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1. Introduction.

If we perform a non-trivial Dehn surgery on a hyperbolic knot in the 3-
sphere, the result is usually a hyperbolic 3-manifold. However, there are
exceptions: there are hyperbolic knots with surgeries that give lens spaces
[1], small Seifert fiber spaces [2], [5], [7], [19], and toroidal manifolds, that
is, manifolds containing (embedded) incompressible tori [6], [7]. In partic-
ular, Eudave-Muñoz [6] has explicitly described an infinite family of hyper-
bolic knots k(�,m, n, p), each of which has a specific half-integral toroidal
surgery. (These are the only known examples of non-trivial, non-integral,
non-hyperbolic surgeries on hyperbolic knots.) Here we show that these
knots are the only hyperbolic knots with non-integral toroidal surgeries.

Theorem 1.1. Let K be a hyperbolic knot in S3 that admits a non-integral
surgery containing an incompressible torus. Then K is one of the Eudave-
Muñoz knots k(�,m, n, p), and the surgery is the corresponding half-integral
surgery.

The knots k(�,m, n, p) have tunnel number 1 [6], and hence they lie on
a genus 2 Heegaard surface in S3 and are strongly invertible. The same is
true of the Berge knots [1], which are the only known hyperbolic knots with
lens space surgeries, and the knots of Dean [5], which have small Seifert
fiber space surgeries. (By a small Seifert fibert space we mean one with base
surface S2 and exactly three exceptional fibers.) Examples of hyperbolic
knots with small Seifert fiber space surgeries, that are not Dean knots, have
been given by Mattman, Miyazaki and Motegi [19]. They also lie on a genus 2
Heegaard surface, but are not strongly invertible (instead, they are periodic
of period 2), and therefore do not have tunnel number 1. In light of the fact
that all these knots have a relatively simple structure, Theorem 1.1 suggests
that it might eventually be possible to prove analogs for the other two cases
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also, i.e., to prove the Berge Conjecture [1], that any hyperbolic knot with
a lens space surgery is a Berge knot, and that any hyperbolic knot with a
small Seifert fiber space surgery is obtained by the construction of either
Dean, or Mattman, Miyazaki and Motegi.

We remark that modulo the Geometrization Conjecture, if a non-
hyperbolic Dehn surgery on a hyperbolic knot is neither a lens space nor
a small Seifert fiber space, then it is either S3, S2 × S1, a non-prime man-
ifold, or a toroidal manifold. The first happens only when the surgery is
trivial [12], the second never happens [8], and the third is conjectured to
never happen [9]. Though non-integral toroidal surgeries are classified by
Theorem 1.1, the case of integral toroidal surgeries is the least clear; there
are many examples, and no good conjecture about their structure.

To describe the proof of Theorem 1.1, which builds on our earlier pa-
pers [15] and [16], we briefly recall Eudave-Muñoz’ construction. The knots
k(�,m, n, p) come from certain 2-string tangles B(�,m, n, p) in the 3-ball;
these have the property that, if R(r/s) denotes the rational tangle with
slope r/s, then capping B(�,m, n, p) off with R(1/0) gives the unknot, while
capping it off with R(1/2) gives a knot that is the union of two prime tan-
gles (B1, t1) and (B2, t2). It follows that the 2-fold branched covering of
B(�,m, n, p) is the exterior of a strongly invertible knot k(�,m, n, p) in the
3-sphere, which has a half-integral surgery M containing an incompressible
torus T̂ . The torus T̂ separates M into M1 and M2, where Mi is the 2-fold
branched covering of (Bi, ti), i = 1, 2. Each of the tangles (Bi, ti) turns out
to be a Montesinos tangle of length 2 (i.e., a sum of two rational tangles),
and therefore each Mi is a Seifert fiber space over the disk with two excep-
tional fibers. Furthermore, the Seifert fibers of M1 and M2 intersect exactly
once on T̂ , and one of the four exceptional fibers has multiplicity 2. It also
turns out that the 2-sphere S separating the knot B(�,m, n, p)∪R(1/2) into
(B1, t1) and (B2, t2) intersects the tangle R(1/2) in a single disk. This im-
plies that the torus T̂ , which is the 2-fold branched covering of S, meets the
2-fold branched covering of R(1/2) in two meridian disks, i.e., T̂ meets the
core of the surgery solid torus in two points.

In [15] we showed that if a non-integral surgery on a hyperbolic knot K
in S3 gives a toroidal 3-manifold M , then firstly, the surgery is half-integral,
and secondly, an incompressible torus T̂ in M that meets the core of the
surgery solid torus minimally does so in either two or four points. The
second possibility was eliminated in [16]. It was also shown in [15] that if
M1 and M2 are the two components into which T̂ separates M , then M1,
say, is a Seifert fiber space over the disk with two exceptional fibers.
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This is already enough to show that K arises from the same general
construction used by Eudave-Muñoz: the exterior of K is the 2-fold branched
covering of a 2-string tangle (B, t), with the property that (B, t)∪R(1/0) is
the unknot, and, for some integer r, (B, t)∪R(r/2) is the union of two prime
tangles (B1, t1) and (B2, t2), where the decomposing sphere S meets R(r/2)
in a single disk. Moreover, (B1, t1), say, is a sum of two rational tangles. In
the present paper we carry out a more refined analysis of the situation, and
show that the tangle (B, t) must in fact be one of Eudave-Muñoz’ tangles
B(�,m, n, p).

Our starting point, as in [15] and [16], is to consider the labelled inter-
section graphs GQ and GT on a suitably chosen Heegaard 2-sphere Q̂ in
S3 and a suitably chosen incompressible torus T̂ in M , respectively. Be-
cause the graph GT does not represent all types [12], [15], the graph GQ
contains a certain kind of subgraph, Λ, which we call a great web; see [15].
In Section 2 we show (Theorem 2.1) that GQ contains a great web Λ with
an additional technical property, namely that its ghost edges are extremal
in the corresponding subgraph of GT ; see Section 2 for definitions.

Since all the vertices of Λ have the same sign, the edges of GT corre-
sponding to the edges in the boundary of a face f of Λ will have an endpoint
at each of the two vertices of GT . They therefore belong to at most four
parallelism classes on GT . We say that the face f is good if its edges belong
to exactly two such edge classes, and moreover, one of these classes has the
property that no two adjacent edges in the boundary of f belong to that
class. In Section 4 we show that the existence of a good face of Λ, lying in
Mi (i = 1 or 2), implies that Mi is a Seifert fiber space over the disk with
two exceptional fibers; see Theorem 4.1. In Section 3 we show (Theorem 3.1)
that Λ contains a good face fi that lies in Mi for i = 1 and 2. Hence M1 and
M2 are both Seifert fiber spaces over the disk with two exceptional fibers.
The proof of Theorem 3.1 involves a detailed analysis of the dual graph of
Λ, Λ∗, with various dual orientations, in which an edge of Λ∗ is oriented
according to the edge class of the corresponding dual edge of Λ. In this way
we arrange, for example, that a sink or source vertex of Λ∗ is dual to a face
of Λ whose edges belong to at most two edge classes.

The existence of the good faces f1 and f2 leads to a description of the
exterior of K, in terms of Dehn surgery on a certain link in S3; this is done
in Section 5. First, we see that the Seifert fibers of M1 and M2 intersect
exactly once on T̂ . It follows that we can regard M−(neighborhoods of the
four exceptional fibers) as the exterior of the 4-component link L0 in S3

which is obtained from the Hopf link by adding a nearby 0-framed parallel
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copy of each component. We may therefore identify M with a certain Dehn
surgery on the link L0. A further analysis, using the faces f1 and f2, allows us
to explicitly determine a fifth component K0 in S3 that corresponds under
this identification to the core of the surgery solid torus in M . Thus the
exterior of K is obtained from the exterior of K0 in S3 by Dehn surgery
on L0. Letting L = L0 ∪ K0, this is the statement of Proposition 5.6. We
remark that L has the same exterior as the link called the minimally twisted
5-chain; thus K can also be thought of as obtained by surgery on this link.
The link L is strongly invertible, by an involution h. Taking a h-invariant
tubular neighborhood N(L) of L, the quotient under h of N(L) ∪ Fix(h) is
an embedding in S3 of the complete graph on five vertices, with the vertices
thickened to 3-balls. Removing the interiors of these balls we get a pair
P consisting of arcs in a 5-punctured S3, with four arc-endpoints on each
boundary 2-sphere. We call P the pentangle (the terminology is due to John
Conway).

If α, β, γ, δ, ε ∈ Q ∪ {1/0}, then inserting the rational tangles R(α) etc.
into the punctures of P gives a knot or link P(α, β, γ, δ, ε), whose 2-fold
branched covering is obtained by doing Dehn surgery on the components of
L, the surgery solid tori being the 2-fold branched coverings of R(α), etc..
If we parametrize slopes on ∂N(K0) so that the slope of the toroidal filling
M is 0/1, and the preferred longitude of K0 in S3 is 1/0, then a careful
examination of the faces f1 and f2 shows that the meridian µ of K is 2/1.
Thus if α, β, γ and δ are the slopes of the Dehn surgeries on the components
of L0 that give M , then P(α, β, γ, δ, 2

1 ) is the unknot, and P(α, β, γ, δ, 0
1 ) is

the union of two Montesinos tangles of length 2. Let Q be obtained by filling
in the last boundary component of P with the rational tangle R(2/1); then
Q(α, β, γ, δ) is the unknot. Since the surgeries on the components of L0 give
rise to the exceptional fibers of M1 and M2, we also have that ∆(χ, 1

0 ) ≥ 2
for χ ∈ {α, β, γ, δ}. We show (Proposition 6.1) that these conditions imply
that 1

2 ∈ {α, β, γ, δ}. This is proved by noting that if one of the tangle
co-ordinates of a tangle filling of Q takes certain special values, then the
corresponding links have particularly simple descriptions. These computa-
tions (expressed in terms of the 2-fold branched coverings) are carried out in
Section 7. In Section 8 we apply theorems about distances between various
kinds of Dehn fillings, using the fillings on the 2-fold branched covering of
Q described in Section 7, to get restrictions on α, β, γ, δ which enable us to
prove Proposition 6.1

The proof of Theorem 1.1 (given at the end of Section 6) is now com-
pleted as follows. We may assume, by symmetry, that δ = 1/2. Filling in
the corresponding puncture of P with R(1/2) gives a tangle B, such that
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B(α, β, γ, 2
1) is the unknot. Now the tangles B(�,m, n, p) are all of the form

B(A,B,C, ∗), for some A,B,C ∈ Q. Moreover, in anticipation of this kind
of approach to Theorem 1.1, Eudave-Muñoz shows in [7] that these triples
(A,B,C) are the only ones with the property that B(A,B,C, 2

1) is the un-
knot. We conclude that our tangle (B, t) = P(α, β, γ, 1

2 , ∗) is one of the
tangles B(�,m, n, p).

In the Appendix we prove the analog of Theorem 1.1 for knots in solid
tori: if K is a hyperbolic knot in a solid torus N having a non-integral Dehn
surgery that contains an essential torus, then there is an Eudave-Muñoz knot
k(�,m, n, p) and an unknotted simple closed curve c in S3−k(�,m, n, p) (see
[6], [20]) such that (N,K) ∼= (S3 − IntN(c), k(�,m, n, p)).

2. GT , GQ and the existence of a web in GQ.

Let K be a hyperbolic knot in the 3-sphere, with exterior E(K) = S3 −
IntN(K). Let K(τ) be the result of τ -Dehn surgery on K; thus K(τ) =
E(K)∪V , where V is a solid torus that is glued to E(K) along the boundary
in such a way that the slope τ on ∂E(K) bounds a meridian disk in V . LetKτ

denote the core of V . Assume that K(τ) contains an incompressible torus,
and that τ is a non-integral slope, i.e. ∆(τ, µ) ≥ 2, where µ is the meridian
of K. By [15], ∆(τ, µ) = 2; thus, expressing τ in terms of meridian-longitude
co-ordinates on ∂E(K) in the usual way, τ is of the form p/2. Let T̂ be an
essential torus in K(p/2) that intersects Kτ minimally. Then Theorem of
[16] says that T = T̂ ∩E(K) is a properly embedded, incompressible, twice-
punctured torus in E(K), where each component of ∂T represents slope p/2
on ∂E(K).

Let p1, p2 be two points in S3. We can write S3−{p+, p−} = Q̂×(−1, 1),
where Q̂ is a 2-sphere. Lemma 4.4 of [8, p.491] says that we can find a
Q̂ = Q̂× {i} for some i such that

(1) Q̂ intersects K transversely. Thus Q = Q̂ ∩ E(K) is a properly em-
bedded planar surface in E(K) such that each component of ∂Q is a
copy of the meridian of K.

(2) Q intersects T transversely and no arc component of Q ∩ T is parallel
in Q to ∂Q or parallel in T to ∂T .

Let GQ be the graph in Q̂ obtained by taking as the (fat) vertices the
disks Q̂− IntQ and as edges the arc components of Q ∩ T in Q̂. Similarly,
GT is the graph in T̂ whose vertices are the disks T̂ − IntT and whose
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Figure 2.1.

edges are the arc components of Q ∩ T in T̂ . We number the components
of ∂Q 1, 2, . . . , q in the order they appear in ∂E(K). Similarly we number
the components of ∂T , 1, 2. This gives a numbering of the vertices of GQ
and GT . For example, an endpoint of an edge in GQ at vertex x will be
labelled y if the endpoint represents the intersection of component x of ∂Q
with component y of ∂T . On a vertex of GQ (GT ) one sees the labels 1 and
2 (1 through q respectively) appearing in order around the vertex, each label
appearing exactly 2 times. See Figure 2.1. Two vertices on GQ are parallel
if the ordering of the labels on each is clockwise or the ordering on each is
anticlockwise, otherwise the vertices are anti-parallel . The same applies to
vertices of GT . In particular, because T̂ is separating, vertices 1 and 2 of
GT are anti-parallel. The graphs of GQ and GT then satisfy the following
parity rule: an edge connects parallel vertices on one graph if and only if it
corrects anti-parallel vertices on the other (this follows from orientability).

A loop edge of GT is one with both endpoints on the same vertex. There
must be the same number of loop edges at vertex 1 on GT as there are
loop edges at vertex 2. This implies that two loop edges based at the same
vertex in GT are isotopic relative to the fat vertices of GT . There are at
most four isotopy classes of edges connecting vertices 1 and 2 on GT . Thus
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the graph GT will, up to homeomorphism, be of the form illustrated in
Figure 2.1, with q varying and possibly some of the isotopy classes being
empty. For convenience we will represent the graph GT more schematically,
as in Figure 2.2, which shows the graph GT of Figure 2.1.

Let Γ be a subgraph of GQ. A ghost edge of Γ is an edge of GQ that is
incident to at least one vertex of Γ but is not an edge of Γ. A ghost endpoint
of Γ is an endpoint at a vertex of Γ of a ghost edge of Γ. Following [15] we
define a web, Λ, of GQ to be a connected subgraph of GQ whose vertices are
all parallel and such that Λ has at most 2 ghost endpoints. We will refer to
a disk D = Q̂−U , where U is a component of Q̂−nhd(Λ), as a disk bounded
by Λ. A great web in GQ is a web with the property that there is a disk
bounded by Λ, DΛ, such that Λ contains all the edges of GQ that lie in DΛ.

There is a one–one correspondence between the edges of GQ and GT . For
any subgraph Γ of GQ, let ΓT be the corresponding subgraph of GT . We shall
say that an edge of GQ is extremal with respect to Γ if the corresponding edge
of GT does not lie strictly between parallel edges of ΓT (edges are parallel if
they lie in the same isotopy class relative to ∂T ).

Theorem 2.1. GQ contains a great web Λ such that all ghost edges of Λ
are extremal with respect to Λ.

For the proof of this theorem we will assume familiarity with the notation
of [12].

Proof. Let G′
Q be an innermost component of GQ, and let D be a disk in

Q̂ such that GQ ∩ D = G′
Q. From now on we will restrict our attention

to G′
Q and the corresponding subgraph G′

T of GT , and hence for notational
convenience we will rename G′

Q, G′
T as GQ, GT respectively. By Theorem 2.1

of [15], GT does not represent some type τ .
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Case I. τ is trivial. Then there is at most one loop edge of GT incident
to vertex 1, and at most one loop edge incident to vertex 2. By the parity
rule, all other edges of GT correspond to edges of GQ connecting parallel
vertices. Consider the subgraph of GQ consisting of all such edges, and let
Λ be an innermost component of this subgraph. Then Λ has at most two
ghost edges (corresponding to loop edges of GT ), each meeting Λ in a single
endpoint. Hence Λ is a great web, and the ghost edges of Λ are extremal
with respect to Λ, since the edges of Λ correspond to edges of GT connecting
vertices 1 and 2, while the ghost edges of Λ correspond to loop edges of GT .

This proves the theorem in Case I.

Case II. τ is non-trivial. Follow the proof on p.406 of [12], case (2), to
construct a sequence of stars T1, T2, . . . , Tn, n ≥ 1, such that

(i) [T1] = τ , [Ti] is non-trivial, 1 ≤ i ≤ n;

(ii) Ti = diTi−1, where di = d±, 2 ≤ i ≤ n;

(iii) all elements of C(Tn) have the same parity;

(iv) all elements of A(Tn) have the same parity.

Set Li = L(Ti). Assume that f is a face of GT (Ln) representing [Tn].
Then (n − 1) applications of Corollary 2.4.2 of [12] show that f contains a
face f ′ of GT (L1) = GT representing τ . Thus if we have a face of GT (Ln)
representing [Tn] we are done. So we assume there are no such faces.

Let sc (resp. sa) be the number of edges of Γ(Tn) whose endpoints are
both in C(Tn) (resp. A(Tn)); we refer to these as clockwise (resp. anticlock-
wise) switch edges. Let s = sc+ sa be the total number of switch edges. Let
S be the number of switches around Tn. That is S = 2(|C(Tn)|+ |A(Tn)|) =
4|C(Tn)|. (See pp.602 and 603 of [15].) Note that C(Tn) and A(Tn) are
non-empty since [Tn] is non-trivial.

Let i = S/2 − 1. The proof of Lemma 2.3.2 of [12] shows that s ≥ it,
where t is the number of vertices of GT . Here t = 2.

Lemma 2.2. sc and sa are both ≤ it/2.

Proof. Let Λc (resp. Λa) be the subgraph of GQ consisting of all vertices of
GQ in C(Tn) (resp. A(Tn)), and all edges of GQ corresponding to clockwise
(resp. anticlockwise) switch edges of Γ(Tn).

Note that there are 2|C(Tn)|t points where edges of GQ are incident
to vertices of Λc. Assume sc > it/2. Then more than 2(it/2) = it =
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(S/2 − 1)t = 2|C(Tn)|t − t of these points are endpoints of edges of Λc.
As t = 2, it follows that Λc has at most one ghost endpoint. But since
T is separating, the faces of GQ can be shaded alternately B (black) and
W (white), from which it is easy to see that Λc cannot have a single ghost
endpoint. Hence Λc has no ghost endpoints. But this contradicts the fact
that GQ is connected.

Similarly we see that sa ≤ it/2. �

Lemma 2.2 and the fact that s ≥ it implies that sc = sa = it/2. Thus,
defining Λc (Λa) as above, of the 2|C(Tn)|t edge endpoints at the vertices of
Λc, exactly 2(it/2) = 2|C(Tn)|t− t are endpoints of edges of Λc. That is, Λc
has exactly t = 2 ghost endpoints. Thus Λc is a web, and furthermore, the
ghost edges of Λc do not correspond to switch edges of Γ(Tn).

Similarly, Λa is a web whose ghost edges do not correspond to switch
edges of Γ(Tn).

Note that, as above, no component of Λc or Λa can have a single ghost
endpoint, and hence, since GQ is connected, Λc and Λa are connected.

Without loss of generality, assume that Λc is innermost on D among Λc
and Λa. A complementary component of Λc is a component of D− nhd(Λc).

Lemma 2.3. All the vertices of GQ − Λc lie in the same complementary
component of Λc.

Proof. Let Ω be the subgraph of GQ consisting of all vertices of GQ − Λc
and all edges of GQ connecting these vertices. Since GQ is connected, each
component of Ω must be joined by an edge to Λc, hence joined to Λc by one
of the two ghost edges of Λc. Because GQ can be shaded alternately B/W ,
each component of Ω must be joined to Λc by at least two ghost edges. Hence
Ω has only one component. �

Since Λa lies in the complementary component U of Λc containing ∂D,
we see that D′ = D − U is a disk bounded by Λc with Ω ∩D′ = ∅. That is,
Λc is a great web.

Lemma 2.4. The ghost edges of Λc are extremal with respect to Λc.

Proof. Assume not. Then there are edges e, e1, e2 of GT such that e corre-
sponds to a ghost edge of Λc, e1, e2 correspond to edges of Λc, and e, e1, e2
are parallel on GT , with e lying between e1 and e2. See Figure 2.3.
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Figure 2.3.
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Figure 3.1.

Now e1, e2 are clockwise switch edges of Γ(Tn), and e has a clockwise
switch at exactly one endpoint (since e corresponds to an edge of GQ that
has exactly one endpoint in Λc). But this implies that one of the (bigon)
faces of GT (Ln) contiguous to e is a sink or source of Γ(Tn). See Figure 2.3.
This contradicts our assumption that GT (Ln) does not represent [Tn]. �

Lemma 2.4 shows that Λc is a web with the desired properties, completing
the proof of Theorem 2.1. �

3. Analyzing GQ.

We will call one side of T̂ in K(p/2) the W (hite) side and the other the
B(lack) side. Then T has a W and B side in E(K). The faces of GQ are
called W or B according to which side of T a neighborhood of their boundary
lies. In this section we will show the existence of a B face and of a W face
of a special form (a good binary face) which we will use in the next section
to prove that the B and W sides of T̂ are Seifert fiber spaces over the disk
with two exceptional fibers.

The edge class of an edge of GT is its isotopy class in T̂ relative to the fat
vertices of GT . There are most four different edge classes of edges connecting
vertex 1 to vertex 2 (the non-loop edge classes). We label these edge classes
λ, µ, ν, π as in Figure 3.1. Note that loop edge classes are disregarded in
this labelling.

Two of those (non-loop) edge classes are said to be adjacent if those
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labels at vertex 1 (hence vertex 2 as well) are not separated on vertex 1 by
the labels of a third non-loop edge class. They are non-adjacent otherwise.
Thus if all four edge classes are represented in GT , the pair {λ, ν} and the
pair {µ, π} are non-adjacent.

Let ε, δ be two elements of {λ, µ, ν, π}. Then an (ε, δ) face of GQ is one
whose edges lie in classes ε, δ on GT . Lemma 3.1 of [15] shows that any such
face must have edges in both classes ε and δ. We call any such face a binary
face of GQ.

An (ε, δ) face f is ε-good if no two consecutive edges in the boundary of
f belong to class ε. An (ε, δ) face is good if it is either ε-good or δ-good.
A bad face is a binary face that is not good. To indicate the coloring of an
(ε, δ) face we will often call it an X(ε, δ) face where X is to take the value
B or W .

The following is the main theorem of this section. Its proof appears at
the end of the section, after the requisite lemmas have been established.

Theorem 3.1. Let Λ be the web described in Theorem 2.1. Then there are
distinct edge classes ε, δ1, δ2 such that Λ contains faces f1 and f2, of opposite
colors, such that fi is a good (ε, δi) face, i = 1, 2. Moreover at least one of
these two faces has length 2 or 3.

If c is a B corner of GQ for which the edge incident to label 1 is in class
ε and the edge incident to label 2 is in class δ, we call it an B(ε, δ) corner.
Had c been a W corner, we would call it a W (ε, δ) corner. We will often
describe a corner as X(ε, δ) where it is understood that X is to take the
value B or W .

A bad X(ε, δ) face of GQ, f , must contain X(ε, ε), X(δ, δ), X(ε, δ),
X(δ, ε) corners. Define vε(f) to be some vertex in the boundary of f at
which f has an X(ε, ε) corner.

We will repeatedly apply the following principle in the analysis below.

Lemma 3.2. Let c1, c2, . . . , cn be a collection of X corners of GQ, X ∈
{B,W}. The anticlockwise ordering of the endpoints of the edges of these
corners on vertex 1 of GT is the same as the clockwise ordering of the edge
endpoints on vertex 2 of GT . See Figure 3.2.

Proof. This follows from considering the arcs defined by the corners that run
from boundary component 1 to boundary component 2 of T along ∂E(K).
�
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Lemma 3.3. GQ cannot contain a vertex v with two edges in the same edge
class incident to v at the same label. See Figure 3.3.
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λ

λ
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1

Figure 3.3.

Proof. This would imply that GT had q + 1 parallel edges in the given edge
class. Then one obtains the contradiction that K is a cable knot, using the
construction of [11]. �

Lemma 3.4. Given X ∈ {B,W}, GQ does not contain X(ε, ε) corners for
three distinct edge classes ε. See Figure 3.4.
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Figure 3.4.

Proof. Suppose, without loss of generality, that GQ contains B(λ, λ), B(µ, µ)
and B(ν, ν) corners, at vertices x, y and z respectively.
Then the ordering of labels x, y, z at vertices 1 and 2 of GT contradict
Lemma 3.2; see Figure 3.5. �

x zy

y x z

λ µ ν

Figure 3.5.

Lemma 3.5. Suppose that GQ contains a bad X(λ, µ) face. Then there
exists ε ∈ {λ, µ} such that, for any edge e of GQ in class ν or π, the edges
of GQ adjacent to e on the X-side are in class ε. See Figure 3.6. More
generally, the analogous statement holds whenever {λ, µ} is replaced by any
pair of adjacent edge classes.

πν

εε

e

X

Figure 3.6.

Proof. Suppose, without loss of generality, that GQ contains a bad B(λ, µ)
face, f . Then f has B(λ, λ), B(µ, µ), B(λ, µ) and B(µ, λ) corners, at vertices
u, v, x, y, say. See Figure 3.7.
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λ λ1 2
u

µ µ1 2
v

λ µ1 2
x

µ λ1 2
y

Figure 3.7.

Then, on GT , at vertex 1 we have labels u, x in class λ, v, y in class µ, and
at vertex 2, we have u, y in class λ, and v, x in class µ. Applying Lemma 3.2,
we see that there are two possible arrangements:

(i)

ux vy

λ µ

yuxv

(ii)

xu yv

λ µ

uyvx
Consider case (i). Let e be an edge of GQ in class ν or π, joining vertices s
and t as shown:

e2e1

e st
1

2 1

2

Figure 3.8.

Then, at vertex 1 of GT , the label s lies between y and u, and hence at
vertex 2 is forced to lie in class λ. Similarly at vertex 2, t lies between u and
x, and hence at vertex 1 lies in class λ. Thus e1 and e2 are both in class λ.

Case (ii) is completely analogous, with e1 and e2 now being forced to
belong to class µ. �
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Lemma 3.6. GQ does not contain bad faces of the same color on distinct
edge class pairs.

Proof. This would give rise to X(ε, ε) corners for three distinct edges classes
ε, contradicting Lemma 3.4. �

Lemma 3.7. If GQ contains a good X(ε, δ) face then any binary X-face of
GQ on an edge class pair distinct but not disjoint from {ε, δ} is bad.

Proof. Assume for contradiction that there is a good X(ε, δ) face and a good
X(ε, δ′) face. Applying Theorem 4.1 from section 4 to each of these faces
expresses the X-side of T̂ as a Seifert fiber space over the disk with two
exceptional fibers in two different ways; in particular the Seifert fibers from
the two fibrations are not isotopic on T̂ . But for such manifolds the Seifert
fibration is unique. �

We want to define a dual graph to Λ. To do this, it is convenient to
regard Λ as a graph in S2, rather than D2. However, by a face of Λ we will
still mean a face of Λ as a graph in D2; so in S2, we now have the faces
of Λ together with an additional outside face. The dual graph Λ∗ of Λ is
the graph in S2 defined in the standard way: choose a point in the interior
of each face of Λ, and a point in the interior of the outside face; these are
the vertices of Λ∗; and, for every edge e of Λ, there is a dual edge e∗ of Λ∗,
joining the vertices of Λ∗ corresponding to the faces of Λ (or the outside
face) on either side of e, and meeting e transversely in a single point.

Let {E+, E−} be a partition of the set of edge classes {λ, µ, ν, π} into
two sets of two elements. Then we can orient the edges of Λ∗ according to
the following rule:

an edge of Λ∗ dual to an edge of Λ in an edge class in E+ (resp. E−)
is oriented from the W -side to the B-side (resp. from the B-side to the
W -side).

Note. For an edge e of Λ in the boundary of the outside face, we regard the
side of e contained in the outside face as being locally colored with the color
opposite to that of the face of Λ that contains e.

We shall refer to such an orientation of the edges of Λ∗ as a dual orien-
tation.
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Up to sign (i.e. interchanging E+ and E−), there are exactly three dual
orientations, ω, ω′ and ω′′, shown in Figure 3.9.

λ

ω

µ ν π

λ

ω

µ ν π

λ

ω

µ ν π

'

''

Figure 3.9.

Note that for ω and ω′, the two edges classes in E± are adjacent, while
for ω′′ they are non-adjacent.

Consider some dual orientation on Λ∗. Recall the definition of the index
of a vertex or face of a graph in S2 with oriented edges from Section 2.3 of
[12]. That is, the index of a vertex, v, is 1−s(v)/2, where s(v) is the number
of switches at v. In particular, a sink or source is a vertex of index 1, and
a cycle is a face of index 1. A cycle of Λ∗, with respect to the given dual
orientation, is dual to a vertex v of Λ. If v is an exceptional vertex of Λ,
i.e., a ghost edge of Λ is incident to v, we will call the cycle exceptional ;
otherwise we will call it ordinary . We will use the following notation:

s = the number of sinks and sources of Λ∗ at vertices dual to faces of Λ
(i.e. we exclude the outside face);

c = the number of ordinary cycles of Λ∗;

ce = the number of exceptional cycles of Λ∗;

d = the index of the outside face;
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t = the number of cycles of Λ∗ of index −1.

Lemma 3.8. (1) s+ c+ ce + d ≥ 2 + t;

(2) if d = 1 then ce = 0;

(3) if ce + d ≥ 2 then d = 0, ce = 2, and the two exceptional cycles are
oppositely oriented;

(4) if s + c = 0 then ce = 2 and the two exceptional cycles are oppositely
oriented.

Proof. (1) This is Lemma 2.3.1 of [12].
(2) A cycle dual to an exceptional vertex gives one dual edge oriented

into the outside face, and another oriented outwards from it. Hence d ≤ 0.
(3) Suppose ce + d ≥ 2. Since ce ≤ 2, (there are at most two exceptional

vertices) we have d = 0 or 1. If d = 1 then ce = 0 by (2), contradicting
ce + d ≥ 2. Hence d = 0 and ce = 2.

If the two exceptional cycles were coherently oriented, e.g. both clock-
wise, then clearly d ≤ −1.

(4) By (1), s+ c = 0 implies ce + d ≥ 2, and the result now follows from
(3). �

Lemma 3.9. Suppose that Λ∗ contains an ordinary cycle with respect to
ω. Then either

(1) every B-face of Λ is a (λ, µ) or (ν, π) face; or

(2) every W -face of Λ is a (λ, µ) or (ν, π) face.

Proof. By, if necessary, reflecting the graph GQ, interchanging vertices 1
and 2 of GT , or reflecting GT (this reverses the order of the edge classes at
vertices 1 and 2), we may assume that Λ∗ has an ordinary cycle with respect
to ω, at a vertex x, say, of the form shown in Figure 3.10. (We are using
Lemma 3.3 here.) Note that this may switch the B and W sides.

On GT , let x denote the two endpoints, one at vertex 1 and one at
vertex 2, corresponding to the West and South edges of Λ at x, and let x′

denote those corresponding to the East and North edges. Then these four
endpoints appear on GT as in Figure 3.11.
Let e2 be an edge of GQ in class λ or µ, with label 2 at a vertex y, say.
Then, at vertex 2 of GT , the label y occurs between x and x′ (from left to
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π

λ

ν

µx1 1

2

2

Figure 3.10.

x

λ µ

x

ν π

x'

x'

Figure 3.11.

right). By Lemma 3.2 y also appears between x and x′ at vertex 1 (from left
to right). It follows that if the edge e1 adjacent to e2 on the B-side at y is
not a loop edge, then it belongs to class λ or µ. In particular, every B-face
of Λ containing an edge in class λ or µ is a (λ, µ) face.

λ µ
1 2

y

e1 e2

Figure 3.12.

A similar argument shows that every B-face of Λ containing an edge in
class ν or π is a (ν, π) face. �

Note. A statement completely analogous to Lemma 3.9 holds for the dual
orientation ω′ (every face of some color in Λ is a (π, λ)-face or a (µ, ν)-face).

A sink or source of ω, ω′ in Λ∗ that does not correspond to the outside
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face of Λ is a binary face of Λ. If this face is a bad binary face then we say
the sink or source is bad. Note that we will not refer to a sink or source at
the outside face as bad.

Lemma 3.10. If Λ∗ contains a bad sink or source with respect to ω or
ω′, then Λ∗ does not contain an ordinary cycle with respect to any dual
orientation.

Proof. Suppose, without loss of generality, that Λ contains a bad B(λ, µ)
face, corresponding to a sink or source of Λ∗ with respect to ω. Then, by
Lemma 3.5, without loss of generality, for any edge e of GQ in class ν or π,
the edges of GQ adjacent to e on the B-side are in class λ.

Now let v be a vertex of Λ which corresponds to an ordinary cycle of Λ∗

with respect to any dual orientation. Then the four edges incident to v are
in distinct edge classes. But by the previous paragraph, each of the edges in
classes ν and π has adjacent to it on the B-side an edge in class λ. This is
clearly impossible. �

Lemma 3.11. Suppose that Λ∗ contains a sink or source with respect to ω,
and that all such sinks or sources are bad. Then Λ∗ does not contain two
exceptional cycles with respect to ω′ or ω′′.

Proof. Without loss of generality, we may suppose that Λ contains a bad
B(λ, µ) face, and that ε = λ in the conclusion of Lemma 3.5.

Recall that if f is a bad B(λ, µ) face, vλ(f) denotes some vertex of f at
which f has a B(λ, λ) corner.

Claim. Let f be a B(λ, µ) face of Λ. Then either vλ(f) is exceptional, or
the face of Λ∗ dual to vλ(f) has index −1 with respect to ω.

Proof. If vλ(f) is not exceptional, then the other two edges at vλ(f) must be
in class µ, by Lemma 3.5. (Note that neither can be in class λ by Lemma 3.3.)
Hence the corresponding dual face of Λ∗ has index −1 with respect to ω. �

By Lemma 3.6, the sinks and sources of Λ∗ with respect to ω correspond
to either

(1) B(λ, µ) and W (λ, µ) faces of Λ; or

(2) B(λ, µ) and W (ν, π) faces of Λ.
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Let B(λ, µ) denote the set of B(λ, µ) faces of Λ, W(λ, µ) the set of
W (λ, µ) faces of Λ, etc..

First consider case (1). If W(λ, µ) 	= ∅, then by Lemma 3.5 we have
either

(a′) the edges of GQ adjacent on the W -side to any edge of GQ in class ν
or π are in class λ; or

(b′) these edges are in class µ.

Suppose (a′) holds. Then the Claim above is also true for f ∈ W(λ, µ).
Let V denote the set of vertices of Λ, and define

ϕ : B(λ, µ) ∪W(λ, µ)→ V

by setting ϕ = vλ(f).
Clearly ϕ is one–one (by Lemma 3.3).
Let eBλ , eWλ be the number of exceptional vertices in vλ(B(λ, µ)) and

vλ(W(λ, µ)) respectively. Then by the Claim,

t ≥ s− (eBλ + eWλ ) .

Hence, by Lemma 3.8(1)

s+ c+ ce + d ≥ 2 + s− (eBλ + eWλ ) .

Also, c = 0, by Lemma 3.10. Therefore

ce + eBλ + eWλ ≥ 2− d .

On the other hand, we clearly have

ce + eBλ + eWλ ≤ 2 .

(There are at most 2 exceptional vertices and any such cannot contribute to
both ce and eBλ or eWλ .) It follows that d = 0 or 1.
If d = 0, then

ce + eBλ + eWλ = 2 .

Thus there are two exceptional vertices, and each either corresponds to
a cycle of Λ∗ with respect to ω, or has incident to it two edges in class λ. It
follows that neither corresponds to an exceptional cycle with respect to ω′

or ω′′.
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If d = 1, then ce = 0, by Lemma 3.8(2), hence eBλ + eWλ = 1 or 2. Thus at
least one exceptional vertex has incident to it two edges in class λ, and so
there cannot be two exceptional cycles with respect to ω′ or ω′′.

This completes the proof in case (a′).
If (b′) holds, define

ϕ : B(λ, µ) ∪W(λ, µ)→ V

by ϕ|B(λ, µ) = vλ, ϕ|W(λ, µ) = vµ. The argument is then completely anal-
ogous to case (a′).

If W(λ, µ) = ∅, follow the argument of Case (1a′) above with eWλ = 0.
Finally, consider case (2). Here, if W(ν, π) 	= ∅, we have either

(a′′) the edges of GQ adjacent on the W -side to any edge of GQ in class λ
or µ are in class ν; or

(b′′) these edges are in class π.

Define ϕ : B(λ, µ)∪W(ν, π)→ V by ϕ|B(λ, µ) = vλ, and ϕ|W(ν, π) = vν
or vπ, according to whether (a′′) or (b′′) holds.

The argument is now exactly as in case (1). �

Lemma 3.12. Suppose that Λ∗ contains a bad sink or source with respect
to ω.

(1) If all sinks and sources of Λ∗ with respect to ω′ are bad, then Λ∗ does
not contain a sink or source with respect to ω′.

(2) If all sinks and sources of Λ∗ with respect to ω′′ are bad, then Λ∗ does
not contain a sink or source with respect to ω′′.

Proof. Suppose that Λ∗ contains a bad sink or source with respect to
ω. Then, without loss of generality, Λ contains a bad B(λ, µ) face. By
Lemma 3.5, we then have either

(a) the edges of GQ adjacent on the B-side to any edge of GQ in class ν
or π are in class λ;

or

(b) these edges are in class µ.
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(1) Suppose that Λ∗ also contains a bad sink or source with respect to ω′.
By Lemma 3.6, the corresponding dual face of Λ is a W -face; without loss
of generality it is a W (π, λ) face.

Suppose (b) holds. Since Λ contains a bad W (π, λ) face, there is a
W (π, π) corner at some vertex v of Λ. Then (b) implies that the other
two edges at v are in class µ. Thus GQ contains W (λ, λ), (π, π) and (µ, µ)
corners, contradicting Lemma 3.4.

Therefore (a) holds.
Let f be a face of Λ corresponding to a sink or source of Λ∗ with respect

to ω′. By Lemma 3.6, f is a bad W (π, λ) face. Recall that vπ(f) denotes
some vertex in the boundary of f at which f has a W (π, π) corner. Then,
by (a), the other two edges of GQ at vπ(f) are in class λ. Hence the face
of Λ∗ dual to vπ(f) has index −1 with respect to ω′. Note also that f 	= f ′

implies vπ(f) 	= vπ(f ′). Therefore, using s′, etc. to denote the number of
sinks and sources, etc. with respect to ω′, we have

t′ ≥ s′ .

Hence, by Lemma 3.8(1),

s′ + c′ + c′e + d′ ≥ 2 + t′ ≥ 2 + s′ .

Also, c′ = 0 by Lemma 3.10. Hence

c′e + d′ ≥ 2 .

It follows, by Lemma 3.8(3), that c′e = 2. But this contradicts Lemma 3.11.
(2) Suppose that Λ∗ contains a bad sink or source with respect to ω′′.

By Lemma 3.6 we may assume that any face of Λ dual to a sink or source
of Λ∗ with respect to ω′′ is a bad W (λ, ν) face. The rest of the argument is
then exactly as in (1) above, with π replaced by ν. �

Lemma 3.13. If Λ∗ contains two oppositely oriented exceptional cycles
with respect to ω, then Λ∗ does not contain a bad sink or source with respect
to ω′′.

Proof. Suppose that Λ∗ contains two oppositely oriented exceptional cycles
with respect to ω. Since T is separating there must be an exceptional end-
point of Λ labelled 1 and another labelled 2. Let x (resp. y) be the exceptional
vertex whose exceptional endpoint has label 1 (resp. 2).
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By reflecting GQ if necessary, we may assume that the cycle at x is
clockwise. Also, by reflecting GT if necessary (i.e. reversing the cyclic order
of the edge classes λ, µ, ν, π at the vertices of GT ), we may assume that the
edge of Λ∗ in the cycle at x directed into the outside region is dual to an edge
of Λ in class µ. The edge of Λ with label 1 at x is then in either class ν or
π. We therefore have the two possibilities C1 and C2 shown in Figure 3.13.

λ

ν

µ x

1

1

2 2 λ

π

µ x

1

1

2 2

C1 C2

Figure 3.13.

There are four possibilities for the anticlockwise cycle at y, shown in
Figure 3.14.

λ

ν

µ
y1 1

2

2

λ

π

µy1 1

2

2

A1 A2

λ

ν

µ
y1 1

2

2
λ

π

µ
y1 1

2

2

A3 A4

Figure 3.14.

So, a priori, we have eight cases to consider. However, there are further
symmetries. Thus, interchanging the labels 1 and 2 interchanges C1 and A3,
and C2 and A4, while interchanging labels 1 and 2 and reversing the order
of the edge classes λ, µ, ν, π (i.e. reflecting GT ) interchanges C1 and A2, and
C2 and A1. It is therefore enough to consider the six possibilities (C1, A1),
(C1, A2), (C1, A3), (C1, A4), (C2, A1), and (C2, A4). We shall see below
that three of these are actually impossible.

To analyze the edges incident to x and y as they lie on the graph GT ,
note that at x and y there are two edges of Λ that are separated by a B-
corner. We will label the two corresponding endpoints at vertices 1 and 2 of
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GT by x and y, respectively. The third edge of Λ at x (resp. y), with label 2
(resp. 1), will be labelled at vertex 2 (resp. 1) of GT by x′ (resp. y′).

First observe that cases (C1, A3), (C1, A4), and (C2, A4) are impossible.
For example, consider (C1, A3). Then the labels x, x′, y, y′ corresponding to
the endpoints of the edges of Λ at x and y appear at vertices 1 and 2 of GT
as shown in Figure 3.15. Label the endpoints of the ghost edge at x (resp.
y) by x′ (resp. y′). Since x′ must lie between y′ and y at vertex 1, and y′

must lie between x′ and x at vertex 2, the orderings of the labels x, x′, y, y′ at
vertices 1 and 2 violate Lemma 3.2. Similarly, one sees that cases (C1, A4)
and (C2, A4) are also impossible.

y

x

y'

x'

x

y

λ µ ν π

Figure 3.15.

Hence we are left with the cases (C1, A1), (C1, A2) and (C2, A1). The
labels x, x′, y, y′ at vertices 1 and 2 of GT in these three cases are shown in
Figure 3.16.

To facilitate the subsequent arguments we make the following convention.
If z is a vertex of GQ then z appears twice as a label of vertex 1 of GT and
twice as a label of vertex 2. On vertex 1 we call one of these labels z and
the other z′. On vertex 2 we do the same. We will do this in such a way
that the labels z in vertices 1 and 2 (of GT ) correspond to endpoints on
vertex z (of GQ) that cobound a B corner of z. The labels z′ on vertices 1
and 2 will also cobound a B corner. The label pairs z, z′ on vertices 1 and
2 will cobound W corners at vertex z (of GQ). With this labelling scheme,
Lemma 3.2 says that the anti-clockwise cyclic ordering of a set of labels on
vertex 1 of GT will be the same as the clockwise ordering of those labels on
vertex 2 respecting the primes. It also says that the anti-clockwise cyclic
ordering of the labels on vertex 1 will be the same as the clockwise cyclic
ordering of the labels on vertex 2 when primed labels on 1 are compared to
unprimed labels on 2 and unprimed labels on 1 compared to primed on 2.
We also note that moving from left to right in a diagram like Figure 2.2 is
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anti-clockwise on vertex 1 and clockwise on vertex 2.
Now suppose that Λ∗ contains a bad sink or source with respect to ω′′.

This corresponds to a bad face of Λ that is either a B(λ, ν), W (λ, ν), B(µ, π)
or W (µ, π) face. We shall show that each of these leads to a contradiction.

Suppose, for example, that we are in case (C1, A1) and that Λ contains a
bad B(λ, ν) face. Such a face contains a B(λ, λ) corner and a B(ν, ν) corner,
at vertices u and v, say. Consider the two corresponding occurrences of the
label u (resp. v) at vertices 1 and 2 of GT . First note that, at vertex 1, v
(in class ν) must occur to the right of x, otherwise it would lie between x′

and x at vertex 1, and hence between x′ and x at vertex 2, contradicting the
fact that v is also in class ν at vertex 2. Therefore the labels x, v, y occur
in that order at vertex 1, hence at vertex 2, and so v occurs to the left of y
(in class ν) at vertex 2. Now consider the label u, which lies in class λ at
vertices 1 and 2. If it lies to the right of y at vertex 1, then it lies between
y and x′ (since x′ is extremal wrt Λ, by Theorem 2.1), and hence cannot lie
in class λ at vertex 2. On the other hand, if it lies to the left of y at vertex
1, then the labels v, u, y occur in that order at vertex 1, hence at vertex 2
by Lemma 3.2, contradicting the fact that u is in class λ at vertex 2.

Next, suppose that we are in either case (C1, A1) or (C1, A2), and that
Λ contains a W (π, π) corner, at a vertex w, say. Then the label w at vertex
1 of GT appears between x and y, and hence w′ appears between x′ and y′

at vertex 2 by Lemma 3.2. But this contradicts the fact that w′ must lie in
class π at vertex 2. Hence, in particular, Λ cannot contain a bad W (µ, π)
face.

A similar argument shows that in case (C2, A1) we cannot have a B(ν, ν)
corner, and hence Λ cannot contain a bad B(λ, ν) face.

Similar arguments show that in case (C1, A2), Λ cannot contain a B(ν, ν)
corner, and in case (C2, A1), Λ cannot contain a W (π, π) corner.

Finally, suppose we are in case (C1, A1), and that Λ contains a B(µ, π)
corner, at a vertex z, say. Then the label z at vertex 1 of GT is in class µ,
and so lies between x′ and x (since x′ at 1 is extremal, by Theorem 2.1).
Hence z lies between x′ and x at vertex 2, contradicting the fact that z is
in class π at vertex 2. Essentially the same argument shows that Λ cannot
contain a W (λ, ν) corner. Thus in the presence of (C1, A1) there is neither
a bad B(µ, π) face nor W (λ, ν) face. Together these arguments show that
in case (C1, A1), Λ∗ contains no bad sink or source with respect to w′′.

Similar arguments show that in cases (C1, A2) and (C2, A1), Λ cannot
contain a B(µ, π) corner, or a W (λ, ν) corner; consequently, no bad B(µ, π)
on W (λ, ν) face. With the above arguments, this rules out a bad sink or
source with respect to ω′′ in cases (C1, A2) and (C2, A1). �
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Figure 3.16.

Lemma 3.14. If Λ∗ contains two oppositely oriented exceptional cycles
with respect to ω, then Λ∗ does not contain an ordinary cycle with respect
to ω′′.

Proof. As in the proof of Lemma 3.13, there are, up to symmetry, three
possibilities for the two oppositely oriented exceptional cycles with respect
to ω, (C1, A1), (C1, A2) and (C2, A1). The corresponding labels as they
appear on GT are illustrated in Figure 3.16.

Suppose Λ∗ contains an ordinary cycle with respect to ω′′, at a vertex u,
say. There are four possibilities for such a cycle, shown in Figure 3.17.

To indicate the four endpoints at u as they appear on GT , we shall
use u to denote the two endpoints, one at vertex 1 and one at vertex 2,
corresponding to the West and South edges of Λ at u, and u′ to denote those
corresponding to the East and North edges.
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The proof proceeds by showing that in all cases, the orderings of the
labels x, x′, y, y′, u, u′ at vertices 1 and 2 of GT are inconsistent. We do two
representative cases; the other cases are analogous.

Suppose (C1, A1) and O1 hold. Then u is in class λ at vertex 1 and
hence lies between x and x′ as you go from left to right (since x′ at vertex 1
is extremal, by Theorem 2.1), and hence at vertex 2 u′ lies between x′ and x
as you go from left to right. But this contradicts the fact that u′ is in class
π at vertex 2.
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u1 1

2

2

λ

π

µ

u1 1

2

2

O1 O2

λ

µ
u1 1

2

2
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O3 O4

π

ν

ν

π
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Figure 3.17.

Suppose (C1, A2) and O3 hold. Then u′ at vertex 1 is in class π, and
hence lies between x and y (from left to right). Therefore u at vertex 2 lies
between x′ and y′ (from left to right). But since y′ at vertex 2 is extremal,
by Theorem 2.1, this contradicts the fact that u is in class λ at vertex 2.

Similar arguments apply to all the other cases. �
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Proof of Theorem 3.1. By Lemma 8.2 of [15], Λ contains a face of length 2
or 3, g, which we may assume is a B-face. Note that g is necessarily a good
binary face.

In the argument below, the number of sinks and sources of Λ∗, etc., with
respect to ω, ω′ and ω′′, will be denoted by s, s′, s′′, etc. .

There are two cases

(I) The edge classes of g are adjacent.

(II) The edge classes of g are non-adjacent.

(I) We may assume without loss of generality that g is a B(µ, ν) face.
We will consider the two dual orientations ω and ω′′. By Lemma 3.7,

neither ω nor ω′′ has a sink or source corresponding to a good B-face. If ω
or ω′′ has a sink or source corresponding to a good W -face f , then f has
exactly one edge class in common with g, and Theorem 3.1 is proved. So
we suppose that any face of Λ corresponding to a sink or source of Λ∗ with
respect to ω or ω′′ is bad, and show that this leads to a contradiction.

We distinguish two subcases.

Subcase (A). Λ∗ contains two oppositely oriented exceptional cycles with
respect to ω.

Then, by Lemma 3.13, s′′ = 0, and by Lemma 3.14, c′′ = 0. Hence by
Lemma 3.8(4), c′′e = 2. But since no exceptional vertex can be dual to a
cycle of Λ∗ with respect to both ω and ω′′, this contradicts our hypothesis.

Subcase (B). Λ∗ does not contain two oppositely oriented exceptional cycles
with respect to ω.

Then, by Lemma 3.8(4), s+ c > 0.
First suppose c > 0. Then either (1) or (2) of Lemma 3.9 holds. Since

g is a B(µ, ν) face, (1) is impossible. On the other hand, (2) implies that
every W -face is a (bad) sink or source with respect to ω. Since Λ definitely
contains a W -face, this contradicts Lemma 3.10.

Hence s > 0. Therefore we have c′′ = 0, by Lemma 3.10, and s′′ = 0,
by Lemma 3.12(2). Hence c′′e = 2 by Lemma 3.8(4). But this contradicts
Lemma 3.11.
(II) We may assume without loss of generality that g is a B(λ, ν) face.

We will consider the dual orientations ω and ω′. If either ω or ω′ has
a sink or source corresponding to a good face f , then f is a W -face, by
Lemma 3.7, and shares exactly one edge class with g. So we suppose that
any face of Λ corresponding to a sink or source of Λ∗ with respect to ω or
ω′ is bad, and show that this leads to a contradiction.
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As in subcase (B) of case (I) above, Lemmas 3.9 and 3.10 imply that
c = 0. Similarly (using Lemma 3.9 with ω replaced by ω′), c′ = 0.

By Lemma 3.12(1), either s = 0 or s′ = 0; without loss of general-
ity, assume s′ = 0. Then, by Lemma 3.8(4), we have c′e = 2. Hence, by
Lemma 3.11, s = 0 also. By Lemma 3.8(4) again, ce = 2. Since no excep-
tional vertex (with only one ghost label) can be dual to a cycle of Λ∗ with
respect to both ω and ω′, this is a contradiction. �

4. Using good binary faces.

In this section we show that the existence of a good face of Λ implies that
the side of T̂ in K(p/2) in which the face lies is a Seifert fiber space over the
disk with two exceptional fibers.

Theorem 4.1. Assume that Λ contains a good X(ε, δ) face of length n.

Then the X side of T̂ in K(p/2) is a Seifert fiber space over the disk with
exactly two exceptional fibers, one of which has order n. Moreover the Seifert
fiber of this fibration is the curve on T̂ formed by ε ∪ δ.

Let f be an ε-good (ε, δ) face. Consider the edges of GT corresponding to
the edges in ∂f . The endpoints of these edges at vertex j of GT , j = 1, 2, give
a set of labels, corresponding to the vertices of ∂f . If we read these labels
anticlockwise around vertex 1, then the same labels appear in clockwise
order around vertex 2. For convenience, number these labels 0, 1, . . . , n − 1
in anticlockwise order around vertex 1.

Let [a0, a1] be the (cyclic) interval of labels corresponding to the end-
points at vertex 1 of the edges of ∂f that are in class δ. Similarly, let [b0, b1]
be the interval of labels corresponding to the endpoints at vertex 2 of the
edges that are in class ε. See Figure 4.1.

Lemma 4.2. Either b0 = a0 or b1 = a1.

Proof. Since f is ε-good, as we read around ∂f , each edge in class ε is
immediately followed by an edge in class δ. Therefore [b0, b1] ⊂ [a0, a1].

Suppose b0 	= a0 and b1 	= a1. Then [b0 − 1, b1 + 1] ⊂ [a0, a1].
Now let nδ be the total number of edges of GT in class δ, and let p be

the total number of labels of endpoints of edges of GT (with multiplicity) in
the interval [b0 − 1, b1 + 1]. Then, looking at vertex 2 we see that

p+ nδ > 2q .
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1
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a0 a1

b1 b0

b0-1b1+1

ε

ε

δ

Figure 4.1.

On the other hand, since [b0 − 1, b1 + 1] ⊂ [a0, a1], by considering vertex 1
we have

p ≤ nδ .

Hence nδ > q. The construction of [11] then gives the contradiction that K
is a cable knot. �

We restate Lemma 4.2 as follows. Let f be a good (ε, δ)-face of Λ. There
are vertices x, y of f in Λ, representing corners of ∂f , such that the edges of
∂f on GT are, up to homeomorphism, as in Figure 4.2. The interval [x, y] on
vertex i of GT , i = 1, 2, that contains no edges of ∂f in its interior, is called
the external interval of f on vertex i and is denoted Iif . (If f is a bigon there
are two such intervals.)

Lemma 4.3. Let X be a genus 2 handlebody, and let F ⊂ ∂X be a once-
punctured torus such that inclusion induces an isomorphism π1(F )→ π1(X).
Let γ be a non-separating simple closed curve in ∂X−F . Then the manifold
obtained by attaching a 2-handle to X along γ is a solid torus.

Proof. Let Y be the result of attaching a 2-handle toX along γ. Then ∂Y is a
torus containing F . Since π1(F )→ π1(X) is onto, π1(∂Y )→ π1(Y ) is onto.
Therefore, by the Loop Theorem and Dehn’s Lemma, Y ∼= S1 × D2 #M ,
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Figure 4.2.

where M is a homotopy 3-sphere. Also, M has Heegaard genus at most 1
by [18]. Hence M ∼= S3 and Y ∼= S1 ×D2. �

Let K(p/2) = MB ∪T̂ MW , where MB and MW are the B and W sides
of T̂ , respectively.

Without loss of generality assume that the face in the hypothesis of The-
orem 4.1 is a good B(ε, δ) face f of length n. Note that T is incompressible
in E(K), thus we may assume that f lies entirely in MB. Let V be the solid
torus in the Dehn surgery K(p/2) = E(K) ∪ V . Let H = V ∩MB . Let A
be an annulus on T̂ such that ∂f ⊂ A ∪ H (think of f now as a properly
embedded disk in the B side of T in E(K)). Note that the circuit ε ∪ δ in
GT gives a core curve for A in T̂ .

Lemma 4.4. Let W be a regular neighborhood of A ∪H ∪ f in MB. Then
W is a solid torus, in which the core of A is homotopic to n times the core
of W .

Proof. Identifying A with A × {1} in A × I, W is homeomorphic to the
manifold obtained by attaching a 2-handle to the genus 2 handlebody A ×
I∪H along the curve ∂f . Under this homeomorphism, A ⊂ ∂W corresponds
to A× {0}.
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Let Ijf be the external interval associated with f at vertex j, and let

xj ∈ Int Ijf , j = 1, 2. There is an arc ξ ⊂ ∂H running from x1 to x2, disjoint
from ∂f . There are also disjoint arcs γ1 and γ2 in A−H, which are disjoint
from ∂f , running from x1 and x2 respectively to (distinct components of)
∂A × {1}. Let b be a regular neighborhood of γ1 ∪ ξ ∪ γ2 in A−H ∪ ∂H.
Finally, let F = A × {0} ∪ ∂A × I ∪ b. Then F is a once-punctured torus,
and clearly π1(F )→ π1(A× I ∪H) is onto. Since ∂f ∩ F = ∅, W is a solid
torus by Lemma 4.3.

On the other hand, note that if we attach a 2-handle to W along A,
we get a punctured lens space whose fundamental group has order n. This
implies that the core of A is homotopic to n times the core of W . �

Remark. Lemma 4.4 implies that if f is ε-good and not a bigon, then there
are more δ-edges in ∂f than ε-edges. Otherwise ∂f would alternate in ε-
and δ-edges and H1(W ) would have non-trivial torsion.

Proof of Theorem 4.1. Let T̂ ′ = (T̂ − IntA) ∪ (∂W − IntA). Then T̂ ′ ⊂
K(p/2) is a 2-torus which misses Kp/2. That is, T̂ ′ ⊂ E(K). Now T̂ ′ is
not isotopic to ∂E(K), since the side of T̂ ′ containing ∂E(K) contains the
essential torus T̂ . By hypothesis then, T̂ ′ must be compressible in E(K),
hence in K(p/2). But one side of T̂ ′ in K(p/2) is W ∪AMW . Thus it must
be that T̂ ′ compresses on its other side, W ′ = MB −W . The irreducibility
of E(K) implies that W ′ is a solid torus. Thus if A′ is the annulus ∂W −A,
we have written MB as the union of two solid tori along an annulus A′:
MB = W ∪A′ W ′. Since T̂ does not compress in MB , MB is a Seifert fiber
space with exactly two exceptional fibers. Since the core of A′ is isotopic in
∂W to the core of A, one of these exceptional fibers has order n = length(f).
�

5. A link surgery description of K.

In this section, the subscript i will always denote 1 or 2. As given by The-
orem 3.1, let fi be a good Xi(ε, δi) face of Λ, where {X1,X2} = {B,W}.
Denote by Iji the external interval Ijfi

of fi on vertex j of GT , j = 1, 2. (See
the definition after Lemma 4.2.) In particular, let Ii stand for either I1

i or
I2
i .

Proposition 5.1. There exists i ∈ {1, 2} such that at the vertices of GT
the edge class δ3−i has endpoints in the external interval Ii. See Figure 5.1.
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Figure 5.1.

If some fi is a bigon then the proposition is clear. So we assume not.
Then {ε, δi} = {ϕi, ψi}, where there are more edges of fi in class ϕi than
in class ψi (see the Remark after Lemma 4.4). We assume also, for contra-
diction, that the edge class δ3−i is not contained in the interval Ii at the
vertices of GT , i = 1, 2.

Lemma 5.2. For any edge e of GQ in class δ3−i, the edges of GQ adjacent
to e on the Xi-side are in class ϕi. See Figure 5.2.
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Figure 5.2.

Proof. We take i = 1 and X1 = B without loss of generality.
Let p, q be the numbers of edges of f1 in classes ϕ1, ψ1 respectively. Thus

p > q. As in the proof of Lemma 4.2, consider the edges of f1 as they lie
on GT , and number their endpoints at the vertices of GT 0, 1, . . . , n − 1, in
anticlockwise (resp. clockwise) order around vertex 1 (resp. vertex 2). We
may choose the numbering so that I1 is [0, 1]. See Figure 5.3.

I
1

I
2

1

2

1

0

0

1q

p
p+1

q+1

Figure 5.3.

Let e be an edge of GQ in class δ2; as in Figure 5.2. Then e appears in
GT as in Figure 5.4.
Then by hypothesis, the label s appears in the interval (p, p+1) at vertex 1.
Since p > q, the edges of f1 with endpoints p, p + 1 at vertex 2 lie in the
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Figure 5.4.

class ϕ1; see Figure 5.4. Since the endpoint of the edge e2 at vertex 2 lies
between p and p + 1, e2 is in the class ϕ1. Similarly, the label t appears in
(q, q + 1) at vertex 2, and a completely analogous argument shows that the
edge e1 is also in the class ϕ1. �

Lemma 5.3. ϕi = δi, i = 1, 2 (i.e., fi is good w.r.t. ε).

Proof. We show that ϕ1 = δ1; the proof that ϕ2 = δ2 is completely analogous.
Assume that ϕ1 = ε. Let x be a vertex of GQ at which a (δ2, ε) corner

of the face f2 is incident. Then, by Lemma 5.2, we would have two edges
in class ε incident to x at the same label, contradicting Lemma 3.3. See
Figure 5.5. �

Proof of Proposition 5.1. Let x be a vertex of GQ at which an edge e in class
δ1 is incident. Then by two applications of Lemmas 5.2 and 5.3, we see that
the edge incident to x at the same label as e is also in class δ1, contradicting
Lemma 3.3. See Figure 5.6. �
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Figure 5.6.

Up to homeomorphism and relabelling, Proposition 5.1 allows us to as-
sume that the edges of f1, f2 on GT are as in Figure 5.7 with the endpoints
of edge class δ2 contained in I1. Let Bε, B1, B2 be bands of GT containing
the edges in classes ε, δ1, δ2 respectively. Let {v1, v2} be the vertices of GT .
Let Ai be an annular neighborhood of v1 ∪ v2 ∪ Bε ∪ Bi in T̂ , such that
each component of ∂A1 meets each component of ∂A2 in a single point; see
Figure 5.8.

Let A′
i = T̂ −Ai. Recall that M = M1 ∪T̂ M2, and let Hi = V ∩Mi. Let

Wi = nhdMi(Ai∪Hi∪fi). Thus ∂Wi = Ai∪Ci, where Ci is an annulus with
∂Ci = ∂Ai. Note that Hi ∩ ∂Wi = v1 ∪ v2. By Lemma 4.2, Wi is a solid
torus. Since E(K) is atoroidal, Mi −Wi = W ′

i is also a solid torus.
Recall that the boundary components of the surface Q ⊂ E(K) have

slope µ, the meridian ofK. Let hi : (D2×I;D2×{0},D2×{1})→ (Hi; v1, v2)
be a homeomorphism such that each (arc) component of ∂Q ∩Hi is of the
form hi(x × I) for some x ∈ ∂D2. For any y ∈ ∂D2, we shall say that the
arc hi(y × I) ⊂ ∂Hi determines the µ-framing on Hi. See Figure 5.9.

Recall that I1
i is the external interval of fi around ∂v1. Pick a point

x1
i ∈ Int I1

i . Then I2
i = hi(h−1

i (I1
i ) × {1}) is the corresponding external

interval around ∂v2, with x2
i = hi(h−1

i (x1
i )× {1}) ∈ Int I2

i . Let ξi ⊂ ∂Hi be
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B1 B1Bε
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A1

Figure 5.8.

the arc hi(h−1
i (x1

i )× I); thus ∂ξi = {x1
i , x

2
i } and ξi determines the µ-framing

on Hi. Note that ξi ∩ ∂fi = ∅. Let γ1
i and γ2

i be arcs in A1 ∩A2 − (v1 ∪ v2)
running from x1

i and x2
i respectively to ∂Ai, and disjoint from ∂fi. Note

that γ1
i and γ2

i go to different components of ∂Ai.
Let Bj

i = (Bi ∩ ∂vj), j = 1, 2. We are assuming Bj
2 ⊂ Ij1 , j = 1, 2,

(Proposition 5.1) so γ1
1 and γ2

1 are as shown in Figure 5.10. For γj2 there are
two cases:

Case I. Bj
1 ∩ I

j
2 = ∅, j = 1, 2.

Case II. Bj
1 ⊂ I

j
2 , j = 1, 2.
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Figure 5.9.

In these cases, γ1
2 and γ2

2 are illustrated in Figures 5.11 and 5.12 respec-
tively.

v1
v2

I1
1

I1
2γ1

2

γ1
1

x1
1

x1
2

Figure 5.10.

Since (ξi∪γ1
i ∪γ2

i )∩∂fi = ∅, by definition of Wi there is a disk (rectangle)
Ri ∼= ξi × I properly embedded in Wi −Hi, with ξi × {0} = ξi, x

j
i × I = γji ,

j = 1, 2, and ξi×{1} ⊂ Ci. See Figure 5.13 for the case i = 1; the case i = 2
is similar.
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Figure 5.12.

We regard T̂ ∪C1∪C2∪R1∪R2∪V as a subset of S3, in the following way.
First, identify T̂ with a standardly embedded torus in S3, separating S3 into
two solid tori U1 and U2, where the components of ∂A1 are longitudes of U1

and meridians of U2, and vice versa for the components of ∂A2. Under this
identification, we take v1, v2, B1, B2 and Bε to the standard configuration
shown in Figure 5.8. Then we identify Ci with the obvious annulus in Ui,
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Figure 5.13.

separating Ui into two solid tori Vi and V ′
i , where ∂Vi = Ai ∪Ci, and ∂V ′

i =
A′
i ∪ Ci. See Figure 5.14.

Vi

Vi

Ai

Ci

Ui

Ai

Figure 5.14.

Let Hi ⊂ Vi be as shown in Figure 5.15.
Also embed Ri ⊂ Vi, as in Figure 5.13.

Let K ′
i be a core of V ′

i , and let Ki be a core of Vi disjoint from Hi ∪Ri.
See Figures 5.16 and 5.17.

Note thatN(T̂∪C1∪C2) is the exterior of the link L0 = K1∪K ′
1∪K2∪K ′

2;
see Figure 5.18.

Since W ′
i is a solid torus, we can regard W ′

i as being obtained from V ′
i

by some Dehn surgery on K ′
i. Similarly, since Wi − nhd(Ri ∪Hi) is a solid

torus, we can regard (Wi;Hi, Ri) as being obtained from (Vi;Hi, Ri) by some
Dehn surgery on Ki. Finally, let K0 be the core of V = H1∪H2 ⊂ S3. Then
we have (M,Kτ ) is obtained from (S3,K0) by some Dehn surgery on L0.
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A1
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Figure 5.16.

That is, the exterior of K is obtained from the exterior of K0 in S3 by a
Dehn surgery on L0.

Take the usual meridian–longitude basis for slopes on ∂V ; i.e., the 0-
framing of K0 in S3. Note that the meridian of K0 corresponds to the slope
τ on ∂V . Recall that the slope µ on ∂V is the meridian of K.
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Case I
H2

A2

K2

C2

ξ2

Case II

K2

ξ2

Figure 5.17.

Lemma 5.4. The exterior of K is obtained from the exterior of K0 in S3

by Dehn surgery on L0. Let µ be the meridian of K. With respect to the
framing of K0 described above, µ = 1/2 in Case I and −1/2 in Case II.
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H2

H1

a a

a

Figure 5.19.

First we adopt the following convention regarding labels around ∂v1 and
∂v2. Recall that each label 1, 2, . . . , q occurs twice around each of ∂v1 and
∂v2. Calling the two occurrences of some label a and a′ (a′′ = a), if a
is an occurrence of a label on ∂v1 then we will denote by a the point on
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∂v2 corresponding to a with respect to the µ-framing on H1, and by a′ the
point on ∂v2 corresponding to a with respect to the µ-framing on H2. See
Figure 5.19.

Let the labels of the endpoints of the external interval Ii be ai and bi,
where ai ∈ Bi and bi ∈ Bε at vertex v1. For the next lemma, recall that
labels are read anticlockwise around v1 and clockwise around v2.

B2

B2

B1B1 Bεa1 b1 b1a1v1 v2

Figure 5.20.

B2

B2

B1B1 Bε
a2

b2

b2
a2

Figure 5.21.

Lemma 5.5. The labels a1, b2, b
′
2 occur in the order a1b

′
2b2.

Proof. By looking at vertex v2, we see that we have order a1b
′
2b1. See Fig-

ures 5.20 and 5.21. Therefore, if we had order a1b2b
′
2, then we would have

order a1b2b
′
2b1. But at vertex v1, b1 and b2 are in Bε. Hence we would have
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b′2 in Bε at vertex v1, giving q + 1 parallel edges in Bε. But this gives the
contradiction that K is cabled, using [11]. �

a1

a1 b2
b2

b2

b2

a1

a1
b2 b2b2

b2

Figure 5.22.

K0

K1

K1

K2
K2

K1

K1

K2

K0

K2

Case I Case II

Figure 5.23.

Proof of Lemma 5.4. Consider the arc in ∂H1 given by the µ-framing on H1

(see the arc ξ1 in Figure 5.16) with endpoint a1 at v1, and the arc in ∂H2

given by the µ-framing on H2 (see the arc ξ2 in Figure 5.17) with endpoint
b2 at v1. See Figure 5.22. Using Lemma 5.5, we see that the meridian µ
corresponding to the label b2 is 1/2 in Case I and −1/2 in Case II. See
Figure 5.22. � (Lemma 5.4)

Let L be the link K1 ∪K ′
1 ∪K2 ∪K ′

2 ∪K0; see Figure 5.23.
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One can check that L in Case II is the reflection of L in Case I (in which
Ki �→ Ki, 0 ≤ i ≤ 2, and K ′

i �→ K ′
i, i = 1, 2.). Note that under this reflection

the (1/2)-framing on K0 goes to the (−1/2)-framing (and the longitude to
the longitude). As we are interested in identifying the exterior of K, we will
assume from now on without loss of generality that we are in Case I.

K2

K0

K1

K2

K1

Figure 5.24: The link L

K1'

K2' K2

K1 K0

Figure 5.25: Minimally twisted 5-chain

Let L(α, β, γ, δ, ε) be the Dehn filling on the exterior of L where
α, β, γ, δ, ε denote the filling slopes on K1, K ′

1, K2, K ′
2, K0 respectively.

When one of the filling slopes is an asterisk (∗), then no filling is done on
the corresponding component.

Proposition 5.6. Let K be a hyperbolic knot in the 3-sphere that admits
a non-integral surgery containing an incompressible torus. Then E(K) =
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L(α, β, γ, δ, ∗) where L is as in Figure 5.24. Furthermore S3 = L(α, β, γ, δ, 1
2),

and the non-integral surgery is L(α, β, γ, δ, 1
0). Finally, ∆(χ, 0

1) ≥ 2 for
χ ∈ {α, β, γ, δ}. Conversely, any α, β, γ, δ such that L(α, β, γ, δ, 1

2) = S3 and
such that ∆(χ, 0

1) ≥ 2 for each χ ∈ {α, β, γ, δ} gives rise to a knot K in S3

admitting a non-integral toroidal surgery.

Proof. Given the above discussion, to prove the first implication we need only
show that ∆(χ, 0

1) ≥ 2. This follows immediately from the observation that
L(α, β, γ, δ, 1

0) = M1∪T̂M2 where M1(M2) is obtained from D2×S1 by Dehn
surgery along two circle fibers K1,K

′
1 (K2,K

′
2). The circle fibration of the

exterior of K1 ∪K ′
1 (K2 ∪K ′

2) gives rise to a longitudinal framing of K1,K
′
1

(K2,K
′
2). Thus T̂ will be incompressible in M1 (M2) only if ∆(α, 0

1 ) ≥ 2
and ∆(β, 0

1) ≥ 2 (∆(γ, 0
1) ≥ 2 and ∆(δ, 0

1) ≥ 2, respectively). The converse
follows similarly. �

Remark. By twisting once along the disk bounded by K0 one sees that
L has the same exterior as the minimally twisted 5-chain, L′, pictured in
Figure 5.25. Thus Proposition 5.6 says that K can be written as a Dehn
surgery on four components of the minimally twisted 5-chain. In this picture
the S3 surgery is 1/1 on K0 and the toroidal surgery is −1/1.

6. The tangle covered by K.

Proposition 5.6 says that K is obtained by Dehn surgery on L. Both K
and L are strongly invertible and the quotients of their exteriors under these
involutions give rise to a pair of tangles. The fact that the exterior of K
is obtained by Dehn filling the exterior of L, means that the tangle covered
by K is a tangle filling of the tangle covered by L. By analyzing tangle
fillings we prove (Theorem 1.1) that the tangle covered by K must be one of
the tangles B(�,m, n, p) of [6], and, consequently that K is one of the knots
k(�,m, n, p) described by Eudave-Muñoz in [6]. We begin with a general
discussion of tangles.

In our conventions on rational tangles we follow [6] and [7]. There is
a 1–1 correspondence between rational tangles and Q ∪ {∞}. Denote by
R(p/q) the rational tangle determined by p

q ∈ Q∪{∞}. See Figure 6.1. p/q
is called the slope of R(p/q).

The distance between two tangle slopes, ∆(p1q1 ,
p2
q2

), is defined to be |p1q2−
p2q1|.
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R(-1/1) R(-1/2)R(0/1)R(1/0)

Figure 6.1.

Remark. A rational tangle can be represented as a pair of arcs on the
boundary of the tangle ball. Let t1 be one of these arcs from R(p1/q1)
and t2 be one from R(p2/p2) represented on the same tangle sphere. Isotop
t1, t2 (rel endpoints) so that they intersect minimally. Let e be the number
of endpoints shared by t1, t2 and let p be the number of interior points of
intersection. Then ∆(p1q1 ,

p2
q2

) = e+2p. To check the representation of a tangle
as a rational number, up to sign, it is useful to remember that |p| = ∆(pq ,

0
1 ),

|q| = ∆(pq ,
1
0).

It is convenient to generalize the usual notion of a tangle, as follows. A
tangle T is a pair (X,A), where X is S3 minus the interiors of n disjoint
3-balls, and A is a properly embedded 1-manifold in X, meeting each com-
ponent of ∂X in exactly four points. The term rational tangle will retain
its usual meaning. Given αi ∈ Q ∪ {1/0}, 1 ≤ i ≤ n, T (α1, α2 . . . , αn) will
denote the link in S3 obtained by inserting the rational tangle R(αi) into
the ith puncture of T . In this paper we consider the tangles of Figures 6.2
and 6.3. The tangle shown in Figure 6.2 will be referred to as Q hereafter.
A filling of Q, Q(α, β, γ, δ), refers to filling punctures A,B,C,D with ra-
tional tangles of slope α, β, γ, δ (resp.). The tangle of Figure 6.3 is called
the pentangle and will be referred to as P and, similarly, a filling thereof as
P(α, β, γ, δ, ε). Note that Q(α, β, γ, δ) = P(α, β, γ, δ, 2

1).
Often we will insert rational tangles into only a subset of the punctures

of T , giving a new tangle. We denote this, T (r1, r2, . . . , ∗, . . .), where an
asterisk indicates that no tangle is inserted in that puncture. For example,
the tangle Q(α, ∗, γ, ∗) is that obtained from Q by replacing punctures A,C
with tangles R(α), R(γ) (resp.) and leaving punctures B,D alone.

The tangle Q admits a symmetry by rotation in the horizontal axis, rh,
which interchanges A,C and B,D. It also admits the symmetry by rotation
in the vertical axis, rv, which interchanges A,B and C,D. We will refer to
these symmetries by their action on (A,B,C,D):

rh = (C,D,A,B) , rv = (B,A,D,C) , rhrv = (D,C,B,A)
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C

B

D

A

Figure 6.2: The tangle Q

C

B

D

A

E

Figure 6.3: The pentangle P

Note that these symmetries preserve the coordinates on the tangle balls
A,B,C,D (i.e., 0

1 →
0
1 , 1

0 →
1
0). Also we can take any boundary component

of Q to any other by one of these symmetries.
The next two sections will provide support for the proof of the following.

Proposition 6.1. Assume Q(α, β, γ, δ) is the unknot. If ∆(χ, 1
0) ≥ 2 for

each χ ∈ {α, β, γ, δ}, then 1
2 ∈ {α, β, γ, δ}.
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Proof of Proposition 6.1. We assume that α, β, γ, δ are tangle slopes as in the
hypothesis of Proposition 6.1. By Corollary 8.5, we assume that ∆(χ, 1

0) ≥ 3
for χ ∈ {α, β, γ, δ}.

Note that if r is a slope, then the conditions ∆(r, 0
1 ) ≤ 1, ∆(r, 1

1 ) ≤ 1,
and ∆(r, 1

0 ) ≥ 3 cannot all three hold. Thus applying Proposition 8.6 under
the symmetries (A,B,C,D), (B,A,D,C), (C,D,A,B), and (D,C,B,A),
one of the following must hold:

a) ∆(χ, 0
1) = 1 for χ ∈ {α, β, γ, δ};

b) ∆(χ, 1
1) = 1 for χ ∈ {α, β, γ, δ};

c) ∆(χ, 0
1) = 1 for χ ∈ {α, β} and ∆(χ, 1

1) = 1 for χ ∈ {γ, δ};

d) ∆(χ, 0
1) = 1 for χ ∈ {γ, δ} and ∆(χ, 1

1) = 1 for χ ∈ {α, β}.
Note that χ 
= 0

1 ,
1
1 for χ ∈ {α, β, γ, δ} since ∆(χ, 1

0 ) ≥ 3.
Theorems 8.7 and 8.8 of Section 8 prove Proposition 6.1 in cases (a)

and (b). Theorem 8.9 and the corresponding statement under the symmetry
(C,D,A,B), prove the Proposition in cases (c), (d). �

The symmetries rv, rh, and rvrh described above are also symmetries of
P leaving E invariant.

Proposition 6.2. Let α, β, γ, δ be tangle slopes such that P(α, β, γ, δ, 0
1 ) is

the union of prime tangles and P(α, β, γ, δ, 2
1) is the unknot. Then δ = 1/2,

up to symmetry by rh, rv, or rhrv. Furthermore, P(α, β, γ, δ, ∗) is one of the
tangles B(�,m, n, p) of [6].

Proof. Recall that P(α, β, γ, δ, 2
1) = Q(α, β, γ, δ). The fact that

P(α, β, γ, δ, 0
1 ) is a union of prime tangles implies that ∆(χ, 1

0) ≥ 2 for each
χ ∈ {α, β, γ, δ} (see for example the arguments of section 5 in [7]). Thus by
Proposition 6.1, up to symmetry, δ = 1/2. Now P(α, β, γ, 1

2 , ∗) is the tangle
B(A,B,C) discussed in section 5 of [7], up to change in tangle labels and
tangle coordinates (see Figure 6.4).1 Furthermore under this correspondence
B(A,B,C)+R(1

2 ) is P(α, β, γ, 1
2 ,

0
1) and B(A,B,C)+R(µ) is P(α, β, γ, 1

2 ,
2
1 ).

This is exactly the context of section 5 of [7] in which it is shown that such
B(A,B,C) are exactly those tangles B(�,m, n, p) of [6]. �

1Figures 9 and 10(b) of [7] should be reflected; thus B(A,B,C) is actually the
mirror image of the tangle shown in Figure 9(a). We are grateful to Mario Eudave-
Muñoz for discussions on this point.
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A

C

B

B

A

C

Figure 6.4: P(α, β, γ, 1
2 , ∗) = B(A,B,C)

Let T (α1, . . . , αn) be a filling of the tangle T . The double branched cover
of S3 along the link T (α1, . . . , αn) is a closed 3-manifold T̃ (α1, . . . , αn). In
such a cover each tangle ball R(αi) lifts to a solid torus, R̃(αi). In the
same way, the double branched cover T̃ of T is a 3-manifold with torus
boundary components. That is, T̃ is the exterior of a link in T̃ (α1, . . . , αn).
In particular when T (α1, . . . , αn) is the unknot, T̃ (α1, . . . , αn) is S3, and T̃ is
the exterior of an n-component link in S3. In any case, the double branched
cover of any filling of T , T (α1, . . . , αn), is obtained from T̃ by Dehn filling.
In particular, if we lift the tangle coordinates from ∂T to ∂T̃ , T̃ (α1, . . . , αn)
becomes the Dehn filling on T̃ with filling co-ordinates α1, . . . , αn, so there
is no ambiguity in the notation T̃ (α1, . . . , αn). With this convention note
that distance between tangle slopes on a boundary component of T is the
same as the distance between the corresponding filling slopes on ∂T̃ .

By Proposition 6.2, the tangle P(α, β, γ, δ, ∗) is the same as the tangle
B(�,m, n, p) of [6]. The double branched cover of B(�,m, n, p) is the exterior
of the knot k(�,m, n, p) of [6]. That is, P̃(α, β, γ, δ, ∗) is the exterior of some
k(�,m, n, p). Eudave-Muñoz shows that each k(�,m, n, p) is a hyperbolic
knot admitting a half-integral surgery with an incompressible torus. The
following converse is the main result of the paper, which we restate here for
the reader’s convenience.

Theorem 1.1. Let K be a hyperbolic knot in the 3-sphere that admits a
non-integral surgery containing an incompressible torus. Then K is one of
the Eudave-Muñoz knots k(�,m, n, p), and the surgery is the corresponding
half-integral surgery.

Proof. Assume that K is a knot in the 3-sphere admitting a non-integral
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surgery, K(τ) = M , containing an incompressible torus. By Proposition 5.6,
E(K) = L(α, β, γ, δ, ∗). Figure 6.5 shows that L is strongly invertible and
depicts the quotient along with its fixed set. That quotient of (S3, L) under
this strong inversion is P(0

1 ,
1
1 ,

0
1 ,

1
1 ,

0
1), where invariant regular neighbor-

hoods of L become tangle balls in the quotient. That is, the quotient of
E(L) under the involution is the pentangle P. As indicated by the dashed
line framings of the tangle balls in P of Figure 6.5, the longitude framings of
∂E(L) pass to the 1

0 framings of the tangle balls. As indicated by the solid
lines (of the unknot) the meridians of ∂E(L) pass to either the 0

1 or 1
1 fram-

ings of the quotient tangle. In particular, the (meridian, longitude)-framing
of K0 passes to the (0

1 ,
1
0)-framing of the corresponding tangle sphere of P.

Thus the fact that S3 = L(α, β, γ, δ, 1
2) becomes the fact that the unknot

is P(α′, β′, γ′, δ′, 2
1 ). The condition that ∆(χ, 0

1) ≥ 2 for χ ∈ {α, β, γ, δ},
becomes the condition that ∆(χ, 1

0) ≥ 2 for χ ∈ {α′, β′, γ′, δ′}. This latter
condition is equivalent to P(α′, β′, γ′, δ′, 0

1) being the union of prime tangles.
By Proposition 6.2, P(α′, β′, γ′, δ′, ∗) = B(�,m, n, p) for some �,m, n, p.

ThusE(K) = L(α, β, γ, δ, ∗) is the double branched cover of B(�,m, n, p).
That is, K = k(�,m, n, p) and the toroidal surgery is the corresponding half-
integral surgery by [6]. �

h

Figure 6.5.

7. Tangle insertions in Q and their double branched covers.

Sections 7 and 8 are devoted to lemmas supporting the proof of Propo-
sition 6.1. In particular, let Q be the tangle of Proposition 6.1, and
Q(α, β, γ, δ) the given tangle filling. In this section we do a series of compu-
tations describing the double branched covers of certain tangle fillings of Q.
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These, combined with certain Dehn filling theorems, will lead in Section 8
to restrictions on the tangle slopes α, β, γ, δ.

Let F be a surface, possibly with boundary. Let e1, e2, . . . , en be non-
negative integers. Define F (e1, e2, . . . , en) to be any manifold obtained by
doing Dehn surgery on n circle fibers of F × S1 so that the surgery slope
on the ith circle fiber has distance ei from its meridian. If ei > 0 for each i,
then any F (e1, . . . , en) is a Seifert fiber space over F with exceptional fibers
of orders those ei’s that are > 1. If some ei = 0, then any F (e1, e2, . . . , en)
is either a lens space, or S3, or a solid torus, or is reducible.

In this paper F will be either A2, an annulus, D2, a disk, or S2, a 2-
sphere.

A manifold of the form A2(q) with q ≥ 2 is called a cable space.
Recall that Q̃(α, β, γ, δ) denotes the double branched cover of S3 along

Q(α, β, γ, δ).

Lemma 7.1. Q̃(α, β, γ, 0
1) = S2(a, b, c) where a = ∆(α, 1

0 ), b = ∆(β, 1
2),

c = ∆(γ, 1
1).

Proof. Figure 7.1 shows that Q(α, β, γ, 0
1) is a Montesinos link of length 3.

Thus the double branched cover Q̃(α, β, γ, 0
1) of Q(α, β, γ, 0

1) will be
S2(a, b, c). In Figure 7.1 one sees that the slope of the Seifert fiber on A
corresponds to the tangle slope 1/0, on B to the tangle slope 1/2, and on C
to the tangle slope 1/1. Thus a = ∆(α, 1

0 ), b = ∆(β, 1
2 ), and c = ∆(γ, 1

1). �

α

γ

β

C

A B

Figure 7.1.

Lemma 7.2. Q̃(α, β, γ, 1
1) = S2(a, b, c) where a = ∆(α, 1

2 ), b = ∆(β, 1
0),

c = ∆(γ, 0
1).
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Proof. Similar to the proof of Lemma 7.1. �

Lemma 7.3. Q̃(α, β, γ, 1
0) = X1

⋃
T X2 where X1 = D2(a, b), X2 =

D2(2, c), and T is a 2-torus. Furthermore a = ∆(α, 0
1 ), b = ∆(β, 1

1 ),
c = ∆(γ, 1

0). Finally the given Seifert fibers of X1 and X2 intersect once
on T .

Proof. Figure 7.2 decomposes Q(α, β, γ, 1
0 ) along a tangle sphere P . Each

side of P is then further decomposed as a tangle sum by the disks Q1 and Q2.
Thus Q̃(α, β, γ, 1

0) decomposes along a 2-torus T into two Seifert fiber spaces
D2(a, b), D2(2, c) where the Seifert fibers intersect once on T . The slope of
the Seifert fiber on A is 0/1, on B is 1/1, and on C is 1/0 (pictured in the
top half of Figure 7.2). Thus a = ∆(α, 0

1), b = ∆(β, 1
1 ), and c = ∆(γ, 1

0 ). �

C

A B

C

A B

P

Q1

Q2

Figure 7.2.

Lemma 7.4. Q̃(α, β, γ, 1
2) = X1

⋃
T X2 whereX1 = D2(a, b), X2 = D2(2, c)

and T is a 2-torus. Furthermore a = ∆(α, 1
1 ), b = ∆(β, 0

1), c = ∆(γ, 1
2 ).

Finally the given Seifert fibers of X1 and X2 intersect once on T .

Proof. Follow the proof of Lemma 7.3 using Figure 7.3. �

Lemma 7.5. Q̃(0
1 , β, γ, ∗) = D2(b, c) where b = ∆(β, 1

1), c = ∆(γ, 1
2 ).

Proof. Figure 7.4 writes the tangle Q(0
1 , β, γ, ∗) as a tangle sum of B and
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A B

C C

A
1
1

0
1BQ1

Q2
1
2

P

Figure 7.3.

C along the disk Q. Thus Q̃(0
1 , β, γ, ∗) = D2(b, c). The Seifert fiber on B

corresponds to the tangle slope 1/1, and on C corresponds to 1/2. �

β

γ

γ

β

Q

Figure 7.4.

Lemma 7.6. Q̃(1
1 , β, γ, ∗) = D2(b, c) where b = ∆(β, 0

1), c = ∆(γ, 1
0).

Proof. Similar to the proof of Lemma 7.5. �

Lemma 7.7. Q̃(1
0 , β, γ, ∗) = X1

⋃
T X2 where X1 = D2(2, b), X2 = A2(c)

and b = ∆(β, 1
0 ), c = ∆(γ, 1

1).

Proof. Figure 7.5 decomposes the tangle Q(1
0 , β, γ, ∗) along the tangle sphere

P . Each side of P is then further decomposed as a tangle sum by the disks
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Q1 and Q2. Thus Q̃(1
0 , β, γ, ∗) decomposes along a 2-torus into D2(2, b)

and A2(c). Figure 7.5 also identifies the Seifert fibers on B and C, giving
b = ∆(β, 1

0), c = ∆(γ, 1
1 ). �

C

B

γ

βQ2

Q1

P

Figure 7.5.

Lemma 7.8. Q̃(1
2 , β, γ, ∗) = X1

⋃
T X2 where X1 = D2(2, b), X2 = A2(c)

and b = ∆(β, 1
2), c = ∆(γ, 0

1). Furthermore the Seifert fibers of X1 and X2

intersect once on T .

Proof. Follow the proof of Lemma 7.7, using Figure 7.6. �

C

B

P

B

C

Figure 7.6.

Lemma 7.9. Q̃(α, 0
1 , γ, ∗) = D2(a, c) where a = ∆(α, 1

1), c = ∆(γ, 1
0).
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Proof. Follow the proof of Lemma 7.5, using Figure 7.7. �

C

A

Figure 7.7.

Lemma 7.10. Q̃(α, 1
1 , γ, ∗) = D2(a, c) where a = ∆(α, 0

1), c = ∆(γ, 1
2).

Proof. Similar to Lemma 7.9. �

Lemma 7.11. Q̃(α, 1
0 , γ, ∗) = X1

⋃
T X2 where X1 = D2(2, a), X2 = A2(c)

and T is the common 2-torus boundary of X1,X2. Furthermore a = ∆(α, 1
0),

c = ∆(γ, 0
1).

Proof. Follow the proof of Lemma 7.7 using Figure 7.8. �

Lemma 7.12. Q̃(α, 1
2 , γ, ∗) = X1

⋃
T X2 where X1 = D2(2, a), X2 = A2(c)

and T is the common 2-torus boundary of X1,X2. Furthermore a = ∆(α, 1
2),

c = ∆(γ, 1
1). The Seifert fibers of X1 and X2 intersect once on T .

Proof. Same as Lemma 7.3, using Figure 7.9. �

Lemma 7.13. Q̃(α, β, 0
1 ,

1
2) is a lens space, S3, or S2 × S1.



474 C. McA. Gordon and J. Luecke

α

γ
Q2

Q1

PC

A

Figure 7.8.

C

A

D

D

A

C

P

11

Figure 7.9.

Proof. Figure 7.10 shows that Q(α, β, 0
1 ,

1
2) is the union of two rational tan-

gles. �

Lemma 7.14. Q̃(α, β, 1
1 ,

1
2) is a lens space, S3, or S2 × S1.

Proof. Similar to Lemma 7.13. �

8. Applications of Dehn filling restrictions.

In this section we prove a series of lemmas leading to the proof of Propo-
sition 6.1 in Section 6. Thus we assume we are in the context of Proposi-
tion 6.1. In particular, Q(α, β, γ, δ) is the unknot.

Recall that Q̃ is the double branched cover of Q. Since Q(α, β, γ, δ) is
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α β

α β

Figure 7.10.

the unknot, Q̃(α, β, γ, δ) is the 3-sphere. Let KA,KB ,KC ,KD be the knots
in Q̃(α, β, γ, δ) = S3 corresponding to the fillings α, β, γ, δ (resp.) of Q̃ (i.e.,
they are the cores of the solid tori R̃(α), R̃(β), R̃(γ), R̃(δ)).

In Section 7, we described certain Dehn fillings of Q̃. Here we will com-
bine those computations with theorems about Dehn fillings to place restric-
tions on α, β, γ, δ.

First we put together some results describing restrictions on the slopes
of certain Dehn fillings of a 3-manifold.

Lemma 8.1. Let M be an irreducible 3-manifold with ∂M a torus. Let α, β
be slopes on ∂M such that M(α) is reducible and M(β) is either reducible,
a lens space, or S3. Then ∆(α, β) ≤ 1.

Proof. If M(β) is reducible, this follows from [14]. If M(β) is a lens space
or S3, then [3] shows that either ∆(α, β) ≤ 1 or M = D2(a, b) with a, b ≥ 2.
We assume the latter. Since M(α) is reducible, α must be the Seifert fiber
of M ([10, Corollary 7.4]). Since M(β) is a lens space (or S3), ∆(α, β) ≤ 1
([10, Corollary 7.4]). �

Lemma 8.2. Let M be a 3-manifold, with ∂M consisting of two tori, and
let α, β be slopes on one component of ∂M such that M(α) = S1 × D2,
M(β) = D2(m,n) with m,n ≥ 1. Then either

(1) ∆(α, β) ≤ 1 or

(2) M is the exterior of a (p, q)-cable, q ≥ 2, of a knot K0 in M(α) =
S1×D2. Let ρ be the slope of the cabling annulus on K0. Then either
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(2a) K0 is isotopic to the core of M(α) and M = A2(q). M(χ) is
boundary compressible iff ∆(χ, ρ) ≤ 1 and M(χ) is reducible iff
χ = ρ.

(2b) K0 is not isotopic to the core of M(α). In this case M(χ) contains
an embedded essential torus if ∆(χ, ρ) ≥ 2, andM(ρ) is reducible.

(3) M = T 2 × I. In this case M(χ) = S1 ×D2 for any slope χ.

Remark. In case (2b), if M(χ) is atoroidal and irreducible then ∆(χ, ρ) = 1.
In particular, if there are three slopes χ with pairwise distance 1 (e.g.,
0
1 ,

1
1 ,

1
0 ), and such that M(χ) = D2(m,n) with m,n ≥ 1, then (2b) is impos-

sible.

Proof. Let ∂1M denote the component of ∂M on which the slopes α, β are
defined, and let ∂2M be the remaining component. Let M(r, s) denote the
r-filling of ∂1M and s-filling of ∂2M . Then there are infinitely many different
slopes ri, i ∈ Z, such that M(β, ri) = S2(m,n) and ∆(ri, rj) = |i − j|. At
the same time, for each i, M(α, ri) = S2(a, b) for some a, b.

Assume ∆(α, β) ≥ 2. Then, for each i, the above observations cou-
pled with [4, Cyclic Surgery Theorem] or with Lemma 8.1 above imply that
M(∗, ri) is either reducible or a Seifert fiber space. By the Gromov-Thurston
2π-Theorem [2], the interior of M cannot be hyperbolic of finite volume.
Thus either

(i) M contains an essential 2-sphere; or

(ii) M contains an essential 2-torus; or

(iii) M = A2(q) for some q ≥ 1.

Case (iii) corresponds to (2a), using [10, Lemma 7.2] or to case (3). Since
M(α), M(β) are irreducible, [12] implies that (i) cannot hold. Thus we
are left to consider case (ii). Let T be an essential torus in M . Since T
compresses in M(α), M(β), and ∆(α, β) ≥ 2, [4, Theorem 2.4.4] implies
that T cobounds with ∂1M a cable space. That is, M = N1

⋃
T N2 where

∂iM ⊂ ∂Ni, i = 1, 2, and N1 = A2(q) for some q ≥ 2. [10, Lemma 7.3] shows
that M is the exterior of a (p, q)-cable of a knot K0 in M(α) and that (2b)
holds. �

Lemma 8.3. If KD is an unknot or torus knot then either ∆(γ, 1
2) ≤ 1 or

one of α, β is 1/2.
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Proof. Assume that KD is an unknot or torus knot, ∆(γ, 1
2) ≥ 2, and α 
=

1/2 
= β. No surgery on KD contains a separating incompressible torus.
Since ∆(γ, 1

0) ≥ 2, Lemma 7.3 implies

∆
(
α, 0

1

)
≤ 1 or ∆

(
β, 1

1

)
≤ 1 . (8.1)

Since ∆(γ, 1
2) ≥ 2, Lemma 7.4 says that

∆
(
α, 1

1

)
≤ 1 or ∆

(
β, 0

1

)
≤ 1 . (8.2)

Note that if ∆(r, 0
1) ≤ 1, ∆(r, 1

1) ≤ 1, then r ∈ {0
1 ,

1
1 ,

1
2 ,

1
0}. Since ∆(α, 1

0),
∆(β, 1

0 ) ≥ 2, (8.1) and (8.2) give two possibilities:
Case (A): ∆(α, 0

1) = 1 and ∆(β, 0
1) = 1.

Case (B): ∆(α, 1
1) = 1 and ∆(β, 1

1) = 1.

Case (A): By Lemma 7.6, Q̃(1
1 , β, γ, ∗) = S1 × D2. By assumption

Q̃(α, β, γ, ∗) = D2(m,n) for some m,n ≥ 1. If ∆(1
1 , α) ≤ 1, then α = 1/2.

So we assume ∆(α, 1
1) ≥ 2. By Lemma 8.2, M = Q̃(∗, β, γ, ∗) is as in

Lemma 8.2(2a) or (2b). (Lemma 7.7 rules out (3).)
Assume we are as in Lemma 8.2(2b). Recall that ρ is the slope of the

cabling annulus in M . By Lemma 8.2(2b), ∆(1
1 , ρ) = 1. Lemma 7.5 says

that Q̃(0
1 , β, γ, ∗) = D2(b, c) with b, c ≥ 1. Thus ∆(0

1 , ρ) = 1. Together these
say that ρ ∈ {1

2 ,
1
0}. Now Q̃(ρ, β, γ, ∗) is reducible. But Lemma 7.7 says

that Q̃(1
0 , β, γ, ∗) is irreducible (∆(β, 1

0),∆(γ, 1
0) ≥ 2). Lemma 7.8 says that

Q̃(1
2 , β, γ, ∗) is irreducible. (Since β 
= 1

2 , γ 
= 0
1 , if X1

⋃
T X2 is reducible,

then X1 = D2(2, 1) and the meridian disk of X1 is attached to the Seifert
fiber of X2. But the Seifert fiber of X2 intersects the Seifert fiber of X1

once by Lemma 7.8. The boundary of the meridian disk in D2(2, 1) has
intersection number two with its Seifert fiber on ∂D2(2, 1).) This contradicts
the assumption that M is as in Lemma 8.2(2b).

Thus Q̃(∗, β, γ, ∗) = A2(q) for q ≥ 2. So Q̃(1
0 , β, γ, ∗) is atoroidal. By

Lemma 7.7 (∆(β, 1
0) ≥ 2), ∆(γ, 1

1) ≤ 1.
By following a similar argument using Lemmas 7.9–7.12 (in place of 7.5–

7.8) with M = Q̃(α, ∗, γ, ∗), we conclude that ∆(γ, 0
1) ≤ 1. (I.e., Lemma 7.10

says Q̃(α, 1
1 , γ, ∗) = S1 ×D2. Then Lemma 8.2 says M = Q̃(α, ∗, γ, ∗) is as

in Lemma 8.2(2a) or (2b).)
Since ∆(γ, 1

0) ≥ 2 and ∆(γ, 1
2) ≥ 2, this is a contradiction. � (Case (A))

Case (B): The argument follows the same sequence as in Case (A).
Lemma 7.5 implies that Q̃(0

1 , β, γ, ∗) = S1 × D2. Since ∆(α, 0
1) ≥ 2,

Lemma 8.2 implies that M = Q̃(∗, β, γ, ∗) is as in Lemma 8.2(2a) or (2b).
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We rule out Lemma 8.2(2b) as follows. The above says that ∆(0
1 , ρ) = 1.

Lemma 7.6 says that ∆(1
1 , ρ) = 1. Thus ρ ∈ {1

2 ,
1
0}. However, Lemmas 7.7

and 7.8 imply that both Q̃(1
0 , β, γ, ∗) and Q̃(1

2 , β, γ, ∗) are irreducible. This
contradicts the fact that Q̃(ρ, β, γ, ∗) is reducible.

So Q̃(∗, β, γ, ∗) = A2(q) for q ≥ 2 (Lemma 8.2(2a)). Thus Q̃(1
0 , β, γ, ∗)

is atoroidal. Lemma 7.7 then says ∆(γ, 1
1) ≤ 1.

Arguing in the same way using Lemmas 7.9–7.12 in place of 7.5–7.8 (and
M = Q̃(α, ∗, γ, ∗)) shows that ∆(γ, 0

1 ) ≤ 1. Thus, as in Case (A), we get a
contradiction. � (Case (B))

�

Proposition 8.4. If ∆(γ, 1
0) = 2 then one of α, β, or γ is 1/2.

Proof. Assume, for contradiction, that ∆(γ, 1
0) = 2 and neither α, β, nor γ

is 1/2.
By Lemma 7.3, Q̃(α, β, γ, 1

0 ) contains D2(2, 2), hence a Klein bottle.
Since ∆(δ, 1

0) ≥ 2, KD must be the unknot, a torus knot, or a cable knot
[22, Theorem 1.1]. Since ∆(γ, 1

0 ) = 2, ∆(γ, 1
2 ) is even. Hence ∆(γ, 1

2 ) ≥ 2.
But then, by Lemma 8.3, we may assume that KD is a non-trivial cable
on a knot K0 in S3. Let ρ be the slope of the cabling annulus on KD.
Lemmas 7.1 and 7.2 say that Q̃(α, β, γ, 0

1 ) and Q̃(α, β, γ, 1
1) are irreducible

and contain no separating incompressible tori. Thus by [10, Lemma 7.2]
∆(ρ, 0

1) = ∆(ρ, 1
1) = 1. Thus ρ ∈ {1

0 ,
1
2}. By [10, Lemma 7.2] Q̃(α, β, γ, ρ)

will be reducible. But this is contradicted by Claims 1 and 2 below.

Claim 1. Q̃(α, β, γ, 1
2) is irreducible.

Proof. Since ∆(χ, 1
0) ≥ 2 for χ ∈ {α, β}, and ∆(γ, 1

2) ≥ 2, Lemma 7.4 implies
that if Q̃(α, β, γ, 1

2) is reducible, it must be the filling of D2(2, c) along its
fiber slope. Thus H1(Q̃(α, β, γ, 1

2)) = Z/2Z ⊕ Z/cZ. But c = ∆(γ, 1
2 ) is

even, hence H1(Q̃(α, β, γ, 1
2)) is not generated by a single element. This

contradicts that Q̃(α, β, γ, 1
2 ) is a Dehn surgery on a knot in S3. � (Claim 1)

Claim 2. Q̃(α, β, γ, 1
0) is irreducible.

Proof. As in Claim 1, since α 
= 0
1 , β 
= 1

1 , and ∆(γ, 1
0) = 2, Lemma 7.3

implies that the only way Q̃(α, β, γ, 1
0) is reducible is if it is the filling of

D2(2, 2) along its Seifert fiber. But the homology of the resulting connected
sum is not generated by a single element. This contradicts the fact that
Q̃(α, β, γ, 1

0) is a Dehn surgery on a knot in S3. � (Claim 2)
� (Proposition 8.4)
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Corollary 8.5. AssumeQ(α, β, γ, δ) is as in Proposition 6.1. If ∆(χ, 1
0 ) = 2

for some χ ∈ {α, β, γ, δ} then 1
2 ∈ {α, β, γ, δ}.

Proof. Apply a symmetry taking χ to γ, then Proposition 8.4. �

Proposition 8.6. Let Q(α, β, γ, δ) be as in Proposition 6.1. If ∆(δ, 1
0) ≥ 3

and ∆(γ, 1
0) ≥ 2 then either γ = 1

2 , or ∆(α, 0
1) ≤ 1, or ∆(β, 1

1) ≤ 1.

Proof. We assume that ∆(α, 0
1) > 1 and ∆(β, 1

1 ) > 1, then show that γ =
1/2.

By Lemma 7.3 and the distance assumptions, Q̃(α, β, γ, 1
0 ) = X1

⋃
T X2

where Xi = D2(ri, si) for some ri, si ≥ 2 and i = 1, 2. In particular,
Q̃(α, β, γ, 1

0 ) is irreducible and T is incompressible. Furthermore, T is the
unique incompressible torus in Q̃(α, β, γ, 1

0) up to isotopy. Since ∆(δ, 1
0) ≥ 3,

[15, Theorem 1.1] shows that KD (the core of the attached solid torus cor-
responding to the tangle D) is a satellite of a knot K in S3 = Q̃(α, β, γ, δ).
Taking an “outermost” companion we may assume that K is either

(1) hyperbolic; or

(2) a torus knot.

Let V be a solid torus neighborhood of K containing KD.
Assume that ∂V compresses in V (KD,

1
0 ). Since ∆(δ, 1

0 ) ≥ 3, [4, Theorem
2.4.4] says that KD is the (p, q)-cable of the core of V where q ≥ 2 is the
winding number of KD in V . Then [10, Lemma 7.2 and Corollary 7.3]
show that KD(1

0) = K(r) with ∆(r, µK) = q2∆(1
0 , δ) > 2 where µK is the

meridian of K. Since K(r) = KD(1
0 ) = Q̃(α, β, γ, 1

0) contains an essential
torus, K cannot be a torus knot (Case (2)). On the other hand K cannot
be hyperbolic (Case (1)) by [15, Theorem 1.1]. This is a contradiction.

Thus we assume that ∂V is incompressible in Q̃(α, β, γ, 1
0 ). Then ∂V is

isotopic to the essential torus T , implying that the exterior of K must be
D2(ri, si) (i.e. we are in Case (2) — that K is a torus knot) and V (KD,

1
0)

must be D2(rj , sj) where {i, j} = {1, 2}. Let M be the exterior of KD in
V = V (KD, δ). Since V (KD, δ) = S1 ×D2 and V (KD,

1
0) = D2(ri, si), and

since ∆(δ, 1
0) ≥ 3, Lemma 8.2 says thatKD is the (p, q)-cable ofK0 ⊂ V ⊂ S3

where q ≥ 2 is the winding number of KD in a neighborhood of K0. Let
ρ be the slope of the cabling annulus on KD. Since K0 is non-trivial in S3

(KD is not a torus knot), [10, Corollary 7.3] says that KD(ρ) contains an
essential 2-sphere and that KD(χ) contains an essential torus if ∆(χ, ρ) ≥ 2.
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However Lemmas 7.1 and 7.2, along with the distance assumptions, say that
KD(0

1 ), KD(1
1) contain no essential 2-spheres or (embedded) tori. Thus

∆(ρ, 0
1) = ∆(ρ, 1

1 ) = 1. Together, these imply that ρ = 1
0 or 1

2 . Since
KD(δ) is the 3-sphere, ∆(ρ, δ) = 1. Hence ρ 
= 1

0 . Thus ρ = 1
2 and KD(1

2 ) =
Q̃(α, β, γ, 1

2) is reducible. By Lemma 7.13, Q̃(α, β, 0
1 ,

1
2) is a lens space. (Here

we use the term “lens space” to include S3 and S2 × S1.) By Lemma 7.14,
Q̃(α, β, 1

1 ,
1
2) is a lens space. By [12], Q̃(α, β, ∗, 1

2 ) is irreducible (otherwise
one of Q̃(α, β, 0

1 ,
1
2), Q̃(α, β, 1

1 ,
1
2) contains a separating essential 2-sphere).

Thus Lemma 8.1 says that ∆(γ, 0
1) ≤ 1 and ∆(γ, 1

1) ≤ 1. Since ∆(γ, 1
0 ) ≥ 2

by assumption, γ = 1
2 . �

For convenience, in Theorems 8.7–8.9 we will use the term “lens space”
to include S3 and S2 × S1.

Theorem 8.7. If Q(α, β, γ, δ) is the unknot then we cannot have ∆(χ, 1
0) ≥

3 and ∆(χ, 0
1) = 1 for every χ ∈ {α, β, γ, δ}.

Proof. Assume ∆(χ, 1
0 ) ≥ 3, ∆(χ, 0

1 ) = 1 for χ ∈ {α, β, γ, δ}. These imply
that ∆(χ, 1

1) ≥ 2. By Lemma 7.2, Q̃(α, β, γ, 1
1) is a lens space. So by [4,

Cyclic Surgery Theorem], KD is an unknot or torus knot. By Lemma 8.3
we have that ∆(γ, 1

2) = 1. Since ∆(γ, 0
1) = 1, γ ∈ {1

1 ,
1
3}. As ∆(γ, 1

0) ≥ 3,
γ = 1

3 .
By symmetry we get that α = β = γ = δ = 1/3. But Q(1

3 ,
1
3 ,

1
3 ,

1
3) is a

2-component link. �

Theorem 8.8. If Q(α, β, γ, δ) is the unknot then we cannot have ∆(χ, 1
0) ≥

3 and ∆(χ, 1
1) = 1 for every χ ∈ {α, β, γ, δ}.

Proof. Assume ∆(χ, 1
0 ) ≥ 3, ∆(χ, 1

1 ) = 1 for χ ∈ {α, β, γ, δ}. Then ∆(χ, 0
1) ≥

2. By Lemma 7.1, Q̃(α, β, γ, 0
1 ) is a lens space. Since ∆(δ, 0

1 ) ≥ 2, [4,
Cyclic Surgery Theorem] implies that KD is an unknot or torus knot. By
Lemma 8.3, we have ∆(γ, 1

2 ) = 1. Since ∆(γ, 1
1) = 1 and ∆(γ, 1

0) ≥ 3,
γ = 2/3.

By symmetry α = β = γ = δ = 2/3. But Q(2
3 ,

2
3 ,

2
3 ,

2
3) is a two compo-

nent link. �

Theorem 8.9. If Q(α, β, γ, δ) is the unknot then we cannot have ∆(χ, 1
0) ≥

3 for every χ ∈ {α, β, γ, δ}, ∆(α, 0
1) = ∆(β, 0

1 ) = 1, and ∆(γ, 1
1) = ∆(δ, 1

1) =
1.
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Proof. Assume not. By Lemma 7.1, Q̃(α, β, γ, 0
1 ) is a lens space. On the

other hand the distance assumptions imply that ∆(δ, 0
1) ≥ 2. Thus [4, Cyclic

Surgery Theorem] forces KD to be an unknot or torus knot. By Lemma 8.3
we have ∆(γ, 1

2) = 1. Together with the assumptions ∆(γ, 1
1) = 1, ∆(γ, 1

0) ≥
3, we get that γ = 2/3.

Applying the symmetry (B,A,D,C), we conclude that δ = 2/3.
By Lemma 7.2 under the symmetry (D,C,B,A), Q̃(1

1 , β, γ, δ) is a lens
space. Yet the given assumptions on distance mean that ∆(α, 1

1) ≥ 2. By [4,
Cyclic Surgery Theorem], KA must be an unknot or torus knot. Lemma 8.3
under (D,C,B,A) implies that ∆(β, 1

2) = 1. Since ∆(β, 0
1 ) = 1, ∆(β, 1

0) ≥ 3,
we see that β = 1/3.

Applying the symmetry (B,A,D,C), α = 1/3. But Q(1
3 ,

1
3 ,

2
3 ,

2
3) is a

2-component link. �

Appendix.

In this appendix, we give the technical result proven by the arguments of
Sections 3, 4, and 5 — Theorem A.1. We then use this to classify the
hyperbolic knots in solid tori which admit non-integral, toroidal surgeries —
Corollary A.2.

Theorem A.1. Let M be an orientable, irreducible 3-manifold containing a
separating, essential (i.e., incompressible and not boundary parallel) 2-torus
T̂ . Let K be a knot in M which intersects T̂ in two points and such that E(K)
contains no essential 2-sphere or 2-torus. Let Q̂ be a properly embedded,
orientable surface in K(α) which intersects Kα, a core of the attached solid
torus in K(α), transversely. Let Q = Q̂∩E(Kα), T = T̂ ∩E(K), and let GT ,
GQ be the graphs of intersection as described in Section 2. Assume that GT
and GQ contain no 1-sided faces (i.e., trivial arcs of intersection). Assume
also that GQ contains a great web Λ such that all ghost labels are extremal
with respect to Λ.

If ∆(α, τ) = 2, where τ is the meridian of K in M , then M is the union
along T̂ of two Seifert fiber spaces, M1 and M2. Furthermore, each Mi is a
Seifert fiber space over either

a) a disk with two exceptional fibers;

or b) an annulus with one exceptional fiber.

In addition, a Seifert fiber from M1 and one from M2 intersect once on T̂ .
Finally, E(K) is obtained by Dehn filling the appropriate number of com-

ponents of E(L), where L is as in Figure 5.24, where the component K0 of
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L corresponds to K, and τ = 1
0 , α = 1

2 in the meridian-longitude framing of
K0.

Proof. Apply the arguments of Sections 3, 4, and 5 to Q, T , GQ, GT .
Note that Lemma 3.3 still holds in this context. Use the fact that E(K)
is atoroidal and irreducible to conclude that any 2-torus in E(K) either
bounds a solid torus or is parallel to a boundary component. �

Corollary A.2. Let N be a solid torus and K a knot in N such that K(τ)
contains an essential, separating 2-torus, T̂ . Assume that ∆(τ, µ) > 1, where
µ is the meridian of K, and that E(K) is irreducible and atoroidal. Then
M = K(τ) is a union of two Seifert fiber spaces M1, M2 along T̂ , whose
Seifert fibers intersect once on T̂ . Furthermore, M1 is Seifert fibered over the
disk with two exceptional fibers and M2 is Seifert fibered over the annulus with
one exceptional fiber. One of the exceptional fibers of M1 or M2 has order 2.
Finally, (N,K) ∼= (L(α, β, γ, ∗, 1

2),K0) and (M,Kτ ) ∼= (L(α, β, γ, ∗, 1
0),K0)

for some α, β, γ, where K0, L are as in Figure 5.24. Indeed, K ⊂ N is
obtained from an Eudave-Muñoz knot k(�,m, n, p) by deleting the preimage
of some tangle ball (R̃(χ) in the terminology of this paper) which is unknotted
in S3.

Proof. By [17], ∆(τ, µ) = 2 and there is an essential torus T̂ in K(τ) which
intersects Kτ , the core of the attached solid torus, exactly two times. Let
T = T̂ ∩ E(Kτ ) be the corresponding twice-punctured torus. Let Q̂ be a
meridional disk of the solid torus K(µ) = N which intersects K transversely
and minimally. Let Q = Q̂ ∩ E(K) be the corresponding punctured disk.
In this context (E(K) is irreducible and atoroidal) we have that GQ, GT
contain no 1-sided faces. The proof of Theorem 2.1 goes through exactly as
in Section 2 (indeed, the first line takes GQ to lie in a disk) to imply that
GQ contains a great web Λ whose ghost labels are extremal with respect to
Λ.

Thus by Theorem A.1, K(τ) = M is the union of two Seifert fiber spaces
as described. Further E(K) is obtained by Dehn filling E(L) along three
of the boundary components corresponding to a 3-component sublink of L.
By symmetry we may take (N,K) = (L(α, β, γ, ∗, 1

2),K0) and (M,Kτ ) =
(L(α, β, γ, ∗, 1

0),K0). Note that the latter implies that ∆(χ, 0
1) ≥ 2 for χ ∈

{α, β, γ}.
Claim. There exists δ such that L(α, β, γ, δ, 1

2) = S3 and ∆(δ, 0
1) > 2.

Proof. Let ϕ be the slope on ∂L(α, β, γ, ∗, 1
2) of the boundary of the
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meridional disk. Note that 0
1 is the slope of the Seifert fiber of M2 on

∂L(α, β, γ, ∗, 1
0), using the meridian-longitude framing of L. Assume that

ϕ = 0
1 . Then L(α, β, γ, 0

1 ,
1
2 ) is S2 × S1 and L(α, β, γ, 0

1 ,
1
0) is either a lens

space or the connected sum of two lens space (here a lens space does not
include S3 or S2 × S1). By Lemma 8.1, L(α, β, γ, 0

1 , ∗) is reducible. Since
L(α, β, γ, 0

1 ,
1
2) is S2 × S1, which does not contain a separating essential 2-

sphere, L(α, β, γ, 0
1 , ∗) must contain S2 × S1 as a connected summand. But

L(α, β, γ, 0
1 ,

1
0) contains no non-separating 2-spheres. Thus ϕ 
= 0

1 .
Let δ be a slope satisfying ∆(δ, ϕ) = 1 and ∆(δ, 0

1) > 2. Then
L(α, β, γ, δ, 1

2) = S3, and L(α, β, γ, δ, 1
0 ) is the union of two Seifert fiber

spaces, each over a disk with two exceptional fibers. � (Claim)

As in Section 6, the quotient of L(α, β, γ, δ, ∗) under the strong in-
version of L is P(α′, β′, γ′, δ′, ∗). Thus P(α′, β′, γ′, δ′, 2

1 ) is the unknot
and P(α′, β′, γ′, δ′, 0

1) is the union of prime tangles (∆(χ, 1
0) ≥ 2 for χ ∈

{α′, β′, γ′, δ′}). Now Proposition 6.2 says that P(α′, β′, γ′, δ′, ∗) is one of the
tangles B(�,m, n, p) of [6]. That is, K0 ⊂ L(α, β, γ, δ, 1

2) is an Eudave-Muñoz
knot.

Thus (N,K) = (L(α, β, γ, ∗, 1
2 ),K0) comes from an Eudave-Muñoz knot

as claimed. Finally, by Proposition 6.2, 1
2 ∈ {α′, β′, γ′, δ′}. That is,

∆(χ, 0
1) = 2 for some χ ∈ {α, β, γ}, since the longitude framing of L corre-

sponds to the tangle framing 1
0 of P and ∆(δ, 0

1) > 2. This means that one
of the exceptional fibers of M1 or M2 must have order 2. �
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