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Quasiconvex Foliations and Asymptotically Flat

Metrics of Non-negative Scalar Curvature

Brian Smith and Gilbert Weinstein

We prove that a broad subset of the space of asymptotically flat
Riemannian metrics of nonnegative scalar curvature on R3 is con-
nected using a new method for prescribing scalar curvature that
generalizes a method developed by Bartnik for quasi-spherical met-
rics.

1. Introduction.

Asymptotically flat Riemannian 3-dimensional metrics of non-negative scalar
curvature arise naturally in general relativity when one considers the Einstein
vacuum constraint equations in the maximal gauge. Indeed, the normal-
normal and normal-tangential components of the Einstein vacuum equations
in that gauge read:

R = |k|2 , (1)
div k = 0, tr k = 0, (2)

where R is the scalar curvature of the Riemannian metric g induced on a
maximal time-slice, and k is the second fundamental form of that slice in
the ambient Lorentzian 4-manifold. It is clear from (1) that R ≥ 0. The
remaining Einstein vacuum equations can be seen as governing the evolution
of the data consisting of the first and second fundamental form g and k. Since
this evolution traces a continuous path in the space of initial data with the
appropriate topology, it is natural to ask: what are the topological properties
of this space of data? In particular, a question of considerable importance is
whether this space is connected. It is possible to show using the conformal
method that two sets of initial data (g, k), (g′, k′) are in the same path-
connected component of the space of initial data if and only the metrics g
and g′ are in the same path-connected component of the space of metrics of
non-negative scalar curvature [17].

A topological 2-sphere in a Riemannian manifold is said to be quasicon-
vex if its Gauss and mean curvatures are positive. A foliation is quasiconvex
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if its leaves are quasiconvex spheres. We say that a Riemannian metric g
on R

3 is quasiconvex if for some point x ∈ R
3, R

3 \ {x} admits a quasi-
convex foliation. In this paper we develop a new method for constructing
quasiconvex asymptotically flat Riemannian metrics of nonnegative scalar
curvature. As our main application we prove that the set of quasiconvex
asymptotically flat Riemannian metrics of nonnegative scalar curvature on
R

3 is connected. Our proof uses a nonstandard method for prescribing scalar
curvature that involves solving a parabolic reaction-diffusion equation on S

2

for an undetermined metric component, where a radial coordinate on R
3

takes the place of time, and the coordinate spheres of R
3 have been iden-

tified with S
2. This method for the prescription of scalar curvature is a

generalization of a method developed by Bartnik for quasi-spherical metrics
[2]. Our result was announced in [18].

Let r be the standard Euclidean distance from the origin in R
3. We will

use the weighted Hölder spaces Ck,α−τ defined by:

‖f‖Ck
−τ

=
k∑
i=0

∥∥στ+iDif
∥∥
C0

[f ]α,−τ = sup
x,y

σ(x, y)τ+α
|f(x) − f(y)|

|x− y|α

‖f‖
Ck,α

−τ
= ‖f‖Ck

−τ
+ [Dkf ]Cα

−τ−k

Ck,α−τ = {f : ‖f‖
Ck,α

−τ
<∞}.

Here k is a positive integer, α ∈ (0, 1), τ ∈ (0, 1], σ(x) =
√

1 + |x|2,
σ(x, y) = min{σ(x), σ(y)}, and Dif is the i-th order derivative of f . For
a tensorfield T on R

3 we define ‖T‖
Ck,α

−τ
to be the sum of the Ck,α−τ norms

of the coordinate components. We note that although these norms are co-
ordinate dependent, the topology they induce is invariant under diffeomor-
phisms of bounded distortion . We say that a diffeomorphism Φ: R

3 → R
3

is of bounded distortion in Ck,α−τ if there is a rigid rotation Θ of R
3 such

that Θ ◦Φ − I ∈ Ck,α−τ . It is straightforward to check that if the transition
function between two coordinate systems is a diffeomorphism of bounded
distortion in Ck,α−τ then the two norms defined with these coordinate systems
are equivalent, and hence the topologies induced by these norms are equal.



Nonnegative Scalar Curvature 513

In addition, we will also use the space C2
∗ defined by:

‖f‖C2∗ =
2∑
i=1

∥∥σiDif
∥∥
C0

C2
∗ = {f : ‖f‖C2∗

<∞}.

Let Sr denote the coordinate spheres, and let κ, χ, andH be, respectively,
the Gauss, extrinsic, and mean curvatures of Sr considered as functions on
(R3 \ {O}, g). Let α ∈ (0, 1), and let δ be the standard metric of R

3. Define
Mα to be the space of Riemannian metrics on R

3 satisfying:

(i) g − δ ∈ C2,α
−1 ;

(ii) g(0) = δ;

(iii) R(g) ≥ 0;

(iv) H,κ > 0.

Condition (iv) requires that the foliation spheres {Sr} are quasiconvex, i.e.,
have positive mean and Gauss curvatures. Henceforth the subscript α will
be dropped so that we have M = Mα. Let M be equipped with the topology
induced by C2,α

−1 . Let G denote the group of diffeomorphisms of R
3 with

bounded distortion in C2,α
−1 . We can now state our main theorem.

Main Theorem. The quotient M/G is path connected in the quotient topol-
ogy.

As mentioned earlier, this theorem is proved using a parabolic equation
for prescribing scalar curvature. This equation relates the scalar curvature
R(g) of a metric g to the component of g normal to the foliation {Sr}. Write
g = u2dr ⊗ dr + r2γ, with the 2-tensor γ vanishing on the unit normal N
to the foliation, and define N̄ = ruN , χ̄ = r−1uχ, H̄ = ruH, and κ̄ = r2κ.
Then, it can be shown that χ̄, H̄, and κ̄ can be computed in terms of γ
and N̄ only. Using ∇/ and ∆/γ to denote the covariant derivative and the
Laplacian with respect to γ on Sr, we have

H̄∇/ N̄u = u2∆/γu+ Āu− B̄u3, (3)

where

Ā = ∇/ N̄H̄ − H̄ +
1
2
|χ̄|2γ +

1
2
H̄2,

B̄ = r2(κ− 1
2
R) = e−2v(1 − ∆/v) − 1

2
r2R;
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see [18].
To study this equation as a reaction-diffusion equation we make an

identification of R
3\{0} with R

+ × S
2 using a family of diffeomorphisms

πr : Sr → S
2. This family is chosen so that applying the Poincaré uni-

formization separately on each Sr we can write γ = e2v γ̄ where (πr)∗ γ̄ is a
fixed round metric on S

2 (independent of r). Equation (3) then becomes

r∂ru− β · ∇/u = Γu2∆/u+Au−Bu3, (4)

where Γ = e−2v/H̄ , A = Ā/H̄ , B = B̄/H̄, ∆/ = ∆/ γ̄, and ∇/ is the covariant
derivative with respect to γ̄, and β = r∂r − N̄ . We then rewrite the metric
g as:

g = u2dr2 + e2vγ̄AB(βAdr + rdθA)(βBdr + rdθB), (5)

where β is the shift vector defined above and (θ1, θ2) are local coordinates
pulled back from S

2 under the mappings πr. It will be shown in Section 2
that this is possible for any g ∈ M after a small perturbation. Given a triple
(v, β,R), our aim will be to show that Equation (4) can under appropriate
conditions be solved for the normal component u to produce, by substituting
into (5), a metric g with the prescribed scalar curvature R. The condition
H̄ > 0 in (iv) guarantees that (4) is parabolic, while the condition κ̄ > 0 is
used to prevent blowup.

To deform a given g ∈ M we define the deformation explicitly on a
coordinate ball Br0, while on its complement R

3\Br0 we make a deformation
of the data (v, β,R) with H̄, κ̄ > 0, R ≥ 0. We use these as sources
in equation (4), and the resulting family of equations is then solved for a
deformation of the normal component u, where for initial data we take the
deformation of u already given on Sr0 by the deformation on Br0 . This device
is used to avoid dealing with the somewhat delicate analytical subtleties
associated with giving initial conditions for (4) at r = 0 where the equation
is singular.

The outline of the paper is as follows: In Section 2 we first show that given
a smooth family of metrics γλ on S

2 depending differentiably on a parameter
λ there exists a smooth family of conformal factors φλ, differentiable in λ,
such that γ̄λ = (φλ)−1γ is round for every λ. Next, we use this result to
show that any sufficiently smooth metric g ∈ M that is conformally flat near
the origin and at infinity can be rewritten as in (5). In Section 3 we show
that any g ∈ M can be deformed in M to a metric that is Ck−1 for all integers
k and that is conformally flat at the origin and at infinity; this is needed
in order to apply the results of Section 2 and also so that we will not lose
any differentiability when we transfer to the parabolic Hölder spaces used
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in Section 4. Section 3 uses the conformal method and also makes use of a
number of elliptic results for weighted Hölder spaces, which are stated there
and proved in the appendix. In Section 4 we collect the analytical results
we need concerning Equation (4). Finally, in Section 5 we make a sequence
of metric deformations as outlined in the previous paragraph to construct a
path of metrics starting at an arbitrary metric g0 ∈ M and ending at a flat
metric.

2. Uniformization of Foliation Spheres.

Our main goal in this section is to write a given metric in the form (5). For
this purpose we must, for each r ∈ R

+, find a uniformization of the induced
metric on the foliation sphere Sr. The resulting 1-parameter family of con-
formal factors, which will be indexed by r, must be not only differentiable
on S

2, but also differentiable in r. In addition, we must have appropriate be-
havior as r approaches 0 and ∞. As will be seen in Section 3 we can assume
that g is conformally flat at infinity and at the origin. Thus, given a family of
metrics γ on S

2 that depend smoothly on a parameter r ∈ [a, d] and for which
a uniformizing conformal factor is already given for r ∈ [a, b]∪ [c, d] ⊂ [a, d],
we are to construct a smooth family of uniformizing conformal factors on
[a, d] that agrees with the one given on a neighborhood of the endpoints a
and d. This is essentially the content of Theorem 5. To accomplish this we
use a modification of the uniformization of S

2 in [7] and then show that the
resulting family of conformal factors has the appropriate dependence on r.

Here, as in [7], the uniformization is accomplished by first choosing
P ∈ S

2 and constructing a function w, singular at P , such that γ0 = e2wγ
is a flat metric on S

2\{P} ≈ R
2. The standard stereographic projection

then gives another conformal factor e2ũ so that γ̄ = e2(w+ũ)γ has Gauss
curvature identically equal to 1. Regularity theory then shows that w+ ũ is
smooth across P, and the desired conformal factor has been constructed. The
primary difference between our uniformization and that of [7] is in the con-
struction of the function w. In [7], this function is given on a neighborhood
of P by v − 2 log(λ̃), where λ̃ is the geodesic distance from P, and v verifies
∆/γv = κ(γ)+2∆/γ log(λ̃) on this neighborhood. We modify this by replacing
λ̃ with λ =

√
x2 + y2, which is defined in terms of local isothermal coordi-

nates (x, y). This has the advantage that it is more readily apparent that w
and then ũ are also differentiable in the parameter on S

2\{P}. In Theorem 4
we show that the family of conformal factors is appropriately differentiable
in the parameter at P as well so that we will have w + ũ ∈ C∞(I × S

2).
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Let the parameter interval be denoted by I. It follows from the next
propositions that ũ, w ∈ C∞(I × S

2\{P}). The first two of these involve the
differentiable dependence upon a parameter of the solutions of the elliptic
partial differential equation

∆/γv = f, (6)

on subsets of S
2, where γ is a family of metrics on S

2 and f is a family
of functions, both of which depend smoothly on a parameter r. The third
proposition involves the differentiable dependence on the parameter of the
exponential map and its inverse.

Proposition 1. Let Ω ⊂ S
2, Ω̄ �= S

2 with C∞ boundary ∂Ω. Let γ ∈
C∞(I × Ω̄) be a family of metrics on S

2, and let f ∈ C∞(I × Ω̄) be a family
of functions. Then there exists a unique family of solutions v ∈ C∞(I × Ω)
of Equation (6) with the boundary data v|∂Ω = 0.

To prove this proposition we regard Ω as a domain of R
2. The result follows

from Theorem 6.8 and Exercise 6.2 of [10] together with the fact that if a
family of isomorphisms L is smooth in the parameter then L−1 will be also.

Proposition 2. Let γ, f ∈ C∞(I × S
2) satisfy

∫
S2 fdAγ = 0 for every value

of the parameter, and let P ∈ S
2. Then there exists a unique family of

solutions v ∈ C∞(I × S
2) of Equation (6) satisfying v(P ) = 0.

Proof. Since
∫
fdAγ = 0, standard elliptic theory on S

2 shows that there
exists a unique family of solutions v of Equation (6) on S

2 satisfying v(P ) =
0. To show that v is smooth in r we consider the family of operators L :
Ck+2,α(S2) → Ck,α(S2) defined by

L(w) = ∆/γw + w(P ), P ∈ S
2.

To see that L is an isomorphism note that if w, h satisfy

L(w) = h, (7)

then we have w(P ) = h̄, where h̄ is the average of h. From this observation
we have that ∆/γw = h − h̄ from which, using standard elliptic theory, we
derive a bound of the form

‖w‖Ck+2,α ≤ C ‖h‖Ck,α .

Furthermore, we can solve ∆/w′ = h− h̄ and add a constant to get a solution
w = w′ − w′(P ) + h̄ of (7). Thus, a bounded family of inverses L−1 exists,
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which is seen to be smooth in r. Since we have v = L−1f it follows that
v ∈ C∞(I, Ck+2,α(S2)). This holds for all integers k, and thus we get v ∈
C∞(I × S

2). �

Given a family of metrics γ on S
2 and a point P ∈ S

2, we will use
expγ,P to denote the corresponding family of exponential maps at the point
P . The next proposition follows from dependence on parameters in ordinary
differential equations and the inverse function theorem.

Proposition 3. Let P ∈ S
2 and let W be a neighborhood of P. Suppose

that γ ∈ C∞(I ×W ). Let V ⊂ TPM be a compact set containing 0 such
that expγ,P (V ) ⊂ W and expγ,P : V → W is injective for every value of
the parameter. Let U ⊂ S

2 satisfy U ⊂ expγ,P (V ) for every value of the

parameter. Then expγ,P ∈ C∞(I × V,W ) and exp−1
γ,P ∈ C∞(I × U, V ).

With the help of Propositions 1 and 3 we can now construct, on a neigh-
borhood B of P , a family of isothermal coordinates (x, y) ∈ C∞(I ×B) for
the family γ. Let Ω be a C∞ neighborhood of P , and let κ(γ) be the family
of Gauss curvatures of γ. With f = κ(γ) and v′|∂Ω = 0, let v′ ∈ C∞(I × Ω)
be the family of solutions of (6) given by proposition 1. On Ω we have that
γ̃0 = e2v

′
γ is a family of flat metrics. Let B ⊂ Ω be such that expγ̃0,P

is injective on exp−1
γ̃0,P

(B). Proposition 3 can be used to obtain a family of
Cartesian normal coordinates (x, y) ∈ C∞(I×B) associated with γ̃ and with
origin at P

With λ =
√
x2 + y2, the family log λ verifies ∆/γ log λ = 0 on B\{P} and

is clearly C∞(I×B\{P}). Let ϕ be a positive C∞ cutoff function identically
1 on a neighborhood of P and supported on B. We have∫

S2

∆/γ(ϕ log λ)dVγ = −2π (8)

for every value of the parameter. This equation is obtained by noting that
for ε small enough∫

S2

∆/γ(ϕ log λ)dVγ =
∫

R2\Bε(0)
(∂2
x + ∂2

y)(ϕ log(
√
x2 + y2)) dx dy

followed by an application of the divergence theorem to the right hand side.
Now from (8) and the Gauss Bonnet Theorem we see that

∫
(κ(γ) +

2∆/ϕ log λ) = 0. It follows from Proposition 2 that there is a unique family
of solutions v ∈ C∞(I × S

2) of

∆/γv = κ(γ) + 2∆/γ(ϕ log λ), v(P ) = 0.
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Defining w = v − 2ϕ log λ, γ0 = e2wγ is flat. Define ρ to be the geodesic
distance from point O with respect to γ0. By proposition 3 it follows that
ρ ∈ C∞(I × S

2\{P}), and hence ũ = − log(1 + ρ2

4 ) ∈ C∞(I × S
2\{P}).

Defining u = w+ ũ, it can be checked that the Gauss curvature of the metric
e2uγ is identically equal to 1 on S

2\P .
As in [7], if we can verify an L∞-bound on u for each value of the pa-

rameter r it follows from Lp-estimates that u(τ) ∈W 2,p(S2) for every p > 0
[7]. Sobolev embedding theorems along with standard bootstrap arguments
will then give u ∈ C∞(S2) for each r. To derive the L∞-bound note that on
a neighborhood of P we can write

γ0 = e2(w−v
′)γ̃0 = λ−4e2(v−v

′)(dλ2 + λ2dθ2).

Thus we get a bound of the form c−1λ−1 < ρ < cλ−1 and the L∞ bound
on u = ũ + w follows. We conclude that γ̄ = e2uγ is a round C∞ metric
for each r. Define φ = e−2u. We refer to the factorization γ = φγ̄ as a
(P,O)-uniformization. We note that O and P are antipodal points for S

2

with respect the metric γ̄ for every r. We now need to show that in fact
φ ∈ C∞(I × S

2).

Theorem 4. Let γ ∈ C∞(I × S
2). Then there is a (P,O) uniformization

γ = φγ̄ with φ ∈ C∞(I × S
2).

Proof. Take γ = φγ̄ to be the (P,O)-uniformization constructed above. Then
from the observations of the previous two paragraphs we have φ, γ̄ ∈ C∞(I×
S

2\{P}). Let γ = φ′γ̄′ be an (O,P )-uniformization. Then φ′, γ̄′ ∈ C∞(I ×
S

2\{O}). Let z be stereographic coordinates for γ̄ projected from P and
let z′ be stereographic coordinates for γ̄′ projected from O. Since z, z′ can
be constructed in terms of normal coordinates of γ̄ and γ̄′, respectively, it
follows from Proposition 3 that z ∈ C∞(I × S

2\{P},C) and z′ ∈ C∞(I ×
S

2\{O},C). Since γ̄ = (φ′/φ)γ̄′, the metrics γ̄, γ̄′ are related by a conformal
diffeomorphism for every value of the parameter, and thus z = (az′+b)/(cz′+
d). Since z is projected from P and z′ is projected from O it follows that
a = d = 0, and we have z = α/z′ where α = b/c is a function from I into
C. For some point N �= O,P it is clear that z(N), z′(N) ∈ C∞(I,C), from
which it follows that α ∈ C∞(I,C). Defining z̃ = 2/z it is immediate that
z̃ ∈ C∞(I × S

2\{O},C), and since we can write

γ̄ =
(

1 +
|z̃|2
4

)−2

d|z̃|2
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we have also γ̄ ∈ C∞(I × S
2\{O}). We already know that γ̄ ∈ C∞(I ×

S
2\{P}), and thus γ̄ ∈ C∞(I × S

2). The theorem follows since, for instance,
φ = det(γ)/det(γ̄). �

Theorem 5. Let γ ∈ C∞(I × S
2) with I = [0, 2]. Suppose that on the

subinterval [1, 2] a (P,O) uniformization γ = φ′γ̄′ is given with φ′ ∈
C∞([1, 2] × S

2). Then there is a (P,O)-uniformization of class C∞(I × S
2)

that agrees with γ = φ′γ̄′ on
[

3
2 , 2

]
.

Proof. Let γ = φ̃˜̄γ be the (P,O)-uniformization on the interval I = [0, 2]
given by Theorem 4. Let z be stereographic coordinates projected from the
point P. Then on [1, 2] we have that γ̄′ = ψα ˜̄γ, where

ψα =
{

1 + |z|2/4
α+ α−1|z|2/4

}2

and α ∈ C∞([1, 2],R). Let 0 ≤ λ ≤ 1 be a C∞ cutoff function supported on
[1, 2] and satisfying λ ≡ 1 on [3/2, 2]. Define

α̃ = λα+ (1 − λ).

Then on [1, 2] we have γ = (φ̃ψ−1
α̃ )(ψα̃ ˜̄γ). Thus φ ≡ φ̃ψ−1

α̃ gives the required
uniformization. �

Theorem 6. Suppose g − δ ∈ C∞
−1 satisfies g = e2ṽδ on a neighborhood of

the origin and outside a compact set. Then g can be written in the form

g = u2dr2 + e2v γ̄AB(βAdr + rdθA)(βBdr + rdθB), (9)

where γ̄AB is a fixed round metric on the foliation spheres Sr expressed in
terms of local coordinates θ1, θ2 on S

2. Furthermore, defining β = βA∂/∂θA ,
it can be arranged that u− 1, v, σ−1β ∈ C∞

−1.

Proof. Let γ be defined by

γ = r−2(g − u2dr ⊗ dr),

where u−2 = g(∇r,∇r). Let N denote the unit outward normal to the foli-
ation {Sr}. Since u dr(N) = 1 it follows that γ(N, ·) = 0. When there is no
possible ambiguity we also use γ to denote γ|Sr . By hypothesis u = eṽ outside
a compact set and on a neighborhood of the origin; whence u− 1 ∈ C∞

−1.
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Let F = (r, ω) : R
3\{0} → R

+×S
2 be the standard spherical coordinates

on R
3. View ω instead as a family of mappings, which for every r maps Sr

onto S
2. We conclude using Theorem 4 that we can write ω∗γ = e2v γ̄′ for

v ∈ C∞(R+ × S
2). We abuse notation slightly and use v also to denote the

function ω∗v defined on R
3\{0}. Using Theorem 5 we can arrange for v to

agree with ṽ outside of a compact set and in a neighborhood of the origin;
hence v ∈ C∞

−1.

Let l : S
2 → S

2 be a smooth family of diffeomorphisms such that l∗γ̄′ is
fixed in the parameter r and such that l is the identity for r large and small.
Define ω′ = l ◦ω. Let X be the tangent vectorfield to the family of curves
(ω′)−1(p), p ∈ S

2 that satisfies dr(X) = 1. Defining γ̄ = (ω′)∗γ̄′, we have
γ̄(X, ·) = 0, LX γ̄ = 0, and γ|Sr = e2v γ̄|Sr .

Let θ1, θ2 be local coordinates on S
2. We abuse notation and use θ1, θ2 to

denote also the functions θ1 ◦ω′, θ2 ◦ω′, which give local angular coordinates
on R

3. Let N̄ ≡ ruN and define β1, β2 by βA = −N̄(θA). Let the one forms
dφ1, dφ2 be defined by dφA = βAdr + rdθA. Since dφ1, dφ2 are linearly
independent and vanish on N, we can write r2γ = γABdφ

AdφB . The form
(9) is obtained by using local coordinates (r, θ1, θ2) and substituting γ̄ =
γ̄ABdθ

AdθB in γ|Sr = e2vγ̄|Sr to conclude γAB = e2vγ̄AB . Denote ∂A =
∂/∂θA, and define the shift vectorfield β = βA∂A. Applying the identity
operator ∂r ⊗ dr + ∂A ⊗ dθA to N̄ , and using N̄(r) = r, X = ∂r, we obtain
β = r∂r − N̄ . Noting that β vanishes outside of a compact set and on a
neighborhood of the origin, it follows immediately that σ−1β ∈ C∞

−1. �

This gives a representation of the metric g in terms of the functions u, v
and the vectorfield β. Note that setting u = 1, v = 0, β = 0 in (9) gives a
flat metric that in general is not equal to δ. Define F ′ = (r, ω′), where ω′ is
as in the proof of the theorem above. Then the metric g′ = (F−1 ◦F ′)∗g can
be written in the form (9), where the coordinates θ1, θ2 are now standard
angular coordinates on R

3. Setting u = 1, v = 0, β = 0 in the transformed
metric g′ would give the standard flat background metric δ. For simplicity,
we will often replace g by g′.

In view of L∂r γ̄ = 0, the extrinsic curvature χ of the foliation can be
calculated rather simply. Define Π to be the orthogonal projection from
TpR

3 to TpSr. Let γ be as in the proof of the theorem and let β̂ denote the
one form β̂Bdθ

B, where β̂B = γABβ
A. Since LN̄dr vanishes on TSr, we have:

χ =
Π
2

LN (r2γ) =
Π

2ru
LN̄

(
r2e2v γ̄ − sym(ξ ⊗ dr)

)
=

Π
2ru

LN̄
(
r2e2v γ̄

)
,

(10)
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where ξ = 2rβ̂ + β̂(β)dr. Writing N̄ = r∂r − β and using L∂r γ̄ = 0, we get

χ =
r

u

(
(1 + r∂rv)γ − 1

2
Lβγ

)
. (11)

Taking the trace with respect to g gives the mean curvature,

H =
1
ru

(2(1 + r∂rv) − divγ β) , (12)

or equivalently

H =
1
ru

(
2(1 + r∂rv) − e−2v divγ̄(β̂)

)
.

In the metric deformations made later in the paper we always take the
covariant form β̂, which for simplicity will be denoted also as β so that
the last equation is written

H =
1
ru

(
2(1 + r∂rv) − e−2v divγ̄ β

)
. (13)

The Gauss curvature of the foliation is given by

κ = r−2e−2v(1 − ∆/v). (14)

Define H̄ = ruH and κ̄ = r2κ.

The asymptotic behavior of u as r → ∞ is important in establishing
asymptotic flatness. Thus, following Bartnik [1], we define the auxiliary
function

m = r(1 − u−2) (15)

to aid in the study of this behavior.

3. Preliminary Deformations.

As remarked in the introduction, the deformation of a given metric in M

is largely accomplished by solving (4) along a parameter, where the results
of the last section are used to assume that the starting metric is of the
form (9). However, the results of that section require that the metric g
satisfies g − δ ∈ C∞

−1 and in addition that g is conformally flat near ∞ and
in a neighborhood of the origin. In this section it is shown that an initial
deformation can be made so that the resulting metric has these properties.
In 3.2 we show that any g0 ∈ M can be continuously deformed in M to a
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metric g1 ∈ M ∩ (δ + C∞
−1) that is conformal to δ near infinity. In 3.3 it is

shown that any such g1 can be deformed in M to a metric g2 ∈ M∩(δ+C∞
−1)

that, in addition to being conformal to δ near infinity, is also conformal to
δ in a neighborhood of the origin. Most of the results of this section are
obtained using standard elliptic theory involving the weighted Hölder spaces
Ck,α−τ ; the basic elliptic results needed are collected in 3.1.

In both 3.2 and 3.3 the deformations are accomplished by explicitly defin-
ing a deformation g̃ ∈ C([0, 1], δ+C2,α

−1 ) so that g̃(0) = g0 and g̃ would be in
M but for the sign of the scalar curvature. We then find ψ ∈ C([0, 1], C2,α

−1 )
such that the path (1 + ψ)4g has nonnegative scalar curvature. In order to
preserve quasi-convexity, the following proposition is used:

Proposition 7. Let g ∈ C2
−1 be such that the coordinate spheres are quasi-

convex. There exists a δ > 0 such that if∥∥g − g′
∥∥
C2∗

≤ δ (16)

then the coordinate spheres are also quasi-convex with respect to g′.

Proof. This is proved using the following scale invariance of H̄, κ̄, ‖·‖C2∗ :

H̄(gr)|S1 = H̄(g)|Sr (17)
κ̄(gr)|S1 = κ̄(g)|Sr (18)

‖gr‖C2,S1
= ‖g‖C2∗ ,Sr

, (19)

where (gr)ij = gij(rx). In view of (17)–(18) we can choose ε > 0 small
enough that H̄(gr)|S1 , κ̄(gr)|S1 > ε. Considering H̄(h)|S1 = F (p,Q) and
κ̄(h)|S1 = G(p,Q) as functions of p ∈ S1 and Q = (h, ∂h, ∂2h) ∈ A, where
A = {Q = (h, ∂h, ∂2h) ∈ R

60 : deth > 0}, then F and G are continuous on
S1 × A. Pick r > 0, so that ‖g − g′‖C2∗

< r implies det g′ ≥ µ = 1
2 inf det g,

and note that ‖g′‖C2∗
≤ ‖g‖C2

−1
+ r = C for any such g′. Let K = BC ∩

{deth ≥ µ} ⊂ R
60; then K is compact, and hence F and G are uniformly

continuous on S1×K. Thus, there is δ > 0 such that |F (p,Q)−F (p,Q′)| < ε
and |G(p,Q) −G(p,Q′)| < ε whenever |Q−Q′| < δ. If ‖g − g′‖C2∗

< δ then
‖gr − g′r‖C2,S1

< δ; hence ∣∣κ̄(gr) − κ̄(g′r)
∣∣
S1
< ε∣∣H̄(gr) − H̄(g′r)

∣∣
S1
< ε.

From this we conclude H̄(g′r)|S1 , κ̄(g
′
r)|S1 > 0. The identities (17)–(18) then

show that H̄(g′), κ̄(g′) > 0. �



Nonnegative Scalar Curvature 523

3.1. Elliptic Theory.

We will need some results about elliptic operators in the Hölder spaces
Ck,α−β (R3), which are collected here. However, in order not to stop the main
line of the paper, we present the proofs in an appendix. Throughout this
subsection k is an integer greater than or equal to 2. The first theorem is an
extension of a theorem of Choquet-Bruhat and Chaljub-Simon, which can
be found in [9]; see also [14].

Theorem 8. Let τ > 0, and let g ∈ δ + Ck−1,α
−τ be a metric on R

3.

(a) Let u ∈ C0
−β and ∆gu ∈ Ck−2,α

−β−2 . Then u ∈ Ck,α−β and

‖u‖
Ck,α

−β
≤ C(‖∆gu‖Ck−2,α

−β−2
+ ‖u‖C0

−β
). (20)

(b) Let 0 < β < 1, ν > 2, and let h ∈ Ck−2,α
−ν . If the operator ∆g − h :

Ck,α−β → Ck−2,α
−β−2 is injective then it is an isomorphism.

When β = 1, we need to add an L1-condition on ∆u to recover the
isomorphism result. We incorporate this condition in new Banach spaces.
For k ≥ 0 let Dk,α

−3 = Ck,α−3 ∩ L1 be equipped with the norm

‖f‖
Dk,α

−3
= ‖f‖

Ck,α
−3

+ ‖f‖L1 ,

and for k ≥ 2 let Ek,α−1 = {u ∈ Ck,α−1 : ‖∆u‖L1 < ∞} be equipped with the
norm

‖u‖
Ek,α

−1
= ‖u‖

Ck,α
−1

+ ‖∆u‖L1 ,

where ∆ denotes here the Laplacian with respect to the flat metric δ. It is
easy to check that Dk,α

−3 and Ek,α−1 are Banach spaces.

Theorem 9. Let τ > 0, let g ∈ δ + Ck−1,α
−τ be a metric on R

3, and let

h ∈ Ck−2,α
−ν , ν > 2. If the operator

∆g − h : Ek,α−1 → Dk−2,α
−3

is injective then it is an isomorphism.

Let G(x, y) be the fundamental solution of ∆gu = 0; see [16] for the
existence of G. Then the following representation holds for any u ∈ C2,α

−β :

u(x) = −
∫

R3

∆gu(y)G(x, y) dµg(y). (21)
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In [16], the following bounds on G(x, y) are proved:

1
C|x− y| ≤ G(x, y) ≤ C

|x− y| . (22)

We will also need weighted higher derivative estimates on G(x, y).

Lemma 10. Let G(x, y) be the fundamental solution of ∆gu = 0. Then the
following inequalities hold:

|∂G(x, y)| ≤ C

|x− y|2

|∂2G(x, y)| ≤ C

|x− y|3 .

3.2. The Smoothing Deformation.

A metric g on R
3 is referred to as harmonically flat in the case that, in

addition to being asymptotically flat, R(g) is compactly supported and there
exists a compact set B such that g is conformal to δ on R

3\B. 1 Given any
metric g0 ∈ M, we will now construct a continuous deformation of g0 to a
harmonically flat metric g1 ∈ C∞

−1 ∩ M. We first find, for any µ > 0, a path
g̃t satisfying:

(i) g̃0 = g0;

(ii) g̃1 ∈ C∞
−1, and g̃1 = δ outside a compact set;

(iii) g̃t(0) = δ;

(iv) g̃t ∈ C0(I, C2,α
−1 ) and R(g̃t) ∈ C0(I, L1);

(v) ‖g̃t − g0‖C2,α
−1/2

< µ and ‖R(g̃t) −R(g0)‖Cα
−5/2

< µ.

Once g̃t is found, the metrics gt can be constructed by the conformal method.
Indeed, if µ > 0 is chosen small enough then by (v) the operator

∆g̃t −
1
8
R(g̃t) : C

k,α
−1/2 → Ck−2,α

−5/2

1Previously, these metrics have been referred to as harmonically flat at infinity
(see [3]), but we shorten this phrase here for convenenience.
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is an isomorphism since it is norm-close to ∆g0 −R(g0), which is an isomor-
phism due to R(g0) ≥ 0 and part (b) of Theorem 8. Choose a nonnegative
function of compact support R̃ ∈ C∞ so that∥∥R(g0) − R̃

∥∥
Cα

−5/2

< µ. (23)

The family of operators Lt = ∆g̃t − 1
8R(g̃t) : E

2,α
−1 → D0,α

−3 is continuous
in t, and by Theorem 9 also isomorphisms. Hence the family of inverses
L−1
t : E2,α

−1 → D0,α
−3 is also continuous in t. Thus, we obtain a family of

solutions φt ∈ C0(I, C2,α
−1 ) of the equation(
∆g̃t −

1
8
R(g̃t)

)
φt =

1
8
R(g̃t) −

1
8
R̃,

which by part (b) of Theorem 8 satisfies

‖φt‖C2,α
−1/2

≤ 2Cµ. (24)

Define gt by:
gt = (1 + φt)4g̃t.

It follows immediately that R(gt) = (1 + φt)5R̃ ≥ 0 and gt ∈ C0(I, C2,α
−1 ).

Condition (v) and (24) imply ‖gt − g0‖C2∗ ≤ Cµ; thus if µ is small enough it
follows from Proposition 7 that the coordinate spheres are also quasi-convex
with respect to gt. Condition (ii) and Theorem 9 show that g1 ∈ C∞

−1.
It remains to construct a deformation g̃t satisfying (i)–(v). This is done

in 2 steps.
Step 1. In this step, we deform the metric g0 to a metric that is equal to δ
outside a large ball B2ρ. Let 0 ≤ η ≤ 1 be a cutoff function that is identically
1 in B1 and vanishes outside B2, and put ηρ(x) = η(x/ρ). Define

g̃t = g0 + 2t(1 − ηρ)(δ − g0)

for 0 ≤ t ≤ 1/2. Clearly, if ρ is large enough then (v) holds. Define the
operator T acting on a metric h by:

T (h) = ∂i∂jhij − ∂i∂ihjj.

It is easily checked that if h ∈ C2
−1 and T (h) ∈ L1 then R(h) ∈ L1. Since

ηρ(g0 − δ) + δ = δ outside B2ρ, it follows that T
(
ηρ(g0 − δ) + δ

)
∈ L1. Thus

by the linearity of T ,

T (g̃t) = (1 − 2t)T (g0) + 2tT
(
ηρ(g0 − δ) + δ

)
∈ L1,
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and it follows that R(g̃t) ∈ C0
(
[0, 1/2], L1

)
.

Step 2. By using a standard smoothing operator we find a metric h ∈ C∞
0

such that ‖h − g̃1/2‖C2,α
−1

< µ. Note that |h(0) − δ| < µ. For 1/2 ≤ t ≤ 1
define

g̃t = 2(1 − t)g̃1/2 + (2t− 1)
(
h− η(h(0) − δ)

)
.

Since
g̃t − g̃1/2 = (2t− 1)

(
h− g̃1/2 − η(h(0) − δ)

)
it follows that ‖g̃t − g̃1/2‖C2,α

−1
< Cµ, which implies (v).

We have shown:

Proposition 11. Let g0 ∈ M, then there is a continuous path gt ∈ M from
g0 to a harmonically flat metric g1 ∈ M ∩ C∞

−1.

3.3. Local Conformal Flattening.

Given a harmonically flat metric g1 ∈ {δ + M ∩ C∞
−1}, we now construct a

path gt from g1 to a metric g2 that in addition is conformal to δ also in a
neighborhood of the origin. For each t, gt will remain close enough to g1 in
C2
∗ for Proposition 7 to guarantee the quasi-convexity condition for gt. In

order to construct gt we assume that the standard coordinates (x1, x2, x3)
of R

3 are normal coordinates for g1. At the end of this subsection we will
show that there is no loss of generality in making this assumption.

Pick 0 < ε < 1. With ηε as in 3.2 and t ∈ [1, 2], we define

g̃t = g1 + (t− 1)ηε(δ − g1).

It is clear that g̃t = g1 on R
3\B2ε and g̃2 = δ on Bε. In addition, since

(x1, x2, x3) are normal coordinates it follows that for ε > 0 small

|g̃ij − δij | ≤ Cε2, |∂kg̃ij | ≤ Cε, |∂l∂kg̃ij | ≤ C (25)

for some constant C that is independent of t and ε. It then follows that
there is an a, also independent of ε and t, such that

|R−(g̃t)| ≤ a(t− 1). (26)

Define ρt = 2a(t− 1)η2ε, and note that

‖ρt‖Cα ≤ Cε−α. (27)
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In view of Theorem 9 there exists φt ∈ C0([1, 2], C2,α
−1 ) satisfying

∆gtφt = −1
8
ρt.

Note that φt ∈ C∞
−1 for all t. We now estimate φt using the representa-

tion (21):

φt(x) =
1
8

∫
R3

ρt(y)G(x, y) dµg(y), (28)

and the estimate (22). For x ∈ B6ε we have

|φt(x)| ≤ C

∫
B4ε

dy

|x− y| ≤ C

∫
B10ε

dy

|y| = Cε2, (29)

and for x ∈ R
3\B6ε

|φt(x)| ≤ C

∫
B4ε

dy

|x− y| ≤
C

|x|

∫
B4ε

dy

1 − |y|/|x| ≤ C
ε3

|x| . (30)

The Inequalities (29) and (30) now imply(
−∆g̃t +

1
8
R(g̃t)

)
(1 + φt) ≥

1
8
|R−(g̃t)|(1 − Cε2).

Thus, defining
gt = (1 + φt)4g̃t

it follows that R(gt) ≥ 0 as long as ε < 1/
√
C.

We now show that ‖gt − g1‖C2∗ can be made arbitrarily small by choosing
ε > 0 small enough. It will thus follow from Proposition 7 that the quasi-
convexity condition holds for gt. Note that

‖gt − g1‖C2∗ ≤
∥∥g̃t ((1 + φt)4 − 1

)∥∥
C2∗

+ ‖g̃t − g1‖C2∗

and by (25) the second term on the right-hand side is small provided ε > 0
is small. Thus, it remains to bound ‖φt‖C2∗ . By (29) and (30) we see that
|φt| ≤ Cε2; hence standard elliptic theory [10, Chapter 6] gives

‖φt‖C2(Bε) ≤ C(‖ρt‖Cα(B1) + ‖φt‖B1
) ≤ ε−α.

This, together with (29), gives

‖φt‖C2∗ ,B6ε
= ‖φt‖C0,B6ε

+ ‖rDφt‖C0,B6ε
+
∥∥r2D2φt

∥∥
C0,B6ε

≤ Cε1−α. (31)
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On R
3\B6ε we use Lemma 10 and (28), together with the fact that ρt is

bounded, to estimate:

|∂iφt(x)| ≤ C

∫
B4ε

|∂iG(x, y)|dy ≤ C
ε3

|x|2

|∂i∂jφt(x)| ≤ C

∫
B4ε

|∂i∂jG(x, y)|dy ≤ C
ε3

|x|3 ,

which together with (30) yields

‖φt‖C2∗ ,R3\B6ε
≤ Cε (32)

From (31) and (32) we get ‖φt‖C2∗
≤ Cε1−α.

Finally, we show that given g ∈ C∞ ∩M, we can assume without loss of
generality that the standard coordinates of R

3 are normal coordinates in a
neighborhood of the origin. Let F̃ : BR → R

3 be a C∞ map with F̃ (0) = 0,
DF̃0 = I, and for which the standard coordinates (x1, x2, x3) are normal
coordinates with respect to the metric F̃ ∗g on BR. For 0 < ε < R/2, define

F = (1 − η2ε)F̃ + η2εI.

It is straightforward to check that

ε−1|DF − I| + |D2F | + ε|D3F | ≤ C

ε
,

where C is independent of ε. In particular, F is a diffeomorphism provided
ε > 0 is small enough. Furthermore, since

(F ∗g)ij = gkl
∂F k

∂yi
∂F l

∂yj
,

It follows that ‖F ∗g − g‖C2∗ < Cε2; hence by Proposition 7 the coordinate
spheres are quasiconvex provided ε > 0 is small. Thus, we may replace g by
F ∗g since they are related by a diffeomorphism F ∈ G. We have proved

Proposition 12. Let g1 ∈ M ∩ (δ +C∞
−1) be harmonically flat. Then there

is metric g′1, diffeomorphic to g1, and a continuous path gt ∈ M∩ (δ+C∞
−1),

1 ≤ t ≤ 2, from g′1 to a harmonically flat metric g2 ∈ M ∩ (δ + C∞
−1) that is

conformally flat in a neighborhood of the origin.
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4. Bernoulli-type Parabolic PDEs on S2.

In this section we collect the analytical results we need to prove the Main
Theorem: (conditions for) global existence, uniqueness, asymptotic behavior
and continuous dependence on parameters for solutions of (4). All these rely
on a simple pointwise a priori bound whose proof we present here. Many
of the results presented in this section are adapted from [2]. In order to
ensure the uniform parabolicity of (4) we assume throughout this section
that Γ = e−2v/H̄ is bounded above and below by positive constants.

First, we define parabolic Banach spaces to be used in our study of (4).
Let 0 < r0 < r1 ≤ ∞, I = [r0, r1] ⊂ R

+, and let AI = I × S
2. Given a

function f on AI , define:

[f ]α;I = sup
(r1,θ1),(r2,θ2)∈AI

dist(θ1,θ2)<π

[
|f(r2, θ2) − f(r1, θ1)|

|1 − r2/r1|α/2 + dist(θ2, θ1)α

]

‖f‖0;I = sup
AI

|f |, ‖f‖0,α;I = ‖f‖0;I + [f ]α;I .

Here dist(·, ·) denotes the geodesic distance on S
2. If f(r, ·) is a tensor field

on S
2, then f(r2, θ2) is understood to mean the parallel translate of f(r2, θ2)

back to θ1 along the unique geodesic from θ1 to θ2. With these conventions
we can now define:

‖f‖k,α;I =
∑

i+2j≤k

∥∥∇/ i(r∂r)jf∥∥0;I
+

∑
i+2j=k

[∇/ i(r∂r)jf ]α;I ,

where ∇/ if is to be interpreted as the i-th covariant derivative of f in the
standard metric on S

2. Now define Hk,α
I to be the space of functions f on

AI for which ‖f‖k,α;I is defined and finite. Equipped with the norm ‖·‖k,α;I ,
the space Hk,α

I is a Banach space.
It should be noted that Equation (4) has the following scale invariance:

Let λ > 0 and let I be an interval. Given a function f on AλI , define
on AI the function fλ(r, θ) = f(λr, θ). If u is a solution of Equation (4)
on the scaled interval λI then uλ is a solution of (4) on I with the scaled
coefficients Aλ, Bλ, βλ,Γλ. The norms ‖·‖k,α;I are chosen to have the same
scale invariance: ‖uλ‖k,α;I = ‖u‖k,α;λI .

Following Bartnik in [2], we also use the notation:

f∗(r) = sup
θ∈S2

f(r, θ), f∗(r) = inf
θ∈S2

f(r, θ).
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4.1. Conditions for Global Existence and Uniqueness.

Our first observation is that Equation (4) is uniformly parabolic with r
as the “time” variable provided u is bounded above and below by positive
constants. Therefore, given any initial data u(r0, θ) = u0(θ) it is standard to
obtain the existence of a unique solution on a short time interval [r0, r0 + ε)
for some ε > 0. Furthermore, it is well known that, for some choices of
coefficients and initial data, a classical solution can blow-up in finite time.
Thus, our main objective here is to derive conditions that guarantee the
existence of a global positive solution on the time interval [r0,∞]. As seen
in the proof of Theorem 14 below, if the coefficients have sufficient regularity
then a pointwise a priori bound on a solution u is all that is needed to ensure
global existence. We establish these bounds through the use of upper and
lower solutions. Given a parabolic linear operator

F (w) = (r∂r − P · ∇ −Q∆/ +A)w +B

acting on functions w on I × S
2, recall that upper and lower solutions, wu

and wl respectively, of the equation

F (w) = 0, w|r0×S2 = w(r0) (33)

are functions satisfying wl(r0) ≤ w(r0) ≤ wu(r0) and

F (wu) ≥ 0, F (wl) ≤ 0.

One has the following maximum principle:

Lemma 13. If wu, wl are upper and lower solutions, respectively, of equa-
tion (33) then wl ≤ w ≤ wu.

This is essentially [15, Theorem 2.10], but the proof here is simpler since
there is no spatial boundary.

Theorem 14. Let I = [r0,∞), and suppose that β,Γ, r(2A− 1), B ∈ Hk,α
I .

Suppose also that B ≥ σ1 for some positive constant σ1. If u0 > 0 satisfies
u0 ∈ Ck+2,α(S2) then there exists a unique solution u ∈ Hk+2,α

I of (4) with
initial condition u(r0, θ) = u0(θ). Furthermore, there exists σ2 > 0 such that
u > σ2.

Proof. The local in time existence theory gives a positive solution u ∈
H2,α

[r0,r0+ε)
of Equation (4) with the given initial data for some ε > 0. Let r1
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be the supremum of all r for which the solution exists on [r0, r) and define
I = [r0, r1). On any interval [r0, r) with r < r1, the solution u is the only
solution with the given initial data. This is easily seen since the difference
of any two such solutions v = u1 − u2 verifies a linear equation of the form

r∂rv = u1Γ∆/v + Ãv, v|r0 ≡ 0,

whose only solution is v ≡ 0.
Before we can prove global existence, we establish a supremum bound for

u on the interval I. As in [2], we find this bound via the auxiliary function
w = u−2, which satisfies the equation

r∂rw + P · ∇/w −Q∆/w + 2Aw − 2B = 0, w(r0) = u−2(r0), (34)

where P = 3/2w−2∇/w − β and Q = Γ/w. Define radial functions wu, wl to
be the solutions of the ordinary differential equations

r
d

dr
wl + 2A∗wl − 2B∗ = 0, wl(r0) = w∗(r0)

and
r
d

dr
wu + 2A∗wu − 2B∗ = 0, wu(r0) = w∗(r0).

Since B > 0 it follows that wu and wl are positive. Thus

r∂rwl + P · ∇/wl −Q∆/wl + 2Awl − 2B = 2(A−A∗)wl − 2(B −B∗) ≤ 0,

and hence wl is a lower solution. It is similarly verified that wu is an upper
solution. Integrating, we find

wl(r) =
1
r
e
∫ r
r0

1−2A∗ dr′/r′
(
r0w∗(r0) +

∫ r

r0

B∗e
∫ r′
r0

2A∗−1 dr′′/r′′
dr′
)
.

and

wu(r) =
1
r
e
∫ r
r0

1−2A∗ dr′/r′
(
r0w

∗(r0) +
∫ r

r0

B∗e
∫ r′
r0

2A∗−1 dr′′/r′′
dr′
)
.

Using r|2A∗ − 1|, r|2A∗ − 1| ≤ ‖r(2A− 1)‖0;I , |B|∗ ≤ ‖B‖0;I and σ1 to
estimate these integrals and then applying Lemma 13, it follows that there
is a constant c > 0, not depending on the length of I, such that

c1/2 < wl ≤ w ≤ wu < c−1/2.
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Thus, we have
c−1 < u < c. (35)

To see that r1 = ∞, suppose instead that r1 <∞. Put I ′ = [r0+ε/2, r1).
In divergence form, Equation (4) reads:

r∂ru = ∇/ · (Γ̃u2∇/u) + (β − u2∇/ Γ̃) · ∇u− 2Γ̃u|∇/u|2 +Au−Bu3. (36)

Thus, the conditions (6.30a)-(6.30c) in [15] hold and hence there exist α′, C
such that ‖u‖α′;I′ ≤ C; see [15, Theorem 6.28]. We can now regard Equa-
tion (4) as a linear equation with coefficients in Hα′

I . The standard linear
Schauder interior estimates give

‖u‖2,α′;[r0+ε,r1] ≤ C ‖u‖0;I ≤ C · c;

see [15, Theorem 4.9]. In particular, for 0 < α′′ < α′, the solution u can
be extended to a positive function u ∈ H2,α′′

[r0,r1]
. Applying the local existence

theory again with initial data u|r1 , the solution can be extended to [r0, r1+ε′)
for some ε′ > 0, in contradiction to the fact that [r0, r1) is the maximal
interval of existence. We conclude that r1 = ∞.

Finally, we show that u ∈ Hk+2,α
I . Note first that since the supremum

estimates above do not depend on the length of the interval, the bound (35)
remains valid on I = [r0,∞). Let I ′ = [r0, 4r0] and let I ′′ = [2r0, 4r0].
For λ > 1, let uλ, Aλ, Bλ,Γλ, βλ be defined by scaling u,A,B,Γ, β as in the
introduction to this section. Then on I ′ the function uλ satisfies Equation (4)
with the coefficients Aλ, Bλ,Γλ, βλ. Applying the interior estimates of the
previous paragraph followed by the usual bootstrap argument we then obtain
‖uλ‖k+2,α;I′′ ≤ C, with C not depending on λ. Thus, by the scale invariance

of the Hk,α
I norms we get ‖u‖k+2,α;λI′′ ≤ C. Taking the supremum over

λ > 1 yields ‖u‖k+2,α;[2r0,∞) ≤ C. It remains to bound ‖u‖k+2,α;[r0,2r0]
.

From the previous paragraph we already have ‖u‖2,α′;[r0,2r0] ≤ C. The bound
‖u‖k+2,α;[r0,2r0] ≤ C now follows from the usual bootstrap argument using
boundary type estimates; see [15, Theorem 4.28]. �

We will also need global existence when B < 0 somewhere. To obtain
the necessary bounds from scratch requires conditions on the initial data,
see [2]. To avoid having to control the initial data we will instead use the
following comparison result:

Theorem 15. Let I = [r0,∞), and suppose that u > 0 is a classical solution

of Equation (4) on I × S
2 with coefficients β,Γ, r(2A − 1), B ∈ Hk,α

I and
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with initial data u0 ∈ Ck+2,α(S2). Let B̃ ∈ Hk,α
I satisfy B̃ ≥ B. Then the

equation
r∂ru− β · ∇/u = Γu2∆/u+Au− B̃u3

has a unique solution ũ ∈ Hk+2,α
I with the same initial data ũ(r0, θ) = u0(θ).

Furthermore, for some σ > 0 we have σ < ũ ≤ u.

Proof. If we can verify a bound of the form (35) on any interval [r0, r) for
which the solution exists and is positive then, as in the proof of the previous
theorem, global existence of a unique positive solution u ∈ Hk+2,α

I will follow.
Subtracting the equation for ũ from the equation for u we get an equation

for v = u− ũ:

r∂rv − β · ∇/v = Γu2∆/v + Ãv − (B − B̃)u3,

where Ã = Γ(ũ+ u)∆/ ũ− B̃(ũ2 + ũu+ u2). Since B̃ −B > 0 it is clear that
vl ≡ 0 is a lower solution of this equation and so by lemma 13 we see that
ũ ≤ u. To bound u from below we use the auxiliary function w defined in
the proof of Theorem 14. In this case, however, we take the solution of

r
d

dr
wu + 2A∗wu − 2|B|∗ = 0, wu(r0) = w∗(r0)

as an upper solution for Equation (34). Continuing the argument as in the
proof of Theorem 14 we find a positive constant σ such that u > σ. �

For the remainder of this section we set I = [r0,∞).

4.2. Asymptotic Behavior.

To study the asymptotic behavior of a given solution u of Equation (4),we
define m by u−2 = 1 − 2m/r. Then m verifies on I × S

2 the equation:

r∂rm−
(
β +

3Γu4

r
∇/m

)
· ∇/m = Γu2∆/m− (2A− 1)m+ r(A−B) (37)

This equation has a useful scale covariance: The function λ−1mλ satisfies
the above equation when the coefficients are replaced by uλ, Aλ, Bλ,Γλ, βλ.
We have:

Theorem 16. Let β,Γ, r(2A− 1), r(A−B) ∈ Hk,α
I , and let u ∈ Hk+2,α

I be
a solution of Equation (4) satisfying u > σ for a positive constant σ. If in

addition |A−B|∗ ∈ L1(I), then m = r(1 − u−2)/2 ∈ Hk+2,α
I .
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Proof. Define I ′ = [r0, 4r0] and I ′′ = [2r0, 4r0]. By the definition of m it is
clear that ‖m‖k+2,α;I′ is bounded by a constant only depending on ‖u‖k+2,α;I ,
r0, and σ. In view of the scaling properties of Equation (37), the standard
Schauder interior estimates give, as above,

λ−1 ‖mλ‖k+2,α;I′′ ≤ C(λ−1 ‖m‖0,I′ + ‖r(Aλ −Bλ)‖k,α;I′)

for any λ > 1. By the scale invariance of the Hk,α
I norms we have

‖m‖k+2,α;λI′′ ≤ C
(
‖m‖0,λI′ + ‖r(A−B)‖k,α;λI′

)
,

where C does not depend on λ. Thus, the theorem will follow if we can
establish a bound on sup |m|.

Define v to be the radial function satisfying

r
d

dr
v = |2A− 1|∗v + r|A−B|∗, v(r0) = |m(r0)|∗.

Then v remains positive and thus it is an upper solution of Equation (37)
with the initial data m(r0). Integrating this equation and applying Lemma
13 yields the upper bound for m

m ≤ e
∫ r1
r0

|2A−1|∗dr/r
(
|m(r0)|∗ +

∫ ∞

r0

|A−B|∗e
∫ r

r0
|2A−1|∗dr′/r′

dr

)
.

Similarly, we have

m ≥ −e
∫ r1

r0
|2A−1|∗dr/r

(
|m(r0)|∗ +

∫ ∞

r0

|A−B|∗e
∫ r

r0
|2A−1|∗dr′/r′

dr

)
.

Since |A−B|∗ ∈ L1 it follows that |m| is uniformly bounded. �

We will also need m ∈ Hk+2,α
I in some cases when the condition |A−B|∗ ∈

L1(I) cannot be verified. To this end, we state a comparison result that
establishes a bound on m. Let ui, i = 1, 2, satisfy

r∂rui − β · ∇/ui = Γu2
i∆/ui +Aui −Biu

3
i . (38)

Setting mi = r(1 − u−2
i )/2, and m̃ = m2 −m1, we obtain, in view of (37)

r∂rm̃− β̃ · ∇/m̃ = Γ̃∆/m̃− (2Ã − 1)m̃+ rB̃, (39)
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where

β̃ = β + 3r−1Γu4
2∇/(m1 +m2)

Ã = A− Γu2
1u

2
2

(
r−1∆/m1 + 3r−2(u2

1 + u2
2)
∣∣∇/m1

∣∣2)
Γ̃ = u2

2Γ

B̃ = B2 −B1.

Considering this equation for the difference allows us to circumvent the con-
dition that |A− B|∗ be L1 in the case that we have at least one solution of
Equation (37) with the desired asymptotic behavior.

Theorem 17. Let β1,Γ, r(2A − 1), B1, B2 ∈ Hk,α
I . With i = 1, 2, suppose

that ui ∈ Hk+2,α
I are positive solutions of Equation (38). If |B1 − B2|∗ ∈

L1(I) and m1 ∈ Hk+2,α
I then m2 = r(1 − u−2

2 )/2 ∈ Hk+2,α
I .

Proof. Note that m1, u1, u2 ∈ Hk+2,α
I and ∇/m1,∆/m1 ∈ Hk,α

I . Thus, the
coefficients Ã, Γ̃, β̃, B̃ satisfy the same hypotheses as A,Γ, β,A − B in the
previous theorem, which then applies to give m̃ ∈ Hk+2,α

I . Clearly, m2 =
m1 + m̃ ∈ Hk+2,α

I . �

4.3. Continuous Dependence on Parameters.

In this subsection we prove the continuous dependence on parameters of
solutions of Equations (4) and (37). Since every solution u of Equation (4)
is related to a solution m of Equation (37) by u−2 = 1− 2m/r , it suffices to
prove the continuous dependence of solutions to Equation (37). We do this
by using the implicit function theorem, but this requires us to restrict the
domain and range of the linear parabolic operator

T (v) ≡ ∂rv +
P

r
· ∇/v − Q

r
∆/v +

Ã

r
v

so that it is an isomorphism. With T0 ≡ ∂r− (2r)−1∆/ and ‖f‖L1,∗ ≡
∫
I |f |∗,

define

Xk,α
I =

{
v ∈ Hk,α

I : v(r0) = 0, |T0v|∗ ∈ L1(I)
}
,

‖v‖
Xk,α

I
= ‖v‖I,k;α + ‖T0v‖L1,∗
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and

Y k,α
I =

{
v ∈ r−1Hk,α

I : |v|∗ ∈ L1(I)
}
,

‖v‖
Y k,α

I
= ‖rv‖I,k;α + ‖v‖L1,∗ .

It is easy to check that Xk,α
I and Y k,α

I are Banach spaces.
We have:

Lemma 18. If rP, r(Q − 1/2), rÃ ∈ Hk,α
I then T : Xk+2,α

I → Y k,α
I is an

isomorphism.

Proof. Writing

T (v) = T0v +
1
r

(
1
2
−Q

)
∆/v +

P

r
· ∇/v +

Ã

r
v,

it is apparent from the definition of Xk+2,α
I that T maps this space to Y k,α

I .
Also, given f ∈ Y k,α

I , it is clear that there is a classical solution v of

T (v) = f, v(r0) = 0.

It must be shown that v ∈ Xk+2,α
I . Upper and lower solutions are used as

in the proof of Theorem 16 to obtain a bound ‖v‖H0
I
≤ C ‖f‖L1,∗ , where

C depends only on ‖rP‖I,k,α , ‖r(1/2 −Q)‖I,k,α, ‖rA‖I,k,α. Noting that the
the equation T (v) = f has the same scaling properties as the equation for m
above, we apply the Schauder theory as in the proof of Theorem 16 to find

‖v‖k+2,α,[λr′0,λr
′
1] ≤ C ‖f‖

Y k,α
I

,

where λ > 1, and C does not depend on λ. Using then boundary type
estimates near r0 and taking the supremum over λ yields

‖v‖k+2,α;I ≤ C ‖f‖
Y k,α

I
.

Finally, noting that

|T0v|∗ =

∣∣∣∣∣1r
(

1
2
−Q

)
∆/v − P

r
· ∇/v − Ã

r
v − f

∣∣∣∣∣
∗

≤
‖v‖k+2,α;I

r2
,

it follows that ‖v‖
Xk+2,α

I
≤ C ‖f‖

Y k,α
I

and the lemma is proved. �
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Theorem 19. Let I = [r0,∞), and let J = [a, b]. Suppose that u is a
family of solutions of Equation (4) with the coefficients β,Γ, A,B satisfying

r(2A−1), r(2B−1), rβ, r(Γ−1/2) ∈ C0([a, b],Hk,α
I ) and with the initial data

u(r0) ∈ C0(J,Ck+2,α(S2)). Suppose either of the following two conditions is
satisfied:

(i) |A−B|∗ ∈ C0(J,L1(I)).

(ii) A family of solutions m′ ∈ C0([a, b],Hk,α
I ) exists for Equation (37)

with B replaced by some B′ satisfying r(2B′ − 1) ∈ C0([a, b],Hk,α
I ).

Then u,m ∈ C0(J,Hk,α
I ).

Proof. First of all, note that Conditions (i) and (ii) guarantee that the family
of solutions m will satisfy m ∈ Hk+2,α

I for every value of the parameter.
When Condition (i) is satisfied this follows from Theorem 16 and when
Condition (ii) is satisfied this follows from Theorem 17.

Define Hk,α
−1;I to consist of those elements v of Hk,α

I for which rv ∈ Hk,α
I

also. Define ‖v‖
Hk,α

−1;I
= ‖rv‖k,α,I . Define

W = Ck+2,α(S2) ×Hk,α
−1;I ×Hk,α

−1;I ×Hk,α
−1;I × Y k,α

I .

Let m = v + m(r0). Define the operator F : W × Xk+2,α
I → Y k,α

I for
w = (m(r0), β,Γ − 1/2, A′, B′) by

F (w, v) = ∂rm− Γ
r

(
1 − 2m

r

)−1

∆/m

−
(
β

r
+

3Γ
r2

(
1 − 2m

r

)−2

∇/m
)

· ∇/m+
A′

r
m−B′.

Note that F is differentiable in w and m. We have

(D2F )v = ∂rv −
Γ
r

(
1 − 2m

r

)−1

∆/v −
(
β

r
+

6Γ
r2

(
1 − 2m

r

)−2

∇/m
)

· ∇/v

−
(
A′

r
+

2Γ
r2

(
1 − 2m

r

)−2

∆/m+
12Γ
r3

(
1 − 2m

r

)−3

|∇/m|2
)
v,

which by Lemma 18 is an isomorphism from Xk,α
I into Y k,α

I when m ∈ Hk,α
I ,

2m < r. Given v0 < r/2 −m(r0) and w0 such that F (w0, v0) = 0, it follows
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then from the implicit function theorem that there is a neighborhood M of
w0 such that there is a uniquely defined differentiable function f : M →
Xk,α
I with f(w0) = v0. In particular, for w ∈ W the unique solution of

F (w, v) = 0 is continuous in w. Since Equation (37) can be written as
F (w, v) = 0 with w = (m(r0), β,Γ, 2A− 1, B−A), it follows that if u,m are
as in the hypothesis of the theorem when Condition (i) is satisfied we have
that u,m ∈ C0(J,Hk,α

I ).
For the case that Condition (ii) is satisfied, put B1 = B′, B2 = B, and

m1 = m′ so that the difference m̃ = m−m′ verifies Equation (39) above. We
now use this equation to define the operator F̃ in the same way that we used
Equation (37) to define F . Applying the argument of the previous paragraph
then shows that m̃ ∈ C0(J,Hk,α

I ) and so m = m′ + m̃ ∈ C0(J,Hk,α
I ). �

5. Deformation.

We are now in a position to prove the main theorem. We begin by restrict-
ing attention to a subset M1 ⊂ M defined as follows: M1 consists of all
harmonically flat metrics g ∈ M ∩ C∞

−1 that in addition are conformal to δ
on a neighborhood of the origin. The next proposition, which follows di-
rectly from Propositions 11 and 12 of Section 3, shows that attention can be
restricted to M1 without loss of generality.

Proposition 20. For any g ∈ M, there exists a path of metrics gλ ∈ M,

continuous in C2,α
−1 , such that g0 is diffeomorphic to g, and g1 ∈ M1.

In general, given a topological space M′ and a subset M ′′ ⊂ M′ , we say
that M′′ is connected to M′ if for each g ∈ M′ there is a path gλ in M′ with
g0 = g and g1 ∈ M′′. Thus, the previous proposition can be rephrased as
M/G is connected to M1 .

The benefit of working within M1 is that the results of Section 2 imply
that any member of M1 is diffeomorphic to a metric g that can be written
in the form

g = u2dr2 + e2v γ̄AB(βAdr + rdθA)(βAdr + rdθA), (40)

where δ = dr2 +r2γ̄ and u−1, v, σ−1β ∈ C∞
−1. Let F : R

3\{0} → R
+×S

2 be
spherical coordinates as defined in Section 2. We use F to identify R

3\Br0
with I × S

2, where I = [r0,∞). The following embeddings then hold:

H4k,4α
I ⊂ rC2k,2α

−1 (R3\Br0) ⊂ H2k,2α
I (41)
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for functions, and

H4k,4α
I ⊂ C2k,2α

−1 (R3\Br0) ⊂ H2k,2α
I (42)

for one forms βAdθA tangential to the foliation {Sr} of coordinate spheres.
Thus r(u− 1), rv, rβ ∈ H2k

I for every integer k.
We define now a nested sequence of subsets M = M0 ⊃ · · · ⊃ M4, where

M1 was defined above and the remaining Mi are given by:

M2 = {g ∈ M1 : 2κ−R > 0},
M3 = {g ∈ M2 : v compactly supported},
M4 = {g ∈ M3 : g is flat}.

The Main Theorem follows by Propositions 21–25 below, which state that
each Mi/G is connected to Mi+1/G for i = 1, 2, 3.

The deformation paths are constructed in the proofs of Propositions 21–
25 as outlined in the introduction. In these proofs it will be implicitly
assumed that g is replaced with an equivalent metric that can be written
in the form (40). Thus, for each g ∈ M1, we can associate corresponding
functions u, v, and a tangential one-form β. Note that, by the construction
of Section 2, the one form β is compactly supported. Let J = [0, 1] be the
deformation interval. The deformation will be done differently on the regions
Br0 and R

3\Br0 . On Br0 the path gλ is defined directly so that R(gλ) ≥ 0
and so that the coordinate spheres remain quasi-convex. Furthermore, uλ,
vλ, and βλ, corresponding to gλ|Br0

, satisfy uλ, vλ, βλ ∈ C0(J,Ck(Br0)) for
every integer k. In particular, this gives a continuous deformation uλ, vλ,
βλ on the boundary ∂Br0 = Sr0. Next, we define a deformation vλ, βλ,
Rλ on R

3\Br0 , satisfying vλ, r−1βλ, r
2Rλ ∈ C0

(
J,Ck−1(R

3\Br0)
)

so that the
normalized mean and Gauss curvatures H̄λ = H̄(vλ, βλ), κ̄λ = κ̄(vλ) remain
positive and Rλ remains nonnegative. It can also be arranged that vλ, βλ,
and Rλ are smooth across ∂Br0 . Taking uλ(r0) corresponding to gλ|Sr0

as
initial data, we now use the theorems of Section 4 to solve (4) for uλ on
R

3\Br0 . At this stage it is checked using Theorem 19 that mλ = 2−1r(1 −
u−2
λ ) is a continuous family inH4,2α

I so we may conclude uλ−1 ∈ C0(J,C2,α
−1 ).

Substituting u = uλ, v = vλ and β = βλ in (40) we obtain a continuous
deformation gλ on R

3\Br0 with scalar curvature Rλ ≥ 0. Finally, solving (4)
starting on an slightly earlier sphere ∂B(r0−ε), the uniqueness and regularity
results for (4) yield the regularity of gλ across ∂Br0 .

Proposition 21. M1/G is connected to M2/G.
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Proof. Let g ∈ M1; choose r1 such that 2κ − R > 0 for r < r1, and choose
r0 with r0 < r1. For each λ ∈ [0, 1], define gλ = g inside Br0 , βλ = β, and
vλ = v everywhere. We have H̄λ > 0. Let ϕ(r) be a smooth cut-off function
on [0,∞), satisfying 0 ≤ ϕ ≤ 1, ϕ = 1 on [0, r0], and ϕ = 0 on [r1,∞). Define
ϕλ(r) = (1 − λ) + λϕ(r), and define Rλ = ϕλR. Then Rλ is monotonically
decreasing in λ, Rλ = R on Br0, and supp(R1) ⊂ Br1 . Thus, Theorems 15
and 17 can be used to solve Equation (4) on [r0,∞)×S

2 for uλ ∈ H4,α. Also,
part (ii) holds in the hypothesis of Theorem 19, which then implies that
uλ,mλ are continuous paths in H4,2α; whence gλ ∈ C0([0, 1], C2,α

−1 ). Clearly,
g1 ∈ M2 and the lemma follows. �

Remark 22. By applying a fixed diffeomorphism to the path constructed
above, it can be shown that in fact M1 is connected to M2.

The final two propositions are proved using blow-down and blow up tech-
niques, respectively. We will need the scaling diffeomorphism: φλ : (r, ω) �→
(λr, ω). Note also that in the standard coordinates x = (x1, x2, x3) of R

3 one
has φλ : x �→ λx. Thus, it follows that gλ ≡ λ−2φ∗λg = gij(λx)dxidxj and
R(gλ) = λ−2φ∗λR(g), or equivalently r2R is invariant under g �→ gλ. Using
the spherical representation of φλ one finds that if u, v, β corresponds to g
then φ∗λu, φ

∗
λv, φ

∗
λβ corresponds to gλ. Using this, and the expressions (13)

and (14) of Section 2 for H̄, κ̄, one has

φ∗λH̄ = H̄(gλ) = H̄(vλ, βλ) (43)
φ∗λκ̄ = κ̄(gλ) = κ̄(vλ). (44)

Finally, we remark that if g has mass function m = 2r−1(1 − u−2) then gλ
has mass function λ−1m ◦φλ. That is

m(gλ) = λ−1m ◦φλ. (45)

The following lemma is needed in the next proposition:

Lemma 23. Let f ∈ Ck,α−1 be a covariant tensorfield of rank s. Define fλ by

fλ = λ−s(φλ)∗f . Then fλ ∈ C0([1,∞), Ck−1), and limλ→∞ ‖fλ‖C0
−1

= 0.

Proof. It is easy to see that fλ(x) = (f(λx))i,j,...,k dx
idxj, ..., dxk , and thus

it is sufficient to prove the theorem for the case that f is a function.
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First, suppose that k = 0, and let 1 ≤ λ1 < λ2. One has

σ(x)|f(λ1x) − f(λ2x)|

= σ(x)|λ1 − λ2|α
(

r

σ(λ1x)

)α σ(λ1x)α|f(λ1x) − f(λ2x)|
|λ1x− λ2x|α

≤ |λ1 − λ2|α
λ1

1+α ‖f‖
C0,α

−1
.

Taking the supremum over x yields

‖fλ1 − fλ2‖C0
−1

≤ |λ1 − λ2|α
λ1

1+α ‖f‖C0,α
−1
,

from which it follows that fλ ∈ C0([1,∞), C0
−1). Also,

‖fλ‖C0
−1

= sup
x
σ(x)|f(λx)| ≤ λ−1σ(λx)|f(λx)| =

‖f‖C0
−1

λ
,

and thus limλ→∞ ‖fλ‖C0
−1

= 0.
In the case that k > 0, applying the argument of the previous paragraph

to the functions σ|i|Dif for all multi-indices |i| ≤ k proves the lemma. �

Proposition 24. M2/G is connected to M3/G.

Proof. Let g ∈ M2. We take λ ∈ [1,∞). Assume that r0 is large enough
that suppR ∪ suppβ ⊂ Br0 , and put gλ = g on Br0 . Take Rλ = R, βλ = β
everywhere so that Rλ = 0, βλ = 0 on R

3\Br0 . Let r0 < r1, and define
ṽλ =

(
φλ
)
∗v and

vλ = ϕv + (1 − ϕ)ṽλ,

where ϕ(r) is a cut-off function as in the proof of Proposition 21. Lemma 23
implies that vλ ∈ C0([0,∞), Ck−1) for all integers k, and hence we have
rvλ ∈ C0([0,∞),H4,2α

I ). Using the scaling property (44) and the equation
for Gauss curvature (14) we have

e2vλκ(vλ) = ϕe2vκ(v)+(1−ϕ)e2ṽλκ(ṽλ) = ϕe2vκ(g)+(1−ϕ)φ∗λ
(
e2vκ(g)

)
> 0.

Using the equation for the mean curvature (13), the scaling property (43),
and the fact that β = 0 outside Br0 we have also on R

3\Br0 :

H̄λ ≡ H̄(vλ, βλ) = ϕH(g) + (1 − ϕ)φ∗λH(g) + (v − ṽλ)rϕ′.
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Defining h = infH(g) it follows that

H̄λ ≥ h− |(v − ṽλ)rϕ′| ≥ h− 2 ‖v‖C0
−1

|ϕ′|.

Hence, choosing r1 − r0 large enough one has H̄λ > c > 0. The existence of
the family of solutions uλ with initial data as given by gλ|Sr0

now follows from
Theorem 14. Note that outside Br1 we have that vλ = φ∗λv, βλ = φ∗λβ = 0
correspond to the metric λ−2φ∗λg ∈ C∞

−1, and hence the scaling property (45)
implies that λ−1

(
φλ
)
∗m is a uniformly bounded family of solutions of (37).

Theorem 17 then implies mλ ∈ H4,2α for each λ. Condition (ii) in the
hypothesis of Theorem 19 is now satisfied so that we can conclude uλ,mλ ∈
C0([1,∞),H4,2α), and hence gλ ∈ C0([1,∞), C2,α

−1 ). It is easy to see that the
path gλ can be extended continuously to [1,∞], and since vλ tends to zero
as λ→ ∞ for r > r1 it follows that g∞ ∈ M3. �

Proposition 25. M3/G is connected to M4/G.

Proof. Let g ∈ M3; choose r0 > 0 so that R, β, and v are supported in
Br0 , and let ϕ(r) be a cut-off function as above. For λ ∈ [1,∞), define
βλ = ϕφ∗1/λβ and Rλ = ϕλ−2φ∗1/λR so that Rλ, βλ are always supported on
Br1 .

We now choose vλ to ensure H̄λ ≡ H̄(vλ, βλ) > 0, κ̄(vλ) > 0. Define
ṽλ = φ∗1/λv, and let H̃λ = H̄(ṽλ, β̃λ). By property (43) we have H̃λ = φ∗1/λH̄,

and so h ≡ inf H̄ = inf H̃λ for all λ ∈ [1,∞). Let r0 < r1 < r2, and let
0 < ζ(r) < 1 be supported on Br2 and satisfy ζ ≡ 1 on [0, r1]. Let f(r) be a
smooth non-negative function supported on [r0, r2] satisfying on [r0, r1] the
inequality:

f > −r−a−1(ϕh+ rϕ′),

where a = max{−(2 + 2r∂rṽλ), 0}. Let ξ(r) = ra
∫ r
r0
f(s) ds, ψ = ξ + ϕ.

Define vλ = ζ(ṽλ + 1
2 logψ). Since ξ ≥ 0, it now follows from (13) that we

have for r0 < r < r1:

ψH̄λ = ξ(2 + 2r∂rṽλ) + rξ′ + ϕH̃λ + rϕ′ > −aξ + rξ′ − ra+1f = 0.

Furthermore, since βλ = 0 in Br2 \Br1 , we can also choose ζ so as to ensure
that H̄λ > 0 there, provided that r2/r1 is large enough. Finally, since ψ, ζ
are radial, we have

e2vλ κ̄(vλ) = 1 − ∆/(ζṽλ + 2−1ζ logψ) = 1 − ζ∆/ ṽλ
= (1 − ζ) + ζe2ṽλ κ̄(ṽλ) = (1 − ζ) + ζφ∗1/λ(e

2vκ̄(g)) > 0.
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Define gλ = λ2φ∗1/λg = gij(x/λ)dxidxj in Br0 and note that with this
definition the scaling remarks above show that vλ, βλ, Rλ are smooth across
Sr0. As before, solve for uλ in (4) on [r0,∞) × S

2 with initial data uλ|Sr0
.

Global existence, asymptotic behavior, and continuity are obtained from
Theorems 14, 16, and 19 to give gλ ∈ C0([1,∞), C2,α

−1 ). Furthermore, since
gij |0 = δij , we have limλ→∞ ‖gij(x/λ) − δij‖C2(Br2 ) = 0 so that ṽλ, βλ, Rλ →
0 as λ→ ∞. Thus, as λ→ ∞ the family gλ converges, in C2,α

−1 norm, to the
metric

g∞ = u∞dr
2 + r2eζ logψγ̄ABdθ

AdθB ,

which satisfies u|Br0
≡ 1, R(g∞) ≡ 0. Since g∞ is both spherically symmetric

and has vanishing scalar curvature we conclude that it is a flat metric.
However, note that g1 �= g since v1 = ζ(v + 1

2 logψ) �= v. In order
to complete the proof of the lemma we now define a continuous path gλ,
λ ∈ [0, 1] in M3 between g and g1. In Br0 define gλ = g. On R

3\Br0 define
βλ = 0, Rλ = 0 and vλ = (1−λ)v+λv1. Then from Equations (13) and (14)
and the fact that βλ = 0 on R

3\Br0 we have

H̄λ = (1 − λ)H̄ + λH̄1 > 0

e2vλ κ̄λ = (1 − λ)e2vκ̄+ λe2v1 κ̄1 > 0,

and the quasi-convexity condition is preserved. It is also clear that supp vλ
is compact and thus gλ remains in M3. �

Appendix.

In this appendix we prove the results stated in Section 3.1. All of the proofs
in this appendix can be adapted to more general asymptotically flat man-
ifolds with several ends, but for simplicity we present the simplest case:
M = R

3. Many of these results are quite standard, but since some are
not readily available in the literature we prove them here for the sake of
completeness. We thank Yanyan Li for several useful conversations on these
topic. We begin with the elliptic estimate, Theorem 8 part (a), which is a
straightforward corollary of the following proposition.

Proposition 26. Let τ > 0, and let aij − δij ∈ Ck−1,α
−τ satisfy

Λ−1|ξ|2 ≤ aijξiξj ≤ Λ|ξ|2

for some Λ > 0. Let u ∈ C0
−β be a classical solution of

∂i(aij∂ju) = f
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with f ∈ Ck−2,α
−β−2 . Then

‖u‖
Ck,α

−β
≤ C

(
‖f‖

Ck−2,α
−β−2

+ ‖u‖C0
−β

)
. (46)

Proof. From standard estimates on bounded domains, we can easily get that
there is a constant C such that:

‖u‖
Ck,α

−β ,B2
≤ C

(
‖f‖

Ck−2,α
−β−2 ,B4

+ ‖u‖C0
−β ,B4

)
; (47)

see [10, Chapter 6]. Let A = B5\B1, A′ = B4 \ B2, and for each n > 1 let
An = B5·2n−1 \B2n−1 , A′

n = B2n+1 \B2n . Then it follows easily that

‖w‖
Ck,α

−β ,R
3\B2

≤ 2 sup
n≥1

‖w‖
Ck,α

−β ,A
′
n

(48)

‖w‖
Ck,α

−β ,R
3\B1

≥ sup
n≥1

‖w‖
Ck,α

−β ,An
. (49)

Furthermore, defining wn(x) = w(2n−1x) we have

C−1 ‖w‖
Ck,α

−β ,An
≤ 2(n−1)β ‖wn‖Ck,α

−β ,A
≤ C ‖w‖

Ck,α
−β ,An

, (50)

C−1 ‖w‖
Ck,α

−β ,A
′
n
≤ 2(n−1)β ‖wn‖Ck,α

−β ,A
′ ≤ C ‖w‖

Ck,α
−β ,A

′
n
. (51)

Now the function un satisfies on A the equation:

∂i
(
aijn ∂jun

)
= 22n−2fn,

where the coefficients aijn satisfy

Λ−1|ξ|2 ≤ aijn ξiξj ≤ Λ|ξ|2

and ∥∥aijn ∥∥Ck−1,α
−τ ,A

≤ C
(
1 +

∥∥aij − δij
∥∥
Ck−1,α

−τ

)
.

Thus, as above, standard elliptic theory gives:

‖un‖Ck,α
−β ,A

′ ≤ C

(∥∥22n−2fn
∥∥
Ck−2,α

−β ,A
+ ‖un‖C0

−β ,A

)
,

where the constant C depends only on k, α, Λ, and
∥∥aij − δij

∥∥
Ck−1,α

−τ
. In

view of (50) and (51) this implies

‖u‖
Ck,α

−β ,A
′
n
≤ C

(
‖f‖

Ck−2,α
−β ,An

+ ‖u‖C0
−β ,An

)
(52)
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Combining with (47), and using (48) and (49), we now obtain (46). �

Proof of Theorem 8 part (a). Since

∂i
(
det(g) gij ∂ju

)
= det(g)∆gu,

Inequality (20) follows immediately from the proposition. �

Unfortunately, the proof of part (b) of Theorem 8 given in [9] contains
a gap. Indeed, the authors use the continuity method in their proof of
surjectivity. However, they claim without proof that the set of operators
L = −∆g + h which are injective is connected2. Since this is false even
for finite dimensional matrices, it seems to us unlikely to hold in a Banach
space. Of course, this theorem is mostly applied when h ≥ 0, in which case
the connectedness statement above holds, and the proof given in [9] is valid.
However, we prefer to present here a simple alternative proof of the original
result as stated using Fredholm theory. The proof is based on the following
compactness lemma from [6]:

Lemma 27. The closed unit ball of Ck,α−β is compact in Ck,α
′

−β′ provided α′ <
α and β′ < β.

Proof. Let un be a sequence in Ck,α−β with ‖un‖Ck,α
−β

≤ 1. Since for each

positive integer N the space Ck,α(BN ) is compactly embedded in Ck,α
′
(BN ),

there is a subsequence, denoted again un, which converges in Ck,α
′
(BN ) for

every N . Let u be the pointwise limit of un. Since un converges to u,
together with its derivatives up to order k, uniformly on each BN , it follows
immediately that u ∈ Ck,α−β and ‖u‖

Ck,α
−β

≤ 1. Now let ε > 0. Choose N large

enough so that 2Nβ′−β < ε, and n0 large enough that ‖un − u‖
Ck,α′

−β′ ,BN
< ε

for all n ≥ n0. Then, we have:

‖un − u‖
Ck,α′

−β′
= max

{
‖un − u‖

Ck,α′
−β′ ,BN

, ‖un − u‖
Ck,α′

−β′ ,R3\BN

}

≤ max
{
‖un − u‖

Ck,α′
−β′ ,BN

, Nβ′−β ‖un − u‖
Ck,α′

−β

}
< ε.

2In fact the authors consider more general operators, but the same considerations
apply.
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Thus, un converges to u in Ck,α
′

β′ . �

We will also use the fact that ∆g : Ck,α−β → Ck−2,α
−β−2 is an isomorphism.

Proposition 28. Let τ > 0, 0 < β < 1, and let g ∈ δ + Ck−1,α
−τ be a metric

on R
3. Then the operator ∆g : Ck,α−β → Ck−2,α

−β−2 is an isomorphism.

Proof. The injectivity of ∆g follows from the maximum principle. The solv-
ability of the equation ∆gu = f is standard; see for example [16]. We now
estimate u in C0

−β using the representation (21) and the estimate (22) on G:

|u(x)| ≤ C ‖f‖C0
−2−β

∫
R3

dy

|y|2+β |x− y|
.

We break up the integral on the right-hand side into three parts and estimate
each part by C |x|−β. First on Ω1 = {|x− y| ≥ 2 |x|} we have |y| ≥ |x− y| /2;
hence∫

Ω1

dy

|y|2+β |x− y|
≤ C

∫
Ω1

dy

|x− y|3+β
= C

∫
R3\B2|x|

dy

|y|3+β
=

C

|x|β
.

Next, on Ω2 = {|x| /2 ≤ |x− y| ≤ 2 |x|}, we have |y| ≤ 3 |x− y|, and
furthermore Ω2 ⊂ B3|x|; hence∫

Ω2

dy

|y|2+β |x− y|
≤ C

∫
Ω2

dy

|y|3+β
≤ C

∫
B3|x|

dy

|y|3+β
=

C

|x|β
.

Finally, on Ω3 = {|x− y| ≤ |x| /2}, we have |y| ≥ |x| /2; hence∫
Ω3

dy

|y|2+β |x− y|
≤ C

|x|2+β
∫

Ω3

dy

|x− y| =
C

|x|2+β
∫
B|x|/2

dy

|y| =
C

|x|β

This shows that
|x|β |u(x)| ≤ C ‖f‖C0

−β
.

Applying this inequality after having performed a translation on R
3 by a vec-

tor of length 2, we also get a supremum bound for u onB1, and hence a bound
on ‖u‖C0

−β
. Once this bound for u is established, the estimate (20) shows that

u ∈ Ck,α−β , and thus ∆g is surjective. The boundedness of the inverse follows
from the compactness lemma. Indeed, suppose the inverse is not bounded.
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Then there is a sequence un with ‖un‖Ck,α
−β

= 1 and ‖∆gun‖Ck−2,α
−β−2

→ 0.

By Lemma 27, we may assume that ‖un − u‖
Ck,α′

−β′
→ 0 for some function

u ∈ Ck,α−β and α′ < α, β′ < β. Clearly, ∆gu = 0 in contradiction to the
injectivity of ∆g. �

Proof of Theorem 8 part (b). Let K : Ck,α−β → Ck,α−β be defined by Ku =
∆−1
g hu. We claim that K is compact. Indeed, if we take 0 < ε < ν − 2, the

inclusion ι : Ck,α−β → Ck−2,α
−β+ε is compact by the lemma, and the multiplication

operator h : Ck−2,α
−β+ε → Ck−2,α

−β−2 is bounded; thus K = ∆−1
g · h · ι is compact.

It follows that I + K is Fredholm of index zero [11, Theorem 3.17]. Since
I +K = ∆−1

g L, the injectivity of L implies the injectivity of I +K; whence
I + K is also surjective. Now, a simple argument as in the previous proof
shows that I + K has a bounded inverse. Indeed, if it didn’t then there
would be a sequence un with ‖un‖ = 1 and ‖(I +K)un‖ → 0. Since K is
compact, we could assume that Kun → v, which implies that un → −v, and
thus (I + K)v = 0, in contradiction to ker(I + K) = 0. This shows that
I + K is an isomorphism. Therefore, we conclude that L = ∆g(I + K) is
also an isomorphism. �

Before giving the proof of Theorem 9, we first establish the corresponding
elliptic estimate.

Proposition 29. Let β, τ > 0, and let g ∈ δ + Ck−1,α
−τ be a metric on R

3.

If u ∈ C0
−β(R

3) and ∆gu ∈ Dk−2,α
−3 then u ∈ Ek,α−1 and

‖u‖
Ck,α

−1
≤ C ‖∆gu‖Dk−2,α

−3
. (53)

Furthermore, ∆g : Ek,α−1 → Dk−2,α
−3 is an isomorphism.

Proof. We first establish a bound for u in C0
−1 in terms of f = ∆gu in D0,α

−3 .
This bound is obtained from the representation (21) and the estimate (22)
on G, as in the proof of Proposition 28:

|u(x)| ≤ C

∫
R3

|f(y)| dy
|x− y| .
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Here we break up the integral on the right-hand side into two parts. On
Ω1 = {|x− y| ≥ |x| /2}, we have∫

Ω1

|f(x)| dy
|x− y| ≤ 2

|x| ‖f‖L1 .

On Ω2 = {|x− y| ≤ |x| /2}, we have |y| ≥ |x| /2; hence

∫
Ω2

|f(x)| dy
|x− y| ≤ ‖f‖C0

−3

∫
Ω2

dy

|y|3 |x− y|
≤

8 ‖f‖C0
−3

|x|3
∫
B|x|/2

dy

|y| =
C ‖f‖C0

−3

|x| .

This shows that
|x| |u(x)| ≤ C ‖f‖D0,α

−3
.

Applying this inequality after having performed a translation on R
3 by a

vector of length 2, we also get a supremum bound for u on B1, and hence
a bound on ‖u‖C0

−1
. Now, (53) follows from Theorem 8 part (a), Inequal-

ity (20). We have ∆gu ∈ L1 and

∆gu− ∆u = (gij − δij) ∂i∂ju− gij Γkij ∂ku, (54)

where ∆ = ∆δ. Thus, we obtain

‖∆gu− ∆u‖L1 ≤ C ‖u‖C2
−1
, (55)

and it follows that ∆u ∈ L1 and u ∈ Ek,α−1 . Inequality (53) implies that ∆g

is injective with a bounded inverse, and (21) implies surjectivity. �

Finally, we can now prove the isomorphism theorem in Ek,α−1 . The proof is
similar to the proof of part (b) of Theorem 8, with minor changes necessary
to keep track of the condition ∆u ∈ L1.

Proof of Theorem 9. First, note that if u ∈ Ek,α−1 then ∆gu ∈ L1 in view
of (55). Furthermore, hu ∈ L1 since

‖hu‖L1 ≤ ‖σ−ν−1‖L1 ‖h‖C0−ν
‖u‖C0

−1
. (56)

Thus, (∆g − h)u ∈ L1; hence ∆g − h indeed maps Ek,α−1 continuously
into Dk−2,α

−3 . The proof of part (b) of Theorem 8 can now be applied
once the operator K : u �→ ∆−1

g hu is shown to map Ek,α−1 into itself com-
pactly. Equivalently, it is enough to verify that the multiplication operator
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h : Ek,α−1 → Dk−2,α
−3 is compact. Let un be a bounded sequence in Ek,α−1 . From

the proof of Theorem 8 we know that there is a subsequence, denoted again
by un, such that hun converges in Ck−2,α

−3 . It remains to show that hun
contains a subsequence which converges in L1. This follows from a minor
refinement of (56). Indeed, if 3 − ν < β < 1 then by Lemma 27 un contains
a subsequence that converges in C0

−β and since

‖hu‖L1 ≤ ‖σ−ν−β‖L1 ‖h‖C0
−ν

‖u‖C0
−β
,

we have that this subsequence converges in L1. �

Finally, we give the proof of Lemma 10.

Proof of Lemma 10. Without loss of generality we assume that y = 0, and we
let u(x) = G(x, 0). Define (gn)ij(x) = gij(2n−1x) and un(x) = u(2n−1x) as in
the proof of Proposition 26, but now for any integer n. Then ∆gnun = 0 on
R

3\0. Standard elliptic theory [10, Chapter 6] combined with the supremum
bound (22) on G gives:

‖un‖C2,A′ ≤ C ‖un‖C0,A ≤ C21−n,

where A = B5 \ B1, A′ = B4 \ B2, and the constant C is independent of n.
It follows that we have on A′

n = B2n+1 \B2n :

‖u(x)‖C0,A′
n

+ ‖r∂u(x)‖C0,A′
n

+
∥∥r2∂2u(x)

∥∥
C0,A′

n
≤ C21−n ≤ C

|x| ,

where r = |x|. This implies

|∂G(x, 0)| ≤ C

|x|2

|∂2G(x, 0)| ≤ C

|x|3 ,

which completes the proof. �
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