11]
who answered the question in the affirmative: A compact, connected, im-
mersed SLag with an isolated point of transverse self-intersection satisfying
the angle criterion can be regularized. The second case is more difficult,
and that is the case which we consider in this paper. Simply put, our prob-
lem is to try to regularize the union of two compact embedded SLags with
an isolated point of transverse intersection satisfying the angle criterion. A
problem related to ours has been solved by Butscher [1]: The union of two
embedded SLags with boundary in C

n with n ≥ 3 with an isolated point
of transverse intersection satisfying the angle criterion can be regularized.
In Butscher’s paper, the regularization takes advantage of the freedom to
deform the boundary of the singular SLag. In our problem, we have no
boundaries, and therefore we cannot use the added degrees of freedom. In
fact, using McLean’s deformation theorem [12], one can conclude that our
problem, as stated, cannot be solved using Lawlor necks as the local model.
We must introduce another degree of freedom, and we do this by deforming
the Calabi-Yau structure of the ambient manifold.

Before we state our results, we recall some basic definitions and facts.

Definition. A Calabi-Yau structure (or CY structure) on a compact
2n-fold X is a 3-tuple (J, ω,Ω) such that J is a complex structure on X, ω
is a Kähler form with respect to J , and Ω is a holomorphic (n, 0) form with
respect to J such that

ωn

n!
= (−1)

1
2
n(n−1)

(
i

2

)n
Ω ∧ Ω (1)

It is a fact that Re Ω is a calibration with respect to the Kähler metric. We
say that a submanifold M of X is special Lagrangian iff M is calibrated
by Re Ω.

The special Lagrangian condition on M is equivalent to the vanishing
of both ω and ImΩ on M . If (X,J) admits a Calabi-Yau structure at all,
then in each Kähler class there is a unique Kähler form ω such that (X,J, ω)
admits a Calabi-Yau structure. (In this case, the Kähler metric correspond-
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ing to ω is Ricci-flat.) Also, if (X,J) admits a Calabi-Yau structure, then
Ω is uniquely determined up to a complex constant. If we also choose ω,
then the normalization (1) uniquely determines Ω up to a phase. Because of
these facts, a choice of Calabi-Yau structure amounts to a choice of complex
structure, a Kähler class, and a phase. For more general background on
Calabi-Yau manifolds and special Lagrangian geometry, see [14, 7, 9, 4].

We now describe the angle criterion.

Definition. Given any two n-dimensional oriented linear subspaces η and
ξ of R

2n, there exist characterizing angles θ1, . . . , θn, together with an
orthonormal basis e1, . . . , e2n of R

2n, such that

0 ≤ θ1 ≤ · · · ≤ θn−1 ≤ π

2
and θn−1 ≤ θn ≤ π − θn−1

while
η = e1 ∧ . . . ∧ en

and

ξ = [(cos θ1)e1 + (sin θ1)en+1] ∧ . . . ∧ [(cos θn)en + (sin θn)e2n].

We say that η and ξ satisfy the angle criterion iff the characterizing angles
between η and −ξ satisfy

∑n
i=1 θi = π.

The Lawlor-Nance Angle Theorem states that a pair of oriented planes
(η, ξ) is minimizing iff the characterizing angles between η and −ξ satisfy∑n

i=1 θi ≥ π. Therefore the angle criterion may be thought of as describing
the “borderline case” of minimizing pairs of planes. See [4] for more on
characterizing angles and the Angle Theorem.

We are now ready to state our main theorem.

Theorem 1 (Main Theorem). Let M1 and M2 be two embedded special
Lagrangian submanifolds of a Calabi-Yau manifold (X,J, ω,Ω) such that
n = dimCX ≥ 3 and the holonomy of the Kähler metric is exactly SU(n).
Assume that M1 and M2 intersect transversely at a single point p such that
the tangent cone of M1 ∪ M2 at p satisfies the angle criterion. Further
assume that Re[Hn−1,1(X) ⊕ H1,n−1(X)] is not contained in the kernel of

[M1]
Vol(M1)

− [M2]
Vol(M2) , thought of as a functional on Hn(X). Then there exists

a family of Calabi-Yau structures (Jα, ωα,Ωα) on X converging to (J, ω,Ω)
and a family of embedded submanifolds Mα ⊂ X converging to M1 ∪M2

such that Mα is special Lagrangian in (X,Jα, ωα,Ωα).

When n = 3, the theorem reduces to the following nice result.
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Corollary 2. Let M1 and M2 be two embedded special Lagrangian sub-
manifolds of a Calabi-Yau manifold (X,J, ω,Ω) such that dimCX = 3 and
the holonomy of the Kähler metric is exactly SU(3). Assume that M1 and
M2 intersect transversely at a single point and that [M1] is not a multi-
ple of [M2] in Hn(X). Then there exists a family of Calabi-Yau structures
(Jα, ωα,Ωα) on X converging to (J, ω,Ω) and a family of embedded subman-
ifolds Mα ⊂ X converging to M1 ∪M2 such that Mα is special Lagrangian
in (X,Jα, ωα,Ωα).

Proof. As mentioned earlier, the angle criterion is automatically satisfied
when n = 3. It suffices to show that the homology condition in the Corollary
implies the one in the Main Theorem. Let γ be [M1]

Vol(M1) −
[M2]

Vol(M2) , thought
of as a functional on H3(X), and suppose that Re[H2,1(X) ⊕ H1,2(X)] is
contained in ker γ. Since M1 and M2 are special Lagrangian, we know that
γ([Re Ω]) = γ([Im Ω]) = 0, and since [Ω] spans H3,0(X), it follows that γ
annihilates Re[H3,0(X)⊕H0,3(X)]. But this means that γ = 0, and therefore

[M1]
Vol(M1) = [M2]

Vol(M2) as homology classes, contradicting the assumption of the
Corollary. �

Since a CY torus has trivial holonomy, our Main Theorem does not apply
to this important case. However, we can still prove a version of the theorem
in this setting.

Theorem 3 (Torus Version). Let M1 and M2 be two embedded spe-
cial Lagrangian submanifolds of a Calabi-Yau torus (T, J, ω,Ω) such that
dimC T ≥ 3 and M1 is flat. Assume that M1 and M2 intersect transversely
at a single point p such that the tangent cone of M1∪M2 at p satisfies the an-
gle criterion. Then there exists a family of Calabi-Yau structures (Jα, ω,Ωα)
on T converging to (J, ω,Ω) and a family of embedded submanifoldsMα ⊂ T
converging to M1 ∪M2 such that Mα is special Lagrangian in (T, Jα, ω,Ωα).

The Main Theorem and the Torus Version share the hypothesis that M1 and
M2 must intersect at a single point, but this condition is somewhat artificial.
In light of the proof to follow, as long as there exists an isolated transverse
intersection point p, we can still regularize the singularity at p, but the Mα’s
will only be immersed rather than embedded. However, if M1∩M2 is a finite
set of isolated transverse intersection points, all of which satisfy the angle
criterion, then we can recover the embeddedness as follows: We first apply
our result to one of these intersection points,1 and then we apply Yng-Ing
Lee’s result on immersed SLags to each of the other intersection points. This

1If either M1 or M2 is not connected, then we apply our result multiple times.
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procedure is possible because the property of being a transverse intersection
point satisfying the angle criterion is an open condition. See Lemma 5.

It is a simple matter to construct infinitely many distinct pairs of flat
SLag tori satisfying the angle criterion in the standard CY torus, C

n/Z2n.
Applying the discussion in the previous paragraph, we immediately obtain
the following result.

Corollary 4. There exist non-flat embedded special Lagrangian submani-
folds of Calabi-Yau tori.

With some extra work, the methods of this paper can probably be used
to prove that our results hold in dimension two also.

Concurrent with the writing of this paper, Joyce has produced some
results on the general problem of desingularizing special Lagrangians with
isolated conical singularities in almost Calabi-Yau manifolds [8]. In partic-
ular, Theorem 7.11 of [8] combined with Lemma 17 of this paper and an
understanding of the Lawlor necks can be used to prove the results of this
paper. Note that Lemma 17 is the main ingredient of the Key Lemma of this
paper. The methods used by Joyce are different from those presented here,
and because of the added generality, the proofs are also more complicated.

Acknowledgements: I would like to thank Rick Schoen for suggesting
the problem, listening to my ideas, and offering many helpful suggestions. I
also thank the referee for helping me to improve the quality of my presen-
tation. This research was partially supported by a NSF Graduate Research
Fellowship.

2. Preliminaries.

The Main Theorem and the Torus Version share certain assumptions: We
have two embedded special Lagrangian submanifoldsM1 and M2 of a Calabi-
Yau manifold (X,J, ω,Ω) with dimC X ≥ 3. We also assume that M1 and
M2 intersect transversely at a single point p such that the tangent cone of
M1 ∪M2 at p satisfies the angle criterion. This is the situation we assume
from now until the proofs of the Key Lemma, which will depend on the
additional assumptions in the two cases. We also assume without loss of
generality that M1 and M2 are connected.

We now explain the idea behind these results. We wish to construct a
family of approximate solutions Mα such that Mα converges to M1 ∪M2,
Mα is exactly Lagrangian, and Mα is very close to being special Lagrangian.
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Once we have these Mα’s, we can construct small Hamiltonian deformations
of them and hope that at least one of them is exactly special Lagrangian.
This is actually too much to hope for, but we can add another degree of
freedom to this deformation by simultaneously deforming the Calabi-Yau
structure (Jt, ωt,Ωt) and Mα itself so that the deformations of Mα remain
Lagrangian with respect to ωt. Using these deformations we define a de-
formation operator whose solutions correspond to special Lagrangians in
(X,Jt, ωt,Ωt). Using the Inverse Function Theorem together with some es-
timates, we obtain the desired solutions. The work lies in obtaining the
appropriate estimates.

First we construct our family of approximate solutions Mα. This is
where the angle criterion is relevant. Given θ1, . . . , θn ∈ R, we define
P (θ1, . . . , θn) to be the oriented plane [(cos θ1) ∂

∂x1 + (sin θ1) ∂
∂y1 ] ∧ . . . ∧

[(cos θn) ∂
∂xn + (sin θn) ∂

∂yn ]. By the work of Lawlor [10], we know that for
any θ1, . . . , θn ∈ (0, π) satisfying

∑n
j=1 θj = π, there exists a special La-

grangian submanifold N of C
n that is asymptotic in an oriented sense to

the two planes P (0, . . . , 0) and −P (−θ1, . . . ,−θn). This submanifold N is a
topological cylinder, Sn−1 × R, and has the property that εN converges to
[P (0, . . . , 0)] ∪ [−P (−θ1, . . . ,−θn)] in an appropriate sense as ε → 0. These
N ’s, as well as their images under SU(n)×(dilations) are called Lawlor
necks.

Lemma 5. If η and ξ are two special Lagrangian planes in C
n, then there

exists a Lawlor neck asymptotic in an oriented sense to η and ξ if and only
if η and ξ are transverse planes satisfying the angle criterion. Moreover,
both of these equivalent conditions are open conditions in the space of pairs
of special Lagrangian planes. Finally, when n ≤ 3, every pair of transverse
special Lagrangian planes satisfies the angle criterion.

Proof. The proof is straightforward, and the only facts about Lawlor necks
necessary for the proof are those stated above. �

Now we must use the existence of the local regularization to produce
an approximate global regularization. The details of this construction are
described in [1, 2, 11]. Here we only give a broad overview. Near the singular
point p, we can choose a Darboux and normal coordinate system in a ball B
around p such that p = 0 and Ω approaches dz appropriately as we approach
0. We know M = M1 ∪M2 becomes close to the tangent cone at p as we
approach 0. The tangent cone must be a union of two planes calibrated by
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Redz. As long as this pair of planes satisfies the angle criterion, there exists
a Lawlor neck N asymptotic to those two planes. For sufficiently small α > 0
and certain constants Cδ and Cε, choose

δ =
α

Cδ
and ε =

α1+1/n

Cε
.

See [1, 2, 11] for the definitions of Cδ and Cε.2 These constants are chosen
so that the following construction works and has the stated properties.

We can cut out a small ball Bδ(0) from M , glue a rescaled Lawlor neck
εN into B δ

2
(0), and then interpolate in the annular region.3 This gives

us Mα which we can think of as M ′
1 ∪ T1 ∪ N ′ ∪ T2 ∪ M ′

2, where M ′
i =

Mi−Bδ(0), N ′ is the rescaled Lawlor neck, and the Ti’s are the interpolated
regions connecting M ′

i to N ′. It is evident that Mα converges to M by
construction, and since each Lawlor neck has the topology of a cylinder,
Sn−1 × R, Mα is topologically the connected sum of M1 and M2. We can
choose the interpolation so that Mα is exactly Lagrangian. Since Mα is
Lagrangian, it is a fact that that at each point of Mα, Ω|Mα = eiθVolMα

for some θ. We call the multi-valued function θ the Lagrangian angle
function. This “function” has the property that J∇θ is the mean curvature
field H. On a special Lagrangian submanifold, eiθ = 1 and H = 0. We know
that Mα−Bδ is exactly special Lagrangian, and one can show that Mα∩Bδ
is approximately special Lagrangian in following sense [1, 2, 11].

Lemma 6. For any 0 < β < 1, there is a C independent of α such that4

| sin θ|0 + αβ [sin θ]β + α|∇ sin θ|0 ≤ Cα

|1 − cos θ|0 + αβ [cos θ]β + α|∇ cos θ|0 ≤ Cα2

|H|0 + αβ[H]β + α|∇H|0 ≤ C.

2Throughout this paper α will be the parameter upon which most of our con-
structions depend. Because of this, we will explicitly write out the α dependence
of all of our constants, with the only exceptions being δ and ε. We will use the
letter C without subscript as a generic constant independent of α whose value may
change even in a single chain of inequalities. For consistency we always use C as an
upper bound.

3From now on we will write Bδ for Bδ(0) where there is no chance of confusion.
4Here, and throughout this paper, | · |0 is the sup norm, and [·]β is the β-Hölder

seminorm.
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3. The Deformation Operator.

Now that we have our approximate solutions Mα, we can define the rele-
vant deformation operator. Suppose that we have a smooth deformation
(Jt, ωt,Ωt) of the CY structure (J, ω,Ω) = (J0, ω0,Ω0) such that ωt is always
cohomologous to ω and 〈[M1] + [M2], [Im Ωt]〉 = 0. We will choose the ap-
propriate deformation of CY structure later in this paper; for now assume
that we have already chosen it. By Moser’s Theorem, there exists a smooth
path of diffeomorphisms Ψt of X such that

Ψ∗
tωt = ω. (2)

By the Lagrangian Neighborhood Theorem, let U be a tubular neighborhood
of Mα symplectomorphic to T ∗Mα so that we have a projection map π :
U −→ Mα. Let τ be a smooth cutoff function supported in U such that
τ = 1 on 1

2U , where 1
2U is defined using the structure of T ∗M . Observe that

we can choose U to have width greater than ε
C over Mα∩Bεr0 for some r0, and

width greater than 1
C over M ′

1 ∪M ′
2, with an inverse linear interpolation in

between. Now extend any function h ∈ C2,β(Mα) to a function h̃ ∈ C2,β(X)
by defining h̃(q) = τ(q)h(π(q)) on U and h̃ = 0 outside U . Now define Φh

to be the symplectomorphism generated by the Hamiltonian function h̃.

Definition. The deformation operator Fα : C2,β(Mα)×R −→ C0,β(Mα)
is defined by

Fα(h, t) = 〈(Ψt ◦ Φh)∗(Im Ωt),VolMα〉Mα

where the metric on Mα is the one induced by the Kähler metric on (X,J, ω),
independent of t.

Since Mα is a Lagrangian submanifold of (X,ω) and Φh is a symplec-
tomorphism it follows that Φh(Mα) is a Lagrangian submanifold of (X,ω).
Then by (2), it follows that (Ψt ◦ Φh)(Mα) is a Lagrangian submanifold of
(X,ωt). Clearly, Fα(h, t) = 0 iff Im Ωt restricted to (Ψt ◦ Φh)(Mα) is iden-
tically zero. Therefore a solution of the equation Fα(h, t) = 0 corresponds
to a special Lagrangian submanifold of (X,Jt, ωt,Ωt), and a small solution
corresponds to a nearby special Lagrangian. So our goal is to show that for
sufficiently small α, Fα has a small solution. Our method of constructing
such solutions is the following version of the Inverse Function Theorem.

Theorem 7 (Inverse Function Theorem). Let F : B −→ B′ be a C1

map between Banach spaces and suppose that the linearization DF (0) is an
isomorphism. Moreover, assume that for some constants CI , CN , and r1, we
have
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1. ‖DF (0)x‖B′ ≥ 1
CI

‖x‖B for all x ∈ B, and

2. ‖DF (0)x−DF (y)x‖B′ ≤ CN‖x‖B·‖y‖B for all x, y ∈ B with
‖y‖B < r1.

Then there exist neighborhoods U of 0 and V of F (0) such that F : U −→
V is a C1-diffeomorphism. Moreover, if r ≤ min(r1, (2CICN )−1), then
Br/2CI

(F (0)) ⊂ V and Br/2CI
(F (0)) ⊂ F (Br(0)).

In particular, when the hypotheses of the theorem are satisfied and addi-
tionally, ‖F (0)‖B′ < r

2CI
, we can solve the equation F (y) = 0 for some

‖y‖B < r.
In order to invoke the Inverse Function Theorem in our situation, we

need to choose our Banach spaces carefully. We define a smooth weight
function ρ on Mα with the key property that the ball of radius ρ(x) in Mα

centered at x has uniformly bounded geometry. That is, in geodesic normal
coordinates at x, we have |gij − δij |∗1,β,Bρ(x)(x)

≤ 1 where the norm here is
the local scale-invariant Schauder norm on Bρ(x)(x). We also require that
τ = 1 on the ball Bρ(x)(x,X). We can construct such a ρ with the following
additional properties. See [1, 2, 11].

• For some r0 and R independent of α,

ρ(x) =

⎧⎨
⎩

εR for x ∈ N ′ = Mα ∩Bεr0
interpolation for x ∈Mα ∩ (B −Bεr0)
R for x ∈Mα −B

• ρ(x) ≤ C|x| for x ∈Mα ∩ (B −Bδ/2).

• |∇ρ|0 ≤ C.

• ‖ρ−1‖L2(Mα) ≤ C.

Definition. For any 0 < β < 1, the ρ-weighted (k, β)-Schauder norm
on Ck,β(Mα) is given by

|u|
Ck,β

ρ (Mα)
= |u|0,Mα + |ρ∇u|0,Mα + · · · + |ρk∇ku|0,Mα + [ρk+β∇ku]β,Mα .

Let S be the first eigenfunction of the Laplacian on Mα, normalized so that
‖S‖L2(Mα) = 1.5 Then we define the Banach spaces B1,α, Bα, and B′

α as

5In contrast to our use of constants, many geometric objects such as functions
and operators will depend on α, but we will suppress this dependence in the notation
for the purpose of readability. The loss of clarity should be minimal since these
objects are all defined on Mα.
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vector spaces

B1,α =
{
u ∈ C2,β(Mα)

∣∣∣∣
∫
Mα

u =
∫
Mα

uS = 0
}

Bα = B1,α × R

B′
α =

{
u ∈ C0,β(Mα)

∣∣∣∣
∫
Mα

u = 0
}

with the norms

‖u‖B1,α = |u|
C2,β

ρ (Mα)

‖(u, a)‖Bα = |u|
C2,β

ρ (Mα)
+ |a|

‖f‖B′
α

= |ρ2f |
C0,β

ρ (Mα)
.

(The integrations above are taken with respect to the t-independent Kähler
metric on Mα.)

Since Ψt and Φh are isotopies, 〈[(Ψt ◦ Φh)(Mα)], [Im Ωt]〉 =
〈[Mα], [Im Ωt]〉 = 〈[M1] + [M2], [Im Ωt]〉 = 0, and therefore Fα(Bα) ⊂ B′

α.
From now on we think of the deformation operator Fα as an operator
from Bα to B′

α.
The choice of β is not particularly important; it is simply a small constant

independent of α. The purpose of the weighted norm is to achieve estimates
that scale nicely with respect to α. The reason why we take the orthogonal
complement of the functions 1 and S is that 1 lies in the kernel of the
linearization of Fα, and S lies in the approximate kernel of the linearization.

Let us summarize what we need to prove in order to invoke the Inverse
Function Theorem argument:

• We need an injectivity estimate on DFα(0, 0); we must es-
tablish the existence of a constant CI(α) as in condition 1
of the Inverse Function Theorem and find its dependence
on α.

• We need to show that DFα(0, 0) is surjective.

• We need a nonlinear estimate; we must establish the exis-
tence of a constant CN (α) as in condition 2 of the Inverse
Function Theorem and find its dependence on α.

• We need to bound Fα(0, 0) in terms of α.

We first compute DFα(0, 0).
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Proposition 8.

DFα(0, 0)(u, a) = ∆u+ Pu+ aψ (3)

where P : B1,α −→ B′
α is given by

Pu = (cos θ − 1)∆u− (sin θ)〈H,J∇u〉

and ψ ∈ B′
α is given by

ψ = 〈LV (Im Ω) + Im Ω̇,VolMα〉

where V is the vector field generating the flow Ψt at time t = 0, and
Ω̇ = d

dtΩt|t=0.

The calculation of ψ is self-evident. The rest of the calculation is straight-
forward and can be found in [1] and [11]. The reason we write ∆ and P
separately in equation (3) is that the P term turns out to be negligible,
and therefore it suffices to understand ∆ and ψ. The unimportance of P is
expressed in the following lemma.

Lemma 9. For sufficiently small α, for any u ∈ B1,α,

‖Pu‖B′
α
≤ Cα1−β‖u‖B1,α .

Proof. The proof essentially follows directly from the bounds given in
Lemma 6.

|ρ2(1 − cos θ)∆u|0 ≤ |1 − cos θ|0 ·|ρ2∆u|0
≤ Cα2|u|

C2,β
ρ
.

[ρ2+β(1 − cos θ)∆u]β ≤ [1 − cos θ]β ·|ρ2+β∆u|0 + |1 − cos θ|0 ·[ρ2+β∆u]β
≤ (Cα2−βRβ + Cα2)|u|

C2,β
ρ
.

|ρ2(sin θ)〈H,J∇u〉|0 ≤ |ρ(sin θ)H|0 ·|ρJ∇u|0
≤ RCα|u|

C2,β
ρ
.
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For the final inequality, we use the fact that [v]β ≤ |v|0 + |∇v|0.

[ρ2+β(sin θ)〈H,J∇u〉]β≤ [sin θ]β ·|H|0 ·|ρ2+βJ∇u|0+| sin θ|0 ·[H]β ·|ρ2+βJ∇u|0
+| sin θ|0 ·|H|0 ·[ρ2+βJ∇u]β

≤ (Cα1−β)CR1+β|ρ∇u|0 + (Cα)(Cα−β)R1+β|ρ∇u|0
+(Cα)C(|ρ2+β∇u|0 + |(∇ρ2+β)(∇u)|0 + |ρ2+β∇2u|0)
≤ Cα1−β|u|

C2,β
ρ

+Cα(R1+β + CRβ +Rβ)|u|
C2,β

ρ

where the last line uses the bound on |∇ρ|0. Now combine the previous four
inequalities to deduce the desired result. �

4. Analysis of the Laplacian on Mα.

The first step in establishing an injectivity estimate for the linearized defor-
mation operator is finding a lower bound for the second eigenvalue of the
Laplacian. The second step is to combine this lower bound with an elliptic
estimate to obtain an injectivity estimate for ∆ : B1,α −→ B′

α.
It is a fact that on any Riemannian manifold M , for any f ∈ L2(M)

with one derivative in L2(M) such that
∫
M f = 0, we have

∫
M |∇f |2 ≥

λ1(M)
∫
M f2, where λ1(M) is the first eigenvalue of the Laplacian. From

this it follows easily that if we drop the condition
∫
M f = 0, then we have

λ1(M) ≤
∫
M |∇f |2∫

M f2 − 1
Vol(M)(

∫
M f)2

. (4)

We define a smooth cutoff function ϕ on Mα with the following proper-
ties: ϕ = 0 in Bδ, ϕ = 1 outside B2δ, and |∇ϕ| ≤ C

δ for some C. Recall that
Mα −Bδ = (M1 ∪M2)−Bδ, and therefore we may think of ϕ as a function
on either Mα or on M1 �M2. Observe that we have the following bounds
which we will use repeatedly:

Vol(Mi −B2δ) ≤ C

Vol(Mi −B2δ) ≥ 1
C

Vol(Mi ∩B2δ) = O(δn)
Vol(Mα ∩B2δ) = O(δn)

The first two bounds are obvious. The third is true because Mi has zero
mean curvature. The last bound follows from the third bound together with
some estimates from Butscher [1, 2].
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Lemma 10. For small enough α,

λ1(Mα) ≤ Cδn−2.

Proof. Let

f = ϕ

[
XM1−Bδ

Vol(M1 −B2δ)
− XM2−Bδ

Vol(M2 −B2δ)

]
where XA denotes the characteristic function of A. Clearly,

∫
Mα

f = O(δn).
Using inequality (4), we see that

λ1(Mα) ≤
∫
Mα

|∇f |2∫
Mα

f2 − 1
Vol(Mα)(

∫
Mα

f)2

≤
C
∫
Mα∩B2δ

δ−2

1
Vol(M1−B2δ) + 1

Vol(M2−B2δ) −O(δ2n)
by the properties of ϕ

≤ Cδn−2 since the denominator is bounded below.

�

We would like to have some idea of what S looks like. By the previous Lemma
together with Lemma 5 of Yng-Ing Lee’s paper [11], we know that |S|0 is
bounded independently of α.6 This fact allows us to use our knowledge
of the kernel of the Laplacian on M1 � M2 to construct a function that
approximates S in the L2 sense.

Lemma 11. Define
S̄ = a1XM1 + a2XM2

where

a1 =
1

Vol(M1)

√
Vol(M1)Vol(M2)

Vol(M1)+Vol(M2)
and a2 =

−1
Vol(M2)

√
Vol(M1)Vol(M2)

Vol(M1)+Vol(M2)
.

Then for small enough α,

‖S − ϕS̄‖L2(Mα) ≤ Cδ(n−2)/2

and
‖S̄ − ϕS̄‖L2(M1
M2) ≤ Cδn/2.

6This Lemma depends on the Michael-Simon Inequality and uses the fact that
the mean curvature of Mα is bounded independently of α.
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Proof. First, the bound on S implies that

‖S − ϕS‖2
L2(Mα) ≤ ‖S‖2

L2(Mα∩B2δ) = O(δn). (5)

Since ϕS is defined on M1 �M2, we have∫
M1
M2

|∇(ϕS)|2 =
∫
Mα

|∇(ϕS)|2

≤ 2
∫
Mα∩B2δ

|∇ϕ|2S2 + 2
∫
Mα

ϕ2|∇S|2

≤ O(δn−2) + 2
∫
Mα

|∇S|2 arguing as in Lemma 10

= O(δn−2) by Lemma 10 and the normalization of S.

Note that the Laplacian on M1 �M2 has a two-dimensional kernel spanned
by XM1 and XM2, and its first non-zero eigenvalue is obviously a constant
independent of α. Therefore the estimate above shows that if a′1XM1+a′2XM2

is the orthogonal projection of ϕS onto the kernel, then

‖ϕS − (a′1XM1 + a′2XM2)‖2
L2(M1
M2)

≤ C‖∇[ϕS − (a′1XM1 + a′2XM2)]‖2
L2(M1
M2)

= C‖∇(ϕS)‖2
L2(M1
M2)

= O(δn−2) by the previous calculation. (6)

The bounds (5) and (6) show that

(a′1)
2Vol(M1) + (a′2)

2Vol(M2) = ‖a′1XM1 + a′2XM2‖2
L2(M1
M2) = 1 +O(δn−2)

and

a′1Vol(M1) + a′2Vol(M2) =
∫
M1
M2

a′1XM1 + a′2XM2 = O(δ(n−2)/2).

Solving these equations, we find that

a′1 = a1 +O(δ(n−2)/2) and a′2 = a2 +O(δ(n−2)/2)

where a1 and a2 were defined above.7 It now follows that

‖(a′1XM1 + a′2XM2) − S̄‖2
L2(M1
M2)

= O(δn−2). (7)

7Of course, the solution is only determined up to a sign, but there was a sign
ambiguity in our original definition of S, so we can simply define S to have the sign
consistent with these equations.
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Finally, similar to the bound (5), we see that

‖S̄ − ϕS̄‖2
L2(M1
M2) = O(δn). (8)

Putting together the bounds (5), (6), (7), and(8), we obtain the desired
result. �

We can now use our knowledge of S to help us show that the second eigen-
value of the Laplacian on Mα is bounded below.

Proposition 12 (Second Eigenvalue Estimate). For small enough α,
the second eigenvalue of the Laplacian of Mα, λ2(Mα), is bounded below.
In particular, for each u ∈ B1,α,

‖∆u‖L2(Mα) ≥
1
C
‖u‖L2(Mα)

Proof. Let f be an eigenfunction for the second eigenvalue of the Laplacian,
normalized so that ‖f‖L2(Mα) = 1. Using the min-max characterization of
λ2(Mα) one can show that λ2(Mα) is bounded above independently of α.
This fact allows us to apply Lemma 5 of Yng-Ing Lee’s paper [11] to show
that |f |0 is bounded independently of α. We compute

λ2(Mα) =
∫
Mα

|∇f |2

=
∫
Mα

|∇(ϕf) + ∇((1 − ϕ)f)|2

≥
∫
M1

|∇(ϕf)|2 +
∫
M2

|∇(ϕf)|2 − 2
∫
Mα∩B2δ

|∇(1 − ϕ)|2f2

−2
∫
Mα

(1 − ϕ)2|∇f |2)

≥
∫
M1

|∇(ϕf)|2 +
∫
M2

|∇(ϕf)|2 −O(δn−2) − 2
∫
Mα

|∇f |2.
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Therefore,

3λ2(Mα)≥
∫
M1

|∇(ϕf)|2 +
∫
M2

|∇(ϕf)|2 −O(δn−2)

≥λ1(M1)

[∫
M1

ϕ2f2 − 1
Vol(M1)

(∫
M1

ϕf

)2
]

+λ1(M2)

[∫
M2

ϕ2f2− 1
Vol(M2)

(∫
M2

ϕf

)2
]
−O(δn−2) by inequality (4)

≥C
∫
Mα

f2 −O(δn) − λ1(M1)
Vol(M1)

(∫
M1

ϕf

)2

− λ2(M2)
Vol(M2)

(∫
M2

ϕf

)2

−O(δn−2)

≥C − C

[(∫
M1

ϕf

)2

+
(∫

M2

ϕf

)2
]
−O(δn−2).

Now we must bound the terms in brackets in the previous line.∣∣∣∣
∫
M1

ϕf

∣∣∣∣ =
∣∣∣∣
∫
M1
M2

(
S̄ − a2

a1 − a2

)
ϕf

∣∣∣∣ by the definition of S̄ from Lemma 11

=
1

a1 − a2

∣∣∣∣
∫
Mα

(ϕS̄)f − a2

∫
Mα

ϕf

∣∣∣∣
=

1
a1 − a2

∣∣∣∣
∫
Mα

Sf +
∫
Mα

(ϕS̄ − S)f − a2

∫
Mα

f +O(δn)
∣∣∣∣

≤ C‖ϕS̄ − S‖L2(Mα) +O(δn) since
∫
Mα

Sf =
∫
Mα

f = 0

= O(δ(n−2)/2) +O(δn) by Lemma 11.

The estimate for M2 is similar. �

Recall that the weight function ρ was chosen so that Mα has uniformly
bounded geometry in ρ(x) neighborhoods of x in Mα. This allows us to use
the local scale-invariant elliptic Schauder estimate to deduce a global elliptic
Schauder estimate independent of α. We omit the proof which is standard
and straightforward.

Proposition 13 (Global Elliptic Schauder Estimate). For sufficiently

small α, for any u ∈ C2,β(Mα),

|u|
C2,β

ρ
≤ C(|ρ2∆u|

C0,β
ρ

+ |u|0).
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The following lemma, proved in [11], translates the second eigenvalue es-
timate from the L2 setting to the Schauder setting.8 Choose any ν > 0
independent of α.

Lemma 14. For sufficiently small α,

|u|0 ≤ Cε−ν|ρ2∆u|
C0,β

ρ

for all u ∈ B1,α.

Combining this Lemma with Global Elliptic Estimate immediately leads us
to an injectivity estimate for ∆ : B1,α −→ B′

α.

Proposition 15 (Laplacian Injectivity Estimate). For sufficiently
small α, for all u ∈ B1,α,

|u|
C2,β

ρ
≤ Cε−ν |ρ2∆u|

C0,β
ρ
.

5. Proofs of the Key Lemma.

It is well-known that ∆ is an isomorphism from B1,α⊕〈S〉 to B′
α, but because

of the small first eigenvalue, we had to remove S in order to obtain a good
injectivity estimate. Of course, removing S costs us surjectivity. We added
the extra degree of freedom in order to restore surjectivity. The essential
requirement of the extra degree of freedom is that its linearization ψ must
have a significant S component. This is the content of our Key Lemma. We
would like to construct a deformation (Jt, ωt,Ωt) so that ψ has the desired
property.

Let us review the complex structure deformation theory for CY mani-
folds. First, given any deformation of complex structure, Jt, we can define
a section η of the bundle T 1,0(X,J) ⊗ Λ0,1(X,J) as follows: Given a (1, 0)
form ϕ, we can extend ϕ = ϕ0 to a family of 1 forms ϕt such that each ϕt
is a (1, 0) form with respect to Jt. Then we define η(ϕ) to be the J-defined
(0, 1) component of ϕ̇. One can show that η is well-defined. We call η the
infinitesimal deformation of Jt. See Chapter 4 of [13] for details. A
theorem of Tian [16] and Todorov [17] states that every harmonic section
of T 1,0(X,J) ⊗ Λ0,1(X,J) represents the infinitesimal deformation of some
family of complex structures. We state a version of this theorem which is
suited to our problem.

8The proof of this lemma follows easily from a De Giorgi-Nash estimate, which
in turn depends on the Michael-Simon inequality and bounded mean curvature.
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Theorem 16 (Tian and Todorov). Let (X,J, ω,Ω) be a Calabi-Yau
manifold. Let χ ∈ Hn−1,1(X,J, ω), the space of harmonic (n − 1, 1) forms.
Then there exists a family of complex structures, Jt, such that χ is the
contraction of Ω and the infinitesimal deformation of Jt.

Using this theorem, we can construct the desired deformation of CY struc-
ture.

Lemma 17. Under the assumptions of the Main Theorem or the Torus
Version, there exists a deformation of Calabi-Yau structure (Jt, ωt,Ωt) such
that ωt is cohomologous to ω, 〈[M1] + [M2], [Im Ωt]〉 = 0, and〈

[M1]
Vol(M1)

− [M2]
Vol(M2)

, [Im Ω̇]
〉

�= 0

for sufficiently small α.

Proof of Main Case. By the hypotheses of the Main Theorem, we can
find λ ∈ Re[Hn−1,1(X) ⊕ H1,n−1(X)] such that

〈
[M1]

Vol(M1) −
[M2]

Vol(M2) , [λ]
〉

�=
0. Since Hn−1,1(X) and H1,n−1(X) are complex conjugate to each other,
we can certainly find χ ∈ Hn−1,1(X) such that Imχ = λ. Let Jt be the
complex structure deformation whose existence is guaranteed by the previous
theorem. Recall that Jt determines the holomorphic (n, 0)-form Ωt up to a
constant. In fact, we have the following formula, which appears in [3].

Ω̇ = cΩ + χ, for some constant c.

A simple local calculation shows that this formula holds for some function c,
and this function must be constant because Ω̇ and χ are both closed. Since
Im Ω vanishes on M1 and M2, and ReΩ calibrates M1 and M2, it follows that〈

[M1]
Vol(M1)

− [M2]
Vol(M2) , [Ω]

〉
= 0, and therefore

〈
[M1]

Vol(M1) −
[M2]

Vol(M2) , [Im Ω̇]
〉
�= 0.

We know that [ω] lies in the Kähler cone of (X,J). Since (X,J, ω) has
holonomy equal to SU(n), it follows that H2,0(X,J) = H0,2(X,J) = 0. (See
Proposition 6.2.6 of [9].) Therefore the Kähler cone of (X,J) is open in
H2(X), and so for small t, [ω] lies in the Kähler cone of (X,Jt). This allows
us to find, for each t, a unique ωt ∈ [ω] such that (X,Jt, ωt) admits a CY
structure. This determines Ωt up to a phase, and we choose the phase so
that 〈[M1] + [M2], [Im Ωt]〉 = 0. �

Before we discuss the Torus Case, let us study Calabi-Yau tori and the
moduli space of Calabi-Yau tori.
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Proposition 18. We can characterize all Calabi-Yau tori and all flat special
Lagrangian submanifolds of them as follows.

1. Given a rank 2n lattice Γ ⊂ C
n, we define a Calabi-Yau

structure on C
n/Γ using the standard Calabi-Yau structure

on C
n. Every Calabi-Yau torus T is given by this construc-

tion.

2. Given a special Lagrangian plane η invariant with respect to
some rank n sublattice of Γ, we obtain a special Lagrangian
torus η/Γ in C

n/Γ. Every flat special Lagrangian submani-
fold of T is a union of special Lagrangian tori given by this
construction.

Proof. Let (T, J, ω,Ω) be a CY torus. Since T has zero Ricci curvature and
b1(T ) = dimR T , we can see that T is flat using the Bochner identity. Con-
sider the induced CY structure on the universal cover (R2n, J̃ , ω̃, Ω̃). Choose
a point q ∈ R

2n and a basis e1, . . . , e2n of TqR2n such that if e1, . . . , e2n

is the dual basis, then J̃ej = ej+n for j ≤ n, J̃ej = −ej−n for j > n,
ω̃ =

∑n
j=1 e

j ∧ ej+n, and Ω̃ = (e1 + ien+1) ∧ . . . ∧ (en + ie2n) at the point q.
Since the metric is flat and ∇J = ∇ω = ∇Ω = 0, we can extend e1, . . . , e2n
to an integrable frame field over all of R

2n such that the above relations
hold everywhere. Therefore the induced CY structure on the universal cover
is the standard CY structure on C

n. Moreover, each Deck transformation
must be an orientation-preserving isometry, i.e. a translation.

Let M be a flat SLag in T . Since M is flat and minimal in T , which is
also flat, it is a simple consequence of the Gauss equation that M is totally
geodesic in T . Therefore, locally, the lift of M up to C

n is a piece of a SLag
plane, and the result follows. �

We know that the CY structure of a torus is determined by a lattice. The
space of all rank 2n lattices in C

n is GL(2n,R)/SL(2n,Z) where SL(2n,Z)
acts on the right. Since the group of CY structure preserving automor-
phisms of C

n is SU(n)�(translations), it follows that the global moduli
space of Calabi-Yau tori is precisely GL(2n,R)/SL(2n,Z) modulo the ac-
tion of SU(n) on the left. Therefore, locally, the deformation space is simply
a neighborhood of the identity in GL(2n,R)/SU(n) where SU(n) acts on the
left. Ignoring the (discrete) redundancies arising from the lattice automor-
phisms, SL(2n,Z), the space of possible complex structures corresponds to
GL(2n,R)/GL(n,C), and after this choice is made, the space of compatible
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symplectic structures corresponds to GL(n,C)/U(n). On the other hand, we
can choose the symplectic structure from the space GL(2n,R)/Sp(2n,R) and
then choose a compatible complex structure from the space Sp(2n,R)/U(n).
Finally, of course, we choose a phase for Ω from U(n)/SU(n). Observe that
changing the lattice by A ∈ GL(2n,R) has the same effect as keeping the
lattice and the canonical local coordinate systems on T fixed, but changing
the CY structure to (A−1JA,A∗ω,A∗Ω) with respect to those coordinates.
This is the point of view we adopt in the following proof, and we will no
longer mention lattices.

We pause to describe a consequence of Morgan’s Torus Lemma that we
will need for our proof of the Torus Case of Lemma 17. First, think of
G+
n (R2n), the Grassmannian of oriented n-planes in R

2n = C
n, as a subset

of Λn(R2n) in the usual way. That is, identify G+
n (R2n) with the space of

normalized simple n-vectors. We say that a constant calibration on R
2n is a

torus calibration if it is spanned by the constant n forms dxI ∧dyJ where
I ∪ J = {1, . . . , n}. We say that ξ ∈ G+

n (R2n) is a torus plane if it can be
written in the form:

ξ =
[
[(cos θ1)

∂

∂x1
+ (sin θ1)

∂

∂y1

]
∧ . . . ∧

[
[(cos θn)

∂

∂xn
+ (sin θn)

∂

∂yn

]
.

Let T denote the space of torus planes. Finally, for a constant calibration ϕ
on R

2n, define the contact set of ϕ, G(ϕ), to be {ξ ∈ G+
n (R2n)|φ(ξ) = 1}.

Lemma 19 (A Corollary of Morgan’s Torus Lemma). Let φ be a
torus calibration, and let ξ ∈ G+

n (R2n). Then ξ ∈ G(φ) if and only if
the orthogonal projection of ξ onto the linear span of T lies in the convex
hull of G(φ) ∩ T .

This result essentially says that the contact set of a torus calibration is
completely determined by the torus planes in the contact set. See [4] for
more information.

Proof of Torus Case of Lemma 17. By Proposition 18, any connected, flat
SLag M1 in (T, J, ω,Ω) is actually a SLag torus with constant tangent plane
with respect to the canonical local coordinates, so we can perform an SU(n)
change of coordinates taking M1 to a SLag torus whose tangent plane is
∂
∂x1 ∧ . . . ∧ ∂

∂xn at each point of M1. Since the SU(n) change of coordinates
preserves the CY structure, we may assume without loss of generality that
TqM1 = ∂

∂x1 ∧ . . . ∧ ∂
∂xn at each q ∈M1.

Consider a deformation A−1
t JAt of the complex structure. Then the

holomorphic (n, 0) form is A∗
tΩ up to a constant. A simple calculation then
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shows that Ω̇ = cΩ + χ, where

χ =
n∑

j,k=1

Bjkdz1 ∧ . . . ∧

k-th spot︷︸︸︷
dz̄j ∧ . . . ∧ dzn

and Bjk = Ȧkj̄. Another simple calculation shows that if At ∈ Sp(2n,R),
then the corresponding B must be (complex) symmetric, and conversely, for
any (complex) symmetric B, we can find At ∈ Sp(2n,R) such that Bjk =
Ȧkj̄.

In particular, choosing Bjk = iδjk, we can findAt ∈ Sp(2n,R) and φt ∈ R

such that (A−1
t JAt, ω,Ωt = eiφtA∗

tΩ) is a deformation of CY structure with
〈[M1] + [M2], [Im Ωt]〉 = 0, and

χ = i

n∑
j=1

dz1 ∧ . . . ∧

j-th spot︷︸︸︷
dz̄j ∧ . . . ∧ dzn.

So if we define

ϕj = Re(dz1 ∧ . . . ∧

j-th spot︷︸︸︷
dz̄j ∧ . . . ∧ dzn),

then we have Imχ =
∑n

j=1 ϕj . Observe that for each j, ϕj is a torus
calibration and ∂

∂x1 ∧ . . . ∧ ∂
∂xn ∈ G(ϕj). Therefore

1
Vol(M2)

∫
M2

Imχ ≤ n =
1

Vol(M1)

∫
M1

Imχ

with equality iff M2 is also calibrated by each ϕj . Now suppose that our
desired result is false, so that we do have equality. It is easy to verify that

G(Re Ω) ∩

⎛
⎝ n⋂
j=1

G(ϕj)

⎞
⎠ ∩ T =

{
∂

∂x1
∧ . . . ∧ ∂

∂xn

}
.

By applying Lemma 19, it then follows that

G(Re Ω) ∩

⎛
⎝ n⋂
j=1

G(ϕj)

⎞
⎠ =

{
∂

∂x1
∧ . . . ∧ ∂

∂xn

}
.

But we know that TpM2 must lie in the above intersection, contradicting our
transversality assumption. �
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Lemma 20 (Key Lemma). For small α,

∣∣∣∣
∫
Mα

ψS

∣∣∣∣ ≥ 1
C
. (9)

Proof. Recall that ψ = 〈LV (Im Ω),VolMα〉+ 〈Im Ω̇,VolMα〉. We’ll show that
the first term integrated against S is small while the second term integrated
against S is bounded below. Since Ω is closed, LV (Im Ω) = d(V � Im Ω).
Note that the two differential forms V � Im Ω and d(V � Im Ω) are defined
on X independently of α. From this it follows that |V � Im Ω|Mα |0 and
|d(V � Im Ω)|Mα |0 are bounded independently of α, where these are the in-
duced norms on Mα. Thus∣∣∣∣
∫
Mα

(d(V � Im Ω|Mα)S
∣∣∣∣≤

∣∣∣∣
∫
Mα

(d(V � Im Ω|Mα)ϕS̄
∣∣∣∣+Cδ(n−2)/2 by Lemma 11

=
∣∣∣∣
∫
Mα

(V � Im Ω)d(ϕS̄)
∣∣∣∣+ Cδ(n−2)/2

≤
∣∣∣∣
∫
Mα∩B2δ

|V � Im Ω|Mα |0 ·C|dϕ|0
∣∣∣∣+ Cδ(n−2)/2

≤ Cδn−1 + Cδ(n−2)/2.

We now consider the second term. Observe that since Im Ω̇ is a form on X
defined independently of α, | Im Ω̇|Mα |0 is bounded independently of α. And
obviously | Im Ω̇|M1
M2|0,M1
M2 is bounded independently of α. Therefore

∫
Mα

(Im Ω̇|Mα)S=
∫
Mα

(Im Ω̇|Mα)ϕS̄ +O(δ(n−2)/2) by Lemma 11

=
∫
M1
M2

(Im Ω̇|M1
M2)ϕS̄ +O(δ(n−2)/2)

=
∫
M1
M2

(Im Ω̇|M1
M2)S̄ +O(δn/2) +O(δ(n−2)/2) by Lemma 11

=

√
Vol(M1)Vol(M2)

Vol(M1) + Vol(M2)

〈
[M1]

Vol(M1)
− [M2]

Vol(M2)
, [Im Ω̇]

〉
+O(δ(n−2)/2) by definition of S̄.

Now the result follows from Lemma 17. �
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6. The Full Linearized Deformation Operator.

We are now ready to prove the full injectivity estimate.

Proposition 21 (Full Injectivity Estimate). For small enough ν inde-
pendent of α, DFα(0, 0) satisfies the injectivity estimate CI(α) = Cε−ν for
sufficiently small α. That is,

‖DFα(0, 0)(u, a)‖B′
α
≥ 1
C
εν‖(u, a)‖Bα .

Proof.

|a| ≤ C

∣∣∣∣
∫
Mα

aψS

∣∣∣∣ by the Key Lemma

= C

∣∣∣∣
∫
Mα

(∆u+ aψ)S
∣∣∣∣ since ∆u is orthogonal to S

= C

∣∣∣∣
∫
Mα

ρ2(∆u+ aψ)ρ−2S

∣∣∣∣
≤ C‖∆u+ aψ‖B′

α

∫
Mα

|ρ−2S|

≤ C‖∆u+ aψ‖B′
α

where the last line follows from the bounds on |S|0 and ‖ρ−1‖L2(Mα). On
the other hand,

‖u‖B1,α ≤ Cε−ν‖∆u‖B′
α

by the Laplacian Injectivity Estimate
≤ Cε−ν(‖∆u+ aψ‖B′

α
+ ‖aψ‖B′

α
)

≤ Cε−ν‖∆u+ aψ‖B′
α

where the last line follows from the previous calculation and the fact that
|ψ|

C0,β
ρ (Mα)

is bounded independently of α, by the definition of ψ. Finally,
we deal with the Pu term.

‖(u, a)‖Bα ≤ Cε−ν‖∆u+ aψ‖B′
α

by combining the previous two calculations
≤ Cε−ν(‖DFα(0, 0)(u, a)‖B′

α
+ ‖Pu‖B′

α
)

≤ Cε−ν‖DFα(0, 0)(u, a)‖B′
α

+ Cε−να1−β‖(u, a)‖Bα by Lemma 9.

For sufficiently small ν, ε−να1−β → 0 as α → 0. So for small enough α, we
can absorb the last term into the left-hand side. �
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Proposition 22. For small ν, DFα(0, 0) is surjective for sufficiently small
α.

Proof. Consider the map A : Bα −→ B′
α defined by by A : (u, a) �→ ∆u+aψ.

By the proof of the Full Injectivity Estimate together with the Key Lemma,
it is evident that A is an isomorphism with ‖A−1‖ ≤ Cε−ν. By Lemma
9, ‖P‖ ≤ Cα1−β, therefore ‖A−1P‖ ≤ Cα1−βε−ν . For small enough ν,
α1−βε−ν → 0 as α→ 0, therefore I +A−1P is invertible, and it follows that
A+ P = DFα(0, 0) is surjective. �

7. Solving the Deformation Problem.

The following Proposition can be found in [11].

Proposition 23 (Nonlinear Estimate). For small α, Fα satisfies a non-
linear estimate with CN = Cε−2 and r1 = 1

C ε
2. That is, for (h, t) ∈ Bα with

‖(h, t)‖Bα ≤ r1,

‖DFα(h, t)(u, a) − DFα(0, 0)(u, a)‖B′
α
≤ Cε−2‖(h, t)‖Bα ·‖(u, a)‖Bα

for all (u, a) ∈ Bα.

The bound on r1 is needed so that we can always assume that τ = 1 in our
definition of Fα. Finally, we have the following simple estimate.

Proposition 24 (Estimate of Fα(0, 0)). For small enough α,

‖Fα(0, 0)‖B′
α
≤ Cα3.

Proof. Note that Fα(0, 0) = 〈Im Ω,VolMα〉Mα = sin θ. Recall that ρ(x) ≤ Cδ
for x ∈Mα ∩Bδ and δ = α

Cδ
. Then since sin θ is supported in Mα ∩Bδ,

|ρ2 sin θ|0 ≤ Cδ2| sin θ|0 ≤ Cα3 (10)

where the second inequality follows from the bound on sin θ from Lemma 6.
Now we will estimate [ρ2+β sin θ]β by interpolation. As in (10), we see that

|ρ2+β sin θ|0 ≤ Cα3+β .
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We also have

|∇(ρ2+β sin θ)|0 ≤ |(2 + β)ρ1+β(∇ρ) sin θ|0 + |ρ2+β∇(sin θ)|0
≤ Cδ1+β | sin θ|0 + Cδ2+β|∇(sin θ)|0
≤ Cα2+β

where the second line follows from the bound on ∇ρ and the same reasoning
as in (10), and the last line uses the bounds on sin θ and ∇(sin θ) from
Lemma 6. Combining the two previous inequalities, we see that

[ρ2+β sin θ]β ≤ Cα3.

�

Finally, let r = (2CICN )−1 = 1
C ε

2+ν , which is less than r1 for sufficiently
small α. For small enough ν, we have r

2CI
= 1

C ε
2+2ν > Cα3 ≥ ‖Fα(0, 0)‖B′

α

for sufficiently small α. We can now invoke the Inverse Function Theorem
to find a solution Fα(h, t) = 0 with ‖(h, t)‖B′

α
≤ r, and by elliptic regularity,

h is smooth. Since ‖∇h‖0 ≤ Cε1+ν , it follows that there exists an embedded
special Lagrangian submanifold of (X,Jt, ωt,Ωt) in a Cε1+ν-neighborhood
of Mα for some t < r. Finally, since the construction of Mα and Fα can be
made to depend smoothly on α, and there is a unique solution to Fα(h, t) = 0
in Br(0, 0), we can also say that the embedded SLags we constructed, as well
as t, depend smoothly on α. This concludes the proof of the Main Theorem
and the Torus Case.

References.

[1] Adrian Butscher, Regularizing a singular special Lagrangian variety,
arXiv:math.DG/0110053, to appear in Comm. Anal. Geom.

[2] , Deformation theory of minimal Lagrangian submani-
folds, Ph.D. thesis, Stanford University, August 2000.

[3] Philip Candelas and Xenia C. de la Ossa, Moduli space of Calabi-Yau
manifolds, Strings ’90 (College Station, TX, 1990), World Sci. Publish-
ing, River Edge, NJ, 1991, pp. 401–429.

[4] F. Reese Harvey, Spinors and calibrations, Perspectives in Mathematics,
vol. 9, Academic Press Inc., Boston, MA, 1990.

[5] Mark Haskins, Special Lagrangian cones, arXiv:math.DG/0005164, to
appear in Amer. J. Math.



578 Dan A. Lee

[6] Nigel J. Hitchin, The moduli space of special Lagrangian submanifolds,
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 3-4, 503–515
(1998), Dedicated to Ennio De Giorgi.

[7] Dominic Joyce, Lectures on Calabi-Yau and special Lagrangian geom-
etry, Part I of M. Gross, D. Huybrechts and D. Joyce, “Calabi-Yau
Manifolds and Related Geometries,” Springer, 2003, is an expanded
version of this paper, arXiv:math.DG/0108088.

[8] , Special Lagrangian submanifolds with isolated coni-
cal singularities. IV. Desingularization, obstructions and families,
arXiv:math.DG/0302356.

[9] , Compact manifolds with special holonomy, Oxford Math-
ematical Monographs, Oxford University Press, Oxford, 2000.

[10] Gary Lawlor, The angle criterion, Invent. Math. 95 (1989), no. 2, 437–
446.

[11] Yng-Ing Lee, Embedded special Lagrangian submanifolds in Calabi-Yau
manifolds, to appear in Comm. Anal. Geom.

[12] Robert C. McLean, Deformations of calibrated submanifolds, Comm.
Anal. Geom. 6 (1998), no. 4, 705–747.

[13] James Morrow and Kunihiko Kodaira, Complex manifolds, Holt, Rine-
hart and Winston, Inc., New York, 1971.

[14] Richard M. Schoen, Special Lagrangian submanifolds, from the Clay
Mathematics Institute Summer School on the Global Theory of Minimal
Surfaces.

[15] Andrew Strominger, Shing-Tung Yau, and Eric Zaslow, Mirror symme-
try is T -duality, Nuclear Phys. B 479 (1996), no. 1-2, 243–259.

[16] Gang Tian, Smoothness of the universal deformation space of compact
Calabi-Yau manifolds and its Petersson-Weil metric, Mathematical as-
pects of string theory (San Diego, Calif., 1986), Adv. Ser. Math. Phys.,
vol. 1, World Sci. Publishing, Singapore, 1987, pp. 629–646.

[17] Andrey N. Todorov, The Weil-Petersson geometry of the moduli space of
SU(n ≥ 3) (Calabi-Yau) manifolds. I, Comm. Math. Phys. 126 (1989),
no. 2, 325–346.



Connected Sums of Special Lagrangian Submanifolds 579

Stanford University

dalee@math.stanford.edu

Received April 14, 2003.


