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Local splitting structures on nonpositively curved
manifolds and semirigidity in dimension 3

JiaNcuo Caol, JEFF CHEEGER?, AND XIAOCHUN RONG?

Let M™ denote a closed Riemannian manifold with nonpositive sec-
tional curvature. Let X™ denote a closed smooth manifold which
admits an F-structure, F. If there exists f : X® — M" with
nonzero degree, then M™ has a local splitting structure S: 1) The
universal covering space with the pull-back metric, has a locally
finite covering by closed convex subsets, each of which splits iso-
metrically as a product with nontrivial Euclidean factor. 2) This
collection of sets and splittings are invariant under the group of
covering transformations. 3) The projection to M™ of any flat (i.e.
Euclidean slice) of S is a closed immersed submanifold. The struc-
tures, F, S, satisfy a consistency condition. If F is injective, all
orbits have dimension > n — 2 and f induces an isomorphism of
fundamental groups, then S is abelian i.e. for all p € M™, there is
a flat containing all other flats passing through p. By [CCR], M™
carries a C'r-structure which is compatible with S. For n = 3, these
conclusions hold even if the extra assumptions on F are dropped.
Moreover, up to isomorphism, the Cr-structure on M3 arising from
the construction of [CCR] is independent of the particular nonpos-
itively curved metric.

0. Introduction.
a. Background.

A classical result due to Heintze and Margulis states that if M™ is compact,
with —1 < secp/n < 0, then there exists at least one point at which the
injectivity radius is bounded below by a constant, €(n) > 0. The Heintze-
Margulis theorem is proved by showing that if the conclusion were false,
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there would exist an abelian subgroup of rank > 2, thereby contradicting
Preismann’s theorem, [Pr].

Buyalo studied the possible failure of the Heintze-Margulis theorem in the
context of compact manifolds with nonpositive curvature, —1 < secp» < 0;
[Bul-5]. Thus, he investigated the consequences of the assumption that at
every point, the injectivity radius is < €(n), for suitable ¢(n) > 0.

For n = 3, 4, Buyalo showed the existence of what we call here an abelian
local splitting structure. He conjectured that such a structure should exist
in any dimension. This was proved in [CCR].

b. Local splitting structures.

Let 7 : M™ — M™ denote the universal covering space of M™ and I' ~
m1(M™), the group of isometric covering transformations.

A local splitting structure on M™ is a locally finite collection of closed
convex sets, {Z;}, and for each Z;, an isometric splitting, Z; = D; x R¥i,
with k; > 1, such that:

(0.1.1) U, Zi = M™.

(0.1.2) The collection of sets, Z;, and isometric splittings, D; x R¥ is
invariant under the action of I'.

(0.1.3) Let I'; denote the abelian subgroup of I' consisting of elements which
leave Z; invariant, act by translation on the factor, R* and act by the
identity on the factor, D;. Then R¥: /T'; is compact.

A Euclidean slice F = w; x R¥ < Z;, is called a flat. Its projection,
w(F), to M™, is called a projected flat. By (0.1.3), projected flats are closed
immersed submanifolds. -

A local splitting structure is called abelian if for all p € M™, there is
maximal flat F), i.e. F}, contains all flats that contain p; compare [CCR].

c. Nonpositive curvature and local splitting structures.
For v € T', the minimum set, Min(y), is the set of points at which the dis-
placement function, 6,(Z) = d(z,y(Z)), takes its minimum. For any subset,

C C m(M™), we put

Min(C) = (] Min(y).

~yeC
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If M™ has nonpositive sectional curvature, then by [GW], [LY], the set,
Min(C), is totally convex. If C C T is an abelian group, then Min(C) is
invariant under C. Moreover, there is an isometric splitting,

Min(C) = D x R™k(©€)

such that each « € C acts by the identity on the factor D and by translation
on the Euclidean factor R**™(€). Tt follows that R'*"%(€)/C is compact and
that C has finite index in the subgroup, I'(C), of all elements of I" which leave
Min(C) invariant, act by the identity on the factor D and by translation on
the Euclidean factor Rmk(C),

Let {C;} denote a collection of abelian subgroups of I' which is in-
variant under conjugation by elements of I'. It follows that {Min(C;) =
D; x Rraﬂk(ci)} determines a local splitting structure, S, if

(0.2.1)
|JMin(c;) = ™.

An abelian local splitting structure is defined by the collection of all
nonempty sets (and canonical splittings)

m Min(C;;) ,

provided the following additional condition holds:

(0.2.2) If Min(C;,) N Min(C;,) # 0 then the subgroup generated by C;,,C;,
is abelian.

d. F-structures.

An F-structure, F, is a topological structure which extends the notion of a
torus action on a manifold; see [CG1-2]. For the purposes of this paper, the
more significant concept is that of an atlas (of charts) for an F-structure.
An F-structure is an equivalence class of atlases under a natural equivalence
relation. This is analogous to the relation between a differentiable structure
on a topological manifold and the atlases for that structure.

An atlas for an F-structure on a manifold, X", is defined by a collection
of triples {(U;, Vi, T*)}, called charts, where {U;} is an open cover of X"
and the torus, T% acts effectively on a finite normal covering, m; : V; — Uj,
such that the following conditions hold:
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(0.3.1) There is a homomorphism, p; : T; = m(U;) — Aut(T%), such
that the action of T% extends to an action of the semidirect product
Tk %, Ty

(0.3.2) If U NU;, # 0, then U;, NU;, is connected. If k;, < k;,, then on
a suitable finite covering of U;, N Uj,, there exist lifted actions and an
injection, ¢;, ;, : T*1 — T%2  such that the action of T%1 is given by

the composition of ¢, ;, with the action of Tiz.

The structure, F, is called pure if k; is independent of 7. It is called
polarized if for all i, every T* orbit has dimension k;.

We say that {(U;, Vi, T%)} and {(U/, V!, T*!)} are equivalent if there is a
diffeomorphism, h : M™ — M™, such that h(U;) = U and the induced map,
hi:Vi— V/, induces an equivalence of T}, actions, for all 4.

The compatibility condition on lifted actions, (0.3.2), implies that X"
decomposes as a disjoint union of orbits, O, each of which carries a natural
flat affine structure. The orbit containing x € X™ is denoted O,. The
dimension of an orbit of minimal dimension is called the rank of the structure.

An F-structure is called injective if for each orbit, O, the inclusion map,
m1(Oy, x) — m (X", x), is an injection.

e. Fundamental groups of orbits and their maximal abelian
subgroups.

Since the orbits have natural flat structures, by the Bieberbach theorem,
7m1(Oy, ) has a unique maximal normal abelian subgroup. The image of
this subgroup in m1 (X", z) is denoted A(O;).

Fix a base point z. If {(U;,,V;;,T")} is a subcollection of charts (with
k independent of j) for which |J; U;; is connected, then on (J; Us;, up to
subgroups of finite index and conjugacy in 71 (X™, z), the group, A(O,), is
independent of z € |J 5 Ui;. In the application, the ambiguity up to subgroups
of finite index will not matter. So from now on, this ambiguity will be
suppressed in our notation.

Let z € Uj Ui;. Given a homotopy class of curves from z to x we get
a well defined subgroup A = A(O,) C m1(X™ x). Let by < by and let ¢; :
[O,bl] — X”, Co . [O,bg] — X”, satisfy C2 ‘ [O,bl] = C1, CQ([bl,bQ]) C Uj Ui]-'
Then (up to subgroups of finite index) ¢, ¢y determine the same abelian
subgroup A.

If Uj Ui]- NU; # 0, with k = kz‘j < k;, asin (0.3.2), and CQ(bQ) e U,,, then
the corresponding abelian subgroups satisfy A C A;.
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f. Existence of local splitting structures.

An F-structure, F, on X™ and a local splitting structure, S, on M"™ are said
to be consistent if there exists f : X™ — M", mapping every orbits of F
into projected flats of S, preser;ing the flat affine structures. Such a map,
f, is called a consistency map. We write f € C(F,S).

Theorem A. Let X™, M™ denote closed manifolds such that X™ admits an
F-structure F. If there exists f : X™ — M™ with nonzero degree, then every
metric of nonpositive sectional curvature on M™, admits a local splitting
structure for which there is a consistency map, f € C(F,S), homotopic to
f.

If F is pure and f induces an isomorphism of fundamental groups, the
local splitting structure constructed in Theorem A is abelian; see Corollary
4.5.

According to [CG1, 2], the existence of a metric, ¢', with [sec(ym o] < 1,
whose injectivity radius is everywhere < €(n), a sufficiently small constant, is
equivalent to the existence of an F-structure of positive rank on M™. Hence,
from Theorem A, we get the following strengthened version Heintze-Margulis
theorem.

Theorem 0.4 There exists €(n) > 0, such that if M™ is a closed mani-
fold which admits a metric with nonpositive sectional curvature and negative
Ricci curvature at some point, then for every metric with |secym| < 1, there
is a point at which the injectivity radius is at least e(n).

g. Rank n — 2 structures; existence of abelian local splitting
structures.

A polarized F-structure is called a graph structure if there exists an atlas,
G = {(U;, V;, T*)}, for which the following conditions are satisfied:

(0.5.1) Every point in M™ is contained in at most two distinct Us.
(0.5.2) ki <n—1 for some i and k; = n — 1 for some i.

As a consequence of (0.5.2), if F is a graph structure, then F is not pure.

If for example, all orbits of a polarized F-structure, F, have dimension
> n — 2, it is clear that F is a graph structure.

In general, for any chart, (U;, V;, T"™1), the set, U;, is diffeomorphic to
(—€,€) x O;, for some n — 1 dimensional orbit O;. If F is a graph struc-
ture, then the complement of the union of all such U; is a disjoint union
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of connected submanifolds, N;, each of whose boundaries might have sev-
eral components. Every boundary component of N; is diffeomorphic to some
n—1 dimensional orbit O;. The restriction of F to each N; is pure polarized.
Let Us satisfy ko = n — 1. After fixing a base point and path as in
subsection e., we get an abelian subgroup, As, of rank n — 1, and subgroups
Ay, A3 C As, corresponding to those N1, N3, which meet the boundary com-
ponents, {—e} x Og, {e} x Oy, of Us, where possibly, that N1 = Nj.

Theorem B. Let X™ M™", denote closed manifolds such that X™ admits
an injective F-structure, F, for which all orbits have dimension > (n — 2).
If there exists f : X™ — M™ with nonzero degree, which induces an iso-
morphism of fundamental groups, then every metric of nonpositive sectional
curvature on M"™ admits an abelian splitting structure, for which there is a
consistency map, f € C(F,S), homotopic to f.

h. Compatibility of abelian local splitting structures and
Cr-structures.

An F-structure, F, on X™ and a local splitting structure, .S, on M" are called
compatible if there is an atlas for 7 and a diffeomorphism, f, such that for
every projected flat, m(F), there exists an orbit, O, such that f(7(F)) = O,
and f: w(F) — O preserves flat affine structures. (Although this condition
is slightly stronger than the one given in [CCRJ, statements and proofs in
[CCR] which concern compatibility remain valid.)

It is not difficult to see that compatibility between F and S implies
consistency. Moreover, a local splitting structure for which there exists a
compatible F-structure is clearly abelian.

For manifolds, M™, of nonpositive curvature, a kind of strengthened
converse holds. Any abelian local splitting structure on M™ is compatible
with an essentially canonical injective F-structure on M™, for which the
relevant atlas satisfies the following conditions (0.6.1), (0.6.2); see [CCR]
for the general case and compare [Bul-5] for dimensions 3,4. An atlas,
(U;, Vi, T*), for an injective F-structure which satisfies (0.6.1), (0.6.2), is
called a C'r-structure.

(0.6.1) For each V;, there is diffeomorphic to a product, B; x T*:  such that
the induced action of T% is by multiplication on the factor, 7%, and
by the identity on B;.

(0.6.2) 1If iy, 19, are distinct, with U;; N U;, # 0, then k;, # ki, .
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i. Semirigidity in dimension 3.

Buyalo showed that in dimension 3, given an arbitrary Cr-structure on X3, a
homotopy equivalence, f : X? — M? and an arbitrary metric with nonposi-
tive curvature on M3, it is possible to modify the Cr-structure in such a way
that it becomes compatible with the given nonpositively curved metric; see
[Bu3-5] and compare [Sc|]. (He also conjectured that a similar result might
hold in higher dimensions; compare Theorem B and see Section 4.) Buyalo
did not address the issue of whether or not the modified Cr-structure on X3
actually depends on the particular nonpositively curved metric on M?3.

According to Theorem C below, the hypothesis of Buyalo’s result can be
weakened and the conclusion strengthened. The conclusion of Theorem C
states that there exists a fized Cr-structure on M3 which is compatible with
every metric of nonpositive curvature on M?. Moreover, the constructed
structure is unique up to isomorphism.

Theorem C. Let X? admit an F-structure, F, and assume that f : X3 —
M3 is a homotopy equivalence. Then every metric of nonpositive curvature
on M? admits an abelian structure. Moreover, up to isomorphism, this Cr-
structure is independent of the particular nonpositively curved metric.

The existence part of Theorem C, requires the construction (in dimension
3) of an associated F-structure, F’, which is either pure or which satisfies
the assumptions of Theorem B. For this (using n = 3) it is not necessary
to assume that F is injective. From Theorem B, we obtain an abelian local
splitting structure on M3, and with the above mentioned result from [CCR],
a compatible Cr-structure which is determines a simple graph structure in
the sense of Waldhausen. The proof of Theorem C is completed by appealing
to a result of [Wal,2] asserting the uniqueness (up to homeomorphism) of
simple graph structures on a 3-manifold whose universal covering space is
contractible.

If, as in Theorem C, M™ has the property that the exists a Cr-structure
on M™ which is compatible with every nonpositively curved metric, we say
that the moduli space of nonpositively curved metrics on M" is semirigid;
compare the discussion in [Le], which concerns certain 3 dimensional cases.

It seems possible that semirigidity holds for manifolds satisfying the as-
sumptions of Theorem B; see also Section 4 for more general conjectures.

The rest of the paper is organized as follows:

In Section 1 we prove Theorem A.
In Section 2 we prove Theorem B.



396 J. Cao, J. Cheeger, and X. Rong

In Section 3 we prove Theorem C.
In Section 4, we discuss the notion of semirigidity.

1. Proof of Theorem A.
a. Outline of the proof.

In this subsection, we outline the proof of Theorem A. Details are provided
in the subsections which follow.

Recall that to an atlas, {(U;, Vi, T*)}, we associate the collection {[I';]},
of conjugacy classes (up to subgroups of finite index) of abelian subgroups
of m(X™, z); see Section 0. Let [A;] denote the conjugacy class of f.(I%;).
Put S = {Min(4;)}, with A; € [A;] # [e]}. Since A; is abelian, if A; # {e},
then Min(A4;) = D; x Rrank(4i): see [GW], [LY].

We will construct a map, f X™ — M", homotopy to f such that
f € C(F,S) ie. Sis a local splitting structure and f is a consistency map
with respect to F and S.

For every (U;, Vi, T%) and every orbit, O;, we apply the heat equation
for harmonic maps to the map f(O;). By letting ¢ — oo, the collection of
all such maps gives rise to a map, fj~ : Uy — M™, homotopic to f|U;.

Let O; denote the lift of O; ; to the universal covering space, X ™ and let
fz ~ denote the lift of f;  to X". Then fz 00 (0;) € Min(4;).

By means of an equivariant partition of unity, the collection of maps,
{fioo}, can be glued together to obtain a single map, f: X" — M", homo-
topic to f.

For x € X" let (Uy, V4, T, ..., (Us, Vi, T*) denote those charts which
contain x. We call x a multiple point, if s > 1. If a principle orbit, Oy, is
homotopically trivial, or equivalently, A; = {e}, then f; «(O;) has dimension
< k; for all orbits U;. Hence, f; oo(U;) has dimension < n, and thus f F(U;)
has dimension < n. If A; # {e}, then by the construction of f it follows
that f(z) € m(Min(A;)). Because S is locally finite, we conclude

M= | w(Min(4))),

i.e. S is a local splitting structure.
The consistency condition (defined prior to Theorem A) requires that
f(Oy) is a projected flat of S; equivalently, for any multiple point z,
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~

f(O,) = J/‘\(OS) is a projected flat of Min(As). Since this may not hold
(see Example 1.9) the construction must be slightly adjusted.

We modify the charts of the atlas, {(U;, V;, T")}, to obtain an equivalent
atlas, {(U!,V/, T*)}, such that the following property holds: If z is a multi-
ple point of {(U;, V;, T%)}, then z is not a multiple point of {(U/, V/, T*)}.
Moreover, if = is a multiple point of {(U!, V7, T*)}, then the orbit in U], O,
coincides with O7 = O,. It is straightforward to check that if we construct
f using {(U!, V!, T*)}, then f € S(F,S). Note that since the new atlas is
equivalent to the old one, the associated splitting structure is the same in
both cases.

b. Heat flows and harmonic maps.

The construction of J/‘\described in the above uses the heat flows. We briefly
recall some relevant facts from [ES], [Ha].

Let N™ and M™ denote closed Riemannian manifolds. A smooth map,
f:N™ — M" is called harmonic if Af = 0, where A is the Laplacian on
maps.

In general, the homotopy class of given a C'-map f, need not contain any
harmonic map. If M™ has nonpositive curvature, then there is a harmonic
map homotopic to f, which minimizes energy in the homotopy class, and
which can be obtained by solving the heat equation,

ov(x,t)
ot

= Av(z,t), (z,t) € N™ x [0, 00),

(1.1) v(z,0) = f(x).

Given two maps, f,h: N™ — M"™, put d(f,h) = supyenm d(f(x),h(x)).
The following result is due to Hartman.

Theorem 1.2 (Har). Let M™ denote a closed manifold with nonpositive
curvature. For all t > 0, the heat equation (1.1) has a unique solution,
v(z,t) : N™ x [0,00) — M™, which satisfies the following conditions:

(1.2.1) The map, v(z,t), is smooth fort > 0 and vf(zr) = limy_oc v(x,t) is
a harmonic map homotopic to f.

(1.2.2) The set of homotopy harmonic maps in a given homotopy class is
path-connected.
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(1.2.3) Ifh:N™ — M" is another C*-map such that d(f,h) < inj(M™)/2,
then

d(’l)f(', t)v 'Uh('v t)) < d(fv h) :

For convenience, we put u(z,t) = v(x, tan(%t)). Thus, u(z, 1) = vs(z).
c. The construction of f

Let f: X™ — M" be as in Theorem A. Without loss of generality, we can
assume that f is C'. We will deform f to a map J/‘\: X™ — M™ which
satisfies Theorem A.

Fix an atlas, {(U;, Vi, T%)}, and choose a partition of unity {);}, associ-
ated to the open cover {U;}, the level sets of whose functions are invariant
under the local torus actions. Without loss of generality, we can assume that
the charts, {(U;, Vi, T}, have been chosen such that if U; N U; # 0, then
any orbit in U; is contained in some orbit in U; or vice versa.

Since there is a finite covering space of U; N U; on which both T' ki and
T*i act, we can view T% C T* or vice versa. With this understanding, we
fix an invariant metric for the local torus actions; see [CG1].

We now give the construction of the map J/‘\ The existence of a local
splitting structure with which J/‘\is consistent will be verified in subsections
e-f.

Choose (inductively) invariant metrics on all {7} such that if 7% C T
then the metric on T is the restriction of the 7% -metric on T% . Let T* x V;
be equipped with the product metric. In particular, the restriction of the
product metric to each T*-factor, T* x {y}, is flat.

mul 1l U;

For each i, let f; : T* x V; v U —5 M. For each fixed y € V;,
we apply Theorem 1.2 to the heat flow,

ou;
Z — A
(13) 815 Sul(s7y7t)

’U,Z‘(S, Y, 0) - fi(sv y) )

(5,9,t) € T* x V; x [0,1]
and get the solution u;(-,y,t) : T* x {y} x [0,1] — M.
As y varies, we obtain a family of harmonic maps,
H; : Tkz XWX[Ov 1] - an H’i(sv Y, t) = ’U,i(s, Y, t)v (87 Y, t) € Tkz XWX[Ov 1]

By (1.2.3) the above solution varies continuously with the initial data and
thus H; is a continuous map.
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We will construct J/‘\by gluing together the maps in the collection, {u;},
by means of the center of mass technique.

Let p € X" and let p; € V; satisfy p = m;(p;). Let Uy,...,U, denote
the charts which contain p. For each Uj, let «;(t) = w;(e, p;, t) denote the
trajectory at ¢ = f(p) under the harmonic flow in (1.3).

Let 7 : M™ — M™ be the Riemannian universal covering map. For each
g € 7 '(q) and t € [0, 1], we will define a convex function, f;; : M"™ — Ry,
with the property that deck transformations preserve the unique critical
point of J?;Lt.

Fix any § € M". Lift a;(t) at ¢ with the terminal point, g;(t). Clearly,
we have:

(1.4) If v is a deck transformation such that if ¢ = v(q), then ¢)(t) =
V(@(t))-

We now fix ¢, and thus, r points, qi(t),...,¢(t). Using the invariant
partition of unity at p, we define a function, f7,(y) : M™ — Ry,

far(w) =Y N)d@(t), 9.
i=1

Since M" has nonpositive curvature and since \;(p) > 0, it follows that
f3.+(y) is a smooth convex function.

Let Cz; € M™ denote the unique critical point of qut. If v is a deck
transformation, by (1.4) we get

(Jar oM@ = fr104®)-

Hence, v(Cg¢) = C,-1(5+ and therefore C;; = 7(Cq;) is independent of the
choice of ¢ € 77 1(q).
In view of the above, the map, H : X" x [0,1] — M",

H(pvt) :Cf(p),tv peM" te [07 1]7
is well defined. Obviously, H(p,0) = f(p). We put
f(p) = H(p,1).

d. Properties of f

~

Set fi(z) = ui(e,xi,l) : Uy — M™, where x € U and z; € V; such that
mi(x;) = x. Then f may be viewed as having been obtained by gluing
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together the members of { fz} _In this subsection, we establish some prelim-
inary properties of the maps fz These will be used to show that f satisfies
Theorem A.

Given a smooth map, f : N — M™, the differential, f,, can be regarded
as a T'(M)-valued 1-form on M™. The covariant differential, (f) = V f, is
called the second fundamental form of f. Note that if f is an immersion, then
B(f) is indeed the second fundamental form of the immersed submanifold
F(N™). A map f is called totally geodesic if 5(f) = 0. In particular, a
totally geodesic map sends (closed) geodesics to (closed) geodesics.

We now restrict attention to the situation in which N™ = T* is flat and
M™ is a closed manifold of nonpositive sectional curvature.

Lemma 1.5. Let T* be a flat torus, and let M™ be a closed manifold of
nonpositive sectional curvature. If f : TF — M is a nontrivial harmonic
map, then

(1.5.1) f(T*) is an immersed totally geodesic flat submanifold of dimension
r = rank(f.(m (TF)).

(1.5.2) A component of 7=+ (f(T*)) is contained in a flat of Min( f.(71(T*)).

Proof. By [ES] the fact that M™ has nonpositive sectional curvature implies
that f : T% — M is harmonic if and only if f is totally geodesic. Assertions
(1.5.1), (1.5.2), are standard consequences of this fact. O

Lemma 1.6. Let ﬁ :U; — M™ be defined as in the above. Then

(1.6.1) The restriction ofﬁ to any orbit in U; is a harmonic map.

(1.6.2) IfT; = f,(C;) # 1, then fi(U;) C m(Min(Ty)).

Proof. Since the induced metric on any orbit is flat, it suffices to show that
the restriction of f; to an orbit is totally geodesic.
Recall that f;, has the property that the map, H;(-,y,1): T% x V; x

{1} - v; &5 U; ER M™, obtained from the heat flow (1.4), is harmonic and
therefore totally geodesic. Let T* denote the isotropy group at y. Then

s T =TFT j — Op(y) 1s a Riemannian submersion and thus totally
geodesic. Then, f; : Opy) — M™ satisfies that fi(z) = Hy(z,1)(t) for any
t € T° such that ps(t) = =. This shows that f; is totally geodesic. This
shows (1.6.1)
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To see (1.6.2), note that U; is the union of Tki-orbitg\. By Lemma 1.5, we
see that when restricted to each orbit O, in U;, we have f;(O,) C 7(Min(I';)).
U

e. Existence of the local splitting structure and consistency.

Recall that to an atlas, {(U;, Vi, T*)}, we associate the collection {[I';]}, of
conjugacy classes (up to subgroups of finite index) of abelian subgroups of
m1 (X", z). By passing to a subgroup of each I'; with finite index if neces-
sary, we may assume that {[I';]} is chosen so that the following condition is
satisfied; see the proof of Proposition 1.8.

(1.7) For z € X", let (Uy, Vi, T™), ..., (Us, Vi, T") be the charts containing
x, kl Sgks Thenfi ggrs

Let S = {Min(4;), A; € [A;] # [e]}, where [A;] denotes the conjugacy
class of f.(I%;).

The following gives a sufficient condition for S to be a local splitting
structure with f € C(F,S)ie f is a consistency map.

Proposition 1.8. Given an atlas, {(U;, Vi, T*)}, and an invariant parti-

n

tion of unity {\;}, there is a map, fx
conditions:

— M™, satisfying the following

(1.8.1) Ifx € X" is such that O, is not homotopically trivial, then J/‘\(Ox)
is contained in a projected flat of S.

(1.8.2) Let U denote the union of orbits which are homotopically trivial.
Then f maps each orbit in U to a point and thus dim(f(U)) < n.

Proof of local splitting and consistency assuming Proposition 1.8.

We must show

M"= | Min(4).
Ai#A{1}

Equivalently, S is a local splitting structure. Then (1.8.1) and (1.8.2) imply
feC(F,S).

Because the collection of closed subsets, {m(Min(4;)), A; # {1}}, is lo-
cally finite, the subset,

M”\ U = (Min(4y),
Ai#{1}
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if not empty, must be open. Since J/‘\is an onto map satisfying (1.8.2), this
gives a contradiction. O

The following example shows that if as in subsection ¢, we construct J/‘\in
Proposition 1.8 using the atlas {(U;, Vi, %)}, then f may not satisfy (1.8.1).

Example 1.9. Consider a mixed T-structure on a flat torus 7°% = T2 x T,
with two adjacent charts, one with rank one and the other with rank two.
The union of these charts is 72 x (0, 1) C T? xT. Assume that the T2-orbits
in the rank two chart are not totally geodesic submanifolds while T -orbits in
the rank one chart are totally geodesic. Thus, in the overlap, each T2-orbit
is a union of totally geodesic circles.

Let O denote a T?-orbit lying in the overlap of the two charts. The heat
flow on the rank two chart deforms the T%-orbit to a totally geodesic torus.
On the chart of rank one the heat flow acts trivially. Thus, it leaves the
T2-orbit unchanged.

It follows that J/‘\ maps the above T%-orbit to the gluing via the center
of mass construction of the 7%-orbit and the corresponding totally geodesic
2-torus arising from the heat flow on the rank two chart. Obviously, J/‘\is not
a consistency map, since it maps the T2-orbit to a torus which is not totally
geodesic.

Note that J/‘\maps any T'-orbit in the rank one chart to a closed geodesic.
This is because the images of this orbit under both heat flows are totally
geodesic circles. Therefore, their center of mass is a totally geodesic circle
as well.

Now suppose that one slightly fattens the rank two chart and shrinks
the rank one chart so that the T2-orbits on the overlap with respect to the
old charts are not in the overlap of the new charts. Then the gluing map
constructed using the new charts, maps the T%-orbits in the overlap of the
old charts to projected flats i.e. the gluing construction with respect to the
new charts is consistent (with respect to orbits of the old charts). Indeed,
constructing J/‘\ with a refined atlas, {(U},V/,T%)}, as below,is all that is
needed for f to satisfy (1.8.1) and (1.8.2).

Lemma 1.10. Given any atlas, {(U;, V;, T*))}, there is an equivalent atlas,
{(U!, V!, Tk)}, such that:

(1.10.1) I'; =T, for all i.

(1.10.2) For x € M, let Uy,...,Us denote those U; that contain x, where
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ki <---<ks. Then

vevl\ U v
k‘j<k‘i

(1.10.3) For x € M, let U{,...,U. denotes those U] that contain x. Then
Oy = Oy (the T -orbit in U] ).

Proof. For each Uy, let (/J\'Z denote a small tubular neighborhood of U; such that
the pure structure on U; extends to (/J\}, and {((/J\}, YZ, T*)} is an equivalent
atlas.

Then it is easy to see that the collection of charts corresponding to the
following sets, U/, has the desired properties:

Ul =U; U .
\kgki '

O

For x € M, let (U, Vi, T*),...,(Us, Vs, T%s), where k; < --- < ks,
denote those charts such that = € U;. Let O; denote the T*i-orbit in Uj.
Thus, O1 C--- C O,. Then O, = OS'A

The following lemma implies that f(O;) is always a projected flat of A;.
Note that according to Example 1.9, f(O,) may not have this property.

Lemma 1.11. Let M" denote a complete manifold of nonpositive sectional

curvature. Let C' : A* x RF — D x R¥F C M™ denote a smooth map, with
D x RF is a closed totally convex subset. Then for fited ex € A®, with
barycentric coordinates, (A1,...,\), the image, C(ex,RF), is contained in
a flat of D x R*, provided the following conditions hold:

(1.11.1) For e; € A\ a vertex (where 1 <1i < s), the map,
C(ei,x): e X RF — y; x R M”,
1$ a totally geodesic embedding.

(1.11.2) C(ey, x) is the weighted center of mass, {C(e;, x), \}.

Proof. First, since f;(z) € D x R¥ which is a convex subset, by (1.11.2)
we see that C(ey,x) € D x R¥ for all C(ey, ). It remains to check that
C(ex,x) € x) x R¥,
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Since D x R¥ is a metric product, for all (y, 2), (v/, 2') € D x R¥,

d((y,2), (y,2))" = d(y, y)? +d(z, )%

Note that C(ey, z) is the unique critical point of the energy function,

6)\, Z)‘d Y,z y’uzz))
= Z)‘ y yz + d(z, 31)2]

= Z Nd(y, yi)? + MY d(z, 2)°
i=1 i=1
= E(y) + E(2),
where C(ey, z) = (y,2), C(e;,0) = (y;,2;) and ey = (A1,..., As). The above

implies that
C(ekv x) = (C({yi}v )‘)7 C({zi}v )‘)) )

where C({y; }, \) denotes the center of mass of {y;} with weight A. The claim
follows. 0

Proof of Proposition 1.8. Given an atlas, {(U;, Vi, T%)}, let {(U!, V!, T*)}
denote an equivalent atlas as in Lemma 1.10. Using the new atlas and the
construction in subsection ¢, we obtain a map, J/‘\: X" — M"™, homotopic to
f. It remains to check (1.8.1) and (1.8.2) for .

We first verify (1.8.1). If z € X" is a multiple point of {(U;, Vi, T*)},
then by (1.10.2) z is not a multiple of {(U/,V/,T*)}. If x € U!, then
O, = O, and thus f(O,) = f(O.) is a projected flat of 4;; see Lemma 1.5.

If x is not a multiple point of {(U;, Vi, T%)}. We can assume that z is a
multiple point of {(U}, V/, T*)}. Let (U], V{,T"),...,(U., V!, T*) denote
the charts containing x. We will show that (1.10.3) implies that f(O,) is a
projected flat of Aj.

Fix & € M with n(Z) = f(z). Let 7 = (1), where %(t) is the lift at
T of the trajectory, ;(t), of the heat flow in U] (see subsection c¢). Since by
(1.7), we have I'; C --- C T, it follows that g; € Min(A;) € Min(A;). Thus,
the weighted center of mass, y, of {y;}, associated to the partition of unity,
is also in Min(4;). By (1.10.3) and the invariance of the partition of unity,
we conclude from Lemma 1.11 that f ( ) = f (O’ ) is the projected flat of
Ay
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We now verify (1.8.2). Let z € X™ such that O, is homotopically trivial.
As in the verification of (1.8.1), we consider two distinct cases, depending
on whether or not z is a multiple point of {(V;, U;, T*)}.

Suppose z is a multiple point and let (Uy, Vi, T*1), ..., (Us, Vi, T") de-
note those charts such that = € U;. By (1.10.2), we have O, = O.. Thus,
by Lemma 1.5 we conclude that J/‘\(OS) = f(o;) is a point.

Suppose z is not a multiple point of {(U;, Vi, T*)}. Tt suffices to as-
sume that the charts with x € U; are (U], V1, T™),...,(V,U., T*). By
(1.10.3), f(O,) = F(O}). Since f(O}) is obtained from the gluing of
F1(O}), ..., F(O}) (see subsection c), and since each f;(O}) is a point (see

~

Lemma 1.5), it follows that f(O}) is a point. O
2. Proof of Theorem B.
a. Alternating sequences.

Let the collection of groups, {I';}, be defined as in Section 1. Since f, :
m(X") — m(M™) is an isomorphism, the images under f, of conjugacy
classes, [4;], in m1(X™), are conjugacy classes in w1 (M™).

By Theorem A, the sets, Min(I';), together with their canonical splittings,
D; x RFi satisfy (0.2.1), and hence, determine a local splitting structure S.

Note that each component of the union, Y, of all (n — 1)-dimensional
orbits is diffeomorphic to I x R® !, for some interval I. A component of
M™\'Y will be denoted by N;.

In what follows we continue to identify two subgroups if they have a
common subgroup of finite index.

A finite sequence, {I';;}, whose first element is either I';; or I';, will be
called alternating if the following conditions hold:

(2.1.1) rank(I';,;) = n —1, for all j.
(2.1.2) rank(I'y,, ,) =n —2, for all j.
(2.1.3) Ty, #Ty, . if ji # jo.

The proof of Theorem B is an immediate consequence of the following
two assertions.

(2.2.1) IfTy,,T,, are members of an alternating sequence, and Min(I';, ) N
Min(T;,) # 0, then k, ¢ € {25 — 1, 2j, 2j + 1}, for some j.
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(2.2.2) Foralll'y, I's, there exists an alternating sequence with first member
I'y and last member I's.

To see (2.2.2), let 'y, I'g be given by, f.(Aa), f«(Ag), where A,, Ag, are
the maximal normal Abelian subgroups of O, Og. By connecting O, to Og
by a suitable curve, ¢, which meets the boundaries of all N; transversally, we
obtain a finite sequence, A;,, for which the corresponding sequence, {I';, },
begins with Iy, terminates in I'g and satisfies (2.1.1), (2.1.2).

A suitably reindexed subsequence satisfies (2.1.3) as well. To see this, if
Jj(1) is the largest subindex such that I';, , is isomorphic to I';, (always up to
subgroups of finite index) we remove the part of the sequence prior to Li;
and renumber so that I';, | becomes I';, . Let j(2) be the largest index of the
renumbered sequence such that Fi].(g) is isomorphic to I';,. Then we remove
the portion, I';,, .. .Fi].(g)_l, and renumber such that Fi].(g) becomes I's. By
proceeding in this way, after finitely many steps, we obtain the required
subsequence. This gives (2.2.2).

Note that two rank n—2 abelian subgroups of a rank n—1 abelian group
either coincide or generate the entire group. Hence, from (2.1.1)—(2.1.3), we
get the following additional property.

(2.3.1) The subgroup generated by I';,. ,, I's,. ., is I';,..

b. Proof of (2.2.1).

Fix j such that T'y,, | # 0, Ty, # 0.

It follows from (2.1.1), Min(T';,,) is isometric to I x R"™!, for some in-
terval, I, which might, apriori, be infinite or semi-infinite. If nonempty,
O(I x R"1), is the disjoint union of a pair of totally geodesic submanifolds
isometric to R"1, or just one such. The same holds for Min(T'

By (2.3.1), we have Min(I';,, ;) N Min(Ty,, ;) = Min(I';,, ).

By (2.1.3), Min(T,,_,), Min(I';,,) intersect transversally, or not at all.
In particular, Min(I';,, ), is not a subset of Min(I';,;). It follows that if we
put I = [a, b], then say —0o < a and a x R"~" € 0(Min(T'y,, ).

Similarly, b < oo, bx R"~! € (Min(T'y,,_,)), and Min(Iy,, ;)\ Min(I'y;),
Min(T'2;41) \ Min(T,,), lie in different components of M™\ Min(T,; ).

Now it follows that Min(I';,, ,), Min(I';,;) cannot intersect transversally.
Otherwise, Min(I';,, _,)Nd(Min(T';,,)) would not be contained in Min(T’

As above, Min(I';,; ) \ Min(I';,, ,), Min(I';,; ;) \ Min(T'
ferent components of M" \ Min(T',, ).

i2j+2)'

12541 )

inj—2 ioj1 in;_»), lie in dif-
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Hence, Min(T,,_,) N Min(T,,_,) = 0. By induction, it follows that for
all k <2j—2,0> 2542, Min(I';, ), Min(I';,) lie in different components of
M™\ Min(I';,,). This gives (2.2.1).

3. Proof of Theorem C.

The references for this section are [Ro|, [Wal,2]. The main effort is devoted
to establishing the following topological result.

Theorem 3.1. Let M? be a closed 3-manifold whose universal covering
space is contractible. If M3 admits a nontrivial F-structure, then M3 admits
an injective F-structure.

First, assuming Theorem 3.1, we prove Theorem C.

Proof of Theorem C. Note that the uniqueness statement holds if M2 admits
a flat metric. Hence, we can assume that M3 does not admit any flat met-
ric. By Theorem 3.1 together with Theorem B, every nonpositively curved
metric, g, on M", admits an abelian local splitting structure.

Note that the uniqueness statement holds if M? admits a flat metric.

Hence, we can assume that M?> does not admit any flat metric. Let
Cr(g) denote the associated canonical Cr-structure. We claim that Cr(g)
determines a simple graph structure in the sense of Waldhausen, [Wal,2];
see also [Ro]. Following the discussion in Section 5 of [Ro|, we can apply
[Wal,2], to conclude that the isomorphism class of Cr(g) is independent of
qg. U

In the proof of Theorem 3.1, following [Ro|, we will give a reduction
process which leads to our being able to replace a non-trivial F-structure
by an irreducible structure. We show that if this irreducible F-structure
were not injective, then the universal covering would not be contractible; a
contradiction.

Before beginning the actual argument, we consider a typical example.

Example 3.2. An F-structure on X" is called semi-injective if for every
orbit, O, the kernel of natural homomorphism, 71(O) — 71 (X™), is properly
contained in 71 (O).

First, we construct a 3-manifold, M3, with infinite fundamental group,
which supports a T-structure that is polarized but not semi-injective. Then
we show that the universal covering, M3, of M3, is contractible.
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Let ¥2 denote a compact surface with non-empty boundary. Let X3
denote the result of gluing a solid torus, D? x S', to ¥£% x S!, in such
a way that 0D? is identified with the S!'-factor in % x S'. Hence, the
homotopy class of the S'-factor is trivial in X3. Let M3 denote a closed
3-manifold obtained by gluing X3 to some compact 3-manifold, Y3, with
torus boundary, where Y3 is chosen to admit a polarized T-structure.

The manifold, M3, carries the mixed polarized T-structure generated by
the S'-rotations on D? x S and ¥2 x S! and the T-structure on Y3. Clearly,
the polarized T-structure on M3 is not semi-injective.

Assume that X2 has a positive genus. We claim that the universal cov-
ering of M? is not be contractible.

Let Cy, a circle, denote the boundary component of ¥? corresponding
to the gluing. Take a simple path, «, in X2, whose end points are in Cy
and which goes around one of the holes of 2. In this way, we obtain an
embedded 2-sphere in M3 which is formed by the cylinder, o x S, and
the discs at its two boundary components. To see that this 2-sphere does
not bound a 3-ball in M3, take a simple closed curve § in ¥? which cuts
transversally the hole which « encircles, and such that o and § intersect at
a single point. (For example, if ¥2 has genus 1, then one can think of o,
0 as independent generators of the fundamental group of the corresponding
torus)

By the Seifert-van Kampen theorem, ( is not homotopically trivial in
M3. Since the intersection number of 3 and our 2-sphere is 1, this 2-sphere
must be essential.

Assume that Y2 has genus zero, and (at least) 3 boundary components.
In this case, we choose « a simple path with two ends in Cjy, which is not
homotopic to a segment in Cy e.g., if 2 looks like a pair of pants, then o
cuts this pair of pants in half symmetrically. Let 8 denote a simple closed
curve in M3 whose intersection with %2 is a simple path connecting two
other boundary components of X2, such that o and 3 intersect at a single
point. As above, we obtain an essential 2-sphere in M?3.

Proof of Theorem 3.1.

Case 1. Assume that F is pure. If F is polarized, then M3 is a Seifert
fiber space whose base space is a surface of genus > 1 (otherwise M3 is not
contractible) or a solvmanifold. In any case, F is pure and injective.

If F is not polarized, then each singular orbit is a circle. Since a tubular
neighborhood of an isolated circle orbit is homeomorphic to a solid torus,
one can replace the T2-structure on the solid torus with a free Sl-action to
obtain a mixed polarized F-structure; see Case 2.
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Case 2. Assume that F is a mixed polarized F-structure. Following [Ro],
one sees that M? is obtained as by gluing together a finite number pieces,
{%2 x S}, each of which is a closed 3-manifold with boundary, where each
Z? is homeomorphic to one of the following types of surface with boundary:

I) ¥? is a disk D%

1) ¥? is a surface of genus zero with at least three boundary components.
(In particular, ¥? is not a cylinder.)

III) X2 is a surface of positive genus.

We say that ¥ x S! is of type I, II or III, if %2 is of type I, II or III,
respectively. We claim the following:

(3.3.1) Gluing any type I piece to a type II or III cannot kill the homotopy
class of the S'-factor of the type II or III

First assuming (3.3.1), we prove the existence of the injective F-
structure. We observe:

(3.3.2) Any boundary component of a type II or a type III piece is incom-
pressible i.e. the inclusion induces an injection on the fundamental
groups.

(3.3.3) Ifatype I piece is glued to a type III, as in (3.3.1), then the remaining
boundary components (if such exist) stay incompressible.

(3.3.4) If, whenever possible, a type I piece is glued to a type Il as in (3.3.1),
then either the result homeomorphic to a solid torus, or the boundary
is disconnected and incompressible.

Relation (3.3.4) implies that M? cannot be obtained just by gluing type
I pieces to a single type II. In this case, M? is homeomorphic to a lens space
or to S% x S, which is not possible; for details, see Section 4 of [Ro].

Let {X;} denote the manifold obtained by gluing type I pieces to type
II’'s whenever possible. By (3.3.4), we can assume that each X; has more
than one incompressible boundary component.

Similarly, let {Y;} denote the result of gluing type I pieces to type III's
whenever possible. By (3.3.3), the boundary of Yj is incompressible. By
(3.3.1), each X; (respectively Y;) admits an S'-action which is the extension
of the S! rotation on the type II (respectively III) piece. By Van Kampen’s
theorem, the incompressibility of the boundaries implies that the F-structure
generated by these S'-actions on X, Y; is injective.
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We now verify (3.3.1). We show that if (3.3.1) is false, then there is an es-
sential sphere in M?3. Thus, the universal covering of M? is not contractible;
a contradiction.

If some gluing of a type I piece to a type III kills the homotopy class of
the S'-factor, then we are in the situation discussed in the case of Example
3.2 in which ¥2 has positive genus. As in that case, we conclude that there
exists an essential 2-sphere in M3.

If some gluing of a type I piece to a type III kills the homotopy class of
the S'-factor, then by (3.3.4) we are in the case of Example 3.2 in which 2
has genus zero. As in that case, we conclude the existence of an essential
2-sphere in M3. O

4. Semirigidity.
a. Semirigidity versus rigidity.

In this section we try to put Theorem C in a more general context.

By the moduli space of metrics of a given type on a (pointed) closed
manifold, we mean the collection of isometry classes of such metrics,
equipped with the topology of (pointed) Gromov-Hausdorff convergence.
Let GZy(M™), the moduli space of complete metrics of nonpositive curva-
ture, denote the subset of the full moduli space consisting of those metrics
with nonpositive curvature.

We say that G%,(M™) is rigid if up to rescaling, any two metrics in
GLo(M™) are isometric. The manifolds to which classical rigidity theorems
apply all have the property that every finite Riemannian covering of M" is
irreducible (i.e. not a metric product) and the Riemannian universal covering
is not a metric product with nontrivial flat factor.

Mostow’s rigidity theorem states that the subset of GZ,(M™) consisting
of locally symmetric metrics is rigid. -

The rank of a maximal geodesic 7y is the dimension of the space of parallel
Jacobi fields along v. The rank of M™ is the infimum of the rank of all
maximal geodesics. If M™ is also simply connected, then M™ has rank k
means that at each point and in every direction, there is a k-flat i.e. a
totally geodesic flat k-plane.

According to the higher rank rigidity of Ballmann, Burns-Spatzier,
g € GZy(M™) is locally symmetric if g has rank at least 2; see [Bal, [BS].
Moreover, Gromov showed that G%,(M) is rigid if GX,(M™) contains a lo-
cally symmetric metric of rank at least two; see [BGS]. A typical example to
which these results apply is that of irreducible compact quotient manifold
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of M™ = SL(n,R)/SO(n,R) which has rank > 2.

In the present paper, we have studied certain (partial) rigidity phenom-
ena for a class of nonpositively manifolds which does not intersect the one to
which the rigidity theorem apply. These manifolds have the property that a
certain aspect of their topology is visible in the local splitting structure of
every nonpositively curved metric. Our most general such result is Theorem
A, while the one with the strongest conclusion is Theorem C which concerns
the 3-dimensional case. Conjecturally the conclusion of Theorem C holds
for a natural class of higher dimensional manifolds as well; see Conjecture
4.2. To this end, we repeat here the definition given in Section 1.

Definition 4.1. The space, G<o(M™"), is semirigid, if there exists a Cr-
structure, C,, on M", such that every g € G<o("M) has a local splitting
structure compatible with C,..

b. Semirigidity conjectures.

Gromov defined the minimal volume, MinVol(M™), to be the infimum of the
volumes for all complete metrics on M™ with normalized curvature |sec| < 1.
Since a Cr-structure is in particular, an atlas for a polarized F-structure,
semirigidity of G<o(M"™) implies MinVol(M™) = 0.

Conjecture 4.2. If X™ admits an F-structure and f : X" — M"™ is a
homotopy equivalence, then every metric of nonpositive sectional curvature
on M™ admits an abelian splitting structure and hence, a compatible Cr-
structure.

Following [GW], [LY], [CG1], it is not hard to see that Conjecture 0.3
holds if X™ admits a pure F-structure; see Corollary 4.5.

In the following conjecture, we strengthen both the hypothesis and con-
clusion of Conjecture 4.2.

Conjecture 4.3. If M" is closed, then G<o(M™) is semirigid if and only if
MinVol(M™) = 0.

c. Minimal d-volume and pure structures.

Given d > 0, the d-minimal volume MinVol;(M") is the infimum of volumes
of all complete metrics on M™ with |sec| < 1 and diam < d. According to
[CR], there is a constant €(n,d) > 0 such that if MinVol;(M"™) < €(n,d),
then MinVol(M") = 0.
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For manifolds whose d-minimal volume is sufficiently small, the semi-
rigidity conjecture holds.

Theorem 4.4. There is a constant, €(n,d) > 0, such that if a closed mani-
fold, M™, satisfies MinVoly(M™) < e(n,d), then G<o(M™) is semirigid.

Proof. By [CG2], M™ admits an F-structure, F, whose orbits have positive
dimension. Since the volume is small relative to the diameter, F is pure; see
[Ful], [Fu2], [CFG].

By [CG1] (see the appendix) any pure F-structure on a closed mani-
fold whose universal covering is contractible must be injective. Hence, F is
injective.

Recall that an orbit is regular if it has a neighborhood such that the
orbits form a fibration. Let B denote the subgroup of m(M™) generated
by loops in a regular orbit. The fact that F is injective, implies that B
is Bieberbach of positive rank. Since regular orbits form a connected open
dense subset, it follows that B is a normal subgroup of w1 (M").

By [GW], [LY], for any g € G<o(M™), the riemannian universal covering
space, M splits, - -

M™ = Min(B) = Mj~* x R”,
where k = rank(B). By Proposition 5.11 [CCR], a finite covering space of
M™" is diffeomorphic to Mg_k x T*. Note that the single chart, (Mg_l€ X
Tk M™, T*), defines a Cr-structure which is compatible with the abelian
local splitting structure of g. Since the abelian local splitting structure is
determined by B, the Cr-structure is also compatible with the abelian local
splitting structure of any metric in G<o(M"). O

The proof of Theorem 4.4 also yields the following:

Corollary 4.5. Let M™ be a closed manifold admitting at least one metric
of nonpositive curvature. If M™ carries a pure nontrivial F'-structure, then
G<o(M™) is semirigid.

References.

[Ba] W. Ballmann, Nonpositively curved manifolds of higher rank Ann. of
Math 122 (1985), 597-609.

[BGS] W. Ballman, M. Gromov, and V. Schroeder, Manifolds of nonpositive
curvature, Basel: Birkhduser, Boston, Basel Stuttgart, (1985)



[BS]

[Bul]

[Bu2]

[Bu3]

[Bu4]

[Bub]

[CCR]

[CFG]

[CG1]

[CG2]

[CR]

[ES]

[Ful]

Local Splitting Structures 413

K. Burns and R. Spatzier, Manifolds of nonpositive curvature and
their buildings, Math. IHES 65 (1987), 137-145.

S. Buyalo, Volume and the fundamental group of a manifold of non-
positive curvature, Math. USSR Sbornik 50 (1985), 137-150.

S. Buyalo, Collapsing manifolds of nonpositive curvature I, Leningrad
Math. J. vol. 1 No. 5 (1990), 1135-1155.

S. Buyalo, Collapsing manifolds of nonpositive curvature II,
Leningrad Math. J. vol. 1 No. 6 (1990), 1371-1399.

S. Buyalo, Homotopy invariance of some geometric properties of non-
positive curved three-manifolds, St. Petersburg Math. J. 3 (1992),
791-808.

S. Buyalo, Three-dimensional manifolds with Cr-structures, Some
Questions of Geometry in the Large, A.M.S. Translations 176 (1996),
1-26.

J. Cao, J. Cheeger, and X. Rong, Splittings and Cr-structures for
manifolds with nonpositive sectional curvature, Invent. Math. 144
(2001), 139-167.

J. Cheeger, K. Fukaya, and M. Gromov, Nilpotent structures and
invariant metrics on collapsed manifolds, J. A.M.S., 5 (1992), 327—
372.

J. Cheeger and M. Gromov, Collapsing Riemannian manifolds while
keeping their curvature bounded I, J. Diff. Geom. 23 (1986), 309-364.

J. Cheeger and M. Gromov, Collapsing Riemannian manifolds while
keeping their curvature bounded II, J. Diff. Geom. 32 (1990), 269
298.

J. Cheeger and X. Rong, Existence of polarized F-structures on
collapsed manifolds with bounded diameter and curvature, GAFA,
Geom. Funct. Anal. 5 (1996), 411-429.

J. Eells, and J. H. Sampson, Harmonic mapping of Riemannian man-
ifolds, Amer. J. Math. 86 (1964), 109-160.

K. Fukaya, Collapsing Riemannian manifolds to ones of lower dimen-
sion, I, J. Diff. Geom. 25 (1987), 139-156.



414

[Fu2]

[GW]

[Gr]

[Har]

[LY]

[Le]

J. Cao, J. Cheeger, and X. Rong

K. Fukaya, Collapsing Riemannian manifolds to ones of lower dimen-
sion, I, J. Math. Soc. Japan 41 (1989), 333-356.

D. Gromoll and J. Wolf, Some relations between the metric structure
and the algebraic structure of the fundamental group in manifolds
of nonpositive curvature, Bull. Am. Math. Soc. 77, No. 4 (1971),
545-552.

M. Gromov, Volume and bounded cohomology, Publ. Math., IHES
56 (1982).

P. Hartman, On homotopic harmonic maps, Canada, J. Math. 19
(1967), 673-687.

B. Lawson and S.T. Yau, On compact manifolds of nonpositive cur-
vature, J. Diff. Geom. 7 (1972).

B. Leeb, 3-manifolds with(out) metrics of nonpositive curvature, In-
vent. Math. 122 (1995), 277-289.

A. Preissmann, Quelques propriétés des spaces de Riemann, Com-
ment. Math. Helv 15 (1942), 175-216.

X. Rong, Limiting eta-invariants of collapsed three-manifolds, J. Diff.
Geom. 37 (1993), 535-568.

V. Schroeder, Rigidity of nonpositively curved graph manifolds,
Math. Ann. 274 (1986).

F. Waldhausen, Eine klasse von 3-dimensionalen mannigfalkeitigen,
I, Invent. Math. 3 (1967), 308-333.

F. Waldhausen, Eine klasse von 3-dimensionalen mannigfalkeitigen,
I1, Invent. Math. 4 (1967), 87-177.

JiaANGuO CAO

MATHEMATICS DEPARTMENT
UNIVERSITY OF NOTRE DAME
NoTrRE DAME, IN 46556

JEFF CHEEGER
COURANT INSTITUTE OF MATHEMATICAL SCIENCES
NEw YOrk, NY 10012



Local Splitting Structures

XIAOCHUN RONG
MATHEMATICS DEPARTMENT
RUTGERS UNIVERSITY

NEw BRrunswick, NJ 08903
and

MATHEMATICS DEPARTMENT
CAPITAL NORMAL UNIVERSITY
BeEuinGg, P.R.C.

415





