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Existence and Compactness of Minimizers of the

Yamabe Problem on Manifolds with Boundary

Henrique Araújo

Dedicated to José Escobar (in memoriam).

We show existence of minimizers of the Yamabe functional on a
compact Riemannian manifold with boundary (M, g), of dimen-
sion n ≥ 3, restricted to the set of all metrics conformal to g and
satisfying aV + bA = 1, where V and A are the volume of M
and area of ∂M , respectively, when a and b are positive real num-
bers and when the infimum of the functional on that set is stricly
less than the corresponding quantity on the standard Euclidean
half-sphere. This shows that for such manifolds we can deform g
conformally to obtain a metric with constant scalar curvature R
and constant mean curvature h on the boundary which are related
by bR = 2nha. These results are already known when (M, g) is
locally conformally flat or when n ≥ 5 and ∂M is not umbilic.
They extend for arbitrary positive a and b results known for the
case when a = 1, b = 0, the case when a = 0, b = 1, and the
case when b is small. We also show a compactness result for the
set of all minimizers when the metric is allowed to vary on a small
neighborhood of a given base metric satisfying the above condition.

1. Introduction.

The Yamabe problem for manifolds without boundary asked whether a
smooth compact closed Riemannian manifold M of dimension n ≥ 3, with
Riemannian metric g, admitted a Riemannian metric g̃ conformal to g having
constant scalar curvature. The Yamabe problem was solved in the affirma-
tive after contributions by Yamabe ([Y]), Trudinger ([T]), Aubin ([Au]) and
Schoen ([S]). A survey on the Yamabe problem for manifolds without bound-
ary can be found in [LP]. In 1992, Escobar ([E1]) showed that almost any
compact Riemannian manifold with boundary M of dimension n ≥ 3, with
Riemannian metric g, admits a smooth Riemannian metric g̃ conformal to g
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having constant scalar curvature and minimal boundary. Thus, he provided
an affirmative answer to an extension of the Yamabe problem to manifolds
with boundary in the cases considered. The metric g̃ = u

4
n−2 g has constant

scalar curvature and minimal boundary if and only if u is a smooth positive
solution to {

∆u− n−2
4(n−1)Ru+ 2n

n−2λu
n+2
n−2 = 0 on M,

∂u
∂η + n−2

2 hu = 0 on ∂M,
(1)

where ∆ is the Laplace operator induced by the metric g, η is the unit
outward normal on ∂M with respect to g, R is the scalar curvature of g,
h is the mean curvature of g on ∂M and λ is a Lagrange multiplier. The
above equation turns out to be the Euler-Lagrange Equation associated with
nonnegative critical points of the functional

E(u) =
∫
M

|∇u|2 dω +
n− 2

4(n− 1)

∫
M

Ru2 dω +
n− 2

2

∫
∂M

hu2 dσ,

when restricted to the constraint set B = {u ∈ H1(M) |
∫
M

u
2n

n−2 dω = 1 },

where H1(M) is the Sobolev space of square integrable functions with square
integrable weak first derivatives, and dω is the volume element induced by g.
The resolution of the Yamabe problem is then achieved by showing existence
of a smooth positive critical point of the functional E restricted to the above
constraint set. This is typically done in two steps. First the exponent
n+2
n−2 in Equation 1 is lowered by finding minimizers of the functional E
on the constraint sets Bα = {u ∈ H1(M) |

∫
M

uα dω = 1 }, α < 2n
n−2 .

Existence of such minimizers is a consequence of the compactness of the
Sobolev Embedding H1(M) ↪→ Lα(M), for α strictly less than 2n

n−2 . A
minimizer uα of the functional E on the set Bα is a (weak) solution to{

∆uα − n−2
4(n−1)Ruα + 2n

n−2λu
α−1
α = 0 on M,

∂uα
∂η + n−2

2 huα = 0 on ∂M.
(2)

A regularity result by Cherrier ([C]) implies that any weak solution of Equa-
tion 2 is smooth. The second step consists in using elliptic estimates to
show that the set of all minimizers uα, α < 2n

n−2 and sufficiently close to
2n
n−2 , is uniformly bounded in the C2,γ norm, for some 0 < γ < 1. A se-
quence of uα’s will then converge strongly in the C2 norm to a minimizer
of the functional E on the set B. A regularity result by Cherrier again
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shows that such a minimizer is smooth, and an application of the Maximum
Principle for Elliptic Operators to Equation 1 shows that it is positive. Let
Q(M,g) = inf{E(u) | u ∈ B }, and let Q(Sn+) be the corresponding quantity
when M is the n-dimensional upper half sphere in Euclidean space with the
standard metric. We always have that Q(M,g) ≤ Q(Sn+). In order to kick
start the bootstrapping argument used in obtaining the desired C2,γ norm
bounds, we must impose the condition that Q(M,g) < Q(Sn+). Indeed, such
uniform bounds cannot be found on Sn+ due to the noncompactness of its
group of conformal diffeomorphisms. The bulk of [E1] is devoted to show-
ing that Q(M,g) < Q(Sn+) is satisfied for a large class of manifolds with
boundary.

When u is smooth and positive and g̃ = u
4

n−2 g, then the condition∫
M

u
2n

n−2 dω = 1 is equivalent to requiring that the volume of (M, g̃) is

unitary. We may also choose as our constraint set the set of metrics
conformal to a base metric g satisfying aV + bA = 1, where V is the
volume of M , A is the area of ∂M and a, b are real parameters with
a ≥ 0 (when a = 0 we choose b = 1). This will correspond to the set

Ba,b = {u ∈ H1(M) | a
∫
M

u
2n

n−2 dω+
∫
∂M

u
2(n−1)

n−2 dσ = 1 }, where dσ is the area

element on ∂M induced by g. If we let Qa,b(M,g) = inf{E(u) | u ∈ Ba,b },
then Qa,b(M,g) ≤ Qa,b(Sn+), where Qa,b(Sn+) is the corresponding quantity
when M is the n-dimensional upper half sphere in Euclidean space with
the standard metric ([E4]). A positive critical point u of the functional E
restricted to the set Ba,b is a (necessarily smooth) solution of{

∆u− n−2
4(n−1)Ru+ 2n

n−2λau
n+2
n−2 = 0 on M,

∂u
∂η + n−2

2 hu = 2(n−1)
n−2 λbu

n
n−2 on ∂M,

(3)

where λ is a Lagrange multiplier. Equation 3 says that the metric g̃ = u
4

n−2

has constant scalar curvature R̃ = 8n(n−1)λa
(n−2)2 and constant mean curvature

h̃ = 4(n−1)λb
(n−2)2 . When a > 0, existence of such critical points is proved in

[E4] for manifolds of nonpositive type (Qa,b(M,g) ≤ 0) and for almost any
manifold of positive type if b is sufficiently small. The case a = 0, b = 1 is
treated in [E2]. In [HL1] and [HL2], Han and Li showed existence of solutions
to Equation 3 when a > 0, (M,g) is of positive type and either (M,g) is
locally conformally flat with umbilic boundary or n ≥ 5 and ∂M has a
nonumbilic point. In the same cases and when (M,g) is not conformally
equivalent to Sn+, they also show compactness results (uniform bounds on
C2 norms) for the set of all solutions (after normalization).
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In Section 2 of this paper we show existence of minimizers of the func-
tional E on Ba,b when a > 0, b > 0 and Qa,b(M,g) < Qa,b(Sn+), following
the two step program indicated above. In particular this shows existence of
solutions to Equation 3 in that case. It seems safe to conjecture that the
strict inequality Qa,b(M,g) < Qa,b(Sn+) will hold under conditions similar to
those found in [E2] or [HL1] and [HL2]. This will be addressed in a forth-
coming paper. It is not known whether equality holds only if the manifold
is globally conformal to the standerd sphere. In Section 3 we establish com-
pactness results for the set of all minimizers when the base metric is allowed
to vary on a small C3 neighborhood in the space of Riemannian metrics. In
this Section we also consider the case a = 0, b = 1. We assume finiteness of
the first eigenvalue of the problem{

∆u− n−2
4(n−1)Ru = 0 on M,

∂u
∂η + n−2

2 hu = λu on ∂M

(see [E3]) and we show that the critical points found in [E2] are indeed
minimizers, and compactness results are established.

2. Existence of minimizers.

Let M be a compact Riemannian manifold with boundary, of dimension
n ≥ 3. Let g be a fixed smooth Riemannian metric on M . Let [g] =
{u

4
n−2 g | u > 0, u ∈ C∞ } be the conformal class of g. Let R denote the

scalar curvature of g and let h denote its mean curvature on ∂M . Let R̃,
h̃ respectively denote the scalar and mean curvatures of the Riemannian
metric g̃ = u

4
n−2 g ∈ [g]. R̃ and h̃ are related to R and h by{

∆u− n−2
4(n−1)Ru+ n−2

4(n−1) R̃u
n+2
n−2 = 0 on M,

∂u
∂η + n−2

2 hu = n−2
2 h̃u

n
n−2 on ∂M,

(4)

where ∆ is the Laplacian induced by g and η is the unit outward normal on
∂M determined by g. Let p = 2n

n−2 and q = 2(n−1)
n−2 . The volume of (M, g̃)

is given by
∫
M

up dω, where dω is the volume element induced by g, and the

area of (∂M, g̃) is given by
∫
∂M

uq dσ, where dσ is the area element induced

by g. For a, b > 0 let us define

Ba,b
p,q,g = {u ∈ H1(M) | a

∫
M

up dω + b

∫
∂M

uq dσ = 1 }, (5)
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where H1(M) is the space of weakly differentiable L2 functions with weak
derivatives in L2. For u ∈ H1(M), we define

E(u, g) =
∫
M

|∇u|2 dω +
n− 2

4(n − 1)

∫
M

Ru2 dω +
n− 2

2

∫
∂M

hu2 dσ, (6)

where ∇u is the gradient of u with respect to g. Nonnegative critical points
of the functional E restricted to Ba,b

p,q,g correspond to weak solutions of{
∆u− n−2

4(n−1)Ru+ λapup−1 = 0 on M,
∂u
∂η + n−2

2 hu = λbquq−1 on ∂M,
(7)

where

λ =
E(u)

ap
∫
M

up dω + bq
∫
∂M

uq dσ
. (8)

A result by Cherrier ([C]) says that a weak solution of Equation 7 is smooth.
The Maximum Principle for Elliptic Operators implies that a nonnegative
smooth solution must either be positive or vanish identically. We define

Qa,bp,q(g) = inf{E(u, g) | u ∈ H1(M), u ∈ Ba,b
p,q,g }.

We note that we may restrict ourselves to nonegative functions u in the
definition of Qa,bp,q(g) without affecting the result. We always have that −∞ <

Qa,bp,q(g) ≤ Qa,bp,q(Sn+), where Sn+ is the upper half sphere in Euclidean space
with the standard metric (see [E4]). In this section we will be mostly dealing
with one fixed metric on M , and we will write Ba,b

p,q , E(u) and Qa,bp,q except
when confusion may arise. To fix terminology, we will say that u is a Qa,bp,q
minimizer if u ∈ Ba,b

p,q and E(u) = Qa,bp,q. If u is a Qa,bp,q minimizer then it does
not change sign and |u| is a smooth positive solution of Equation 7, with

λ = Qa,b
p,q

ap
∫
M

|u|p dω+bq
∫

∂M

|u|q dσ . In this section we prove the following theorem.

Theorem 2.1. Suppose that Qa,bp,q < Qa,bp,q(Sn+). Then there exists a Qa,bp,q
minimizer. Equation 7 has a smooth positive solution u with λ =

Qa,b
p,q

ap
∫
M

up dω+bq
∫

∂M

uq dσ
, and g̃ = u

4
n−2 g is a smooth Riemannian metric with

constant scalar curvature R̃ = 4(n−1)
n−2 λap and constant mean curvature

h̃ = 2
n−2λbq.
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Clearly, only the statement about the existence of a Qa,bp,q minimizer needs to
be proved. Following a standard argument, we first lower the exponents in
Equation 7 by way of the following definitions. For 2 ≤ α ≤ p, 2 ≤ β ≤ q,
we let

Ba,b
α,β := {u ∈ H1(M) | a

∫
M

|u|α dω + b

∫
∂M

|u|β dσ = 1 }

and
Qa,bα,β := inf{E(u) | u ∈ Ba,b

α,β }.

It follows from Hölder’s Inequality that Qa,bα,β is finite. When 2 ≤ α < p,
2 ≤ β < q, it is standard to show, using the compactness of the embeddings
H1(M) ↪→ Lα(M) and H1(M) ↪→ Lβ(∂M), that there exists u ∈ Ba,b

α,β such

that E(u) = Qa,bα,β. We will say that such u is a Qa,bα,β minimizer. As in the

case when α = p, β = q, a Qa,bα,β minimizer is smooth and does not change

sign. We will denote by uα,β any positive Qa,bα,β minimizer. A positive Qa,bα,β
minimizer uα,β satisfies the Euler-Lagrange equation{

∆uα,β − n−2
4(n−1)Ruα,β + aαλα,βu

α−1
α,β = 0 on M,

∂uα,β

∂η + n−2
2 huα,β = bβλα,βu

β−1
α,β on ∂M,

(9)

where

λα,β =
Qa,bα,β

aα
∫
M

uαα,β dω + bβ
∫
∂M

uβα,β dσ
. (10)

We will show that a sequence uαi,βi
converges in C2 norm to a Qa,bp,q minimizer

u as (αi, βi) tends to (p, q). This will be done in two steps. First we show
that suitable Lr(M) and Ls(∂M) norms are uniformly bounded for the uα,β,
for (α, β) sufficiently close to (p, q). This is the content of Proposition 2.6.
Next we use elliptic regularity to show that the C2,γ norms (0 < γ < 1) of the
uα,β are also uniformly bounded (Proposition 2.10). To prove Proposition
2.6 we need a Sobolev type inequality which in a sense holds uniformly for all
compact manifolds. This is Lemma 2.5. As the level set Ba,b

p,q of our original
problem has both an interior and a boundary part, we do not work directly
with Lr(M) or Ls(∂M) norms. Instead, we use a norm which is in a sense a
combination of the two, and which reduces to those in the limit cases a = 1,
b = 0 and a = 0, b = 1. This is defined in Lemma 2.2. Its norm properties
are used in Lemma 2.5. The analogs for the boundaryless case of Lemma
2.5, Proposition 2.6 and Proposition 2.10 can be found, for example, in [LP].
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The notation set forth by the next lemma will be used throughout this
section.

Lemma 2.2. Suppose | |1 is a norm and | |2 is a seminorm on a vector
space W . Let α > β > 1. Then

(a) For each v ∈ W , v �= 0, there exists a unique positive number, which
we denote by |v|a,bα,β , such that

a(|v|a,bα,β)
−α|v|α1 + b(|v|a,bα,β)

−β |v|β2 = 1.

(b) | |a,bα,β, defined to be 0 if v = 0, is a norm on W .

(c) | |a,bα,β is equivalent to c| |1 + d| |2 for every c > 0, d > 0.

Proof. Part (a) follows from the fact that the function ax−α|v|α1 + bx−β|v|β2
is strictly decreasing with range (0,∞). Homogeneity of | |a,bα,β follows easily
from its uniqueness. To show that the triangle inequality holds, suppose by
contradiction that |v + u|a,bα,β > |v|a,bα,β + |u|a,bα,β, for some v �= 0, u �= 0 in W .
Then

1 = a(|v + u|a,bα,β)
−α|v + u|α1 + b(|v + u|a,bα,β)

−β|v + u|β2

< a

(
|v|1 + |u|1

|v|a,bα,β + |u|a,bα,β

)α
+ b

(
|v|2 + |u|2

|v|a,bα,β + |u|a,bα,β

)β
.

We will reach a contradiction with the following result, whose proof is an
easy application of the method of Lagrange multipliers in R

4: If A, B are
positive numbers and

f(x, y, z, w) = a

(
x+ y

A+B

)α
+ b

(
z + w

A+B

)β
,

then f ≤ 1 on the set { aA−αxα + bA−βzβ = 1, aB−αyα + bB−βwβ =
1, x, y, z, w ≥ 0 }. �

We now make a definite choice of W , | |1 and | |2. Let α ≤ 2n
n−2 , β ≤

2(n−1)
n−2 , α > β > 1. We take W in Lemma 2.2 to be H1(M), and we

let |v|1 = ‖v‖Lα(M) =
(∫
M

|v|α dω
) 1

α

, |v|2 = ‖v‖Lβ (∂M) =
( ∫
∂M

|v|β dσ
) 1

β

.
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Recall that by the Sobolev Embedding Theorem, H1(M) −→ Lα(M) and
H1(M) −→ Lβ(∂M). We denote the resulting norm, defined as in Lemma
2.2, by | |a,bα,β,g, where we have indicated its dependence on the underlying

metric g, or simply by | |a,bα,β, when no confusion may arise. We fix notation
before proceeding. Throughout this paper,K will stand for a generic positive
constant. We will indicate in brackets the dependence of K on the various
relevant parameters. The notation Ko(ε) will indicate that K → 0 as ε→ 0,
that is, that K is o(ε). In the proofs we will always assume ε to be sufficiently
small. The norms | |a,bα,β satisfy the following continuity property.

Lemma 2.3. Let 1 < α̃ ≤ p, 1 < β̃ ≤ q. If α̃−ε ≤ α ≤ α̃ and β̃−ε ≤ β ≤ β̃,
then for all v in H1(M)

|v|a,bα,β ≤ (1 +Ko(ε))|v|a,b
α̃,β̃
.

Proof. We may assume v �≡ 0. We first observe that if xα̃ + yβ̃ = 1, x ≥ 0,
y ≥ 0, then xα + yβ ≤ max( α̃α ,

β̃
β ). From

⎛
⎝a 1

α̃
|v|Lα̃(M)

|v|a,b
α̃,β̃

⎞
⎠α̃

+

⎛
⎝b 1

β̃

|v|
Lβ̃(∂M)

|v|a,b
α̃,β̃

⎞
⎠β̃

= 1,

we obtain⎛
⎝a 1

α̃
|v|Lα̃(M)

|v|a,b
α̃,β̃

⎞
⎠α

+

⎛
⎝b 1

β̃

|v|
Lβ̃ (∂M)

|v|a,b
α̃,β̃

⎞
⎠β

≤ max(
α̃

α
,
β̃

β
)

≤ max(
α̃

α
,
β̃

β
)

⎡
⎣(aV )1−

α
α̃

(
a

1
α̃
|v|Lα̃(M)

|v|a,bα,β

)α
+ (bA)1−

β

β̃

(
b

1
β̃

|v|
Lβ̃(∂M)

|v|a,bα,β

)β⎤⎦ ,
where we have used Hölder’s Inequality. Here V is the volume of M and A
the area of ∂M . Choosing Ko(ε) yields the result. �

For ε > 0, we let Λε = { (α, β) | p− ε < α < p, q− ε < β < q }. The next
lemma bounds the λα,β uniformly on Λε for ε small.

Lemma 2.4. (a) lim sup
(α,β)→(p,q)

Qa,bα,β ≤ Qa,bp,q.
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(b) There exist ε > 0 and K such that |λα,β| ≤ K for (α, β) ∈ Λε.

Proof. We may assume α > β for (α, β) ∈ Λε. Let δ > 0. Let φ ∈ Bp,q
such that E(φ) < Qa,bp,q + δ. Let tα,β = (|φ|a,bα,β)−1. Then Qa,bα,β ≤ E(tα,βφ) =
t2α,βE(φ). If tα,β ≥ 1, then

1 = atαα,β

∫
M

|φ|α dω + btβα,β

∫
∂M

|φ|β dσ ≥ tβα,β

⎛
⎝a∫

M

|φ|α dω + b

∫
∂M

|φ|β dσ

⎞
⎠ .

On the other hand, if tα,β ≤ 1, then

1 = atαα,β

∫
M

|φ|α dω + btβα,β

∫
∂M

|φ|β dσ ≤ tβα,β

⎛
⎝a∫

M

|φ|α dω + b

∫
∂M

|φ|β dσ

⎞
⎠ .

By the Dominated Convergence Theorem, a
∫
M

|φ|α dω + b
∫
∂M

|φ|β dσ →

1, as (α, β) tends to (p, q), since φ ∈ Bp,q. We conclude that
lim sup(α,β)→(p,q) tα,β ≤ 1 and lim inf(α,β)→(p,q) tα,β ≥ 1, and part (a) fol-
lows. To prove part (b), notice that since the denominator in Equation
10 is bounded above and below, we need only bound the Qa,bα,β. An up-

per bound is provided by part (a). A lower bound follows from Qa,bα,β ≥

−K
(∫
M

u2
α,β dω +

∫
∂M

u2
α,β dσ

)
and

∫
M

uαα,β dω ≤ 1
a ,

∫
∂M

uβα,β ≤ 1
b . �

Remark: If g̃ = u
4

n−2 g, where u is a smooth positive function, and φ
is in H1(M), then it can be shown using the transformation Equations 4
that E(u−1φ, g̃) = E(φ, g). More generally, if Ψ : (M̃ , g̃) → (M,g) is a
diffeomorphism between the compact Riemannian manifolds with boundary
(M̃, g̃) and (M,g), and g̃ = Ψ∗(u

4
n−2 g), then E((u−1φ) ◦ Ψ, g̃) = E(φ, g).

Also, |(u−1φ) ◦ Ψ|a,bp,q,g̃ = |φ|a,bp,q,g. It then follows that Qa,bp,q(g) = Qa,bp,q(g̃), and

the existence of a smooth positive Qa,bp,q(g̃) minimizer implies the existence of
a smooth positive Qa,bp,q(g) minimizer.

Lemma 2.5. (a) Let φ be the restriction to R
n
+ of a C∞

0 (Rn) function.
Then

(|φ|a,bp,q,g1)
2 ≤ 1

Qa,bp,q(Sn+)

∫
Rn

+

|∇φ|2 dx,
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where g1 is the Euclidean metric and dx is the Euclidean volume ele-
ment.

(b) Suppose φ is a smooth function with support in a coordinate neighbor-
hood of M for which |gij − δij | < ε, for 1 ≤ i, j ≤ n. Then

(|φ|a,bp,q,g)2 ≤ (1 +Ko(ε))

Qa,bp,q(Sn+)

∫
M

|∇φ|2 dω.

(c) Given ε > 0, there exists K(ε) such that for every φ ∈ H1(M)

(|φ|a,bp,q,g)2 ≤ (1 + ε)

Qa,bp,q(Sn+)

∫
M

|∇φ|2 dω +K(ε)
∫
M

φ2 dω.

Proof. Part (a) follows from the fact that R
n is conformal to Sn+ minus

a point (via stereographic projection) and that for φ a C∞
0 (Rn) function

E(φ, g1) =
∫

Rn
+
|∇φ|2 dx, since both the scalar and mean curvatures of R

n
+

vanish identically. Part (b) follows at once from part (a) and continuity
of the terms involved (see Section 3). Finally, part (c) follows from part
(b) when we consider a partition of unity subordinate to an open cover of
coordinate neighborhoods, each of which satisfies the condition stated on
part (b) with ε replaced by a suitable ε′. �

We are now ready to establish bounds on certain norms of the positive
Qa,bα,β minimizers of uα,β.

Proposition 2.6. Suppose that Qa,bp,q < Qa,bp,q(Sn+). Let Λ = { (α, β) | 2 <

α < p, 2 < β < q, β < α } and let uα,β be the positive Qa,bα,β minimizers,
(α, β) ∈ Λ. Then there exist r > p, s > q and K such that |uα,β|Lr(M) ≤ K
and |uα,β|Ls(∂M) ≤ K for all (α, β) ∈ Λ sufficiently close to (p, q).

Proof. We will show that there exist δ > 0 and K > 0 such that if (α, β) ∈ Λ
and are sufficiently close to (p, q) then |wα,β|a,bα,β ≤ K, where wα,β = u1+δ

α,β .
Part (c) of Lemma 2.2 then implies the statement of the proposition by
choosing p < r < (1 + δ)p, q < s < (1 + δ)q.
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To prove the desired bound, we multiply Equation 9 by u1+2δ
α,β , where

δ > 0 is to be chosen later. Integration by parts yields

(1 + 2δ)
(1 + δ)2

∫
M

|∇wα,β|2 dω +
n− 2

4(n − 1)

∫
M

Rw2
α,β dω +

n− 2
2

∫
∂M

hw2
α,β dσ

= aαλα,β

∫
M

w2
α,βu

α−2
α,β dω + bβλα,β

∫
∂M

w2
α,βu

β−2
α,β dσ.

We now determine an upper bound for the right hand side of the above
inequality. We see from Equation 10 that λα,β has the same sign as Qa,bα,β.

If Qa,bp,q(g) < 0, then E(φ) < 0 for some H1 function φ, and that implies
Qa,bα,β < 0 for all (α, β) in Λ. In this case we take 0 as our upper bound.

Analogously, if Qa,bp,q(g) ≥ 0, then λα,β ≥ 0 for all (α, β) in Λ. We assume
the latter. Then by Hölder’s Inequality

aαλα,β

∫
M

w2
α,βu

α−2
α,β dω + bβλα,β

∫
∂M

w2
α,βu

β−2
α,β dσ

≤ Qa,bα,β

⎛
⎝aα|wα,β |2Lα(M)|uα,β|

α−2
Lα(M) + bβ|wα,β |2Lβ(∂M)

|uα,β|β−2
Lβ(∂M)

aα|uα,β |αLα(M) + bβ|uα,β|βLβ(∂M)

⎞
⎠ .

We claim that the expression in brackets in the last term is not greater than
(|wα,β |a,bα,β)2. Indeed, it is easy to check that if c > 0, d ≥ 0 and

f(x, y) =
aαc2xα−2 + bβd2yβ−2

aαxα + bβyβ
,

then on the set { axα + byβ = 1, x ≥ 0, y ≥ 0 } we have f ≤ G2, where
G is the unique positive constant such that aG−αcα + bG−βdβ = 1. As a
consequence we obtain

(1 + 2δ)
(1 + δ)2

∫
M

|∇wα,β|2 dω +
n− 2

4(n− 1)

∫
M

Rw2
α,β dω ≤ max(0, Qa,bα,β)(|wα,β |

a,b
α,β)

2.

Let ε > 0. Lemmas 2.4 and 2.3 imply that Qa,bα,β ≤ Qa,bp,q+ε and (|wα,β |a,bα,β)2 ≤
(1+ ε)(|wα,β |a,bp,q)2, provided (α, β) is sufficiently close to (p, q). With the aid
of Lemma 2.5, and absorbing bounded quantities into generic constants, we
conclude that there exists K(ε) such that for all (α, β) sufficiently close to
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(p, q),

(|wα,β |a,bα,β)
2 ≤ (1 + ε)2(max(0, Qa,bp,q) + ε)(1 + δ)2

Qa,bp,q(Sn+)(1 + 2δ)
(|wα,β |a,bα,β)

2

+K(ε)
∫
M

w2
α,β dω +K

∫
∂M

w2
α,β dσ. (11)

Since Qa,bp,q < Qa,bp,q(Sn+), we can find ε > 0, δ > 0 such that the first term
in the right hand side of Inequality 11 can be absorbed into its left hand
side. It remains to verify that the quantities

∫
M

w2
α,β dω and

∫
∂M

w2
α,β dσ are

uniformly bounded, but this follows from Hölder’s Inequality if we choose δ
such that 2(1 + δ) < p and 2(1 + δ) < q. �

We want to use elliptic estimates to establish bounds on the C2,γ norms
(0 < γ < 1) of the functions uα,β. For µ ≥ 1 and ξ a non-negative integer, let
W ξ,µ(M) stand for the usual Sobolev spaces, W ξ,µ(M) = { f | ‖f‖W ξ,µ(M) =∑

i≤ξ

( ∫
M

|∇if |µ dω
) 1

µ

< ∞}. Suppose {L;B } is a regular elliptic system

on M , where L is an elliptic operator on M and B is the boundary operator.
Let µ > 1. The following inequality is proved in [ADN]:

K(µ)‖u‖W 2,µ(M) ≤ ‖Lu‖Lµ(M) + ‖Bu‖
B

1− 1
µ

µ,µ (∂M)
+ ‖u‖Lµ(M), (12)

for all u ∈ W 2,µ. Here the spaces B
1− 1

µ
µ,µ (∂M) correspond to traces of

W 1,µ(M) functions. They are special cases of more general Besov spaces
Bξ
µ,ν (µ > 0, ν > 0, ξ real). From interpolation theory for Besov spaces we

have that (see [P])

(Bξ0
µ,ν0(∂M), Bξ1

µ,ν1(∂M))θ,ν = Bξ
µ,ν(∂M), (13)

for all µ, ν0, ν1, ν positive and ξ0 �= ξ1, where 0 < θ < 1 and ξ = (1− θ)ξ0 +
θξ1. Now let µ′ > µ > 1, and choose 1 − 1

µ < ζ < 1 − 1
µ′ . Let θ be defined

by 1− 1
µ = θζ. Note that

1− 1
µ

1− 1
µ′
< θ < 1. We apply Equation 13 with ξ0 = 0,

ξ1 = ζ, ξ = 1 − 1
µ , ν0 = max(µ, 2), ν1 = µ′, ν = µ to obtain that for all

u ∈W 2,µ′(M),

‖Bu‖
B

1− 1
µ

µ,µ (∂M)
≤ K(θ, µ)‖Bu‖1−θ

B0
µ,max(µ,2)

(∂M)
‖Bu‖θ

Bζ

µ,µ′ (∂M)
.
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We also have the embeddings Lµ(∂M) −→ B0
µ,max(µ,2)(∂M) and

B
1− 1

µ′
µ′,µ′ (∂M) −→ Bζ

µ,µ′(∂M). The latter holds since ζ < 1 − 1
µ′ and

1 − 1
µ′ −

n−1
µ′ > ζ − n−1

µ . Indeed, in general we have that Bξ0
µ0,ν0 −→ Bξ1

µ1,ν1 ,
provided ξ0 > ξ1 and ξ0− n

µ0
> ξ1− n

µ1
, where n is the dimension of the base

space (see [N] and [T1]). We find that for all u ∈W 2,µ′(M)

K(µ)‖u‖W 2,µ(M) ≤ ‖Lu‖Lµ(M)

+K(θ, µ, µ′)‖Bu‖1−θ
Lµ(∂M)‖φ‖

θ
W 1,µ′ (M)

+ ‖u‖Lµ(M), (14)

where φ is any W 1,µ′ extension of Bu to the whole of M , µ′ > µ > 1 and
1− 1

µ

1− 1
µ′
< θ < 1.

The following elementary arithmetic lemma will be useful. We omit the
easy proof.

Lemma 2.7. Let 2n
n−2 < r0 <

n(n+2)
2(n−2) , and let s0 = 0. Let {ri}, {si}, i =

0, 1, . . . , be two sequences recursively defined by

ri+1 =

{
n(n−2)ri

n(n+2)−2(n−2)ri
, if 2n

n−2 < ri <
n(n+2)
2(n−2)

ri otherwise,

si+1 =

{
(n−1)(n−2)ri

n(n+2)−2(n−2)ri
, if 2n

n−2 < ri <
n(n+2)
2(n−2)

si otherwise.

Then

(a) {ri}, {si} are both monotone non-decreasing.

(b) For i ≥ 1, ri > 2n
n−2 , si >

2(n−1)
n−2 and nri < (n+ 2)si.

(c) For some i0, 2n
n−2 < ri0 <

n(n+2)
2(n−2) and ri0+1 ≥ n(n+2)

2(n−2) .

We will use Inequality 14 to generate a bootstrap argument that will
show, with the aid of Proposition 2.6 and Lemma 2.7, that suitably high
order norms of the uα,β as in Proposition 2.6 are uniformly bounded. This
is essentially the content of the next lemma.

Lemma 2.8. For (α, β) in Λ = { (α, β) | 2 < α < p, 2 < β < q, β < α },
let uα,β be the positive Qa,bα,β minimizers and let λα,β be as in Equation 10.
Suppose that for some ε > 0 there exist positive constants r > p, s > q, K
and K(r, s), with nr ≤ (n+ 2)s, such that |λα,β| ≤ K, |uα,β |Lr(M) ≤ K(r, s)
and |uα,β|Ls(∂M) ≤ K(r, s) for all (α, β) ∈ Λε = { (α, β) | p − ε < α <
p, q − ε < β < q, β < α }. Then
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(i) There exists K(r, s) such that ‖uα,β‖W 2,µ(M) ≤ K(r, s) for all (α, β) ∈
Λε, where µ = n−2

n+2r.

(ii) If r< n(n+2)
2(n−2) , then there exists K(r, s) such that |uα,β|Lr′(M) ≤ K(r, s)

and |uα,β|Ls′ (∂M)

≤ K(r, s) for all (α, β) ∈ Λε, where r′ = n(n−2)r
n(n+2)−2(n−2)r and s′ =

(n−1)(n−2)r
n(n+2)−2(n−2)r .

Proof. All (α, β) in this proof will be assumed to lie in Λε. Let µ′ be defined by
1
µ′ = max( 1

µ − r−p
nr ,

p
2r ). Notice that µ′ > µ, since p

2r <
(n+2)p

2nr = n+2
(n−2)r = 1

µ .
Claim: There exists K(r, s) such that

⎛
⎝∫
M

|∇uβ−1
α,β |µ′ dω

⎞
⎠

1
µ′

≤ K(r, s)‖uα,β‖W 2,µ(M).

Proof of Claim: We split the proof into two cases. Suppose first that µ < n.
Let δ be defined by µ′δ = nµ

n−µ . One can check that δ ≥ nr
nr−pµ′ > 1. Let δ′

be defined by 1
δ + 1

δ′ = 1. By Hölder’s Inequality

∫
M

|∇uβ−1
α,β |µ′ dω ≤ (q − 1)

⎛
⎝∫
M

u
(β−2)µ′δ′
α,β dω

⎞
⎠

1
δ′
⎛
⎝∫
M

|∇uα,β|
nµ

n−µ dω

⎞
⎠

1
δ

.

Notice that 1
δ′ = 1− 1

δ ≥ 1− nr−pµ′
nr = pµ′

nr , hence µ′δ′ ≤ nr
p , and (β−2)µ′δ′ ≤

2nr
(n−2)p = r. Hölder’s Inequality then implies

⎛
⎝∫
M

u
(β−2)µ′δ′
α,β dω

⎞
⎠

1
δ′

≤ K

⎛
⎝∫
M

ur dω

⎞
⎠

(β−2)µ′
r

.

On the other hand, we have that W 2,µ(M) −→ W 1,nµ/(n−µ)(M), by the
Sobolev Embedding Theorem, and the claim when µ < n then follows from
the hypothesis on |uα,β|Lr(M). Let us suppose now that µ ≥ n. By the
Sobolev Embedding Theorem, W 2,µ(M) −→W 1,µ̃(M) for each µ̃ ≥ µ if µ =
n and W 2,µ(M) −→ C1(M) if µ > n. In particular W 2,µ(M) −→ W 1,r(M)
in either case. Since µ > n, we have that 1

µ < 1
r + 1

n = p
2r + r−p

nr , so that
µ′ = 2r

p . Let us choose δ′ = nr
pµ′ = n

2 . Then (β − 2)µ′δ′ ≤ 2nr
(n−2)p = r. Also,
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µ′δ = 2rn
p(n−2) = r. The proof then follows as in the previous case. This

proves the claim.
We let L = ∆ − n−2

4(n−1)R and B = ∂
∂η + n−2

2 h. Then by Equation 9,

Luα,β = −aαλα,βuα−1
α,β , Buα,β = bβλα,βu

β−1
α,β . Notice that φα,β = bβλα,βu

β−1
α,β

is a smooth extension of Buα,β to the whole of M . It follows from Inequality
14 that

K(µ)‖uα,β‖W 2,µ(M) ≤ ‖Luα,β‖Lµ(M)

+K(θ, µ, µ′)‖Buα,β‖1−θ
Lµ(∂M)‖φα,β‖

θ
W 1,µ′ (M)

+ ‖uα,β‖Lµ(M), (15)

where
1− 1

µ

1− 1
µ′
< θ < 1 (for simplicity, we could set θ = 1

2 + 1
2

(
1− 1

µ

1− 1
µ′

)
, so that

θ becomes a function of r). We note that (β− 1)µ′ ≤ r and (β− 1)µ ≤ s. It
follows from Hölder’s Inequality, the fact that nr ≤ (n+ 2)s and the Claim
just proved that

‖Buα,β‖1−θ
Lµ(∂M)‖φα,β‖

θ
W 1,µ′ (M)

≤ K(r, s)
(
1 + ‖uα,β‖W 2,µ(M)

)θ
,

and so for every ρ > 0

‖Buα,β‖1−θ
Lµ(∂M)‖φα,β‖

θ
W 1,µ′ (M)

≤ K(r,s)

ρ
1

1−θ
+ θρ

1
θ (1 + ‖uα,β‖W 2,µ(M)) = K(r,s)

ρ
1

1−θ
+ θρ

1
θ + θρ

1
θ ‖uα,β‖W 2,µ(M).

We choose ρ so that the term K(θ, µ, µ′)θρ
1
θ ‖uα,β‖W 2,µ(M) can be absorbed

by the left hand side of Inequality 15. It remains to show that the terms
‖Luα,β‖Lµ(M) and ‖uα,β‖Lµ(M) are uniformly bounded. But this follows from
Hölder’s Inequality since µ < r and (α − 1)µ ≤ (n+2)

n−2 µ = r. This proves

part (i). Now assume that r < n(n+2)
2(n−2) . This implies µ < n

2 . By the Sobolev

Embedding Theorem, there are embeddings W 2,µ(M) −→ L
nµ

n−2µ (M) and

W 2,µ(M) −→ L
(n−1)µ
n−2µ (∂M). Part (ii) then follows from part (i), since

nµ
n−2µ = n(n−2)r

n(n+2)−2(n−2)r and (n−1)µ
n−2µ = (n−1)(n−2)r

n(n+2)−2(n−2)r . �

The next lemma combines Lemma 2.4, Lemma 2.7 and Lemma 2.8 with
Proposition 2.6 to establish bounds on higher order norms of subcritical
minimizers.

Lemma 2.9. Suppose that Qa,bp,q < Qa,bp,q(Sn+). Let Λε = { (α, β) | p − ε <

α < p, q − ε < β < q, β < α } and let uα,β be the positive Qa,bα,β minimizers,
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(α, β) ∈ Λε. Then there exists ε > 0 such that for each µ > 1 there exists
K(µ) such that ‖uα,β‖W 2,µ(M) ≤ K(µ), for all (α, β) in Λε.

Proof. The statement of the lemma is true for some µ0 ≥ n
2 . This fol-

lows easily from Lemma 2.8 and Lemma 2.7. By the Sobolev Embedding
Theorem, W 2,µ0(M) −→ Lr(M), W 2,µ0(M) −→ Ls(∂M), for each r ≥ 1,
s ≥ 1. Given µ > n

2 , we choose r, s such that p < r = n+2
n−2µ, s > q and

nr ≤ (n + 2)s. Applying part (i) of Lemma 2.8 with the values of r and s
just chosen completes the argument. The result for 1 < µ ≤ n

2 follows from
applying Hölder’s inequality. �

We recall a result from Schauder elliptic theory. Suppose {L;B} is a
regular elliptic system on M and u is a C2,γ(M) solution of Lu = f on
M and Bu = φ on ∂M , where f is in C0,γ(M) and φ is a globally defined
function in C1,γ(M). Then there exists K(γ) such that

‖u‖C2,γ (M) ≤ K(γ)
(
‖u‖C0(M) + ‖f‖C0,γ(M) + ‖φ‖C1,γ (M)

)
. (16)

For a proof of the above result, see [GT]. Inequality 16 will be useful in the
proof the next proposition.

Proposition 2.10. Suppose that Qa,bp,q < Qa,bp,q(Sn+). Let Λε = { (α, β) | p −
ε < α < p, q − ε < β < q, β < α } and let uα,β be the positive Qa,bα,β
minimizers, (α, β) ∈ Λε. Then there exists ε > 0 such that for each 0 < γ < 1
there exists K(γ) such that ‖uα,β‖C2,γ (M) ≤ K(γ), for all (α, β) in Λε.

Proof. The statement of the proposition holds with the C1,γ(M) norm
replacing the C2,γ(M) norm, since by the Sobolev Embedding Theorem
W 2,µ(M) −→ C1,γ(M) if 0 < γ ≤ 1 − n

µ . The result then follows from
Lemma 2.9, choosing µ large enough. To complete the proof, we make
use of Inequality 16, with L = ∆ − n−2

4(n−1)R, B = ∂
∂η + n−2

2 h, u = uα,β,

f = aαλα,βu
α−1
α,β and φ = bβλα,βu

β−1
α,β . �

Proof of Theorem 2.1 Let uα,β, ε > 0, Λε, 0 < γ < 1 and K(γ) be as in
Proposition 2.10. The fact that ‖uα,β‖C2,γ(M) ≤ K(γ) for all (α, β) ∈ Λε
and the compactness of the embedding C2(M) −→ C2,γ(M) imply that a
sequence of the uαi,βi

, with αi → p, βi → q, converges to some C2 function
u in the C2(M) topology. Since the λαi,βi

are uniformly bounded, we may
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assume that λαi,βi
→ λ, for some λ. The function u then satisfies the limiting

equation {
∆u− n−2

4(n−1)Ru+ apλup−1 = 0 on M,
∂u
∂η + n−2

2 hu = bqλuq−1 on ∂M.
(17)

Multiplying the above equation by u and integrating by parts yields E(u) =
limi→∞Qαi,βi

≤ Qa,bp,q, where we have used Equation 10 and Lemma 2.4. On
the other hand, u ∈ Ba,b

p,q , as uαi,βi
→ u uniformly and uαi,βi

∈ Ba,b
αi,βi

. Hence

E(u) ≤ Qa,bp,q implies E(u) = Qa,bp,q, and u is a nonnegative Qa,bp,q minimizer.

3. A priori estimates and the case a = 0, b = 1.

Let g0 be a fixed smooth Riemannian metric onM . In this section we address
the issue of compactness of the set of all Qa,bp,q(g) minimizers when g varies on
a sufficiently small C2,γ neighborhood of g0, provided Qa,bp,q(g0) < Qa,bp,q(Sn+).
We also treat existence and compactness of minimizers in the case when
a = 0 and b = 1. As the proofs are straightforward, we will limit ourselves
to stating the main results and giving some indication on how to prove them.
This includes stating a few preparatory lemmas whose proofs are left to the
reader. As a matter of notation, we will use Ck(T ) (resp. Ck,γ(T )) for the
space of Ck (resp. Ck,γ) symmetric (2,0) tensor fields.

We first show that Qa,bp,q is continuous in the C2(T ) topology. This is
Proposition 3.4. Before that we state a continuity lemma that was also used
in the proof of Lemma 2.5. We use the following notation: we let Ba,b

p,q,g and
E(u, g) be as defined by Equations 5 and 6, respectively, and we let Ba,b

p,q,0

and E(u, 0) correspond to the base metric g0. Also, we let | |a,bp,q,g be the
norm defined in Lemma 2.2, with | |1 = ‖ ‖Lp(M) and | |2 = ‖ ‖Lq(∂M), where
these norms now depend on the metric g (but are all equivalent). We will
use | |a,bp,q,0 when g = g0. In general we will not indicate the dependence of
geometric quantities on the background metric, except for a naught subscript
when they refer to the base metric g0. The next lemma says that the |u|a,bp,q,g
are close to the |u|a,bp,q,0, provided that g is close to g0.

Lemma 3.1. If |g − g0|C0(T ) < ε then

(1 −Ko(ε))|u|a,bp,q,0 ≤ |u|a,bp,q,g ≤ (1 +Ko(ε))|u|a,bp,q,0,

for all u in H1(M).

We remark that Ko(ε) in Lemma 3.1 does not depend on g.
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Lemma 3.2. (a) If |g − g0|C2(T ) < ε and u ∈ Ba,b
p,q,g then

|E(u, g) − E(ũ, 0)| ≤ Ko(ε)
(∫
M

|∇0ũ|20 ω0 +
∫
M

ũ2 dω0 +
∫
∂M

ũ2 dσ0

)
,

where ũ = (|u|a,bp,q,0)−1u.

(b) There exists K such that for all u in Ba,b
p,q,0,∫

M

|∇0u|20 ω0 +
∫
M

u2 dω0 +
∫
∂M

u2 dσ0 ≤ E(u, 0) +K.

Observe that ũ in part (a) belongs to Ba,b
p,q,0. Also, since |u|a,bp,q,g = 1, Lemma

3.1 implies that 1 −Ko(ε) ≤ (|u|a,bp,q,0)−1 ≤ 1 +Ko(ε). The proof of part (a)
then follows from the fact that the scalar and mean curvatures depend on
derivatives of the metric up to second order. To prove part (b), we just need
to use that, by Proposition 2.3 in [E4], given ε > 0 there existsK(ε) such that∫
M

u2 dω0 ≤ ε
∫
M

|∇0u|20 dω0+K(ε) and
∫
∂M

u2 dσ0 ≤ ε
∫
M

|∇0u|20 dω0+K(ε). By

combining parts (a) and (b) of Lemma 3.2 we obtain the following corollary.

Corollary 3.3. If |g − g0|C2(T ) < ε and u ∈ Ba,b
p,q,g then

|E(u, g) − E(ũ, 0)| ≤ Ko(ε)(E(ũ, 0) + 1),

where ũ = (|u|a,bp,q,0)−1u.

The continuity of Q follows at once from Corollary 3.3. We state it below.

Proposition 3.4. The functional g → Qa,bp,q(g) = inf{E(u, g) | u ∈ Ba,b
p,q,g }

is continuous in the C2(T ) topology.

We let

Dε,γ := { g | g is a smooth Riemannian metric and |g−g0|C2,γ(T ) < ε }

D
a,b
ε,γ :={u | u is a smooth positive Qa,bp,q(g) minimizer, with g ∈ Dε,γ }.

The first main result of this section is the following.

Theorem 3.5. Let g0 be a smooth Riemannian metric such that Qa,bp,q(g) <
Qa,bp,q(Sn+). Then, given 0 < γ < 1, there exist ε = ε(γ) > 0 and K(γ) such
that ‖u‖C2,γ (M) ≤ K(γ) for all u in D

a,b
ε,γ.
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This is analogous to Proposition 2.10 and the proof follows a similar path:
we need the (locally uniform) counterparts to Lemmas 2.4 (part (b)) and
2.5, Proposition 2.6, and Lemmas 2.8 and 2.9. These are all easy to show.
Observe that by continuity of Qa,bp,q(g) at g0 in the C2(T ) topology we may
assume that Qa,bp,q(g0)−ε′ < Qa,bp,q(g) < Qa,bp,q(g0)+ε′ < Qa,bp,q(Sn+), for some ε′ >
0, and for all g is in Dε,γ , provided Qa,bp,q(g0) < Qa,bp,q(Sn+). The counterparts
to Lemmas 2.8 and 2.9 use locally uniform versions of Inequalities 14 and
16, which involve a family of elliptic systems depending on the background
metric. These inequalities in turn again follow easily from the fact that the
scalar curvature and mean curvature involve derivatives of the metric up to
second order.

We now turn to the case when a = 0 and b = 1. We define

B0,1
q,g = {u ∈ H1(M) |

∫
∂M

uq dσ = 1 }.

Nonnegative critical points of the functional E (as defined by Equation 6)
restricted to B0,1

q,g correspond to (necessarily smooth) solutions of{
∆u− n−2

4(n−1)Ru = 0 on M,
∂u
∂η + n−2

2 hu = E(u, g)uq−1 on ∂M.
(18)

Existence of positive critical points was proved by Escobar ([E2]) for a large
class of manifolds. If u is a smooth positive solution of Equation 18 then
g̃ = u

4
n−2 g is a smooth scalar flat Riemannian metric with constant mean

curvature h̃ = 2
n−2E(u, g). If we let

Q0,1
q (g) = inf{E(u, g) | u ∈ H1(M), u ∈ B0,1

q,g },

then u ∈ B0,1
q,g will be called a Q0,1

q (g) minimizer if E(u, g) = Q0,1
q (g). Q0,1

q (g)
minimizers are smooth and do not change sign. We always have Q0,1

q (g) ≤
Q0,1
q (Sn+) ([E2]), but it is possible to have Q0,1

q (g) = −∞ ([E3]). More
generally, for 2 ≤ β ≤ q, we let

B0,1
β,g(g) = {u ∈ H1(M) |

∫
∂M

uβ dσ = 1 },

and
Q0,1
β (g) = inf{E(u, g) | u ∈ H1(M), u ∈ B0,1

β,g }.
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We will say that u is a Q0,1
β (g) minimizer if u ∈ B0,1

β,g and E(u, g) = B0,1
β,g.

Nonnegative Q0,1
β (g) minimizers are (necessarily smooth and positive) solu-

tions of {
∆u− n−2

4(n−1)Ru = 0 on M,
∂u
∂η + n−2

2 hu = Q0,1
β (g)uβ−1 on ∂M.

(19)

It follows from Hölder’s Inequality that either 0 ≤ Q0,1
q (g) ≤ Q0,1

β (g) ≤
Q0,1

2 (g) or −∞ ≤ Q0,1
2 (g) ≤ Q0,1

β (g) ≤ Q0,1
q (g) < 0, for all 2 ≤ β ≤ q. When

−∞ < Q0,1
2 (g) there exists a positive Q0,1

2 (g) minimizer v. The metric
ĝ = v

4
n−2 g is a scalar flat metric whose mean curvature either vanishes

identically or does not change sign. It is then possible to show, using the
compactness of the embeddings H1(M) ↪→ Lβ(∂M), that positive Q0,1

β (ĝ)
minimizers exist for 2 ≤ β < q. We remark that a Q0,1

q (g) minimizer exists if
and only if a Q0,1

q (ĝ) minimizer exists (see Remark preceeding Lemma 2.5).

Proposition 3.6. If −∞ < Q0,1
2 (g) and Q0,1

q (g) < Q0,1
q (Sn+) then there

exists a positive Q0,1
q (g) minimizer.

Existence of critical points is established in [E2]. Below we indicate how to
show those are indeed minimizers. We may assume that g is a scalar flat
metric whose mean curvature either vanishes identically or does not change
sign. We will denote by uβ a positive Q0,1

β (g) minimizer. The proof of
Proposition 3.6 follows the same steps as the proof of Theorem 2.1. The only
significant difference occurs in the proof of the counterpart to Proposition
2.6, for now we must make use of the fact that the scalar curvature vanishes
identically in order to obtain the desired estimates. Specifically, we can prove
the following.

Lemma 3.7. Suppose that Q0,1
q (g) < Q0,1

q (Sn+) and that the scalar curvature
of g vanishes identically. Let uβ be the smooth positive Q0,1

β (g) minimizers,
2 < β < q. There exist positive constants r > p, s > q and K such that
|uβ |Lr(M) ≤ K and |uβ |Ls(∂M) ≤ K for all β < q sufficiently close to p.

As already mentioned, the proof of Proposition 3.6 then follows in a way
similar to that of Theorem 2.1, with Lemma 3.7 replacing Proposition 2.6.
We now want to show that a result similar to Theorem 3.5 holds when a = 0,
b = 1. We first point out that both Q0,1

2 and Q0,1
q satisfy some continuity

properties in the C2(T ) topology.
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Lemma 3.8. Suppose that g0 is a C2 metric whose scalar curvature R0

vanishes identically. Then Q0,1
2 and Q0,1

q are continuous at g0 in the C2(T )
topology.

In the proof we need the following version of part (b) of Lemma 3.2: There
exists K such that for all u ∈ H1(M) such that either

∫
∂M

|u|q dσ0 = 1 or∫
∂M

|u|2 dσ0 = 1,

∫
M

|∇0u|20 ω0 +
∫
M

u2 dω0 +
∫
∂M

u2 dσ0 ≤ K(E(u, 0) + 1).

Lemma 3.9. Suppose that g0 is a smooth metric with Q0,1
2 (g0) > −∞. Then

(a) Q0,1
q is continuous at g0 in the C2(T ) topology.

(b) There exists a C2(T ) neighborhood of g0 where Q0,1
2 is finite.

To prove the above result, we let v be a smooth positive function such that
v

4
n−2 g0 has vanishing scalar curvature and consider the map g → ϕ(g) =
v

4
n−2 g. Then ϕ is a homeomorphism of C2(T ) which leaves Q0,1

q invariant
(see Remark before Lemma 2.5). Lemma 3.8 then implies part (a). Since
finiteness of Q0,1

2 is a conformal invariant, part (b) follows.
We now fix a smooth metric g0. We let Dε,γ be as before and we let

D
0,1
ε,γ := {u | u is a smooth positive Q0,1

q (g) minimizer, with g ∈ Dε,γ }. We
have the following analogue to Theorem 3.5.

Proposition 3.10. (a) Let g0 be a smooth, scalar flat Riemannian metric
such that Q0,1

q (g0) < Q0,1
q (Sn+). Then, given 0 < γ < 1, there exist

ε = ε(γ) > 0 and K(γ) such that ‖u‖C2,γ (M) ≤ K(γ) for all u in D
0,1
ε,γ .

(b) The conclusion of part (a) remains true if we replace the scalar flat
condition by the requirement that Q0,1

2 (g0) > −∞.

Proof. Part (b) follows from part (a) by considering the map g → ϕ(g) =
v

4
n−2 g as above. The proof of part (a) follows the same steps as the proof

of Theorem 3.5. The only significant difference occurs in the proof of the
locally uniform counterpart to Proposition 2.6. This is because we do not
have R ≡ 0 for all metrics in a neighborhood of g0. However, we do have
R ≤ Ko(ε), since R0 ≡ 0, and it is easy to verify that this suffices. �
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[Y] H. Yamabe On a deformation of Riemannian structures on compact
manifolds, Osaka Math. J. 12 1960 21–37.

Departamento de Matemática
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